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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

  

ABSTRACT 

 

A statistical simulation model is presented to compute the effective in-plane compliance 

matrices of the honeycomb materials. The present model is explained in three stages: 

the micromechanical model, simulation experiments under external loading and 

boundary conditions, and the analysis of the experiment results. In the micromechanical 

model, mean values of the geometrical and mechanical parameters and variations 

related to cell wall height and thickness are used in order to mimic the actual materials 

in the virtual environment. Simulation experiments are performed on these replicated 

materials under the assumption of linear elasticity. The effect of solution artefacts near 

the boundary domain is controlled by defining a measurement domain where the strain 

and stress fields are assumed to be constant. The simulation results for this domain are 

processed with transformation and the least squares minimization to obtain the effective 

in-plane elastic parameters. In this context, two case studies are conducted. The first 

case study aims at understanding the influences of the cell geometry and 

aforementioned variations on the linear elastic material behavior. Meanwhile, the scope 

of the second case study is to validate the proposed model by comparing the simulation 

results with the measurements conducted on Nomex
®
 honeycomb materials by the 

authors. 

 

Keywords: Compliance, honeycomb, micromechanical, linear elasticity, cell wall, 

Nomex
®
. 
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1. INTRODUCTION 

 

Honeycomb cores are extensively used in different structural applications such as 

aviation and automotive industries due to their high stiffness-to-weight ratios. Various 

analytical techniques and numerical analysis methods have been developed in order to 

predict in- and out-of-plane mechanical properties of these structures. In many 

analytical studies, predictions of in-plane core properties have been limited to the 

assumptions of regular cell geometry and constant mechanical properties. The 

approaches are mainly based on the bending deformation of inclined walls of a 

hexagonal unit cell modeled as fixed end-guided end beam [1, 2] , while the axial 

deformation of the vertical walls is neglected due to its minor effect on slender 

honeycomb cell walls [3, 4]. In addition to these modeling approaches, honeycomb 

materials contain natural variations in their microstructures which can affect the 

stiffness and strength properties. The effective in-plane elastic and plastic material 

behaviors in the context of the cell wall height variations have been discussed in the 

literature [5-7]. However, the cell wall thickness variations and the effect of double 

walls, which is present in most of the commercial honeycomb materials as a result of 

the production methods shown in Fig. 1, have not been investigated in detail.       

 

In order to complete these missing links in the literature, a statistical simulation model 

is introduced. The aim of the proposed simulation model is to replicate the actual 

honeycomb material experiments in the virtual environment and compute the effective 

in-plane compliance matrices. For the replication, the simulation model takes into 

account both the mean values for the measured geometrical and mechanical properties 

of the actual honeycomb materials and the variations related to the cell wall height and 

thickness. Thereafter, the simulation experiments are performed on the replicated 

materials under the assumption of linear elasticity. The effect of solution artefacts near 

the boundary domain is controlled by defining a measurement domain where the strain 

and stress fields are assumed to be constant. The results for this domain are processed 

with transformation and the least squares minimization to obtain the effective in-plane 

elastic parameters.  

 

In this context, two case studies are conducted. The first case study aims at 

understanding the influences of the cell geometry and aforementioned variations on the 

linear elastic material behavior. Meanwhile, the scope of the second case study is to 

validate the proposed model by comparing the simulated effective in-plane compliances 
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with the ones determined through the physical experiments on Nomex
®
 honeycomb 

materials conducted by the authors [8]. 

 

 

---Preferred position for Fig. 1--- 

 

 

2. METHODOLOGY 

 

2.1. Methodology  

 

In order to calculate the effective in-plane mechanical properties of the honeycomb 

materials, a micromechanical model has been generated as depicted in Fig. 2. In this 

model, cell walls are represented as beams, the geometrical and mechanical parameters 

of which are measured and used in the constitutive equations. Each beam is connected 

to two of its neighbors through their vertices to form a structural unit. Connection 

process is restricted with continuity conditions concerning displacements and rotations 

at vertices and the equilibrium equations of the vertex points. The repetitive translations 

of the structural units are used to build the honeycomb specimens in the virtual 

environment. By assigning the uni-axial loading and simply supported boundary 

conditions, the simulation experiments are conducted to obtain the strain and stress 

fields on a predetermined measurement domain. Eventually, the analysis of the 

experiment results culminates in the effective in-plane compliance matrices of the 

honeycomb materials.  

