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ABSTRACT 
 
In the current study, a statistical failure initiation model for honeycomb materials is 
proposed. The model describes the failure initiation in macroscopic normal-shear stress 
space. The workflow of the model is explained in three stages: micromechanical model, 
simulation experiments under external macrostresses and boundary conditions, and 
analysis of the experiment results. In the micromechanical model, the heterogeneous 
nature of the material is described with the geometrical parameters which are 
irregularity and scale, and their variations. Based on these parameters, samples are 
designed and simulation experiments are conducted. The experiment results are linked 
to possible failure mechanisms in order to obtain the critical macroscopic stresses which 
are expressed in terms of cumulative distribution functions. Further investigations on 
these functions with the weakest link theory and Weibull distribution lead to understand 
and quantify the effects of the geometrical parameters on the failure initiation 
characteristic in a statistical manner. As a result of these investigations, the statistical 
model describing the failure initiation of honeycomb materials is presented as functions 
of the irregularity and scale in macroscopic stress space. 
 
Keywords: Failure initiation, honeycomb, micromechanical, cumulative distribution, the 
weakest link, Weibull distribution. 
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1. INTRODUCTION  
 
Honeycomb materials are widely used for various structural applications due to the 
minimized amount of material usage and high stiffness-to-weight ratios [1]. They can 
easily function as tailored solutions for different special problems due to their design as 
interconnected network of solid struts. Since being a popular material in engineering 
applications, there have been studies related to their deformation and failure 
mechanisms in the literature. These include the research activities on the elastic 
properties of regular honeycombs for which the struts form equilateral cells with exactly 
the same corner angles [2-4]. Such analyses are not, however, feasible since they do not 
take the microstructural variations into account [5]. This necessitated developing 
models for irregular honeycombs which have random deviations in shape and size of 
their cell structures [6, 7]. Although the effects of irregularities and imperfections on the 
elastic and failure properties have been wisely modelled, the results have been mostly 
analysed in deterministic manner [8]. However, taking heterogeneous nature of the 
honeycomb materials into consideration, more realistic results can be obtained by 
blending these micromechanical models with statistical analysis techniques [9].  
 
In order to complete this missing link in the literature, the proposed model, which is an 
extension of the conference articles [10, 11], aims at expressing the effects of 
geometrical parameters such as irregularity and scale on the failure initiation of the 
honeycomb materials in a compact, statistical form. The present investigation starts with 
a micromechanical model for honeycomb materials which explains the geometrical and 
mechanical relations separately. In this micromechanical model, the heterogeneous 
nature of the material is described with the geometrical parameters such as irregularity 
and scale and their variations. Based on these parameters, samples are designed and 
simulation experiments are conducted. The experiment results are linked to possible 
failure mechanisms to obtain the critical macroscopic stresses and analyze the effects of 
irregularity and scale in terms of statistical methods. The outcome of the analysis is the 
generic cumulative distribution function in macroscopic stress space describing the 
failure initiation probabilities of the honeycomb materials. 
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2. OVERVIEW 
 
2.1. Objectives 
 
The main objective of the present study is to develop a statistical failure initiation model 
for honeycomb materials in macroscopic stress space. The model is designed so that 
once the failure initiation statistics of a reference honeycomb sample is known for a 
specific macrostress combination, it is possible to predict the failure initiation statistics 
for honeycombs of various geometrical features and scales under the same 
macrostresses. For a convenient representation, the failure initiation statistics is 
described in terms of cumulative distribution function which gives the probability with 
which a material fails under the critical macrostress value. As a result of this study, the 
critical macrostress limits and failure initiation probabilities of the honeycomb materials 
can be obtained and catastrophe can be avoided well in advance. 
 
