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ABSTRACT 13 

 14 

An algorithm on geometrical data extraction, material reconstruction and numerical 15 

analysis is presented in order to reconstruct the actual wood-like cellular materials and 16 

investigate their linear elastic material behaviour in the transverse plane under different 17 

loading conditions. The algorithm implemented by Mathematica technical computing 18 

software is used to read the pixel data of cellular material images with a wide range of 19 

material scales, e.g. from micro- to millimeter scale. As a result of this process, 20 

geometrical properties including cell wall thicknesses, cell connectivities, vertex and 21 

center coordinates are determined. Identified geometrical properties are transferred to 22 

Abaqus/CAE computer aided engineering software by using a Python script and also 23 



 2

converted into stereolithography STL model format enabling prototype generation and 1 

visualization. As an application example, the reconstructed model by means of the 2 

algorithm was used to investigate the in-plane effective stiffness properties of Norway 3 

spruce earlywood specimens in the frameworks of homogenization and finite element 4 

analysis. 5 

 6 

Keywords: material reconstruction, cellular material, stereolithography STL, in-plane 7 

effective stiffness, Norway spruce, finite element analysis. 8 
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1. INTRODUCTION 13 

 14 

The increasing computation power, and emerging image processing and reconstruction 15 

technologies have given rise to the investigation and visualization of the geometrical 16 

and mechanical properties of materials. Especially in the field of cellular material 17 

science, these technologies can provide accurate geometrical data for mechanical 18 

analysis and insight into modeling and design procedures [Farrugia and Perre, 2000; 19 

Magne, 2007]. As a result, modeling errors due to geometrical input can be reduced and 20 

accuracy of the simulation experiments can be enhanced. 21 

 22 

Yet studies on cellular materials do not widely use the image processing technologies to 23 
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determine the material geometry and use it as an input for simulation experiments. The 1 

conventional approach follows the representation of the whole material with regular 2 

repetitive unit elements, i.e. hexagonal, rectangular, etc., and investigations into the 3 

mechanical behaviour of these elements [Gibson and Ashby, 1997; Qing and 4 

Mishnaevsky, 2011; Freund et al., 2014]. Although results out of this approach can be 5 

regarded satisfactory, modeling errors due to fictitious geometrical input are inevitable. 6 

In the literature, there are successfully conducted studies that use the data extraction and 7 

image reconstruction algorithms to determine geometrical input for the material models 8 

and simulations. Such studies benefit the accuracy of electron and transmission electron 9 

microscopy, nuclear magnetic resonance NMR imaging, X-ray projection, synchrotron 10 

radiation X-ray tomography and micro computed tomography, especially in aerospace, 11 

biological, agricultural, medical and dental applications [Kahle and Woodhouse, 1994; 12 

Cattaneo et al., 2001; Verdonschot et al., 2001; Badel and Perre, 2003; Zdunek et al., 13 

2004; Nguyen et al., 2012; Karakoç and Freund, 2013; Rafsanjani et al., 2012]. Despite 14 

the high accuracy of these techniques, expensive equipment and maintenance, 15 

sophisticated algorithms and lack of qualified labour obstruct their extensive usage in 16 

many engineering applications. 17 

 18 

As its novelty, the present algorithm provides a low equipment and labour cost solution 19 

to visualize and investigate the geometrical and mechanical characteristics of cellular 20 

media. The algorithm is capable of extracting geometrical data and reconstructing 21 

cellular materials within a wide range of material scales, e.g. micro- to millimeter scales. 22 

In addition, the algorithm also brings appropriate geometrical input parameters for 23 
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multiscale characterization of arbitrary cell collections in two dimensional space. Hence, 1 

it is possible to estimate the in-plane effective mechanical properties of cellular 2 

materials through the material description at the cell scale in the frameworks of 3 

homogenization and finite element analysis.  4 

 5 

In the present study, first, the sequence of the algorithm is introduced and the principles 6 

are explained. Thereafter, an application example is provided, for which 7 

two-dimensional micrographs of Norway spruce specimens were captured with optical 8 

microscopy as depicted in Fig. 1. In this example, earlywood cross-sections of Norway 9 

spruce specimens in the transverse plane was investigated, for which image processing, 10 

stereolithographic STL modeling and finite element analysis were used. The accuracy of 11 

the proposed algorithm was tested in terms of the empirical and computed effective 12 

stiffnesses for Norway spruce earlywood available in the literature. 13 

 14 

 15 

 16 

 17 

 18 

Figure 1: a) Norway spruce earlywood cross-section and region of interest with 19 

transparent coloring, b) extruded near-exact model of the region in STL format, c) 20 

corresponding three dimensional print. 21 

 22 

 23 
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2. MATERIALS AND METHODS 1 