 

 

---Preferred position for Fig. 2--- 

 

 

2.2. Theoretical background for the effective in-plane compliance 

 

The elastic behaviour of honeycomb materials has been examined theoretically in 

various publications. The common approach in these studies follows the assumption of 

orthotropy which introduces the material WL  Cartesian coordinate system [1, 3, 10]. 

W   and L axes of this coordinate system represent the direction of expansion and 
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the ribbon direction, which is shown in Fig. 3 [9]. Under the assumption of orthotropy, 

the compliance matrix in the basis of WL coordinate system is given as 

 

  

1/ / 0

/ 1 / 0

0 0 1/

W LW L

WL W L

WL

E v E

v E E

G

 
  
 
  

C , (1)   

where WE , LE , WLG , WLv , and LWv  are the effective elastic moduli, shear modulus 

and Poisson’s ratios, respectively, for which / /LW L WL Wv E v E  [11].   

 

 

---Preferred position for Fig. 3--- 

 

 

From the authors' point of view, a priori assumption of orthotropy should be avoided. 

Conversely, the compliance calculations should be performed under the assumption of 

general anisotropic linear elasticity and material classification should be done after the 

analysis of  C  [12]. In this case, the effective in-plane compliance matrix is given as  

 

  
,

,

, ,

1/ / /

/ 1 / /

/ / 1 /

W LW L WL W W

WL W L WL L L

WL W W WL L L WL

E v E E

v E E E

E E G





 

 
 

  
  

C  (2) 

in which the coefficients of mutual influence ,WL W , ,WL L  characterize the coupling 

between shearing and normal stresses [11].  

 

2.3. Transformation rules for the effective in-plane compliance 

 

In a typical honeycomb material experiment, it is essential to define the material WL  

coordinate system and the laboratory XY  coordinate system as illustrated in Fig. 4. 

These coordinate systems are used to describe the principle material plane and the 

experiment plane in the laboratory environment, respectively.  

 

 

---Preferred position for Fig. 4--- 

 

 

Strain-stress relationship in laboratory XY  Cartesian coordinate system is constructed 
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using the conventional Voigt notation 

 

     e C s  (3) 

due to practical difficulties in using high-order tensors [11]. Curly {} and square brackets 

[] are the component representations of the tensors in the basis of a fixed coordinate 

system. In Eq. (3), {e} and{s} are the column vector representations for the strain and 

stress tensors with the assumption of symmetry (emn=enm and smn=snm for , { , }m n X Y ), 

while [ ]C  is the square matrix representation for the fourth-order compliance tensor C. 

Here, it should be noted that [ ]C  and  C  denote the compliance in the basis of XY  

and WL  coordinate systems, respectively. Then, Eq. (3) can be represented in the 

component form as 

 

 

   
11 12 1611 12 16

T

21 22 2621 22 26

16 26 6616 26 662

XX XX XX

YY YY YY

XY XY XY

e C C C s C C C s

e C C C s C C C s

e C C C s C C C s

         
        

         
                 

T T

 

(4) 

in which the compliance symmetry is taken into account. Hence, the number of 

independent parameters reduces to 6 [14]. In Eq. (4), superscript T denotes the matrix 

transpose and  T  is the orthogonal transformation matrix. According to [11], 

 

 

2 2

2 2

2 2

cos sin 2 sin cos

sin cos 2 sin cos

sin cos sin cos cos

[ ] ,

sin

   

   

     

 
 

  
 
 



 

T  (5) 

where φ is the counterclockwise orientation angle between X   and W  axes as 

depicted in Fig. 4.  

 

In principle, the components of  C , which are 11 66,..,C C , can be measured by using at 

least three linearly independent homogeneous stress states , ,  for {1, 2, 3}i i i

XX YY XYs s s i . 

