
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Karakoç, Alp; Hiltunen, Eero; Paltakari, Jouni
Geometrical and spatial effects on fiber network connectivity

Published in:
Composite Structures

DOI:
10.1016/j.compstruct.2017.02.062

Published: 15/05/2017

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Karakoç, A., Hiltunen, E., & Paltakari, J. (2017). Geometrical and spatial effects on fiber network connectivity.
Composite Structures, 168, 335-344. https://doi.org/10.1016/j.compstruct.2017.02.062

https://doi.org/10.1016/j.compstruct.2017.02.062
https://doi.org/10.1016/j.compstruct.2017.02.062


1 
 

GEOMETRICAL AND SPATIAL EFFECTS ON FIBER NETWORK CONNECTIVITY 
 

Alp Karakoҫ*,1,2, Eero Hiltunen1, Jouni Paltakari1 
 
1Aalto University, School of Chemical Technology, Department of Forest Products Technology, 
P.O. Box 16300, FI-00076 AALTO, FINLAND 
 
2University of California Los Angeles, Civil and Environmental Engineering, 90095, Los Angeles, 
CA, USA 
 
ABSTRACT 
 
For fibrous materials such as nonwoven fabrics, paper and paperboards, inter-fiber bonds play a 
critical role by holding fibers, thus providing internal cohesion. Being a physical phenomenon, 
inter-fiber bonds occur at every fiber crossing and can be also geometrically detected. In relation 
to the idea, a statistical geometrical model was developed to investigate the effects of fiber 
geometry, (i.e. length and cross-sectional properties), spatial distribution, (i.e. location and 
orientation), and specimen size on fiber network connectivity, which refers to inter-fiber bonds at 
fiber crossings. In order to generate the fiber network, a geometrical fiber deposition technique 
was coded in Mathematica technical computing software, which is based on the planar projections 
and intersections of fibers and provided as supplementary material to the present article. According 
to this technique, fiber geometries in discrete rectangular prismatic segments were generated by 
using uniform distributions of the geometrical and spatial parameters and projected onto the 
transverse plane. Then, projected geometries were trimmed within the transverse boundaries of the 
specified specimen shape, rectangular prism in this particular study. After this step, fiber crossings 
were determined through a search algorithm, which was also used as the basis for the fiber spatial 
regeneration. Thereafter, fibers were accumulated on top of each other by taking fiber crossings 
into account and eventually fiber networks based on selected properties were formed. By means 
of the proposed technique, a series of simulation experiments were conducted on paper fiber 
networks to investigate the correlation between the fiber network connectivity and fiber length, 
cross-sectional properties, orientation and specimen length, width and thickness. 
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1. INTRODUCTION 
 
Fiber networks, in which the natural or artificial fibers are randomly or directionally aligned and 
bonded together through chemical, mechanical and/or thermal processes, form the structural 
foundations of various engineering materials. As seen in Fig. 1, some of these include nonwoven 
fabrics used in hygiene products, car panels, building and roof coverings, waddings and 
geotextiles; fiber mats and filters used in electromagnetic shielding and fuel cell gas diffusion 
layers; sintered metallic fiber networks for prosthetics and metal-matrix composite applications; 
felted or layered wood fiber networks used in paper and packaging products [1-5]. Their 
deformation and failure characteristics are dependent on the geometrical and spatial properties of 
constituent fibers and fiber network connectivity referring to inter-fiber bonds at fiber crossings 
[6-9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Various engineering applications and microscope images of their constituents: (a) car panels 
and nonwoven fabrics [10, 11], (b) fuel cell gas diffusion layers and carbon fiber mats [4, 12], (c) 
lower-limb prosthesis and sintered metallic fibers in pylon [5, 13], (d) paperboard ply and wood 
fibers [9, 14]. 
 
