Rauf, Sajid; Zhu, Bin; Shah, M. A.K.Yousaf; Xia, Chen; Tayyab, Zuhra; Ali, Nasir; Yang, Changping; Mushtaq, Naveed; Asghar, Muhammad Imran; Akram, Fazli; Lund, Peter D.

Tailoring triple charge conduction in BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ semiconductor electrolyte for boosting solid oxide fuel cell performance

Published in:
Renewable Energy

DOI:
10.1016/j.renene.2021.03.031

Published: 01/07/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Rauf, S., Zhu, B., Shah, M. A. K. Y., Xia, C., Tayyab, Z., Ali, N., Yang, C., Mushtaq, N., Asghar, M. I., Akram, F., & Lund, P. D. (2021). Tailoring triple charge conduction in BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renewable Energy, 172, 336-349. https://doi.org/10.1016/j.renene.2021.03.031
Tailoring triple charge conduction in BaCo$_{0.2}$Fe$_{0.3-x}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ semiconductor electrolyte for boosting solid oxide fuel cell performance

Sajid Raufa, Bin Zhub, M.A.K. Yousaf Shahc, Chen Xiad, Zhuhra Tayyabb, Nasir Alid, Changping Yanga, Naveed Mushtaqb, Muhammad Imran Asghara,c, Fazli Akramf, Peter D. Lundb,e

a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, Huabei University, Wuhan, Hubei, 430062, China
b Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology/Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, No.2 Si Pai Lou, Nanjing, 210096, China
c Engineering Research Center of Nano-Geo Materials of Ministry of Education, Department of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
d Zhejiang Province Key Laboratory of Quantum Technology and Devices and Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, PR China
e New Energy Technologies Group, Department of Applied Physics, Aalto University School of Science, P. O. Box 15100, FI-00076 Aalto, Espoo, Finland
f Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
g Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan, 44610, Republic of Korea
h Faculty of Materials Science and Engineering, Taiyuan University of Science and Technology, Wailu Road 66, Wanboling District, Taiyuan City, Shanxi Province, China

A B S T R A C T

Introducing multiple-ionic transport through a semiconductor-electrolyte is a promising approach to realize the low-temperature operation of SOFCs. Herein, we designed and synthesized a single-phase Ce-doped BaCo$_{0.2}$Fe$_{0.3-x}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ semiconductor-electrolyte possessing triple-charge (H$^+$/O$^2-$/e$^-$) conduction ability. Two different compositions are synthesized: BaCo$_{0.2}$Fe$_{0.3}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ with [x = 0.1–0.2]. The 20% doped Ce composition exhibits an outstanding oxide-ion and protonic conductivity of 0.193 S cm$^{-1}$ and 0.09 S cm$^{-1}$ at 530 °C and the fuel cell utilizing BaCo$_{0.2}$Fe$_{0.2}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\delta}$ as an electrolyte yields an excellent power density of 873 mW cm$^{-2}$ at 530 °C. Moreover, the fuel cell performed reasonably well (383 mW cm$^{-2}$) even at a low temperature of 380 °C. Furthermore, the 10% Ce-doped utilized in fuel cell device illustrates lower performance (661 mW cm$^{-2}$ at 530 °C and 260 mW cm$^{-2}$ at 380 °C). Successful doping of Ce supports the formation of oxygen vacancies at the B-site of perovskite and adjusting the ratio of Fe in the compositions. Moreover, the presence of Tm also assist in the creation of oxygen vacancies. Furthermore, the boosting of electrochemical performance and ionic conductivity of applied materials are enlightened by tuning the energy-band structure via employing the UPS and UV–Vis. The physical characterizations and verification of dual-ions (H$^+$/O$^2-$) in the semiconductor materials are performed via different electrochemical, spectroscopic, and microscopic techniques. A systematic study revealed triple charge conduction in this promising material, which helps in boosting the electrochemical performance of the LT-SOFC.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lowering the operating temperature is a developed tendency for the ceramics fuel cells (CFCs) and solid oxide fuel cells (SOFCs) to solve many material and degradation issues that hinder the commercialization of this potential technology. However, at reduced temperatures (<550 °C), SOFC suffers from severe problems including low ionic conduction in the electrolyte resulting in increased ohmic losses and higher charge transfer resistance at the electrodes causing high electrode polarization losses [1]. Instead of the obstacle of ohmic resistance in the electrolyte at low-temperature, there is also a major concern of the fuel cell strongly dependent on the compatibility of components of the cell and the reaction mechanism [2]. SOFC performance and stability have a strong dependency on the compatibility of components of the cell. On the other hand, the conventional SOFCs work at a high temperature above 800 °C that impedes the quick-start up and shut-down of operational cycles, degrading the device, and increasing the cost; thus, hindering the commercialization of SOFCs [1]. In traditional SOFCs, O²⁻ ions conducting electrolytes are typically used, such as yttria-stabilized zirconia and doped ceria, which produce H₂O at the chamber; consequently, dilute the fuel gas and decrease the efficiency [3,4]. To overcome all of above discussed bottlenecks, a lot of efforts have been done in the last few decades, e.g., thin-film technology was utilized to decrease the ohmic losses [5,6]. However, challenges still remain, especially the fabrication complexity and expensive instrumentation.

Besides, new kinds of electrolyte membranes (with various conductions) have been introduced to primarily deal with the increased ohmic losses and electrode polarization [5–11]. Various kinds of materials have been reported for electrolyte and cathode application; especially, the perovskite (PVK) materials with different kinds of intrinsic and extrinsic conductivities [12–18]. In the development of PVK oxide materials, Kreuer et al. reported a viable proton conductor, i.e., Y-doped BaZrO₃-δ (BZY), which interestingly constrained the electronic conduction and incorporate a proton (H⁺), provided by the fuel (hydrogen-H₂) [19]. The application of proton conducting materials as an electrolyte enables low-temperature (<600 °C) operation of the CFCs. Indeed, the enhancement of the ionic transport involving (O²⁻)/H⁺) and suppression of electronic conduction is possible due to oxygen vacancies creation [20]. For instance, oxygen vacancies can be created by the incorporation of trivalent cations (Y³⁺) and substitution of tetravalent cations (Zr⁴⁺). Owing to the low activation energy for protons to transport, thus, an adjustment of the vacancies enabled rapid transport of the available protons. Other possible mechanisms for the creation of protonic defects include the dissociative adsorption of water from the environment, assisting the generation of more hydroxyl groups (-OH), and supporting proton transport. In this regard, Mather et al. reported the attractive protonic conduction in LaNbO material. They have well explained the formation of oxygen vacancies and the creation of defects through appropriate doping to achieve high proton conductivities [21,22]. Irrespective of the creation and transport of oxygen vacancies and low-temperature operation, pure protonic materials encountered the issue of chemical instability in the CO₂ and H₂O atmosphere. Therefore, proton-conducting perovskite oxides failed to compete with the conventional electrolytes and still lag behind the intermediate temperature SOFC; thus, alternative materials are needed [23].