Assuming that the corresponding strain components , ,i i i

XX YY XYe e e  are measured in some 

manner, 

 

  

1 2 3 1 2 3

1 2 3 1 2 3

1 2

1

3 1 2 32 2 2

.

XX XX XX XX XX XX

YY YY YY YY YY YY

XY XY XY XY XY XY

e e e s s s

e e e s s s

e e e s s s



   
   

    
   
   

C  (6) 

However, in order to be more precise, specimens should be tested for more than three 

independent stress states, i.e. different material orientations relative to the loading 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 6 

direction. In this case, the compliance components can be calculated as the minimizer of 

the least squares function 

 

 
   

2

11 12 16
T

11 66 21 22 26

1

16 26 66

( ,.., )

2

i i

XX XXn
i i

YY YY

i i i

XY XY

e C C C s

C C e C C C s

e C C C s




    
         
        

 T T
 

(7) 

in which the matrix norm  is the Euclidean. For a unique minimizer, i.e. the values 

of the material parameters, the number of independent equations should be equal to or 

exceed that of the parameters, which can be achieved with the repetitive measurements 

on various stress states.  

 

The analysis of the compliance components 11 66,..,C C  in Eq. (7) clarifies the 

interaction between the shear stresses and normal strains as well as the interaction 

between the shear stresses and shear strains in the predetermined principal material 

plane. If there is no interaction between these, the coefficients of mutual influence 

,WL W , ,WL L  of Eq. (2) are equal to zero and the material can be termed orthotropic. In 

case that there is interaction, it is recommended to redefine the principal material plane 

and apply the transformation rules to Eq. (7) with the new angular configuration till the 

interaction is minimized. 

 

3. MICROMECHANICAL MODEL 

 

In order to calculate the in-plane mechanical properties of the honeycomb material, 

various studies have been conducted in which the main strategy is based on the 

continuum models or the micromechanical models. In the continuum models, the 

heterogeneous medium, e.g. the honeycomb material, is expressed as an equivalent 

homogeneous medium, where the geometrical and mechanical characteristics of the 

microscopic heterogeneities are averaged over the representative volume elements [15]. 

In order to represent the physics of the material accurately, e.g. stress-strain relationship, 

these volume elements must include large number of microscopic heterogeneities [16]. 

However, the determination of the convenient volume element size is subjective and can 

easily lead to errors in understanding the effects of microscopic variations of constituent 

on macroscopic mechanical properties.    

 

Since the main focus is on the microscopic characteristics, the current micromechanical 
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model represents the honeycomb material as a heterogeneous medium by using a beam 

network. Hence, direct calculations can be performed to obtain the microscopic 

mechanical quantities.   

 

3.1. Material element 

 

The material element is a rectangular honeycomb material with the solution domain of 

W×L , where W  and L  denote the core width and length as seen in Fig. 5. The 

mean independent geometrical parameters of the material are the cell size c , corner 

angle  , cell wall height h  and thickness t , and core thickness T . In addition, the 

variations related to the cell wall height stdev meanh h   and thickness stdev meant t   

are the other independent geometrical parameters, for which the subscripts stdev and 

mean denote the standard deviation and mean value. The latter two parameters 

 and    are used to describe the bounds of the geometrical irregularities which are 

inserted to the material geometry in several steps. In the initial step, the regular 

geometry is formed with the aforementioned geometrical parameters, where 0   and 

0  . In this step, the positions of the cell vertices are extracted and assigned as the 

centers of discs which have radii of 0h h  . Here, 0h  is the cell wall height of the 

regular geometry. Following this, a random point is picked from each disc. These 

selected points result in different vertex positions (consequently, cell wall heights) than 

the ones of regular geometry. Similar description is applied to the cell wall thickness, 

where the random point picking is performed on a line with the offset magnitude 
0t t  , instead. Here, 0t  stands for the cell wall thickness of the regular geometry. 