In order to model fiber network characteristics, various studies have been conducted in which the 
main strategy is based on continuum or microstructural models. In continuum models, material 

(a) (b)

(c) (d)
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details and microscopic heterogeneities, e.g. geometrical properties of constituents and their 
variations, are averaged over the representative volume elements RVEs. The accuracy in 
continuum models is dependent on the selected RVE size and how well the material details are 
approximated and represented with these RVEs [15, 16]. Therefore, continuum models are safely 
used in the analyses for which the material details do not have the highest priority [17]. In 
microstructural models, geometrical and other physical properties are modeled for each constituent 
separately, which increases the computational cost. However, it is possible to determine the 
stresses and strains in each constituent accurately wherein the properties of the material and its 
constituents can be directly related to each other in microstructural models [18]. 
 
Due to direct correlation and accuracy, there have been extensive microstructural modelling 
investigations on fiber networks in two- and three-dimensional spaces [19-21]. The earliest two 
dimensional network models were based on random line generation and consolidation in transverse 
plane. Two dimensional models have been successfully used to determine the in-plane properties 
where the specimen thickness is of order of one tenth or less of average fiber length and negligible 
[4, 22]. However, determination of three dimensional properties necessitates an additional 
dimension, for which the fibers can be deposited and bend on top of each other [23, 24]. Hence, 
more realistic fiber network structure can be generated with three dimensional models, which also 
gives a better insight into microstructural properties. However, due to limited computing power in 
previous decades, it has been a big challenge to create fiber networks mimicking the in-situ 
conditions in three dimensional space [25, 26]. 
 
As a contribution to the previous modelling efforts, a three dimensional statistical microstructural 
model is introduced so as to analyze the effects of fiber geometry, i.e. length and cross-sectional 
properties and spatial properties, i.e. location and orientation and specimen size affecting the fiber 
network connectivity in a statistical manner. By means of the introduced model, a case study on 
fiber networks forming paper stripe specimens was conducted. The present numerical 
advancement is believed to guide researchers and designers to investigate fiber network 
characteristics more efficiently and in shorter time spans. 
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2. METHODOLOGY 
 
2.1. Geometrical and spatial properties 
 
In the present study, fiber intersections are favored in contrast to the literature studies mainly 
focusing on short fiber reinforcements and elimination of fiber collision [20, 26-28]. Foundation 
of the present study follows daily practices such as long fiber reinforced composite materials, paper 
and paperboards. For this purpose, statistical geometrical model was developed to analyze the 
effects of geometrical properties of fibers, (i.e. fiber length and cross-sectional properties), and 
their spatial distribution, (i.e. location and orientation), and specimen dimensions on the fiber 
network connectivity. Elements of the model consists of geometrical description of fiber, planar 
projection, fiber trimming and crossing search processes. 
 
As seen in Fig. 2, each individual fiber was described in terms of its spatial properties, i.e. centroid 
C (Xi, Yi, Zi) and i +∈ , azimuthal orientation θ and polar orientation ϕ, and geometry, i.e. length 
l and cross-sectional properties, width w, height h and wall thickness t which was assumed to be 
same for all cell walls. In addition to this, specimen was described as a rectangular prism with 
length L, width W and thickness T, which is composed of layers with thickness Tlayer. In this study, 
hollow rectangular profile was selected to mimic the wood fiber cross-section composed of cell 
walls and lumen [29]. 
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Fig. 2. Fiber profile and distribution: (a) fiber spatial properties in global XYZ-Cartesian coordinate 
system and geometrical properties in local xyz-Cartesian coordinate system, (b) layered structure 
of specimen in global XYZ-Cartesian coordinate system. 
 
In order to define the spatial distribution of fibers, fiber centroids were first generated with a 
uniform probability distribution on a rectangular plane with length L and width W in XYZ-Cartesian 
coordinate system where the Z coordinate of centroids, were kept constant [30]. As seen in Fig. 3, 
a Monte Carlo type simulation was then used for random selection and picking of each C (Xi, Yi, 
Zi) in an iterative manner. By this way, selection of same fiber centroids was avoided. 
 