Moreover, significant progress has been made in the oxide materials maintaining pure protons, dual ions, and triple charge conductions, respectively. For instance, Ding et al. developed dual-ions (H⁺/O²⁻) an electrolytes membrane BaZr₀.₃Ce₀.₇Y₀.₃O₃-δ (BZY-YB) utilized in SOFCs, which yielded peak power densities of 452 mW cm⁻² at 700 °C [24]. Furthermore, a triple charge (H⁺/O²⁻/e⁻) conducting BCFZY (BaCo₀.₄Fe₀.₆Zr₀.₁Y₀.₁O₃-δ) PVK oxide materials have been reported as a cathode by heavily Co and Fe doping at the B-site of BZY and achieved power density of 445 mW cm⁻² at 500 °C and many others are reported previously [14,25–27]. It should be noted that heavily doped BZY (with transition metals) has still maintained the ionic conduction. The attractive characteristics of triple charge conducting materials can enable the fuel cell operation even at a low operating temperature of 350 °C. Besides, Rauf et al. developed a triple charge conducting semiconductor Ba₀.₅Sr₀.₅Co₀.₁Fe₀.₆Zr₀.₁O₃-δ, where Ba₀.₅Sr₀.₅Co₀.₁Fe₀.₆Zr₀.₁O₃-δ exhibited good electrocatalytic properties, respectively [7]. The prepared cathode materials achieved an excellent fuel cell performance via formation of heterostructure with SCDC at 520 °C and the possible operation was performed till 370 °C. Recently, Xia et al. has successfully designed a p-n semiconductor heterostructure BaCo₀.₄Fe₀.₆Zr₀.₁Y₀.₁O₃-δ-ZnO as the electrolyte and proposed a heterojunction concept to suppress the electronic conduction while
enabling high ionic conductivity at 550 °C [28]. Subsequently, our group has reported an interesting triple charge conducting layered-structure transition-metal oxide Mg-doped LiCoO₂ (LMCO) and tuned their ionic conductivity by forming a heterostructure with an ionic conductor (SDC) for advanced SOFCs. The energy band alignment has induced high ionic conduction via engineered interface semiconductor heterostructure with an outstanding ionic conductivity (0.35 S cm⁻¹) along with remarkable fuel cell performance of 0.7 W cm⁻² at 600 °C [29]. Therefore, new semiconducting materials with dual ions and triple charge conduction are favorable for fuel cells to realize superior ionic conductivity and high electrochemical performance at low operating temperature. The functional semiconductor electrolyte membranes have been characterized in LT-ceramics fuel cells (LT-CFCs) and LT-SOFCs with variety of conduction properties, such as the co-existence of dual hybrid conduction (O²⁻/H⁻) and triple charge (O²⁻/H⁻/e⁻) conduction mechanism but not interpreted precisely, which need more attention.

In this work, we fabricated a doped BaCo₀.2Fe₀.3-xCexTm₀.1Zr₀.3Y₀.1O₃₋d (x = 0.1−0.2) semiconductor electrolyte with triple charge conduction, where the 20% Ce doped BCFTZY modulated the appropriate triple charge conduction for the better fuel cell performance of 873 mW cm⁻² with high ionic conduction 0.193 S cm⁻¹ and stable Voc of 1.09 V at 530 °C comparatively. We also employed 10% Ce-doped BaCo₀.2Fe₀.3C₀.1Tm₀.1Zr₀.3Y₀.1O₃₋d (BCFCe₀.1TZY) as a cathode, where BZY and Sn₀.7Ce₀.3O₂₋d (SDC) were utilized as electrolyte membranes. The BCFCe₀.1TZY demonstrated valid cathodic property. Moreover, the appropriate doping concentration of Ce and the presence of Tm support in the creation of high content of oxygen vacancies where a large number of oxygen vacancies enabled the fast-ionic transport. The protonic charge conduction was also verified via the accomplished method using the O²⁻/e⁻ filtration layer of BZY. All these accumulated and combined properties in semiconducting materials will pave the way towards a well-functioning electrolyte for the LT-SOFCs.

2. Experimental work

2.1. Materials synthesis and characterizations

The hydrothermal technique assisted by co-precipitation was employed to synthesis various compositions of BaCo₀.2Fe₀.3₋dₓCeₓTm₀.1Zr₀.3Y₀.1O₃₋d (x = 0.1−0.2). Barium nitrate (Ba(NO₃)₂), Iron nitrate hexa-hydrate (Fe(NO₃)₃·6H₂O), Zirconium nitrate (Zr(NO₃)₄), Cobalt nitrate hexa-hydrate (Co(NO₃)₂·6H₂O), and Yttrium nitrate hexa-hydrate (Y(NO₃)₃·6H₂O) obtained from Sigma Aldrich (99.9%), Thulium nitrate hexa-hydrate (Tm(NO₃)₃·6H₂O), Cerium nitrate hexa-hydrate (Ce(NO₃)₃·6H₂O) and Sodium carbonate (Na₂CO₃) from MACKLIN (99.99%) were used as precursors in the synthesis of desired materials without any further purification. The weighed quantity of Ba(NO₃)₂, Fe(NO₃)₃·6H₂O, Co(N- O₃)₂·6H₂O, Y(NO₃)₃·6H₂O, Tm(NO₃)₃·6H₂O, and Zr(NO₃)₄ were dissolved in de-ionized water (DI) step-wise under continuous stirring to obtain the 1.0 M homogenous solution. Afterward, the calculated quantity of 20% of Ce(NO₃)₃·6H₂O (MACKLIN -99.99%), were added according to the doping ratio into the above solution with continuous stirring. In parallel, another 1 M solution of sodium carbonate Na₂CO₃ was prepared as a precipitating agent under stirring continuously. Furthermore, the precipitating agent solution was added dropwise into the above solution to prepare dark brownish precipitates and stirred them for a certain time to get homogenously precipitates solution. The solution was then shifted into an autoclave bottle and put in the vacuum furnace at 180 °C for 6 h, afterward, the autoclave was removed from the vacuum furnace and cool down to room temperature. The obtained precipitates were filtered and washed several times with DI-water and absolute ethanol and then followed by drying at 120 °C for 6 h in the oven. The dried dark brownish powder was ground and sintered at 1100 °C for 6 h with a ramp of 3 °C min⁻¹ and then well-ground in agate mortar to obtain the homogenous powder of BaCo₀.2Fe₀.3C₀.1Tm₀.1Zr₀.3Y₀.1O₃₋d (BCFCe₀.1TZY). The powder was further used for physical and electrochemical characterizations.