As a result of these steps, the irregular material geometry is generated which is also 

illustrated in Fig. 5. In this figure, 0   and 0   correspond to the regular 

honeycomb geometry with the corner angle 30  , while 0   and 0   

correspond to an irregular material geometry.  

 

In the laboratory XY coordinate system, the solution domain occupied by the specimen 

is [0, ] [0, ]  W L , where   represents the boundary domain. 

 

 

---Preferred position for Fig. 5--- 
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3.2. Beam equations 

 

In the micromechanical model, the cell walls shown in Fig. 5 are modeled as elastic 

Bernoulli beams. The material inside the cells is assumed to be softer than that of the 

cell walls, thus its influence on the mechanical response is neglected. The component 

form of the equilibrium equations in the beam xyz-coordinate system of Fig. 2 is given 

as 

 

 (4)

0

0

xs x

ys y

fE Au

fE I u

     
      

     
               (8) 

in which  ,x yu u  are the continuous displacements and ,  x yf f  are the external load 

components in the directions of the x- and y-axes, respectively. The Lagrange’s notation 

is used to denote the derivatives with respect to x. The geometrical properties of beam 

cross sections are the area A tT
 

and the second moment of area 
3 /12I tT . Elastic 

modulus sE  is the constant valued material parameter of the problem. The x-axis of 

the xyz-coordinate system is assumed to coincide with the neutral axis of the beam.  

 

Solution to Eq. (8) for the cell walls modelled as beams is connected by continuity 

conditions concerning the displacements and rotations at the vertices and the 

equilibrium equations of the vertex points. 

 

4. EXPERIMENTS 

 

In the present experimental program, two case studies are conducted. The first case 

study aims at understanding the influences of the cell geometry and variations related to 

cell wall height and thickness on the linear elastic material behavior. Meanwhile, the 

scope of the second case study is to validate the proposed model by comparing the 

simulated effective in-plane compliances with those of the physical experiments on 

Nomex
®
 honeycomb materials performed by the authors.  

 

4.1. Design of experiments 

 

The independent parameters of the experiments are the material type, material 

orientation angle   between the WL  and the laboratory XY  coordinate systems, 

and the applied load vector F . The material type is described in terms of the cell 
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geometry , , , ,  and ,c h t    core thickness T , and the cell wall elastic modulus sE . 

These parameters are assumed to satisfy the cell wall (beam) slenderness 
2/ 1s sE I E Ah  so that the cell wall bending is the dominant deformation mechanism 

[17]. The dependent variable of the experiments is the effective in-plane compliance 

matrix  C , the computations of which are performed in a measurement domain m  

under the assumption of constant strain and stress fields.   

 

4.1.1. Investigation on the effects of the geometrical variations 

 

In order to understand the effects of geometrical variations on the effective in-plane 

compliance, 16 honeycomb samples are formed by using the cell wall height variations 

{0, 0.05, 0.10, 0.15}  and thickness variations {0, 0.05, 0.10, 0.15}  . The mean 

geometrical parameters are determined to be 10 mmc  , 7 mmT , =30 , 

0.023t h   and 7.9 GPasE  . For each sample, 20 specimens are generated and 

tested.  

 

4.1.2. Validation of the model 

 

In order to mimic the previously performed physical experiments in the virtual 

environment, the same cell sizes, which are  5, 6,13  mmc , and the core thicknesses 

of  7,12  mmT  are used. The samples are generated based on these two parameters, 

whereas the specimens of each sample are formed using four different orientations 

 0 , 45 , 45 , 90    relative to the loading direction. The cell wall height and 

thickness variations   and   of each sample are obtained in average sense by 

measuring 20 random spots on each actual specimen. The length-to-width ratio (aspect 

ratio) of the specimens is decided to be two, for which 150 mmW =  and 300 mmL= . 

Here, it is noteworthy that the mean value of the cell wall elastic modulus 

7.9 GPasE  , which was measured through uni-axial tension tests of unit cell structure 

[8]. By means of the listed geometrical parameters in Table 1, 20 specimens are 

generated and simulated for each case.  