 
 
 
 
 
 
 

Fig. 3. Schematic representation of Monte-Carlo simulations for random centroid selection. 
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2.2. Fiber network formation process 
 
Fibers were generated as hollow rectangular prism parallel aligned in the XY-plane and deposited 
into layers of Fig. 2(b) one after another by picking the distributed fiber centroids illustrated in 
Fig. 3. In order to conduct the deposition process, fiber volume fraction, which is the proportion 
between the total fiber volume in the confined space 

1

n

f
f

V
=
  and specimen volume V LWT= , was 

used as the controlling parameter of the iterative deposition algorithm shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Fiber deposition algorithm flowchart. 
 
Despite the fiber curvature of in-situ, distance between each fiber crossing  were assumed to be 
close enough so that fiber geometries were taken to be straight for the present investigated fiber 
network [4]. Thereafter, using the projections in XY-plane, fibers exceeding the specimen 
dimensions L and W in the XY-plane were trimmed within the transverse boundaries as seen in Fig. 
5 and the fibers out of the boundaries were eliminated, which minimizes boundary artefacts. 
However, the process ends up with trimming of fibers that are not totally inside the specimen, 
which was also stated in the literature [1]. 
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Fig. 5. Cut fibers (dark colored) inside the transverse boundaries. 

 
During the deposition process, XY-planar projection of fibers shown in Fig. 5 were used to detect 
the possible fiber crossings. In order to detect these crossings, edges of each rectangle were first 
defined as line segments by using the corner coordinate data. Then, line-to-line intersections were 
sought among the rectangles, for which a nearest neighboring algorithm was used to confine the 
region of interest rather than the entire domain and aimed at computational cost reduction. As seen 
in Fig. 6, the algorithm was based on finding the adjacent fibers partially or totally located inside 
a disk created using the length l and centroid C (Xi, Yi, Zi) of the reference fiber. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Crossing detection inside a confined space (gray disk) defined with length l and centroid 
C(Xi, Yi, Zi) of the reference fiber (green line). The fibers partially or totally inside the confined 
space are used in the crossing detection computations. 
 
As a result of the process, crossings were computed, e.g. resulting in S1 (x1, y1) as seen in Fig. 7(a). 
By using the azimuthal orientation θ of the deposited fiber in the XY-plane as shown in Fig. 7(a) 
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and flexibility angle φ in XZ-plane as illustrated in Fig. 7(b), side points, e.g. S2 (x2, y2), were 
generated through 
 

 2 1 1

2 1 1

tan cos
tan sin

f

f

x x h
y y h

ϕ θ
ϕ θ

= −

= −
  (1) 

in which hf1 refers to height of the previously settled fiber. Based on the coordinate data provided 
through Eq. (1) and height of current fiber hf2, projected rectangles were curved up along Z-axis at 
the fiber crossings. 
 
 
 
 
 
 
 
Fig. 7. Fibers and their crossings in two dimensional space: (a) projected view of two fibers (light 
color represents previously settled one and dark color represents deposited one) and azimuthal 
orientation θ in the XY-plane, (b) crossing of fiber 1 and fiber 2, and fiber flexibility in terms of 
flexibility angle φ in XZ-plane. 
 
Curved up fibers were then merged in XYZ-Cartesian coordinate system where number of fiber 
crossings per fiber ncpf was used as a quantitative parameter for fiber network connectivity. Fig. 8 
depicts an example simulation for fibers and their crossings so as to quantify the connectivity. 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Fibers and their crossings in three dimensional space: (a) 9 fibers and 4 fiber crossings, (b) 
13 fibers and 19 fiber crossings.  
 
In order to obtain in-situ fiber networks, fibers were smoothened by using mth order Bezier curve 
fitting function B(v) for m+1 (control) points represented with column vector Si so that 
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The row vector in parenthesis is called as Bernstein polynomial basis of order m [31,32]. Being a 
function with non-dimensional variable 0 1v≤ ≤ , B(v) of Eq. (2) eliminates the lower and upper 
limit calculations in XYZ-Cartesian coordinate system and is applicable to set of points in two and 
three dimensional spaces. 
 