 2 

2.1. Algorithm sequence 3 

 4 

The introduced algorithm follows the sequence described in Fig. 2. The starting point is to 5 

scan the cellular material layer in the plane of interest and to binarize the image. The 6 

binarization data is then used to extract the geometrical information of the cellular 7 

structure. The geometrical information is used to form so called near-exact STL models in 8 

the present study, which are then used to generate mesh for finite element analysis and 9 

prototypes for additive manufacturing. These prototypes are helpful to visualize and 10 

understand the geometrical models and details. 11 

 12 

 13 

 14 

 15 

 16 

 17 

Figure 2: Algorithm sequence. 18 

 19 

2.2. Geometrical data extraction algorithm 20 

 21 

The proposed geometrical data extraction and input generation algorithm is an automated 22 

set operation coded in Mathematica technical computing software. The algorithm extracts 23 
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 6

the near-exact features of the cellular material including the cell centroids and vertices, 1 

cell wall heights h and thicknesses t as illustrated in Fig. 3. Once these geometrical 2 

features are known, it is possible to reconstruct models from image to insight for visual 3 

inspections, material prototyping and numerical analyses.  4 

 5 

 6 

 7 

 8 

 9 

 10 

Figure 3: Schematic representation of geometrical features for a cellular material in the 11 

transverse plane. 12 

 13 

As the initial step, image of the actual undeformed cellular material is captured and 14 

binarized in order to obtain foreground and background pixel data. For binarization 15 

threshold, Otsu method is used, which minimizes the combined spread of foreground and 16 

background pixels. As seen in Fig. 4, foreground pixel data represented with the white 17 

color describe the regions inside the cells and background pixel data represented with 18 

black color describe the cell walls. After binarization, morphological analysis is 19 

performed to define each cell region and coordinates of cell centroids for the ith cell are 20 

computed as 21 

 22 
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in which ( ),j jx y  are the coordinates of jth foreground pixel and n is the total number of 2 

foreground pixels in the ith cell as shown in Fig. 4. 3 
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 9 

Figure 4: Image processing: a) original image, b) binary image with selected foreground 10 

pixels in the cell form, c) cell centroid. 11 

 12 

This step is followed by determination of the cell vertices. For this purpose, the centroids 13 

in Eq. (1) are sorted based on the minimum Euclidean distance criterion within the 14 

framework of kth-nearest neighbor method. The k value highly depends on the cell 15 

topology z referring to the connectivity of adjacent cells as shown in Fig. 5 [Silva and 16 

Gibson, 1997]. 17 

 18 
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 4 

Figure 5: Nearest neighbors and cell topologies used in the present geometric input 5 

generation: a) hexagons with k=7 and z=3, b) rectangles with k=9 and z=4. 6 

 7 

For instance, for the cross-section shown in Fig. 6, k=9 and z=3, which makes it possible 8 

to find all neighboring cells and vertices. The possible cell combination for ith cell is 9 

hence given as 10 

 !( , )
!( )!i

kC k z
z k z

=
−

 (2) 11 

Cell vertex coordinates are detected by using the intersection operations among the 12 

neighboring cell combinations of Eq. (2), which is also depicted in Fig. 6. In this setup, it 13 

is possible that one can end up with two close points representing the same vertex. Here, 14 

close points mean two points, Euclidean distance of which are smaller than the predefined 15 

threshold value δ. In this case, these two close points are simply combined by averaging 16 

their coordinate data. 17 

 18 
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Figure 6: Cell vertex formation through intersection operation: a) k=9 nearest neighbor of 8 

a cell depicted with ×, b) intersection of z=3 neighboring cells forming the cell vertex, c) 9 

representation of cell vertices with white dots and centroids with gray dots. 10 

 11 

After computing the vertex coordinate data, height of each cell wall, h, is determined as 12 

the Euclidean distance between two consecutive vertices that belong to the same cell. The 13 