 

 

---Preferred position for Table 1--- 
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4.2. Experiments 

 

Simulation experiments on the effective in-plane compliance of Nomex
®
 honeycomb 

materials are performed with an in-house code written with Mathematica
®
 software 

package. After assigning the microscopic mechanical properties to the statistically 

generated material elements, the experiments are carried out under the uni-axial tensile 

loading and simply supported boundary conditions in the laboratory XY  coordinate 

system. More precisely, the boundary conditions are imposed in the way that the center 

point of the upper boundary extreme is pinned. The rest of the extreme follows the 

motion of the center point with the given rigid body constraint. Therefore, only rotation 

around the XY normal vector is allowed for the upper boundary extreme. The similar 

constraints are valid for the lower boundary extreme except that the translation along 

Y-axis is also allowed. These set constraints aim at simply supported boundary 

conditions which minimize the effects of bending moments and shear at the boundary 

extremes. Hence, the near-ideal shape deformation can be succeeded. 

 

As illustrated in Fig. 6, the uni-axial tensile load F  with an increment of 1 N is applied 

on the control point located at the lower boundary domain  . In order to ensure the 

linear elasticity assumption, the upper limit for F  is fixed as 6 N, which was obtained 

from the previous physical experiments [8].  

 

In order to calculate the vertex displacements as the function of F , the set of 

equilibrium equations given in Eq. (8) is solved for the solution domain  . The effect 

of solution artefacts near the boundaries is controlled by defining a measurement 

domain m  which is smaller than the solution domain  . The strain and stress fields 

are assumed to be constant inside m . Hence, the determination of the effective 

in-plane compliance is performed solely inside this domain. 

 

 

---Preferred position for Fig. 6--- 
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5. ANALYSIS 

 

5.1. Strain analysis 

 

In order to measure the displacements for each load increment f , 15 tracing points 

(vertices)  ,i iX Y  are selected inside m  as seen in Fig. 6. The displacements of 

these tracing points are calculated as 

 

 

1

1

f f f
Xi i i

f ff
i iYi

u X X
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



    
   

    
 (9) 

in which ,X Yu u  are the displacement components in the directions of X- and Y-axes, 

respectively. The left hand side components of Eq. (9) are considered as the values of 

continuous linear displacement field fu , the component form of which is expressed as 
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.
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  (10) 

The polynomial coefficients   for 1, 2,.., 6f

jp j  in Eq. (10) are the minimizers of the 

least squares function  
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   (11) 

in which the sum is over n tracing points. In the current analysis, the rigid body rotation 

inside m  is excluded. Hence, the symmetric part of the deformation gradient gives 

the linear strain ε , the components of which are 
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(12) 

 

5.2. Stress analysis 

 

For the constitutive modelling, the stress tensor should be selected energy conjugate to 

the strain tensor ε . This is satisfied with the Cauchy stress tensor σ  which can be 
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expressed in terms of infinitesimal load vector dF , unit area da  and unit surface 

normals 1n , 2n  in the deformed configuration of Fig. 7. Hence, 

 

  ,  {1, 2}.

i i

X XXX YX

i i

Y YXY YY

dF n
da i

dF n

 

 

       
     
       

 (13) 

The calculations are carried out for two unit surfaces of the infinitesimal element in 

order to solve the four unknown components of σ . Eventually, the components of ε  

and σ  are replaced with e  and s  of Eq. (3) for calculating the effective in-plane 

compliance.   

 

 

---Preferred position for Fig. 7--- 

 

 

6. RESULTS AND DISCUSSIONS 

 

In the first part of this section, the effects of geometrical variations related to the cell 

wall height and thickness ,   on the effective in-plane compliance are analyzed. The 

second and third parts present the comparison between the physical and simulation 

experiments in order to investigate the effects of mean geometrical parameters 

, , ,c t h  T  and validate the proposed simulation model. 

 

6.1. Effects of the geometrical variations on the effective in-plane compliance   

 

In order to understand the effects of geometrical variations on the effective in-plane 

compliance, 16 honeycomb samples are formed with different cell wall height and 

thickness variations. The simulation results of these samples are given in Table 2 which 

lists the non-dimensional elastic parameters for the comparison.  