For increasing or decreasing the smoothing effect, fibers were discretized with a segmentation 
function that is also based on Eq. (2). This function modifies the size of column vector Si, thus the 
polynomial order n, by adding and removing points between each initially generated consecutive 
points. Fig. 9 illustrates the implemented segmentation and Bezier curve fitting functions. 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Segmentation and curve fitting: (a) initially generated (control) points and curves with 
Bezier curve fitting function, (b) added (control) points and curve segments formed with Bezier 
curve fitting function. Here, black and gray points represent the initially generated and added 
points, respectively whereas the line represents the Bezier curve. 
 
In regard to computational costs and realistic representation of the fibers, 4 points (forming 5 
segments) were added between each initially generated consecutive points (please, see Fig. 9(a)). 
The smoothed fibers were then used to mimic the in-situ fibers as seen in Fig. 10. 
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Fig. 10. Fiber smoothing by means of segmentations XYZ-Cartesian coordinate system for 
mimicking fibers in-situ: (a) fiber before smoothing effect; (b) 1 segment, (c) 2 segments, (d) 5 
segments, (e) 20 segments between consecutive points, (f) fiber crossing microscopic view. 
 
As a result of this process, specimens were formed, some of which are shown in Fig. 11. 
 
 
 
 
 
 
 
 
 
Fig. 11. Specimens with their characteristics geometrical parameters: (a) rectangular specimen, (b) 
square specimen. 
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3. RESULTS AND DISCUSSION 
 
The present simulation experiments were designed so that selected fiber lengths and cross-
sectional properties, flexibility angles and specimen sizes were in accordance with previous paper 
and paperboard investigations in the literature [1, 9, 23, 24, 33, 34]. Layer thickness was taken as 
Tlayer=0.020 mm for each specimen, fiber wall thickness was assumed to be t=0.004 mm and polar 
orientation was approximated as ϕ=0° because of the formation characteristics of paper stripe 
specimens [35]. After reaching the designated fiber volume fraction of 40% for a layer, fibers were 
deposited onto the upper layer so as to mimic the layered structure of investigated material.  
 
3.1. Effects of fiber geometry on fiber network connectivity 
 
In order to understand how the fiber geometry affects the fiber network connectivity, simulation 
experiments were conducted with ns=3 repetitions for each set listed in Table 1. In these 
experiments, azimuthal orientation was taken to be θ=0° and its variation Δθ was in the range of 
±15º based on the machine-made paper data provided in the literature [35]. Specimen dimensions 
were taken to be length L=5 mm, width W=1 mm and thickness T=0.060 mm mimicking paper 
stripe specimens [24].   
 
Table 1. Design of experiments based on fiber geometrical parameters. 
 

 Set Untrimmed fiber 
length l (mm) 

Fiber width 
w (mm) 

Fiber height 
h (mm) 

Flexibility angle 
φ (°) 

Fiber length l 
1 1.0 0.025 0.010 30 
2 1.5 0.025 0.010 30 
3 2.0 0.025 0.010 30 

Fiber width w 
4 2.0 0.020 0.010 30 
5 2.0 0.025 0.010 30 
6 2.0 0.030 0.010 30 

Fiber height h 
7 2.0 0.025 0.005 30 
8 2.0 0.025 0.010 30 
9 2.0 0.025 0.020 30 

Fiber flexibility 
angle φ 

10 2.0 0.025 0.010 15 
11 2.0 0.025 0.010 30 
12 2.0 0.025 0.010 45 
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Because of simulation results being positive and non-symmetric, lognormal distribution was 
selected for expressing the continuous probability distribution of the number of crossings per fiber 
ncpf subject to the investigated geometrical parameter, which can be expressed as 
 

 

( )2

d cpf
2

d

cpf
cpf d

ln( )
exp

2
( )

2

n

P n
n

μ
σ

π σ

 − + −
 
 = . (3) 