2.2. Statistical failure initiation model 
 
In order to form the statistical failure initiation model, experiments are carried out under 
various external macrostress combinations s  for both regular honeycombs composed of 
equilateral cells with same corner angles and irregular honeycombs with variations in 
cell sizes and corner angles. Thereafter, the experiment results are linked to possible 
failure mechanism(s) and the critical macrostress values crs  are calculated and plotted in 
a chosen stress space, e.g. macroscopic normal-shear stress space, as illustrated in Fig. 
1. Since crs  is unique for regular honeycombs under each stress combination and is 
independent of size of the material, the outcome is always a curve defining the 
maximum possible safe region. If this curve is exceeded, the failure initiation is 
unavoidable. In case of irregular honeycomb(s) of irregularity α  and scale V , the 
phenomenon is explained with a variation domain instead of a curve. As shown in Fig. 
1, the variation domain can be described in terms of cumulative distribution function 
which gives the probability with which a material fails under crs . By using necessary 
statistical tools and cumulative distributions, it is possible to describe the variation 
domain for wide range of α  and V . 
 

---Preferred position for Fig. 1--- 
 



 4

2.3. Methodology 
 
In order to describe the variation domain and understand the effects of the parameters 
on the failure initiation, samples of various α  and V  should be tested either physically 
or virtually. However, it is a very challenging task to carry out physical experiments due 
to the need for excessive amount of data. Therefore, the present study focuses only on 
simulation experiments. For this purpose, a micromechanical model is developed as 
shown in Fig. 2. By means of this model, both microscopic and macroscopic mechanical 
field quantities are calculated under different s  and boundary conditions. Then, the 
failure mechanism(s) to be used is decided, e.g. bending moment can be taken to be 
decisive for failure due to its dominance on cell wall deformation of the honeycombs. In 
the following step, the critical bending moment crM  and the critical macrostress crs  
causing the first beam to fail are linked to each other in terms of maximization and 
scaling operations. Then, crs  values for honeycombs of different α  and V  are analyzed 
by using statistical tools such as the weakest link and Weibull theories. The outcome of 
the analysis is the generic cumulative distribution function which describes the failure 
initiation probabilities of the honeycomb materials.  
 

---Preferred position for Fig. 2--- 
 
 
3. MICROMECHANICAL MODEL 
 
The current micromechanical model represents the honeycomb material as a 
heterogeneous medium where the errors related to homogenization and discretization 
can be eliminated by direct calculations for the microscopic mechanical quantities [12].  
The following subsections explain this modeling approach in detail.   
 
3.1. Material element 
 
The material element is a H H×  square honeycomb as seen in Fig. 3. The independent 
geometrical variables are the measure of geometrical irregularity α  and the 
dimensionless scale parameter ( )20V H h= , where H is the specimen size and 0h  is the 
cell wall height for the regular honeycomb material. The measure of irregularity α  is 
the ratio between the cell wall height offset hΔ  and 0h  as shown in Fig. 3. Here, the 
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regularity of the material is described by a one-parameter model, in which 0α =  and 
0α >  correspond to regular and irregular material geometries, respectively. To be more 

precise, the cell vertices are given random offsets of magnitude 0h hαΔ =  and the 
uniform distribution interval is determined as 0 0[ , ]h h h h− Δ + Δ . However, the scale 

( )20V H h=  is treated in a deterministic way, while the shapes and sizes of the cells, 
cell wall elastic modulus sE  and thickness t  of the cell walls are assumed to be known.  
 
In the laboratory XY-coordinate system, the domain occupied by the specimen is 

[0, ] [0, ]H HΩ = × , where ∂Ω  represents the boundary domain. 
 