cell wall thickness, t, is obtained in such a way that the Euclidean distances between one 14 

cell vertex and its nearest foreground pixels of the neighboring cells are computed, which 15 

culminates in a circle of radius r around this particular vertex. Once the same procedure is 16 

performed for the consecutive vertex, t of the edge formed by these two consecutive 17 

vertices is calculated by averaging the computed radii as shown in Fig. 7. The coordinate 18 

and dimension data for each cell are then listed for material reconstruction and numerical 19 

analysis. 20 

 21 

 22 

 23 
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 8 

Figure 7: Geometric input: a) representation of the cell bounds with white lines and the 9 

cell wall thicknesses by averaging the radii of the circles with centers located at the cell 10 

vertices, b) actual and mimicked cellular structure. 11 

 12 

2.3. Geometrical data transfer through STL models 13 

 14 

2.3.1. STL models in a nutshell 15 

 16 

Stereolithographic STL models have been used as a standard geometrical model for 17 

surface representation in solid modeling and additive manufacturing. It was first 18 

introduced by 3D Systems in 1989 and has been widely used in computer aided drawing 19 

and manufacturing [Tian, 2013]. STL models represent the solid surface with triangular 20 

elements and the model files are usually in binary or ASCII formats, the difference 21 

between which is just based on the data expression method [Iványi, 2012]. 22 

 23 

a) b) 
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2.3.2. Near-exact STL models 1 

 2 

The extracted geometrical data, as explained above, are transferred to Abaqus/CAE 3 

computer aided engineering software so as to use its STL model generation toolbox and 4 

numerical analysis features. The data are transferred with a Python script given in 5 

Appendix A, which includes the sketch size information, coordinate data of the exterior 6 

and interior nodes for the cells and extrusion information. Sequence of the process is 7 

depicted in Fig. 8. 8 

 9 

 10 

 11 

 12 

 13 

 14 

Figure 8: a) Region of interest represented with transparent coloring in a wood-like 15 

cellular material, b) extracted geometry in the transverse plane by Mathematica 16 

technical computing software and c) near-exact STL model generated in Abaqus/CAE 17 

computer aided engineering software. 18 

 19 
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2.4. Homogenization framework 1 

 2 

2.4.1. Strain driven computational homogenization 3 

 4 

Strain driven computational homogenization is a numerical multiscale method, which has 5 

been widely used to estimate the effective stiffness properties [Sjölund et al., 2015]. In 6 

this method, macroscopic strain M
ije  for { }, , ,i j X Y Z∈  is assumed to be uniform over 7 

the material and imposed at a representative volume element RVE boundary ω∂  8 

containing enough information to describe material behavior as illustrated in Fig. 9. 9 

Therefore, microscopic displacement field decomposition for RVE can be given as 10 

 m M ,u r u= ⋅ +e  (3) 11 

for which superscripts m and M stand for microscopic and macroscopic scales, and the 12 

first addend on the right hand side represents the macroscopic displacement contribution 13 

and second addend represents the displacement fluctuation field u  due to 14 

heterogeneities within the RVE. Here, r represents the position vector with respect to 15 

any described origin. 16 

 17 
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 6 

Figure 9: A strain driven homogenization scheme with imposed macroscopic strain M
ije  7 

and computed stress M
ijs  for { }, , ,i j X Y Z∈ . Here, Ω and ∂Ω represents the volume and 8 

boundary of aggregate, and ω and ∂ω represents the volume and boundary of RVE.  9 

 10 

Here, continuity conditions of the displacements and tractions must be satisfied at the 11 

RVE boundaries. The first condition can be satisfied by taking the relative positions of the 12 

node sets, e.g. node 1 and node 2 at the boundaries, i.e. surfaces, edges, corners. Hence, 13 

Eq. (3) can be expanded as 14 

 ( )m m M
1 2 1 2 ,u u r r− = − ⋅e  (4) 15 

where the displacement fluctuation field u  of Eq. (3) vanishes under the periodicity 16 

condition. The traction boundary condition is satisfied with anti-periodicity of traction 17 

field in case of existence of traction on the boundaries [Nguyen et al., 2012]. However, 18 

the current study focuses on the displacement boundary conditions; therefore, only Eq. 19 

(4) is studied. 20 

 21 
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2.4.2. Hill-Mandel principle and stress averaging 1 