Here, π is the mathematical constant taken as 3.14159, exp refers to the exponential function, ln is 
the natural logarithm while dμ  and dσ  are the mean and standard deviation of the continuous 
probability distribution, which were taken as first order (linear) polynomial functions of the tested 
geometrical parameter, so called variable v, i.e. d ( )vμ  and d ( )vσ . Hence, it was possible to fit the 
simulation results by means of Eq. (3) and estimate the distribution subject to v. For example, 
being fiber length l as the variable v, estimated probability distribution for the number of crossings 
per fiber ncpf follows 
 

 

( )( )
( )

2

d cpf
2

d

cpf
cpf d

ln( )
exp

2 ( )
( , )

2 ( )

l n

l
P n l

n l

μ

σ

π σ

 − + −
 
 = . (4) 

 
Fig. 12 shows the fitted and estimated distributions via Eqs. (3) and (4), which are based on number 
of crossing per fiber ncpf for fiber lengths l={1, 1.5, 2} mm. It can be deduced from Fig. 12 and 
Table 2 that both the distribution extremum and maximum values for ncpf are positively affected 
with l. This is valid due to increasing likelihood of fiber crossings with l. Another interesting 
outcome is the increase in uncertainty near the probability distribution extremum, which is 
described as 0.5

s s snμ σ±  where sμ , sσ  are the mean and standard deviation of ncpf distribution 
probabilities obtained from simulations after ns repetition. 
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Fig. 12. Probability distributions for number of crossings per fiber ncpf: (a) l=1 mm, (b) l=2 mm, 
(c) l=3 mm, (d) estimated probability distribution cpf( , )P n l  for the mean data sμ  obtained from 
the simulations for l=1 mm. The whiskers represents the data range obtained after ns=3 repetitions. 
 
Table 2. The highest probability distributions and maximum values for number of crossing per 
fiber ncpf, and estimated distributions within the limits of the investigated parameter. 
 
 Set (mm) max(μs) → ncpf max(ncpf) cpf( , )P n l  

l 

1 1.0 0.159 → 11 23 2
cpf

2

cpf

( 0.21 log( ) 2.22)
7.69exp

2(0.05 0.26)
( 4.93)

l n
l

l n

 
  
 

− + −
−

+
+

 
2 1.5 0.121 → 14 30 

3 2.0 0.119 → 15 34 

 
In contrast to l, fiber width w has a negative effect on the fiber connectivity. The main reason is 
the volumetric increase in fibers and hence decrease in number of fibers in the confined volume. 
As seen in Fig. 13(a)-(b) and Table 3, this leads to decreasing probability of fiber crossings and 
maximum ncpf. Similar to w, increase in fiber height h causes a decrease in the number of fibers 

(a) (b) 

(c) (d) 
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inside the specimen. Hence, increase in h has a negative impact on the distribution extremum and 
maximum values for ncpf as also deduced from Fig. 13(c)-(d) and Table 3. Similar trend was 
observed for the effect of flexibility angle φ investigations on the distribution extremum and 
maximum values of ncpf. As also proved in the literature, it is principally related to increase in fiber 
packing probability. However, increase in fiber flexibility, i.e. small values of φ, may result in 
fiber networks that do not resemble the real material structure [25].  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Probability distributions for number of crossings per fiber ncpf: (a) w= 0.025 mm, (b) w= 
0.030 mm, (c) h=0.005 mm, (d) h=0.010 mm, (e) φ= 15°, (f) φ= 45°. The whiskers represents the 
data range obtained after ns=3 repetitions. 
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Table 3. The highest probability distributions and maximum values for number of crossing per 
fiber ncpf, and estimated distributions within the limits of the investigated parameter 
 