---Preferred position for Fig. 3--- 
 
 
3.2. Beam equations 
 
In the micromechanical model, the cell walls of Fig. 3 are modeled as elastic Bernoulli 
beams. The material inside the cells is taken to be soft compared to that of the walls. In 
this beam model, the equilibrium equations in beam xyz-Cartesian coordinate system are 
 

 0F f′ + =
GG

,               (1) 

 0M i F m′ + × + =
G GG G ,    (2) 

in which unit vectors , ,i j k
GG G

 are codirectional with x-, y-, and z-axes. The prime symbol 
is used to denote the derivative with respect to x. In Eqs. (1) and (2), f

G
 and mG  are the 

external load parameters, and F
G

 and M
G

 are the stress resultants acting on a beam 
cross-section. The constitutive equations for F

G
 and M

G
 of a linearly elastic material 

take the forms 
 

 ( )( )s x s yF E Au i E I u j′ ′′′= −
G G G

,      (3) 

 ( )s yM E I u k′′=
GG

,  (4) 

in which ,x yu u  are the displacement components in the directions of the x- and y-axes. 
Elastic modulus sE  is the constant material parameter of the problem. The geometrical 
properties of beam cross sections are A t= T  and 

3 /12I t=T  in which t  is the cell wall 
thickness which is same as the beam depth and T  is the thickness of the honeycomb 
material which is same as the beam width. The x-axis of the xyz-coordinate system is 
assumed to coincide with the neutral axis of the beam.  
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Solutions to Eqs. (1) and (2) for the cell walls modelled as beams of Fig. 3 are 
connected by continuity conditions concerning displacements and rotations at vertices 
and the equilibrium of the vertex points. 
 
3.3. Failure initiation criterion 
 
Failure mechanisms of a honeycomb depend highly on the material details. 
Identification and modeling of the likely mechanisms are one of the challenges of a 
simulation experiment design. In the current study, bending moment is assumed to be 
decisive for the failure initiation considering its dominant effect on the cell wall 
deformations [1, 13]. Hence, the material is assumed to fail when the bending moment 
in a beam exceeds the critical bending moment value crM .  
 
Let us denote the maximal absolute values of the bending moments of the beams with 

jM  { }1, 2,...,j n∈ , where n  is the total number of the beams in Ω . Then, the failure 
initiation occurs when 
 
 {1,2,.. } crmax ,j n jM M∈ =  (5) 

in which  is the absolute value function. Under linearity assumption, the critical 
macrostress value crs  resulting in the first beam to fail is obtained by scaling 
 

 cr
cr

{1,2,.. }max j n j

Mp
M∈

≡ =s s s , (6) 

in which p is the linear scaling term. 
 
4. SIMULATION EXPERIMENTS 
 
A simulation experiment on failure initiation is designed similar to a physical one: in 
order to study the population characteristics, such as strength of an irregular honeycomb 
material, experiment is repeated on a random sample, and the failure initiation statistics 
is estimated based on the results of the sample. In the present work, the aim is to 
understand the effect of independent geometrical variables such as irregularity α  and 
scale V  on the failure initiation statistics.  
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4.1. Design of experiments 
 
In these experiments, the effects of α  and ( )20V H h=  on failure initiation is studied 
on samples of 500j =  specimens. Each sample is generated for 0 {10, 20, 40, 60}H h ∈ , 

{0, 0.03, 0.15, 0.2, 0.3}α ∈ . The dependent variable of the problem is the critical 
macrostress value of failure initiation crs  which is obtained through Eq. (6). Material 
parameters of the model are assumed to satisfy the condition  2/ 1s sE I E Ah �  so that 
the bending effect in Eqs. (1) and (2) is significant [14]. 
 
4.2. Experiments 
 
Simulation experiments on failure initiation are performed with an in-house code 
written with Mathematica® software package. The microscopic material properties and 
boundary conditions are assigned to the honeycomb cell walls posterior to the 
generation of specimen geometries. After this step, experiments are conducted. 
 
In these experiments, three different loading conditions are studied in order to describe 
the failure initiation curves and variation domains of Fig. 1 with minimal effort. The 
loading conditions are given in terms of external macrostresses: (I) uniaxial tension, i.e. 