 2 

Hill-Mandel principle establishes and guarantees the energy consistency between the 3 

micro- and macroscopic material scales such that [Sjölund et al., 2015] 4 

 M M m m1: : d
ω

ω
ω

= ∫s e s e , (5) 5 

for which ω and ∂ω represents the volume and boundary of RVE as also depicted in Fig. 6 

9. The symbol (:) denotes the double dot operator and for second order tensors it is 7 

defined as 8 

 : .ij ija b=a b  (6) 9 

By using the Gauss theorem, Eq. (5) can be rewritten at the RVE boundary ω∂  as 10 

 M M m m1: dt u
ω

ω
ω ∂

= ⋅ ∂∫s e , (7) 11 

where mt  is the microscopic traction vector at ω∂ . By plugging Eq. (3) into Eq. (7), 12 

 ( )M M m M m1 1: d : dt r t u
ω ω

ω ω
ω ω∂ ∂

= ⊗ ∂ + ⋅ ∂∫ ∫s e e . (8) 13 

Here, the symbol ⊗  denotes the dyadic operator. The second integrand at the right hand 14 

side vanishes in case of periodic boundary conditions as elaborated in Eq. (4). Hence, 15 

macroscopic stress Ms  can be expressed as the volume average of the microscopic stress 16 

ms  such that 17 

 ( )M m m1 1d d ,t r
ω ω

ω ω
ω ω∂

= ⊗ ∂ =∫ ∫s s  (9) 18 

in which ω  is the total volume of the RVE. 19 

 20 
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2.4.3. Numerical implementation of strain driven computational homogenization 1 

 2 

Similar to geometrical data transfer and model generation described in Section 2.3.2, the 3 

strain driven computational homogenization can be also implemented in Abaqus/CAE. 4 

The implementation consists of three sub-operations: pre-processing, processing and 5 

post-processing as depicted in Fig. 10. The pre-processing has three major functions: 6 

material reconstruction, meshing and boundary condition formation. For meshing, 7 

extracted material geometry is first discretized and then finite elements, e.g. 6-noded 8 

quadratic triangular elements, are used. The boundary conditions are applied onto the 9 

nearest neighboring nodes on the opposing boundaries, which follows Eq. (4) with 10 

initially known macroscopic strain Me . During the processing, the problem is solved 11 

with the finite element solver of Abaqus/CAE. In postprocessing, microscopic stresses 12 

ms  and volumes are calculated at each integration point. In order to numerically 13 

compute the integration on the right hand side of Eq. (9), microscopic stresses and 14 

volumes of the same integration points are first multiplied and then all the 15 

multiplication results are summed up. The summation is then divided by the total 16 

volume ω  computed through the extracted nodal coordinate data, resulting in the 17 

macroscopic stress Ms  of Eq. (9).  18 

 19 

 20 

 21 

 22 

 23 
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 11 

Figure 10: Algorithm sequence for numerical implementation of strain driven 12 

computational homogenization.  13 
 14 

3. APPLICATION EXAMPLE OF THE ALGORITHM 15 

 16 

3.1. Simulation experiments on the stiffness of Norway spruce specimens 17 

 18 

In the present study, specimens were taken from the outer stem of mature Norway 19 

spruce where the anatomical structure was assumed to be orthotropic. Micrographs were 20 

obtained with optical microscope (Nikon Optishot 2, Nikon Europe B.V., 21 

Badhoeverdorp, The Netherlands) and maximum resolution of 0.5 µm/pixel. Thereafter, 22 

the proposed algorithm was implemented to conduct simulation experiments to 23 

understand the material behavior and compute the elastic properties of Norway spruce 24 
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 17

earlywood specimens, some of which are shown in Fig. 11. In total, 11 specimens were 1 

investigated for defining the elastic property range.  2 

 3 

For the simulation experiments, first, STL models were generated by using the 4 

micrographs and used as elastic continua in two dimensional space, which were 5 

discretized into a set of 6-node quadratic triangular finite elements CPS6 provided in 6 

Abaqus/CAE software [ABAQUS, 2004]. Cell walls were taken to be transversely 7 

isotropic under the assumption of uniform distribution of cell wall material in the plane 8 

of interest. The detailed information of the assumption and supporting empirical data 9 

can be found in the literature [Astley et al., 1998]. Hence, mechanical parameters of the 10 

cell walls were taken to be Es=9 GPa and vs=0.4 as provided in the previous studies 11 