Similarly, the 10% doping ratio of Ce such as BaCo₀.2Fe₀.3C₀.1Tm₀.1Zr₀.3Y₀.1O₃₋d powder was prepared for further process.

The crystallography analysis and the doping effect of Ce (x = 0.1−0.2) into BCFTZY were studied via an X-ray diffractometer (XRD) assisted by the Bruker D8 advanced X-ray diffractometer (Germany, Bruker Corporation). The crystal structure was analyzed using the ProfSoft software [30,31]. The surface morphology of the designed materials and the cross-section of the fuel cell device was studied via the Field emission scanning electron microscope (FE-SEM, JEOL JSM7100F field, Germany). The high resolution-transmission electron microscopy (HR-TEM, JEOL JEM-2100F) operating under an accelerating voltage of 200 kV was employed to study the micro-structure of the prepared materials. The energy band gaps of two prepared materials with different ratios of dopants were obtained via UV–Vis absorption using a UV3600 spectrometer (MIOSTECHPTY Ltd.). Moreover, the ultraviolet photoelectron spectroscopy (UPS) was employed to deduced the valence band level under the unfiltered He−1 (21.22 eV) gas discharge lamp and a total instrumental energy resolution of 100 meV, respectively. Besides, the chemical states and surface charge transfer of designed materials were studied via x-ray photoelectron spectroscopy using Al Kz radiation (1486.7 eV), CASA XPS software was used to analyse the XPS results.

2.2. Fuel cell device fabrication

There are three components involve in the fabrication of fuel cell device, anode, cathode, and electrolyte. Initially, electrodes were prepared by mixing the weighed quantity of Ni₀.9Co₀.1NiAl₀.5Li₀.2 powder (NCAL powder commercially obtained from the Tianjin Baro Company (TBC)) into the appropriate volume of terpineol mixing media to obtain a slurry, which was subsequently painted on circular shaped Ni-foam before experiencing desication at the 120 °C for 0.45 h to form well dried NCAL pasted Ni-foam (NCAL-Ni) electrodes. The single and symmetrical fuel cell device was fabricated by compacting the homogenous powder of BCFCe₀.1TZY between the two NCAL-Ni electrodes uniaxially at the load of 250 MPa to construct a single pellet. The architecture of the designed cell is Ni-NCAL/BCFCe₀.1TZY/NCAL-Ni of approximate thickness 1.5 mm and an active area of 0.64 cm². The silver paste was applied on both sides of the cell to apply as a current collector. Similarly, the other single-cell for BCFCe₀.1TZY was also fabricated in the same way. Subsequently, all the fuel cells were online sintered before electrochemical characterizations at 600 °C for 0.45 h to thermally activate the cell.

Besides, the verification of protonic conductivity of BCFCe₀.1TZY was investigated by constructing cell of BCFCe₀.1TZY between two O²⁻/e⁻ filtration layers of BZY to only allow the protonic ions transfer with the structure of BZY/BCFCe₀.1TZY/BZY and then assemble the fuel cell device in the same procedure as described above [32]. The tri-layers of the electrolyte was sandwiched between two pieces of NCAL-Ni electrodes to form the configuration five-layers of Ni-NCAL/BZY/BCFCe₀.1TZY/BZY/NCAL-Ni. The thickness and the active area are the same as for the general fuel cell device. Moreover, the fuel cell performance has a strong link with the catalytic activity of the electrode; therefore, we investigated the possible oxygen reduction reaction (ORR) activity of the BCFCe₀.1TZY. The possible oxygen reduction reaction (ORR) of the triple charge conducting materials was also demonstrated by following this.
architecture for two different cells Ni–BCFCe0.1TZY/SDC/NCAL-Ni and Ni–BCFCe0.1TZY/BZY/NCAL-Ni, where BCFCe0.1TZY was applied as a cathode and NCAL-Ni as an anode. However, all the working conditions, prior to and during the electrochemical performance of fuel cell remain the same at every stage of experiments.

2.3. Electrochemical characterizations

The electrochemical performance of fuel cell was measured using an electronic load IT8511 (ITECH Electrical Co., Ltd., China) equipped with a control and data recording software IT7000, with a scan speed of 0.02 A s⁻¹ in the current-voltage sweep under the temperature range of 530-380 °C. The dry hydrogen and air were used as fuel and oxidants at the flow rate (120–150 mL min⁻¹), respectively. Moreover, the electrochemical impedance spectroscopy (EIS) measurement was executed via the Gamry Reference 3000 electrochemical workstation (Gamry Instruments, USA) to study the electrical properties and the impedance losses at various components of the design fuel cells. The frequency range for EIS was 0.1–10⁵ Hz with an applied AC-voltage with an amplitude of 10 mV in open-circuit voltage (OCV) condition. ZSimpwin software was used for fitting and analyzing the measured data using an appropriate equivalent circuit model.