,  0XX XY YX YYs s s s s= = = = , (II) combined loading, i.e. , 0XX XY YX YYs s s s s= = = = , (III) 
pure shear, i.e. , = 0XY YX XX YYs s s s s= = = . In the current experiments, the material 
coordinate system is assumed to coincide with the laboratory coordinate system. 
However, the transformation rules should be applied when these coordinate systems do 
not coincide [15].     
 
The boundary condition problems such as artefacts due to loading near the edges and 
underestimation of strength are minimized by defining boundary and solution domain 
separately and using structural units instead of individual beam elements [7]. As shown 
in Fig. 4, the external loading acting on the specimen is taken into consideration in Eqs. 
(1) and (2) at the ends of these structural units on ∂Ω . Hence, the external load 
parameter f

G
 acting on the beams is calculated through 

 
 ( )f N= ⋅ ⋅s RT

G G
 (7) 
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in which ⋅  is the dot product, N
G

 is the unit surface normal coinciding with the neutral 
axis of the beam and R  is the rotation tensor [16]. Eq. (7) is also applicable for mG  in 
case of external moment stresses. 
 

---Preferred position for Fig. 4--- 
 
 
Here, it is also noteworthy to mention that one of the vertices is given zero displacement 
and rotation in order to have unique solution for Eqs. (1) and (2). 
 
5. ANALYSIS 
 
5.1. Cumulative distribution function for failure initiation   
 
For each sample, the simulation experiments result in a set of scaling terms 

{ }1 2, , jP p p p= …  ( 500j =  specimens) that gives the relationship between the external 
macrostress s  and critical macrostress crs  as given in Eq. (6). The scaling term set P  
for each sample is divided by the constant scaling term 0p  of the regular honeycomb 
specimen with 0α = . Hence, { }0 0 0

1 2, , , jp p p p p pΠ = …  can be formed in order to 
compare the irregular and regular specimens. These data sets are used to calculate the 
cumulative distribution function for the failure initiation of the samples with irregularity 
α  and scale V . Hence,  
 

 
0 0 0

0 { : }
cdf ( , , ) jp p p p p p

p p V
Π

α
Π

∈ ≤
=  (8) 

in which    denotes the size of a set.  The cumulative distribution function in Eq. (8) 
gives the probability with which a specimen fails when the 0p p  ratio is satisfied. 
Alternatively, one may think that Eq. (8) gives an estimate for the proportion of the 
sample failing before 0p p .  
 
5.2 The weakest link theory 
 
The weakest link theory assumes that the failure initiation of a specimen is determined 
by its weakest element. According to this theory, the failure of the weakest element 
produces a local stress peak which triggers the failure of the neighboring element(s) and 
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thereby the entire specimen. It is postulated that the cumulative distributions of the 
samples with different scales 1V , 2V  but the same irregularity α  can be connected to 
each other through  
 
 2 10 0

2 1
/1 cdf ( , , ) [1 cdf ( , , )]V Vp p V p p Vα α− = −  .  (9) 

Hence, it is enough to measure the failure initiation statistics of only one scale to predict 
the statistics of the target scale(s). Eq. (9) describes an ideally brittle material which 
narrows the class of materials to be considered quite effectively [17-19]. In this theory, 
specimen geometry should be irregular enough so that load can be uniformly shared by 
the elements of the specimen [20]. As a result of this, the location of the first failing 
elements is randomized and the distribution of these locations becomes more even 
within the sample.  
 
5.3. Weibull distribution 
 
In addition to the weakest link theory, three parameter Weibull distribution is the other 
necessary tool to form the statistical failure initiation model. By means of this 
distribution, it is possible to fit the cumulative distributions which are represented as 
data lists. This distribution is formulated as 
 

 
0

0 min( , , ) 1 exp p pw p p V
κ

Πα
λ

  −= − −  
   

 (10) 

in which λ  and κ  are the scale and shape parameters, respectively [21]. The minimum 
limit value minΠ  is locally defined for each sample. However, in order to obtain a 
generic form of Eq. (10), the global minimum value glob

minΠ  must be calculated for a 
sample with very large V  and α  which are physically realistic. 
 