 

 

---Preferred position for Table 2--- 

 

 

The results of Table 2 and Fig. 8 indicate that the effective in-plane elastic moduli WE , 

LE , and shear modulus WLG  increase with increasing cell wall thickness variation  . 
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This can be attributed to the superiority of the thicker cell walls over the thinner ones. 

Since the uniform distribution is used for the cell wall thickness, it is expected to have a 

uniform distribution for the bending stiffness of the cell walls. However, it appears that 

the thick cell walls counteract the weakening effect of the thin ones and contribute to 

the effective in-plane moduli. Although further effort is put into understanding the 

influence of   on the effective Poisson’s ratios ,WL LWv v , the relationship between 

these is found to be weak.   

 

 

---Preferred position for Fig. 8--- 

 

 

Similarly, the analysis of cell wall height variation   reveals that irregular cell shapes 

contribute to WE , LE , and WLG , while the influence on ,WL LWv v  is insignificant. As 

seen in Fig. 5, in addition to the hexagonal cells, formation of polyhedrons, such as 

tetragons and pentagons, are more likely with increasing  . This topological change 

influences the cell wall deformation mechanisms and hence the stiffness. Although the 

cell wall bending is the dominant deformation mechanism for the hexagonal topologies, 

the less-sided topologies are subject to stretch-dominated deformation due to increasing 

rigidity [18, 19]. Hence, the stiffness of these less-sided topologies is higher than that of 

the hexagons, which results in higher effective in-plane elastic moduli [20, 21]. As seen 

in Fig. 9, especially for higher cell wall thickness variation  , this outcome becomes 

more evident.  

 

 

---Preferred position for Fig. 9--- 

 

 

6.2. Validation of the model 

 

6.2.1. Effects of mean geometrical parameters on the effective in-plane compliance 

 

The results of both physical and simulation experiments are listed in Table 3 in order to 

(a) investigate the effects of mean geometrical parameters on the effective in-plane 

compliance and (b) validate the proposed statistical simulation model. For this purpose, 
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six different samples are formed by using three different cell sizes  5, 6,13  mmc , 

and two different core thicknesses of  7,12  mmT . 

 

 

---Preferred position for Table 3--- 

 

 

The first notable outcomes of both physical and simulation experiments are the 

coefficients of mutual influence ,WL W  and ,WL L  which are used to classify the 

material. If these are equal to zero in the planar case, material is termed orthotropic, 

which represents a particular type of anisotropy. As seen in Table 3, ,WL W  and ,WL L  

are close to zero, which means that the tested honeycomb cores can also be classified as 

orthotropic materials. The second important outcome of the investigation is the 

dominant effect of corner angle   on the elastic parameters. The comparison between 

the samples shows that the relationship between  and W LE E  are based on the   value, 

which is mainly due to the contribution of the inclined cell walls [4]. When   is 

greater than 30 , more material is oriented along the L axis. Therefore, the material 

becomes stiffer along L axis and softer along W  axis. As a result, < W LE E  for 

30   and > W LE E  for 30  . The tabulated results also demonstrate that the cell 

wall thickness-to-height ratio t h  has directly proportional effect on the elastic 

parameters. For example, the comparison of the samples S-13-7 and S-13-12, which 

have almost the same corner angle 32  , shows that when t h  decreases, all 

effective in-plane moduli decrease. This is due to the increasing slenderness of the cell 

walls and thus the decreasing strength [1, 22]. Similarly, efforts are also put into 

understanding the effect of T  by comparing the same cell-sized samples with different 

core thicknesses, e.g. S-5-7 and S-5-12. However, its effect seems trivial compared to 

the dominant effects of   and t h .    

 

6.2.2. The comparison between the physical and simulation experiments  

 

The results of Table 3 shows that the maximum relative error between the physical and 

simulation experiments is 19.0%  for WE  of the sample S-13-12, while the minimum 

relative error is 1.1%  for WLv  of the sample S-5-12. The relative error is possibly due 

to the artefacts originated from the boundary conditions in the physical experiments. 