3. Result and discussion

3.1. Phase and surface morphology analyses

XRD patterns of the optimally sintered BCFCe0.1TZY and BCFCe0.2TZY materials with 2θ = 15°–80° are presented in Fig. 1(a, b). All compositions show only one phase with typical pseudo-cubic PVK diffraction peaks. Within the resolution limits of XRD, no secondary phases or impurities can be detected, confirming that the starting reagents completely reacted to form the homogenous compounds with the pure pseudo-cubic crystal structure during sintering. In Fig. 1(b), a distinct peak shift is shown by a dotted reference line and highlighted. Examination of this pattern illustrates that there is a slight variation in the position and intensities of the reflections for the observed compositions. The peaks shift to a lower diffraction angle with increasing Ce content up to 20%, indicating a lattice expansion. This lattice expansion mainly occurred due to a difference in the ionic radii and charge mismatch of the A/B-site cations. Such a variation will be further discussed in the refinement result of the crystal structure.

Fig. 2(a and b) show Rietveld refinement of the XRD patterns for pristine BCFCe0.1TZY and BCFCe0.2TZY semiconducting materials. The calculated patterns are shown by solid red curves, and the black empty bullet shows the observed intensities, while the differences between the observed and calculated intensities are presented by solid blue curves with a violet bar space group. Apparently, the diffraction peaks of the as-prepared target (shown in Fig. 2(a and b)) can be indexed as a typical layered pseudo-cubic structure with space group Pm3m. A single-phase of pseudo-cubic crystal structure was obtained for all the specimens yielding excellent goodness of factor (χ² ≤ 2.58). The crystal lattice parameters and unit cell volume for both the compositions were determined from the crystal structure refinement, as shown in Table 1. The average crystallite size and micro-strain were calculated using Williamson-Hell (W-H) analysis based on the refinement raw data files [33].

The morphology and particle size change as a result of the increased concentration of Ce doping in BaCo₀.₂Fe₀.₃₋ₓCeₓTm₀.₁Zr₀.₃Y₀.₁O₃₋ₑ (where x = 0.1, and 0.2) are studied by FE-SEM, as shown in Fig. 2(c and d). The increase of doping changes the morphology of the particles. The images depict that particles are agglomerated and tend to shrink more towards the nano-size. It can be observed that the particle size of both lower and intermediate doped Ce is in the range of 25–30 nm and 15–20 nm, respectively. Besides, the uniform distribution of particles revealed that the particles or grains are well interconnected and compacted (Fig. 2(d)), such kind of distribution supports the easy transport of charge species. The small grain size supports the fast transport of charge species while the decrease of grain boundaries enables more active sites [34]. Moreover, the FE-SEM images displayed the morphology of the Ni-foam utilized in the fabrication of cell as well at the amplified resolution along with the morphology of pressed Ni-foam shown in the inset, displayed in Fig. S1 (a-b). Besides, the interface of the Ni-mesh with the NCAL particles are extracted through the FE-SEM and the image at amplified resolution shown in Fig. S1 (c-d).

Furthermore, the TEM has been employed to study the microstructure of BaCo₀.₂Fe₀.₃₋ₓCeₓTm₀.₁Zr₀.₃Y₀.₁O₃₋ₑ (x = 0.1–0.2). The two images investigated by TEM of BCFCe0.1TZY and BCFCe0.2TZY at the amplification of 100 nm presented in supporting data [Fig. S2(a-b)], where the particles are agglomerated and their size is decreased significantly with the increase of Ce doping concentration, which are analogous and projected in the SEM images displayed in Fig. 2(c and d). Further, high-resolution TEM (HR-TEM) has been employed to study line spacing of the Ce doped BaCo₀.₂Fe₀.₃₋ₓCeₓTm₀.₁Zr₀.₃Y₀.₁O₃₋ₑ (where x = 0.1, and 0.2). The two images of d-spacing are provided, where well-defined crystalline fringes are formed with lattice spacings of 0.27 nm and 0.265 nm corresponds to the (110) plane of BCFCe0.1TZY and BCFCe0.2TZY as shown in Fig. 2(e and f).

Moreover, High energy diffraction spectroscopy (EDS) was employed to study the line scanning and elemental mapping to demonstrate the proof of various doping ratios visually, shown in Fig. 3. The line scanning was conducted for specific elements to show their dominant presence and various doping ratios of Ce and adjustment of Fe at B-site in designed materials at the selected specific area as an illustrative line scan shown in the inset of Fig. 3(a). However, with an increase of Ce doping a decrease in Fe content occurred proved via line scan curves, indicating that doping was achieved successfully (Fig. 3(a)). The overall elemental distribution of Ba, Co, Fe, Ce, Tm, Zr, and O was determined by considering the high-angle annular dark-field (HAADF) area of 200 nm is shown in Fig. 3(b). Moreover, the respective mapped image and their corresponding elements in the compositions are displayed in Fig. 3(c–j), respectively.
3.2. Electrochemical performance

The electrochemical performance of the prepared BaCo$_{0.2}$Fe$_{0.3-\Delta}$Ce$_\Delta$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\Delta}$ materials was demonstrated to understand the effect of doping. Fig. 4(a and b) shows the I–P and I–V curves of the symmetric fuel cell with a structure of Ni-NCAL/BCFCe$_{0.1}$TZY/NCAL-Ni and Ni-NCAL/BCFCe$_{0.2}$TZY/NCAL-Ni under the H$_2$/air atmosphere. The single cell with BCFCe$_{0.2}$TZY achieved quickly sufficient and higher open-circuit voltages (OCV), i.e., 1.09, 1.08, 1.07, and 1.05 V under the temperature range of 530, 480, 430, and 380 °C with remarkable power densities of 873, 721, 580, and 383 mW cm$^{-2}$, while the single cell of BCFCe$_{0.1}$TZY has OCV of 1.01–1.03 V and yielded power density of 661, 460, 322, and 260 mW cm$^{-2}$, respectively. It infers that both types of cells have no leakage of gases; however, the intermediate doping of Ce has displayed higher power output than that of the lower doping concentration of Ce. The intermediate concentration of Ce doping intends to create controlled structural defects, which helped in the generation of appreciable oxygen vacancies as compared to the lower doping concentration as discussed later in XPS analysis. However, the high oxygen vacancies lead to enhance the ionic transport to boost the power density of the designed BCFCe$_{0.2}$TZY electrolyte utilized fuel cell. Besides, the incorporation of 10% Tm$^{3+}$ in the semiconducting materials has been used for two purposes, the creation of oxygen vacancies and boost up the protonic conduction, as previously reported [35,36]. Therefore, the maximum power output (P_{max}) is attributed to the high ionic conductivity (σ) with significant protonic conductivity of the semiconducting electrolyte membrane along with reduced polarization resistance (R_p) and lack of sluggish ORR activity at cathode zone [7,37]. It can be clearly observed that the current densities obtained from the fuel cells are closely