6. RESULTS 
 
In this section, experiment results are explained in detail for the samples under uniaxial 
tension, i.e. ,  0XX XY YX YYs s s s s= = = = . The results related to other loading conditions 
which are combined loading, i.e. , 0XX XY YX YYs s s s s= = = =  and pure shear, i.e. 

, = 0XY YX XX YYs s s s s= = = , are discussed briefly. Eventually, the statistical failure 
initiation model is given in a compact form for the tested loading conditions. 
 



 10

6.1. Effects of irregularity and scale on failure initiation statistics 
 
The experiments show that the regular honeycomb specimen with 0α =  always 
displays deterministic behaviour on failure initiation regardless of the scale, giving the 
maximum possible scaling term 0p . Even, the location of the first failing element in the 
specimen is always the same spot, regardless of the sample size 
(here, 500j = specimens). This phenomenon always gives the set {1,1, ...,1}Π = , 
resulting in the global maximum value glob

max 1Π = . 
 
In case of near regular honeycombs, e.g. here samples with 0.03α = , non-deterministic 
behavior is expected. However, the experiments show that the first failing elements are 
located near the boundary region due to oriented geometry and boundary artifacts as 
seen in Fig. 5. This indicates that load sharing is not uniform. In this situation, 
estimations for the failure initiation probability can be misleading.  
 
In contrast to the assumption of geometrical regularity, the honeycomb materials have 
irregular geometries and random distribution of the mechanical properties in nature. 
Therefore, they are expected to have non-deterministic behaviour. For instance, in case 
of the failure initiation, the location of the first failing element becomes more random, 
as the irregularity increases inside the material. The randomness of the weakest element 
is also observed in the simulation experiments as shown in Fig. 5. However, increasing 
irregularity causes an important deficiency which is the loss of periodicity. Due to this 
problem, there occurs to be distortion in the alignment of the beam elements with 
respect to the loading direction. As a result, especially, the bending moments on some 
vertices (beam ends) increase rapidly when the specimen is exposed to external loading. 
Therefore, increased irregularity causes the first element to fail under lower s  values 
[22]. 

 
---Preferred position for Fig. 5--- 

 
From a probabilistic point of view, there is a close relationship between the scale V  and 
the failure initiation. The probability of failure initiation is higher for larger materials 
compared to smaller scales under the same loading conditions [23, 24]. This is mainly 
due to the increasing probabilities of the elements with weak mechanical properties in 
large materials [25]. In case of testing a specimen of extremely large scale V , this 
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probability reaches its highest practical value. In order to calculate such a hypothetical 
value, the minimum scaling terms minΠ  of the samples are fitted with the exponential 
function  
 
 ( ) exp( ),f x a bx= −  (11) 
in which a, b are the unknown coefficients and x is the variable. In Fig. 6, the fitted 
curves of each scale are extrapolated to compute the values of minΠ  for the maximum 
irregularity that is 0.5α = . In case of exceeding 0.5α = , the beam elements overlap 
resulting in unrealistic honeycomb geometries. For this extreme case, the trend for minΠ  
of each scale is checked and again extrapolated to find the global minimum value glob

minΠ  
for a practically large scale, e.g. here 40000V =  (or 0 200H h = ). The glob

minΠ  values for 
tested loading conditions vary between 0.17 and 0.18. These values are used to form the 
generic Weibull distribution of Eq. (10).  
 

---Preferred position for Fig. 6--- 
 
As seen in Fig. 7, the increments in α  cause the cumulative distribution curves to reach 
the vertical dashed line on the left hand-side representing glob

minΠ . The main reason is that 
the moment/load carrying capacities of the elements decrease due to geometrical 
distortions. Thus, some of the elements become weaker and the failure initiation 
probability increases. The curves also show that the increase in both α  and V  results in 
higher probability of the failure initiation. This close relationship is due to the 
weakening effect of α  on the elements and the augmenting effect of V  on the 
probability for the existence of weak elements inside the specimen. 
 