[Kahle and Woodhouse, 1994]. 12 

 13 

 14 
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 20 
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 23 
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Figure 11: Original images and reconstructed geometries (drawn with green lines) of 13 

selected earlywood sections. Number of cells are computed through the extracted 14 

geometries representing the simulation solution domain. 15 

 16 

Due to limited focal range of the optical microscopy and image acquisition system, it 17 

was only possible to investigate small amount of cells in the earlywood. Therefore, 18 

boundary constraints were selected to be periodic in the framework of finite element 19 

analysis. Hence, the studied elastic continua were assumed to be repeating itself and 20 

mimicking an infinite solution domain, for which the idea is based on constraint 21 

equations linking the nodal displacements on the opposing edges for planar cases 22 

[Kassem and Weichert, 2009]. Inaccuracies are very likely in this type of computation 23 
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 19

process due to so called “edge effects” diminishing as the number of cells in earlywood 1 

increases [Astley et al., 1998]. For the analyzed specimens, the number of the cells were 2 

computed to vary in a range of 114-176. Fig. 12 presents the planar loadings, i.e. tensile 3 

loads along X- and Y-directions and XY-shear load, applied on a near-exact model with 4 

159 cells under the given loading and boundary conditions. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

Figure 12: Simulation experiments on near-exact model: a) initial state, b) tensile load 17 

along X-direction, c) tensile load along Y-direction and d) shear load in the XY-plane.  18 

 19 

Strains ; , { , }ije i j X Y∈  and stresses ; , { , }ijs i j X Y∈  obtained from the simulations 20 

were related under linear elasticity as 21 

 :=e C s , (10) 22 

a) 

c) 

b) 

d)



 20

where C is the compliance. Despite the compactness of the expression, high-order tensors 1 

cause practical difficulties in compliance computations. Thus, for possible numerical 2 

computation, Eq. (10) is reconstructed as a matrix operation by using Voigt notation as 3 

 [ ]
1 2 3 1 2 3

1 2 3 1 2 3

1 2

1

3 1 2 32 2 2
,

XX XX XX XX XX XX

YY YY YY YY YY YY

XY XY XY XY XY XY

e e e s s s
e e e s s s
e e e s s s

−
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C   (11) 4 

for which [ ]C  is the compliance matrix and superscripts 1, 2 and 3 represents three 5 

different loading conditions, i.e. tensile loads along X- and Y-directions and XY-shear load 6 

as also depicted in Figure 12. Therefore, it is possible to compute the full compliance 7 

matrix including shear modulus. Hence, under the assumption of orthotropic material 8 

properties, 9 
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C , (12) 10 

for which ,X YE E  are the elastic moduli, XYG  is the shear modulus and ,XY YXv v are the 11 

Poisson’s ratios with reciprocal relation / /XY X YX Yv E v E= . Computed elastic properties 12 

for the investigated specimens by means of Eqs. (10)-(12) are listed in Table 1. The 13 

present computed values reveal that the investigated specimens have higher stiffness 14 

along the X-direction compared to the one along the Y-direction, i.e. X YE E> , which 15 

can be explained with the effective deformation mechanisms related to different cell 16 

topologies. In other words, over-expanded honeycomb and rectangular cell 17 

configurations, which can also be seen in Fig. 12, favor stretch-dominated deformation 18 



 21

along X-direction and bending dominated deformation along Y-direction, which yields 1 

to higher material stiffness along X-direction [Deshpande et al., 2001; Alkhader and 2 

Vural, 2008].  3 

 4 

Furthermore, due to varying number of cells and different topologies for each specimen, 5 

there is a large range for the elastic, shear moduli and Poisson’s ratios. The variations of 6 

these properties are still in good agreement with the computed results by Astley et al. 7 

and empirical results by Karakoç et al., Carrington and Cave as tabulated in Table 1 8 

[Astley et al., 1998; Carrington, 1923; Cave, 1969; Karakoç et al., 2013]. Although 9 

similar homogenization methods were used for the cell aggregation in both the current 10 

and Astley et al. studies, there are slight differences in the results, which is due to the 11 

limited number of cells in the investigated specimens where the edge effects are 12 

inevitable. In addition, the present model depends upon the assumption of cell wall 13 

homogeneity while Astley et al. focused on the use of multi-layer laminates for the cell 14 

walls, which is expected to increase the realistic representation for the cell walls. 15 