<table>
<thead>
<tr>
<th>Samples</th>
<th>Space Group</th>
<th>lattice常数 $(a-b-c)$ (Å)</th>
<th>Lattice volume (Å3)</th>
<th>Lattice Angles $(\alpha-\beta-\gamma)$</th>
<th>Average crystallite size (Å)</th>
<th>Micro strain R_w</th>
<th>R_{exp}</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Ce</td>
<td>PnTm</td>
<td>4.21064</td>
<td>74.652</td>
<td>90º</td>
<td>249.0762148</td>
<td>0.0503082</td>
<td>14.70</td>
<td>9.16</td>
</tr>
<tr>
<td>0.2 Ce</td>
<td>PnTm</td>
<td>4.23527</td>
<td>75.970</td>
<td>90º</td>
<td>118.7391183</td>
<td>0.00211</td>
<td>13.83</td>
<td>9.29</td>
</tr>
</tbody>
</table>

Fig. 2. (a–b) Rietveld refinement via FullProf Suite of XRD spectra; (c–d) Surface morphology study via FE-SEM view at same 100 nm scale; (e–f) Two typical HR-TEM images of the both doped materials showing the d-spacing of as-prepared BaCo$_{0.2}$Fe$_{0.3-\Delta}$Ce$_\Delta$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\Delta}$ $(\Delta = 0.1-0.2)$.

3.2. Electrochemical performance

The electrochemical performance of the prepared BaCo$_{0.2}$Fe$_{0.3-\Delta}$Ce$_\Delta$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-\Delta}$ $(\Delta = 0.1-0.2)$ electrolyte materials was demonstrated to understand the effect of doping. Fig. 4(a and b) shows the I–P and I–V curves of the symmetric fuel cell with a structure of Ni-NCAL/BCFCe$_{0.1}$TZY/NCAL-Ni and Ni-NCAL/BCFCe$_{0.2}$TZY/NCAL-Ni at 380–530 ºC under the H$_2$/air atmosphere. The single cell with BCFCe$_{0.2}$TZY achieved quickly sufficient and higher open-circuit voltages (OCV), i.e., 1.09, 1.08, 1.07, and 1.05 V under the temperature range of 530, 480, 430, and 380 ºC with remarkable power densities of 873, 721, 580, and 383 mW cm$^{-2}$, while the single cell of BCFCe$_{0.1}$TZY has OCV of 1.01–1.03 V and yielded power density of 661, 460, 322, and 260 mW cm$^{-2}$, respectively. It infers that both types of cells have no leakage of gases; however, the intermediate doping of Ce has displayed higher power output than that of the lower doping concentration of Ce. The intermediate concentration of Ce doping intends to create controlled structural defects, which helped in the generation of appreciable oxygen vacancies as compared to the lower doping concentration as discussed later in XPS analysis. However, the high oxygen vacancies lead to enhance the ionic transport to boost the power density of the designed BCFCe$_{0.2}$TZY electrolyte utilized fuel cell. Besides, the incorporation of 10% Tm$^{3+}$ in the semiconducting materials has been used for two purposes, the creation of oxygen vacancies and boost up the protonic conduction, as previously reported [35,36]. Therefore, the maximum power output (P_{max}) is attributed to the high ionic conductivity (σ) with significant protonic conductivity of the semiconducting electrolyte membrane along with reduced polarization resistance (R_p) and lack of sluggish ORR activity at cathode zone [7,37]. It can be clearly observed that the current densities obtained from the fuel cells are closely
associated with the doping ratio of Ce into BCFTZY, as given in Fig. 4(a and b). The OCV, current density, and power output are also dependent on temperature because ionic transport and fuel cell reactions are thermally activated processes, therefore, all these three outcomes partly increased with the increase of temperature. The 20% Ce-doped fuel cells have maintained higher OCV and prevent the issue of short-circuiting as compared to 10% Ce-doped. In this regard, a Schottky junction can be the possible reason for higher OCV and good fuel cell performance, which also played a vital role in stopping the electronic conduction and facilitating the transport of oxide O^2- ions towards the anode and will be discussed later.