---Preferred position for Fig. 7--- 
 
 
6.2. Failure initiation statistics of the honeycomb materials 
 
According to the experimental results of Fig. 5, the first failing elements in near-regular 
/ regular honeycombs are gathered in specific locations (especially, near the edges), 
which is eminently deterministic. The reason is that the elements forming the structures 
have very similar geometrical and mechanical characteristics so that the boundary 
artefacts play more decisive role than α  and V  on determining the first element to fail. 
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Therefore, when the failure initiation statistics of the honeycombs is investigated, the 
specimens should be irregular enough so that load is uniformly shared within each 
specimen. Then, the weakest link theory in Eq. (9) can be safely used to estimate the 
failure initiation statistics of the samples with target scale(s).  
 
In terms of the weakest link theory, the cumulative distributions of honeycomb samples 
with different V  can be calculated by using the reference scale, e.g.  ref 100V =  (i.e. 

0 10H h = ) in the present study. It is important to mention that the calculations are 
conducted for the samples with the same α  value. It is observed that the weakest link 
theory estimates the failure initiation statistics of honeycombs with good accuracy, 
when α  is large enough. As explained above and shown on the left hand-side of Fig. 8, 
it is inevitable to obtain erroneously estimated distributions for small α .    
 

---Preferred position for Fig. 8--- 
 
The weakest link theory is a beneficial statistical tool for estimating the cumulative 
distributions of the failure initiation for the honeycomb samples with different V . 
However, in order to parameterize the estimated distributions and describe them as 
compact and mathematical expressions, three parameter Weibull distribution of Eq. (10) 
is substituted into Eq. (9). Once the Weibull parameters are computed for the reference 
sample of refα  and refV , the distributions for the samples with different V  but same 

refα  values are predicted through 
 

 
ref0 glob

0 min
refcdf ( , , ) 1 exp

V
V

p pp p V
κ

Πα
λ

  −= − −  
   

 (12) 

where both λ  and κ  are constant parameters and glob
min 0.17Π �  for uniaxial tension 

case. As an example, the reference samples are chosen as  ref 0.15α =  and ref 400V =  
(i.e. 0 20H h = ) and ref 0.3α =  and ref 400V = . The Weibull parameters for the first 
reference sample distribution are calculated as 0.58λ =  and 20.67κ = , while 0.41λ =  
and 10.91κ =  for the latter one.  By substituting these parameters into Eq. (12), 
cumulative distributions of the target samples are predicted as shown in Fig. 9. The 
predictions are accurate and in good accordance with the cumulative distributions of the 
target samples which are obtained through Eq. (8). 
 

---Preferred position for Fig. 9--- 



 13

6.3. Statistical failure initiation model 
 
In order to form a generic cumulative distribution function, it is necessary to represent 
λ  and κ  of Eq. (12) as functions of α  instead of a constant term description. As a 
result of this, the observer can form the statistical failure initiation model based on both 
α  and ( )20V H h=  under given external macrostress s . By means of this model, (s)he 
can analyze how many specimens can have failure initiation under the given loading 
and understand the severity of the condition.  
 
This model can be formed by modifying Eq. (12) so that 
 

 
ref( )0 glob

0 mincdf ( , , ) 1 exp .
( )

V
V

p pp p V
κ α

Πα
λ α

  −= − −  
   

 (13) 

In order to express λ  and κ  as functions of α  as in Eq. (13), values of the parameters 
are first calculated for the samples with refV . The results are tabulated for the tested 
loading conditions, i.e. uniaxial tension, combined loading  and pure shear in Table 1. 
Then, the tabulated data lists are represented as third order polynomial functions of α . 
 