Although it is assumed in the simulation experiments that the rotation around XY normal 
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vector is allowed at the upper boundary extreme, the existence of contact friction on the 

upper pinned support is likely and restrains the rotation in the actual setup. This can 

alter the configuration from the simply supported boundary conditions and give rise to 

the transverse strains on the boundaries. Another reason for this error term can be the 

relative eccentricity of the upper and lower supports in the physical experiments 

resulting in anomalous measurement errors [23].  

 

The strain legend bars in Fig. 10 indicate that the strain measures of both physical and 

simulation experiments are in good agreement. However, the visual comparison of the 

same figure reveals that the measurement domain is affected by the aforementioned 

artefacts. Especially, the shear strain field in Fig. 10f is questionable in this sense. By 

confining the measurement domain m  to a smaller region in the middle section, the 

artefacts due to the boundaries can be prevented and the assumption of constant strain 

field is acceptable. However, the details of the structure should be taken into 

consideration in defining the domain size [24].    

 

 

---Preferred position for Fig. 10--- 

 

 

7. CONCLUSIONS 

 

The present study introduces a statistical simulation model for computing the effective 

in-plane compliance matrices of the honeycomb materials. The proposed simulation 

model is designed so that once the actual material geometry is described in a statistical 

manner; it can be virtually replicated and tested under the given loading and boundary 

conditions.  

 

The model is firstly used for understanding the effects of geometrical variations related 

to the cell wall height and thickness ,   on the effective in-plane compliance. This 

study indicates that both  and    contribute to the effective in-plane elastic moduli 

WE , LE , and shear modulus WLG . However, their influences on the Poisson’s ratios 

,WL LWv v  are negligible. 

 

Following this study, another case study is performed to investigate the effects of mean 
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geometrical parameters , , ,c t h  T  and validate the proposed simulation model. The 

results of the simulation experiments are compared with those of the physical 

experiments on Nomex
®
 honeycomb materials. The comparative investigation for the 

geometrical parameters of the honeycomb materials shows that the corner angle   and 

the cell wall thickness-to-height ratio t h  have dominant effects on the effective 

in-plane moduli. However, the effect of core thickness T  is trivial compared to the 

effects of   and t h .    

 

The model predicts the effective in-plane elastic parameters within the relative error 

range of 1.1% 19% . The reason of the relative error between the physical and 

simulation experiments is supposed to be the artefacts originated from the boundary 

conditions in the physical experiments. Violation of the simply supported boundary 

conditions and the existence of eccentricity between upper and lower supports can alter 

the configuration. In this respect, consideration of these issues in the simulation 

experiments or refinement of the physical experiment setup can increase the accuracy of 

the results. 
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Table 1: Mean values of the measured geometrical parameters of the Nomex
®
 samples. 

Here, stdev meanh h   and stdev meant t  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
c 

(mm) 

T 

(mm) 
θ 

(˚) 

h 

(mm) 

t 

(mm) 

α β 

  S-5-7 

  S-5-12 

5 

5 

7 

12 

32 

34 

2.5 

2.5 

0.05 

0.05 

0.06 

0.04 

0.06 

0.09 

  S-6-7 

  S-6-12 

6 

6 

7 

12 

26 

28 

3.2 

3.2 

0.06 

0.06 

0.03 

0.03 

0.04 

0.03 

  S-13-7 

  S-13-12 

13 

13 

7 

12 

32 

32 

6.6 

6.8 

0.13 

0.13 

0.03 

0.03 

0.01 

0.01 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 21 

 

Table 2: Non-dimensional effective in-plane elastic parameters for the honeycomb 

samples with the mean values 10 mmc  , 7 mmT , =30  and 0.023t h  . Only 

the bending effect is included. Here, * * *,  ,  W W L L WL WLE E E E E E G G E   , for which 

 
3

/sE E t h  and 7.9 GPasE   is the mean value of the cell wall elastic modulus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample α β 
*