3.2.1. Verification of protonic charge species

Considering the triple charge conduction (H$^+/O^2-/e^-$) reported in BZCFY, BZCeYbO, and BSCFZY-SCDC, it is anticipated that our designed BCFCe$_{0.2}$TZY can also present sufficient triple charge conduction as an electrolyte. Thus, to verify the presence of protonic conduction involve in the triple charge conduction, we have employed the BZY layers to block (O$^2-/e^-$) and allow only protons to pass through, enabling the determination of proton transport property via electrolyte [32]. The BZY was applied on both sides of the electrolyte BCFCe$_{0.2}$TZY with a fuel cell configuration of Ni-NCAL/BZY/BCFCe$_{0.2}$TZY/BZY/NCAL-Ni. The designed fuel cell delivered power density of 481, 350, and 214 mW cm$^{-2}$ with OCV 1.03, 1.02, and 1.01 V at 530, 480, and 430 °C, as shown in Fig. 4(c). The obtained power density has reached half of the total power density of fuel cell with architecture Ni-NCAL/BCFCe$_{0.2}$TZY/NCAL-Ni, however, there is a significant contribution of Tm$^{3+}$ in protonic conduction [36]. The demonstration of OCV more than 1 V illustrates that the electrolyte shows no gas leakage and preventing the short-circuiting risk. This measurement may cause more ohmic losses with limited proton conductivity as a result of additional BZY layers, as well as lowering the OCV of the cell, as observed in Fig. 4(c). Additional contact between BZY and BCFCe$_{0.2}$TZY also responsible for the polarization loss and can be observed in electrochemical impedance spectroscopy results, which also verifies the proton conduction in the BCFCe$_{0.2}$TZY. It should be noted that the designed materials for proton and oxide ions conduction for the SOFC fueled with H$_2$ and air. However, the previous report shows that the BZCY related materials or the same structured materials of a mixed ions (proton and oxide) conductor has been reported in SOFC that fueled containing CO contents showed stable operation [15]. Therefore, more likely the prepared semiconductor electrolyte can be employed in fuel cell operated with containing CO fuel. It has been noticed that OCV of various fuel cells with the same electrolyte material has different voltages values at respective temperatures. Therefore, we have tested three different fuel cells to calculate the mean value of OCV based on BCFCe$_{0.2}$TZY electrolyte membrane at 530–380 °C shown in Fig. 4(d). The calculated mean value of OCV portrays that a very negligible variation occurred at respective temperatures, which inculcate that the designed materials exhibited a stable OCV and promising electrochemical property with some uncertainties in experiments. Usually, there are three
uncertainties that occurred in experiments. The possibility of uncertainties are like little button cells are used in fuel cell performance measurements, meaning that a small inaccuracy in determining the diameter of the active area could lead to a notable error, for example, with $\text{Ø}_{\text{cell}} = 13 \text{ mm}$ and $\Delta \text{Ø}_{\text{cell}} = 1 \text{ mm}$ could result in a 17% uncertainty in the area. This affects the reported power density results. Besides, ionic conductivity is calculated based on the resistivity and thickness of the electrolyte layer, meaning that any uncertainty in the thickness value would directly find itself in the ionic conductivity value. For example, if the thickness of the cells is 1–3 mm, then a measurement inaccuracy of 0.2 mm would result in a 10% error in the ionic conductivity. Furthermore, the other possibility of uncertainty in measured data is the reliability and reproducibility of power densities at operational temperature 530–380 °C, therefore, we verified the reproducibility of results by several times (05) repeated fuel cell measurements that displayed the repeatable and reliable results as shown in Fig. S3. However, the repeated experiments overcome the errors in the presented data.

3.3. Oxygen reduction reaction (ORR) catalytic activity

As it is known, cathode plays a crucial role in the ORR process of a fuel cell to create and import oxide ions through the electrolyte to achieve high fuel cell performance and stable OCV for LT-SOFC [14]. Therefore, to prove the concept of triple charge conduction applicability as a cathode, we utilized BCFC@0.1ZY semiconductor as a cathode by replacing Ni-NCAL to observe the ORR activity and provided a proof of concept. Thus, two kinds of experiments were performed, such as Ni-NCAL/SDC/BCFC@0.1ZY-Ni named as “A” and Ni-NCAL/BZY/BCFC@0.1ZY-Ni named as “B”. The SDC was used as an oxide ion conductor while the BZY only allow the proton conduction, respectively [19,38]. The below mentioned results shown in Fig. 5 are obtained from these two different steps of two experiments proposed that BCFC@0.1ZY maintaining triple charge conduction and successfully utilized as a cathode which showed the capability of BCFC@0.1ZY to function as a competent cathode [14,39]. The “A” infers that synthesized BCFC@0.1ZY have considerable oxide ions conduction utilizing as a cathode, which generated 232 mW cm$^{-2}$ while the “B” suggested that BCFC@0.1ZY has also protonic conduction produced 161 mW cm$^{-2}$. Such activity has been attributed to ORR in the fuel cell or the functionality of cathode with BCFC@0.1ZY that contained the region of electrolyte/electrode. However, utilizing BCFC@0.1ZY as a cathode inculcates that the presence of mixed ionic and electronic conduction

Fig. 4. Electrochemical performance in terms of $I-V$ and $I-P$ curves of stabilized BaCo$_{0.2}$Fe$_{0.3}$Ce$_{0.1}$Zr$_{0.1}$Y$_{0.1}$O$_{3-d}$ ($x = 0.1–0.2$) in terms of (a–b) at 530–380 °C; (c) Protonic fuel cell performance of under the configuration of oxygen blocking layer O$^2-$/e$^-$ of NCAL-Ni/BZY/BCFC@0.1ZY/BZY/NCAL-Ni 530–430 °C with H$_2$ at the anode and airflow at the cathode; (d) Calculated mean value of OCV for three times tested fuel cell with BCFC@0.1ZY electrolyte at 530–380 °C.

Fig. 5. Electrochemical fuel cell performance of utilizing BCFC@0.1ZY as a cathode, BZY, and SDC as electrolyte membrane.
facilitates the redox reactions at the electrode/electrolyte interface due to accelerated charge carrier transport, leading to improved catalytic function and also give the confirmation of triple charge conduction. Moreover, the incorporation of SDC as an electrolyte and BCFCe0.1TZY as cathode provided admittance to more active sites for the ORR catalytic activity, which facilitated in the enhancement of the electrochemical performance.

3.4. Electrical characterization of fuel cell device

The detailed electrical properties of the BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-d (x = 0.1–0.2) semiconducting materials are studied by EIS measurement in H2/air, as shown in Fig. 6(a and b). Generally, the EIS can be divided into three portions, where the initial touching point of EIS spectra at the real axis belongs to high frequency, the first semicircle of the EIS curve ascribed to the intermediate frequency region while the large interfacial semicircle intersects at the low-frequency part. All the obtained EIS spectra are simulated by applying a suitable equivalent circuit LR0(Q1)(R2) through Z-Simpwin software [16]. The simulated data are summarized in Tables (2–3). According to the equivalent circuit, these three parts correspond to the ohmic resistance (R0) interpret the high-frequency region, charge and mass transfer (R1 & R2) of electrolyte and electrodes contribution to EIS spectra corresponds to intermediate and low-frequency regions, respectively.

These parameters are used to correlate them with the dominant charge species available in the fuel cell electrolyte membrane. However, it can be noticed that the R0 and Rp of BCFCe0.2TZY exhibited values of 0.072 Ω cm² and 0.328 Ω cm² are lower than that of 0.0971 Ω cm² and 0.4663 Ω cm² in BCFCe0.1TZY enlisted in Tables (2–3). There are several factors responsible for the decrease of R0 and Rp such as, the appropriate concentration of Ce doping, which produced significant oxygen vacancies, and the presence of Tm³⁺ in the semiconducting materials are responsible for the increase of ionic conduction as previously reported [27,40]. Moreover, junction effect and increase of temperature, all these factors are responsible for the enhancement of ionic conductivity and suppression of electronic conduction. It can be noticed that with the increase of temperature the ohmic resistance and R1 decrease from 0.132 Ω cm² to 0.0721 Ω cm² and 0.0721 Ω cm² to 0.017 Ω cm², respectively, due to thermal activation and migration of ions and electrons.