 16 

It is observed from Table 1 that current study overestimates the elastic parameters in 17 

comparison with the computed results by Kahle and Woodhouse [Kahle and Woodhouse, 18 

1994]. In this case, different modeling approaches for cellular topologies affect the 19 

deformation mechanisms. Kahle and Woodhouse used repetitive irregular hexagonal 20 

unit elements in their earlywood investigations, which only focuses on bending 21 

deformation and resulting in slightly lower values for elastic properties as seen in Table 1. 22 

 23 



 22

Table 1. Near-exact elastic properties for the analyzed Norway spruce earlywood 1 

specimens, computed and empirical results obtained from literature, where Es is the cell 2 

wall elastic modulus. 3 

 4 

3.2. Effect of representative volume element size 5 

 6 

Wood-like cellular materials have heterogeneous and highly complex structures 7 

[Rafsanjani et al., 2012]. For these types of materials, it is well known that influence of 8 

chosen RVE size on the effective property is inevitable and RVE size increase is known 9 

to result in a converging solution [Nguyen et al., 2012]. 10 

 sXE E  sYE E  sXYG E  YXv  

Present computed results 0.079-0.12 0.029-0.052 0.002-0.006 0.36-0.53

Computed results  

(repeating irregular hexagons) 

[Kahle and Woodhouse, 1994] 

0.072 0.018 - 0.27 

Computed results 

(skeletised cell geometry) 

[Astley et al., 1998] 

0.067-0.084 0.027-0.043 0.003-0.005 0.40-0.57

Empirical results  

[Karakoç et al., 2013] 
0.106 0.046 0.003 0.27 

Empirical results  

[Carrington, 1923] 
0.079 0.048 0.002 0.33 

Empirical results  

[Cave, 1969] 
0.071 0.047 0.003 0.29 
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In order to understand this phenomenon, effects of cell numbers on the normalized 1 

elastic and shear moduli were studied. It can be deduced from Fig. 13 that there is 2 

positive linear relation between the cell numbers and elastic moduli for the investigated 3 

number of cells. On the other hand, influence of cell numbers seems insignificant in 4 

case of shear modulus. However, more investigations on larger number of cell 5 

aggregates must be carried out in order to fully support these statements. 6 

 7 

 8 

 9 

Figure 13: Effect of number of cells on elastic and shear moduli of the analyzed 10 

specimens, where Es is the cell wall elastic modulus. 11 

 12 

4. DISCUSSION AND CONCLUSIONS 13 

 14 

The present article introduces an algorithm for extracting geometrical data of wood-like 15 



 24

cellular materials in the plane of interest. The output data are expressed in 1 

stereolithographic STL format for additive manufacturing and finite element analysis in 2 

the homogenization framework. 3 

 4 

As explained in the constitutive formulation, three different in-plane loading conditions, 5 

tensile load along X- and Y- directions and XY-shear load, were used to compute the 6 

transverse elastic properties of Norway spruce earlywood specimens. In total, 11 7 

specimens were investigated to define the elastic property range. It was found out that 8 

the tested specimens have higher stiffness along the X-direction compared to the one 9 

along the Y-direction, which is explained with the effective deformation mechanisms 10 

related to different cell topologies. The results were then compared with the previous 11 

computed and empirical results. The differences between the current and previous 12 

studies were presumably due to modelling approaches and specimens with different cell 13 

topologies and shapes. 14 

 15 

As a result of the introduced algorithm, it is possible to estimate intuitive geometrical 16 

and mechanical knowledge for the investigated cellular materials, which increases the 17 

efficiency in cellular material research and development. In addition, integration of the 18 

algorithm with standard measurement and analysis tools is an advantage in terms of the 19 

economic feasibility.  20 

 21 

There is also a scope for refinements of the algorithm which currently focuses on 22 

material description at cell scale and depends on cell wall homogeneity. For example, it 23 



 25

has a development potential to represent each cell wall as multi-layer laminates, e.g. to 1 

mimic softwood cell walls. It is then possible to link and analyze characteristics of cell 2 

wall layers and higher material scales, which would result in a more complete solution 3 

for multiscale cellular material problems. As elaborated in Table B.1 of Appendix B, 4 

mean relative difference for background-to-total pixel area ratios, i.e. cell wall area per 5 

total area, between original and reconstructed cellular structures was approximately 6 