 Set (mm) max(μs) → ncpf max(ncpf) cpf( , )P n w  

w 

4 0.020 0.118 → 16 35 2
cpf

2

cpf

(16.39 log( ) 3.03)
0.06exp

2(7.02 0.19)
( 0.028)

w n
w

w n

 + −
−  + 

+
 

5 0.025 0.119 → 15 34 

6 0.030 0.127 → 13 26 

 Set (mm) max(μs) → ncpf max(ncpf) cpf( , )P n h  

h 

7 0.005 0.088 → 25 57 2
cpf

2

cpf

(90.84 log( ) 3.63)
0.09exp

2(4.63 0.31)
( 0.07)

h n
h

h n

 
 

+




−



+
−

+
 

8 0.010 0.119 → 15 34 

9 0.020 0.221 → 7 20 

 Set (°) max(μs) → ncpf max(ncpf) cpf( , )P n ϕ  

φ 
10 15 0.121 → 16 34 2

cpf
2

cpf

(0.0005 log( ) 2.65)
1288.65exp

2(0.0003 0.36)
( 1163.97)

n

n

ϕ
ϕ

ϕ

 
 



−

+




+
−

+11 30 0.119 → 15 34 
12 45 0.121 → 14 31 
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3.2. Effects of specimen size and orientation on fiber network connectivity 
 
In order to understand how specimen size and orientation affect fiber network connectivity, 
simulation experiments were conducted with ns=3 repetitions for each set listed in Table 4. In these 
experiments, geometrical properties of fibers were taken to be length l=2 mm, width w=0.025 mm, 
height h=0.010 mm, thickness t=0.004 mm with flexibility angle φ=30°. 
 
Table 4. Design of experiments based on specimen size and orientation. 
 

 Set 
Azimuthal 

orientation variation 
∆θ (°) (with θ=0°) 

Specimen 
length L 

(mm) 

Specimen 
width W 

(mm) 

Specimen 
thickness T 

(mm) 

Azimuthal 
orientation 

variation ∆θ 

13 ± 0 5.0 1.0 0.060 
14 ± 15 5.0 1.0 0.060 
15 ± 30 5.0 1.0 0.060 

Specimen 
length L (and 

width W) 

16 ± 15 2.0 2.0 0.060 
17 ± 15 3.0 3.0 0.060 
18 ± 15 5.0 5.0 0.060 

Specimen 
thickness T 

19 ± 15 5.0 1.0 0.060 
20 ± 15 5.0 1.0 0.080 
21 ± 15 5.0 1.0 0.100 

 
The azimuthal orientation θ and especially its variation ∆θ of the deposited fiber in the XY-plane 
are important investigation parameters since the effective properties are highly influenced by the 
fiber orientation distribution. The azimuthal orientation distribution is inherited from the fiber 
deposition process and can be partially controlled by manufacturing process, e.g. fiber alignment 
in machine and cross directions during paper formation [36]. As deduced from Fig. 14(a)-(b), 
increase in ∆θ favors number of fiber crossings per fiber ncpf and uniform distribution. The results 
also give an insight into the decrease of material directional properties with increase in ∆θ.  
 
Similar to the effect of ∆θ, a positive relation exists in consideration to specimen length L and 
width W. As seen in Fig. 14(c)-(d) and Table 5, both the distribution extremum and maximum 
values for ncpf are positively affected with increase in L (or W). The results are in good agreement 
with the findings of previous investigations by providing a microstructural explanation to so called 
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“scale effect”, which addresses the heterogeneities of fiber networks on different material scales 
[37-39]. In addition to the abovementioned parameters and their effects, a positive influence on 
ncpf can be observed with increase in specimen thickness T, which is shown in Fig. 14(e)-(f) and 
Table 5. Since the volume fraction is same for each specimen, number of fibers and ncpf increase 
with T. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Probability distributions for number of crossings per fiber ncpf: (a) ∆θ =± 0°, (b) ∆θ =± 
30°, (c) L =2.0 mm and W =2.0 mm, (d) L =3.0 mm and W =3.0 mm, (e) T = 0.06 mm, (f) T = 0.10 
mm. The whiskers represents the data range obtained after ns=3 repetitions. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 5. The highest probability distributions and maximum values for number of crossing per 
fiber ncpf, and estimated distributions win the limits of the investigated parameter. 
 