Table 2

<table>
<thead>
<tr>
<th>Temperature</th>
<th>R0 (Ω cm²)</th>
<th>R1 (Ω cm²)</th>
<th>Q (S cm⁻²)</th>
<th>L (μm)</th>
<th>R2 (Ω cm²)</th>
<th>C (μF cm⁻²)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCFCe0.2TZY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530 °C</td>
<td>0.072</td>
<td>0.017</td>
<td>0.2238</td>
<td>3.08E⁻⁰⁸</td>
<td>0.311</td>
<td>0.6427</td>
<td>0.5206</td>
</tr>
<tr>
<td>480 °C</td>
<td>0.088</td>
<td>0.024</td>
<td>0.1581</td>
<td>8.96E⁻⁰⁸</td>
<td>0.357</td>
<td>0.5611</td>
<td>0.8</td>
</tr>
<tr>
<td>430 °C</td>
<td>0.1009</td>
<td>0.0542</td>
<td>0.1151</td>
<td>6.31E⁻⁰⁸</td>
<td>0.451</td>
<td>0.513</td>
<td>0.42</td>
</tr>
<tr>
<td>380 °C</td>
<td>0.132</td>
<td>0.0721</td>
<td>0.2716</td>
<td>8.96E⁻⁰⁸</td>
<td>0.792</td>
<td>0.314</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Temperature</th>
<th>R0 (Ω cm²)</th>
<th>R1 (Ω cm²)</th>
<th>Q (S cm⁻²)</th>
<th>L (μm)</th>
<th>R2 (Ω cm²)</th>
<th>C (μF cm⁻²)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCFCe0.1TZY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530 °C</td>
<td>0.0971</td>
<td>0.0942</td>
<td>0.1792</td>
<td>5.50E⁻⁰⁸</td>
<td>0.3721</td>
<td>0.333</td>
<td>0.8</td>
</tr>
<tr>
<td>480 °C</td>
<td>0.1056</td>
<td>0.1408</td>
<td>0.1348</td>
<td>4.88E⁻⁰⁸</td>
<td>0.486</td>
<td>0.2478</td>
<td>0.8</td>
</tr>
<tr>
<td>430 °C</td>
<td>0.1314</td>
<td>0.1521</td>
<td>0.1245</td>
<td>4.42E⁻⁰⁸</td>
<td>0.8102</td>
<td>0.2142</td>
<td>0.4329</td>
</tr>
<tr>
<td>380 °C</td>
<td>0.1614</td>
<td>0.1874</td>
<td>0.2329</td>
<td>4.00E⁻⁰⁸</td>
<td>0.8542</td>
<td>0.1696</td>
<td>0.5444</td>
</tr>
</tbody>
</table>

Fig. 6. Electrochemical impedance spectroscopy (EIS) of (a–b) BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-d (x = 0.1–0.2) at 530–380 °C; (c) configuration of oxygen blocking layer O̅^2⁻/e⁻ of NCAL-Ni/BCF/BCFCe0.2TZY/BCF/NCAL-Ni at 530–430°C with H2 at the anode and airflow at cathode; (d) comparative study of both doped composition include Pmax and OCV of BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-d (x = 0.1–0.2) at 530–380 °C.
electrons at the grain boundary. In addition, the electrode polarization resistance displays a similar trend that signifies the increase of electrode reaction activity with the increment in temperature 380–530 °C. This also qualifies the high ORR activity at the interface of BCFCe0.2TZY/NCAL-Ni. Besides, the BCFCe0.2TZY as an electrolyte has provided more active sites for the reaction of the electrode, as a result, promoted the faster catholytic reaction activity and extend the triple-phase boundary (TPB) region due to their triple charge conductivity.

Moreover, the EIS spectra of protonic electrolyte with a five-layer structure Ni-NCAL/BZY/BCFCe0.2TZY/BZY/NCAL-Ni were tested, as shown in Fig. 6(c). The EIS spectra were simulated with the same equivalent circuit, however, there are ohmic losses induced by two additional BZY layers and more electrode polarization. The contact interfaces between BZY and BCFCe0.2TZY are responsible for the contribution of polarization losses. Therefore, the proposed study of EIS illustration was to compare the performance of pure fuel cell device and the protonic fuel cell device in order to prove the presence of protonic conduction in synthesized BCFCe0.2TZY semiconducting electrolyte membrane. Besides, the power densities and OCV are displayed against respective temperatures of both doped compositions as shown in Fig. 6(d). It can be seen that the non-linear upward trend exhibited in power density and OCV with the increase of Ce-doping at respective temperatures 380, 430, 480, and 530 °C.

In detail, the electrical properties in terms of total and ionic conductivity were obtained from the EIS and I–V curve of the fuel cell device shown in Fig. 7(a and b). The total conductivity is calculated from the EIS spectra involving ohmic resistance include the ionic and electronic resistances and the charge and mass transfer originated with the electrode polarization resistances. It has been reported that ohmic polarization is considered due to ionic resistance of the electrolyte membrane; because NCAL involved as an electrode has high conductivity, therefore, the ohmic resistance is originated from ionic resistances [41].

The ionic conductivity of the Ce-doped BCFTZY electrolyte membrane was estimated from the polarization region of the I–V polarization curve using the ohmic resistance, where the flat part of the I–V curve is considered as an ohmic resistance, also reported previously [28,42–44]. The obtained ionic conductivity of BCFCe0.2TZY and BCFCe0.1TZY are 0.199–0.08 S cm⁻¹ and 0.143–0.044 S cm⁻¹ at 530–380 °C, respectively. However, the achieved ionic conductivity is better than that of a previously reported pure ionic conductor; such as SDC-0.05 S cm⁻¹ and GDC-0.04 S cm⁻¹ at 700 °C, respectively, and ceramic YSZ has 0.13 S cm⁻¹ at 1000 °C [45–47]. The prepared materials demonstrated significant protonic fuel cell performance, therefore, the calculated protonic conductivity of BCFCe0.2TZY is 0.0902–0.021 S cm⁻¹ at 530–430 °C [Fig. 7(a)]. The attained protonic conductivity is better than that of reported pure protonic materials such as BaCe0.7Zr0.1Y0.2O3-δ (0.02 S cm⁻¹ at the operating temperature of 700 °C) [48]. Results have proved that high ionic conductivity is the combination of both (O²⁻ and H⁺) charge species, which is in line with previously reported literature [9].