---Preferred position for Table 1--- 
 
As a result of these operations, glob

minΠ , ( )λ α  and ( )κ α  of Eq. (13) for the samples with 

ref 400V =  under uniaxial tension, i.e. ,  0XX XY YX YYs s s s s= = = = , are obtained as 
 

 

glob
min

2 3

2 3

0.17,
( ) 0.81 1.52 0.39 3.47 ,
( ) 80.5 766.6 3120 4460 .

Π
λ α α α α
κ α α α α

= − − +
= − + −

�
 (14) 

For the samples under combined loading condition , 0XX XY YX YYs s s s s= = = = , 
 

 

glob
min

2 3

2 3

0.18,
( ) 0.82 2.7 6.46 7.54 ,
( ) 99.9 1078.4 4789 7211 .

Π
λ α α α α
κ α α α α

= − + −
= − + −

�
 (15) 

For the samples under pure shear, i.e. , = 0XY YX XX YYs s s s s= = = ,  
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glob
min

2 3

2 3

0.17,
( ) 0.84 1.62 0.13 5.11 ,
( ) 146.9 1708.2 7657 11455 .

Π
λ α α α α
κ α α α α

= − − +
= − + −

�
 (16) 

By substituting one of the expressions (14)-(16) above into Eq. (13), the statistical 
failure initiation model can be formed for the corresponding loading condition. This 
model can be represented in the macroscopic normal-shear stress space by substituting 
the variable 0p p  for crp = s s  of Eq. (6). This substitution is succeeded by calculating 
the constant scaling terms 0p  for regular honeycombs with 0α = , which are 0 2.64p =  
for the uniaxial tension, 0 1.29p =  for the combined loading and 0 1.32p =  for the pure 
shear conditions. Eventually, the statistical failure initiation model for the tested loading 
conditions is illustrated in Fig. 10.  
 

---Preferred position for Fig. 10--- 
 
 
7. CONCLUSIONS 
 
The current paper introduces a statistical failure initiation model for honeycomb 
materials. By means of this model, it is aimed to analyze and estimate the failure 
initiation characteristics quantitatively under given loading and understand the severity 
of the condition well in advance. The workflow of the model is explained in three 
stages: micromechanical model, simulation experiments under applied macrostresses 
and boundary conditions, and analysis of the experiment results. In contrast to the 
previous studies in the literature, micromechanical models based on the idealized unit 
cell structure and deterministic analysis approaches are avoided. Instead, a 
micromechanical model representing the honeycomb material as a heterogeneous 
medium and statistical analysis tools such as cumulative distribution function, the 
weakest link theory and Weibull distribution are used. In this respect, the proposed 
study is expected to advance the current state of art in fields of micromechanics and 
failure initiation modeling of honeycomb materials. 
 
In this paper, the heterogeneous nature of the honeycomb material is described with 
independent geometrical parameters which are irregularity α  and scale ( )20V H h=  
and their variations. By means of these parameters, failure initiation characteristics of 
the honeycombs are investigated. For this purpose, samples based on α  and V  are 
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generated, and experiments are conducted under three different loading conditions 
which are (I) uniaxial tension, i.e. ,  0XX XY YX YYs s s s s= = = = , (II) combined loading, 
i.e. , 0XX XY YX YYs s s s s= = = = , (III) pure shear, i.e. , = 0XY YX XX YYs s s s s= = = . The 
experiment results are linked to possible failure mechanism(s), e.g. the critical bending 
moment crM  in this study. In the following step, crM  and the critical macrostress crs  
causing the first beam to fail are linked to each other with maximization and scaling 
operations. Then, crs  values for the honeycombs with different α  and V  are analyzed 
by using statistical tools such as the weakest link and Weibull theories. The outcome of 
the analysis is the generic cumulative distribution function in macroscopic stress space 
which describes the failure initiation probabilities of the honeycomb materials.  
 
The cumulative distributions for the tested cases show that the failure initiation is more 
likely for samples with large V  due to the increasing probabilities for the existence of 
weak elements inside the specimen. Similarly, the increasing α  has a negative effect on 
the material loading capacity, which results in the weakest element to fail more rapidly 
than that of a honeycomb material with more regular geometry under the same loading 
condition. Therefore, increase in both α  and V  yields to higher failure initiation 
probabilities.  
 