 Set (°) max(μs) → ncpf max(ncpf) cpf( , )P n θΔ  

∆θ 

13 ± 0 0.267 → 5 10 2
cpf

2

cpf

( 0.05 log( ) 1.65)
179.21exp

2(0.42 0.002 )
(186.61 )

n

n

θ
θ

θ

 − Δ + −
−  − Δ 

− Δ
 

14 ± 15 0.119 → 15 34 

15 ± 30 0.09 → 20 41 

 Set (mm) max(μs) → ncpf max(ncpf) cpf( , )P n L  

L 

16 2.0 0.149 → 10 28 2
cpf

2

cpf

( 0.04 log( ) 2.36)
70.26exp

2(0.38 0.0056782 )
(67.64 )

L n
L

L n

 − + −
−  − 

−
 

17 3.0 0.110 → 12 33 

18 5.0 0.105 → 15 39 

 Set (mm) max(μs) → ncpf max(ncpf) cpf( , )P n T  

T 

19 0.060 0.119 → 15 34 2
cpf

2

cpf

( 13.84 log( ) 1.83)
20.78exp

2(0.36 0.02 )
(18.84 )

T n
T

T n

 − + −
−  − 

−
 

20 0.080 0.119 → 20 41 

21 0.100 0.068 → 27 54 

 
4. CONCLUSIONS 
 
In the current study, a three dimensional statistical microstructural model is introduced so as to 
analyze the effects of fiber geometry, i.e. length and cross-sectional properties and spatial 
properties, i.e. location and orientation and specimen size affecting the fiber network connectivity 
in a statistical manner. By means of the introduced model, a case study on fiber networks forming 
paper and packaging products was conducted. The results were represented in terms of probability 
distribution functions showing the relation between the studied geometrical parameters and the 
number of crossings per fiber ncpf, which can be used as a quantitative representation of the fiber 
network connectivity.  
 
The compact statistical description for each parametric relation was given by means of lognormal 
distribution, the choice of which was due to the simulation results being positive and non-
symmetric. As a result of the parametric relations, it was deduced that fiber geometrical 
parameters, fiber orientation and specimen size have great impact on the fiber network 
connectivity, which also affects the mechanical characteristics of the material. Fiber geometry 
analysis on connectivity shows that both the distribution extremum and maximum values for ncpf 
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are positively affected by fiber length l, which is due to increasing likelihood of fiber crossings. 
However, fiber width w has a negative effect because of the volumetric increase in fibers and hence 
decrease in number of fibers in the confined volume. For the same reason with w, fiber height h 
also has negative effect on the fiber network connectivity. Similar trend was observed for the effect 
of flexibility angle φ investigations on the distribution extremum and maximum value of ncpf. As 
also proved in the literature, it is principally related to increase in fiber packing probability. 
However, increase in fiber flexibility, i.e. small values of φ, may result in fiber networks that do 
not resemble the real material structure. In addition to this, specimen geometry analysis shows that 
the azimuthal orientation variation ∆θ, specimen length L, width W and thickness T have positive 
impacts on the connectivity. The increase in ∆θ results in higher probabilities of fiber intersections 
in the investigated plane and orientation variation range. On the other hand, the positive impacts 
of L, W and T can be directly related to the increasing probabilities of fiber connectivity with 
volume changes, which also supports the so called “scale effect” and address the heterogeneities 
of fiber networks on different material scales. 
 
Eventually, the current simulation methodology and tool, a sample Mathematica code of which is 
also provided in Appendix A, and the probability distribution functions that are ready-to-use are 
believed to be beneficial for researchers and designers in characterization of fibrous materials such 
as nonwoven textiles, paper and packaging products. 
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APPENDIX A: SUPPLEMENTARY MATERIAL 

Sample Mathematica code for generating layered fiber network in a rectangular domain is provided 
with predefined parameters in its user interface as supplementary material. 