WE  *

LE  *

WLG  vWL vLW ηWL,W ηWL,L 

1 0 0 1.83 2.02 1.40 0.90 1.00 -0.012 -0.013 

2 0.05 0 1.83 2.03 1.40 0.90 1.00 -0.011 0.015 

3 0.10 0 1.87 2.05 1.40 0.88 0.97 -0.026 0.016 

4 0.15 0 2.00 2.08 1.42 0.91 0.95 -0.024 0.030 

5 0 0.05 2.06 2.05 1.44 0.88 0.87 -0.010 0.011 

6 0.05 0.05 2.23 2.19 1.55 0.88 0.87 -0.009 0.009 

7 0.10 0.05 2.39 2.44 1.69 0.87 0.89 -0.009 0.012 

8 0.15 0.05 2.71 2.86 1.88 0.85 0.90 -0.006 0.012 

9 0 0.10 2.28 2.26 1.43 0.84 0.83 -0.002 0.011 

10 0.05 0.10 2.66 2.64 1.63 0.85 0.84 -0.002 0.014 

11 0.10 0.10 3.07 3.06 1.81 0.85 0.85 -0.002 0.014 

12 0.15 0.10 3.41 3.46 2.12 0.82 0.83 -0.001 0.016 

13 0 0.15 2.40 2.50 1.58 0.81 0.84 -0.004 0.030 

14 0.05 0.15 2.75 2.85 1.82 0.81 0.84 -0.003 0.029 

15 0.10 0.15 3.20 3.26 2.20 0.83 0.84 0.008 0.070 

16 0.15 0.15 3.74 3.86 2.60 0.82 0.85 0.004 0.035 
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Table 3: Results of the physical and simulation experiments on Nomex
®
 honeycomb 

samples. Prefix Vi- stands for the simulation samples and the series without suffixes are 

the samples used in the previous physical experiments performed by the authors.  
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(kPa) 
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GWL 
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ηWL,W 

 

ηWL,L 

 

S-5-7 

Vi-S-5-7 
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121.0 

113.9 
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92.6 

87.3 

1.12 

1.01 

1.47 

1.35 

-0.019 

-0.076 

0.103 

0.023 

S-5-12 

Vi-S-5-12 
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1.47 
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-0.004 
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Vi-S-6-7 
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Figure 1: Commercial honeycomb cores: a) production process and b) representative 

structure with single and double walls [9]. 
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Figure 2: Workflow of the study. 
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Figure 3: Honeycomb material directions provided in the data sheet [9]. 
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Figure 4: Representation of the material WL  coordinate system and the laboratory 

XY  coordinate system. Here, φ is the counterclockwise orientation angle between X   

and W  axes.  
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Figure 5: Schematic representation of honeycomb material geometry. 
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Figure 6: Schematic representation of the loading and boundary conditions, and the 

domains used in the simulation experiments. Here,  and X Yu u  are the displacement 

components in the directions of X- and Y-axes, respectively. 
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Figure 7: Infinitesimal material element in initial (left) and deformed (right) 

configurations. Here, Ωd , dA  represent the infinitesimal domain and unit surface 

area in the initial configuration, respectively, while ωd , da  are for the same 

parameters in the deformed configuration. Surface normal vectors are denoted with iN  

and in , for which  1, 2i . 
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Figure 8: Effect of cell wall thickness variations on the non-dimensional effective 

in-plane elastic properties: a) *  versus WE  , b) *  versus LE  , c) *  versus WLG  , and d) 

 versus WLv  .  
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Figure 9: Effect of cell wall height variations on the non-dimensional effective in-plane 

elastic properties: a) *  versus WE  , b) *  versus LE  , c) *  versus WLG  , and d) 

 versus WLv  .  
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Figure 10: Comparison between the strain fields obtained through the physical and 

simulation experiments for Nomex
®
 honeycomb specimen with 6 mmc  , =7 mmT  

and 45   under uni-axial tensile load 6 NYF   : a) Simulated strain field XX , b) 

Measured strain field XX , c) Simulated strain field YY , d) Measured strain field YY , 

e) Simulated strain field XY , f) Measured strain field XY . 
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