In the literature, similar statistical methods have been successfully used to investigate 
the failure characteristics of fibrous composites, plain concrete beams, and other quasi-
brittle materials such as ceramics and rocks [26-28]. Due to the heterogeneous nature of 
the examined materials and the similar investigation methods of the previous studies, 
the proposed statistical model is expected to estimate the failure initiation of the 
honeycomb materials properly. 
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Table 1: Weibull parameters λ  and κ  fitted for the cumulative distributions of the 
samples with different irregularities α  but same ref 400V =  (i.e. 0 20H h = ). Tested 
loading conditions are (I) uniaxial tension, i.e. ,  0XX XY YX YYs s s s s= = = = , (II) 
combined loading, i.e. , 0XX XY YX YYs s s s s= = = = , (III) pure shear, i.e. 

, = 0XY YX XX YYs s s s s= = = . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Uniaxial 
tension

Combined 
loading

Pure 
shear

α λ κ λ κ λ κ 

0.03 0.76 60.21 0.75 71.7 0.79 102.2

0.15 0.58 20.67 0.54 21.6 0.61 24.2 

0.2 0.52 16.31 0.48 18.1 0.55 19.9 

0.3 0.41 10.91 0.39 12.7 0.48 14.2 
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Figure 1: Statistical failure initiation model for honeycomb material. 
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Figure 2: Workflow of the study. 
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Figure 3: Honeycomb material with independent geometrical variables which are 
irregularity α  and scale ( )20V H h= . The specimen and its boundary domains are 
represented with Ω  and ∂Ω , respectively. Here, ( )pdf h  is the probability density 
function of cell wall height h  for a uniform distribution over the interval 

0 0[ , ]h h h h− Δ + Δ . 
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Figure 4: Specimen exposed to external macrostresses. Here, ijs  for { }, ,i j X Y∈  are 
the external macrostress components and N

G
 is the unit surface normal which is parallel 

to the beam neutral axis. 
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Figure 5: Distributions for the locations of the first failing elements. The scattering of 
the sites is drawn on regular honeycomb geometry for clarity. Geometries on the right 
hand-side are scaled down. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0100 (or 10), 0.3V H h α= = =  

0100 (or 10), 0.03V H h α= = =

0400 (or 20), 0.3V H h α= = =  

0400 (or 20), 0.03V H h α= = =
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Figure 6: Extrapolation curves used to compute glob

minΠ  value for uniaxial loading case. 
The minΠ  values are first extrapolated to compute the values of minΠ  for 0.5α =  as 
seen on the left-hand side. The second extrapolation is conducted to obtain the global 
minimum value glob

minΠ  for a practically large scale, which is shown on the right-hand 
side.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(200, 0.17) 
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Figure 7: Cumulative distributions for failure initiation of the honeycomb samples with 
different α  and ( )20V H h=  under uniaxial tension, i.e. ,  0XX XY YX YYs s s s s= = = = . 
The dashed line on the left hand-side represents the global minimum value glob

min 0.17Π �  
and the straight line on the right hand-side is the global maximum value glob

max 1Π = . 
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Figure 8: The estimated cumulative distributions for failure initiation of the 
honeycombs. The black colored points represent the weakest link estimations based on 
the reference sample scale ref 100V =  (i.e. 0 10H h = ). 
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Figure 9: The estimated cumulative distributions obtained based on the reference 
samples of ref 0.15α =  and ref 400V =  (i.e. 0 20H h = ) (left) and ref 0.3α =  and 

ref 400V =  (right). The black dashed lines represent the estimated distributions whereas 
the reference sample data is shown without dashed lines. 
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Figure 10: Statistical failure initiation model. Estimated cumulative distributions of 
samples under various loading conditions are plotted.  
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