13.8% in the current investigations. Therefore, higher order functions with additional 7 

intermediate points between consecutive cell vertices are planned to be used in future 8 

work to increase the accuracy for cell wall thicknesses. In addition, the algorithm ought 9 

to be developed and applied to several cellular material layers along the thickness 10 

direction for a complete picture of complex three dimensional materials instead of 11 

extruded material profiles (see Fig. 1). Combination of the layer data would enhance the 12 

knowledge about the geometries and mechanics of investigated the cellular materials in 13 

three dimensional space. 14 
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APPENDIX 1 

 2 

APPENDIX A. Structure of a Python script for cellular material geometrical 3 

modeling in Abaqus/CAE 4 

 5 

Here, # stands for numerical value of dimension while (x, y) refers to coordinate data. 6 

 7 

from abaqus import * 8 

import testUtils 9 

testUtils.setBackwardCompatibility() 10 

from abaqusConstants import * 11 

import sketch 12 

import part 13 

 14 

myModel= mdb.Model(name='Model') 15 

 16 

mySketch= myModel.ConstrainedSketch(name='Model', sheetSize=#) 17 

 18 

xyCoordsOuter =[((x1, y1), ....)] 19 

xyCoordsInner=[((x1, y1), ....)] 20 

 21 

for m in range(len(xyCoordsInner)): 22 

for i in range(len(xyCoordsInner[m])-1): 23 



 31

mySketch.Line(point1=xyCoordsInner[m][i],point2=xyCoordsInner[m][i+1]) 1 

 2 

for m in range(len(xyCoordsOuter)): 3 

for i in range(len(xyCoordsOuter[m])-1): 4 

mySketch.Line(point1=xyCoordsOuter[m][i],point2=xyCoordsOuter[m][i+1]) 5 

 6 

(*For the use of two dimensional model*) 7 

myPart=myModel.Part(name='Part',dimensionality=TWO_D_PLANAR,    8 

type=DEFORMABLE_BODY) 9 

myPart.BaseShell(mySketch) 10 

 11 

(*For the use of three dimensional model*) 12 

myPart=myModel.Part(name='Part',dimensionality=THREE_D,    13 

type=DEFORMABLE_BODY) 14 

myPart.BaseSolidExtrude(sketch=mySketch, depth=#) 15 

 16 

myViewport= session.Viewport(name='Viewport for Model A', 17 

origin=(x, y), width=#, height=#) 18 

 19 

myViewport.setValues(displayedObject=myPart) 20 

 21 

myViewport.partDisplay.setValues(renderStyle=SHADED) 22 

 23 
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APPENDIX B. Relative difference measure for the background-to-total pixel area 1 

ratio between original and reconstructed cellular structures 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

Figure B.1. Original and reconstructed cellular structures: a) original binarized 15 

micrograph with the green borderlines showing the region of interest, b) original 16 

cropped cellular structure, c) reconstructed cellular structure. 17 

 18 

The area ratio for background-to-total pixels for the micrographs can be calculated as 19 

 background
background

total

A
AR

A
=   (B.1) 20 

where relative difference measure follows 21 

 
reconstructed original
background background

original
background

AR AR
RD

AR
−

=  (B.2) 22 

a) 

b) 

c) 
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Table B.1: Area ratio ARbackground and relative difference RD measures for 1 

background-to-total pixels for the investigated specimens. 2 

 3 

 4 

Specimen 
ARbackground 

for original micrograph 

ARbackground 

for reconstructed structure 
RD 

1 0.408 0.468 0.128 

2 0.429 0.494 0.132 

3 0.419 0.485 0.136 

4 0.441 0.510 0.135 

5 0.466 0.535 0.129 

6 0.359 0.431 0.167 

7 0.399 0.465 0.142 

8 0.361 0.423 0.147 

9 0.360 0.420 0.143 

10 0.392 0.445 0.119 

11 0.368 0.427 0.138 

    

Min 0.359 0.420 0.119 

Max 0.466 0.535 0.167 

Mean 0.400 0.464 0.138 

Std. Dev. 0.036 0.039 0.012 