Herein, we studied the detail of Schottky junction formation as a result of the bi-layer Ni-NCAL/BCFCe0.2TZY structure, displayed in Fig. 7(c and d). The rectification phenomenon of the bi-layer Ni-NCAL/BCFCe0.2TZY was studied under both H₂/air and air at 530 °C. Initially, the voltage was applied in air and recorded the I–V curve following the Ohm’s law, suggesting no formation of a junction in between Cathode (Ni-NCAL) and the layer of BCFCe0.2TZY, as shown in Fig. 7(c). Conversely, applying the H₂/Air environment, the reduction process started for 30 min with the supply of H₂, as shown in Fig. 7(d). It was observed that by applying and increase of voltage, simultaneously, the resistance decreased and the current increased, consequently, diode behaviour built and exhibited with time recommend the formation of the Schottky junction between the Ni available at the surface of Ni-NCAL and the semiconductor BCFCe0.2TZY [49]. The formation of the Schottky junction is in line with the previous reports [50,51]. The established junction helped in the creation of a built-in electric field (BIEF) in the direction from Ni-metal towards the semiconductor BCFCe0.2TZY electrolyte membrane. The intrinsic available electrons in the semiconductor BCFCe0.2TZY also help in the enhancement of BIEF, however, in both cases, the BIEF supports the transport of O²⁻ through Ni-metal/ electrolyte and impedes the electrons from anode via electrolyte towards cathode to avoid short-circuiting [52]. Schottky junction act as a synergistic junction that overcomes short-circuiting and expedites O² ions conduction. The SEM cross-sectional view of cell presented in Fig. 7(e and f) of Ni-NCAL/BCFCe0.2TZY/NCAL-Ni and O²⁻/e⁻ blockage layered Ni-NCAL/BZY/BCFCe0.2TZY/BZY/NCAL-Ni of fuel cells. The SEM cross-sectional view of both fuel cells displays in Fig. 7(e and f) show that the designed configuration is prepared according to the required architecture cathode/electrolyte/anode for fuel cell technology.

3.5. XPS analysis

XPS was employed to study the chemical state assigned with quantum numbers and the successful formation of single-phase semiconductor BaCe0.2Fe0.3+εCe0.1Tm0.1Zr0.1Y0.1O3-δ (x = 0.1–0.2). The complete survey of the XPS for both doped compositions are depicting the presence of each constituent element, see Fig. 8(a). High-resolution spectra of Ba, Ce, Fe, and O-1s of Ce doped BCFTZY are displayed in Fig. 8(b–f) while the Co, Ti, Zr, Y, and O-1s spectra are presented in Fig. S4 (a-f). Initially, Ba can be de-convoluted into two main components Ba-3d5/2 and Ba-3d3/2 at the respective binding energies of 778.6 and 794.8 eV, displayed in Fig. 8(b) and is in line with the previous study [53]. The cobalt element can be de-convoluted into two chemical states Co-2p1/2 and Co-2p3/2; however, they possess two different oxidation states, i.e., +2 and +3, respectively. Moreover, the Co-2p1/2 with +3 and +2 oxidation states are assigned at the binding energies of 778.6 eV and 781.0 eV, while the Co-2p1/2 with +3 and +2 oxidation states are assigned at the binding energies of 793.7 eV and 796.3 eV shown in Fig. S4 (a) [54,55]. It can be observed with the 20% Ce doping the Co is tends to reduce from +3 to +2 oxidation states, which infer that there is a creation of oxygen vacancies. Furthermore, it should be noted that the peak height and intensity of Fe decreased with increment of Ce content, as shown in Fig. 8(c). However, there are two spin-orbit Fe-2p (Fig. 8(c)) spectra are convoluted into two chemical states Fe-2p1/2 and Fe-2p3/2 with a satellite peak, where Fe²⁺-2p3/2 and Fe²⁺-2p1/2 corresponds to 709.1 and 722.7 eV and Fe³⁺-2p3/2 and Fe³⁺-2p1/2 corresponds to 710.1 and 724.1 eV and 712.3 and 725.1 eV to Fe⁴⁺-2p3/2 and Fe⁴⁺-2p1/2, respectively, while the satellite peak at 717.9 eV [56]. The spin-orbit splitting of Fe-2p (Fig. 8(c)) spectra is well fitted with three valence states, i.e., Fe²⁺, Fe³⁺, and Fe⁴⁺, respectively. It can be observed that there are different percentages of Fe²⁺, Fe³⁺, and Fe⁴⁺ in both samples, which inculcate that there is a peak shift occurred. Apparently, the average valence state of Fe decreased and a slight shift can be observed from the peak area of each single curve with the increase of Ce doping x = 0.1 and 0.2 [57]. Therefore, the adjustment of B-site cations via the partial substitution of Fe with Ce and the presence of mixed oxidation states of Fe (Fe³⁺/Fe⁴⁺ and Fe³⁺/Fe⁴⁺) Consequently, oxygen vacancies are created due to oxidation of the Fe cation (Fe²⁺ to Fe³⁺ and Fe²⁺ to Fe⁴⁺) with Ce doping with two different doping concentrations (10% and 20%), as shown in Fig. 8(d and e). The Ce-3d can be de-convoluted into five spin-split doublets, as reported in the literature [58,59]. In Ce-3d, the ν (883.3 eV) and u (902.0 eV) peaks correspond to the 3d5/2 and 3d3/2 contributions derived from
the spin-orbit coupling as well the cerium ionic states with $^{+3}$ and $^{+4}$ oxidation states. The increase of peak intensity of ν_0 and ω_0 indicates the increase of the content of Ce$^{+3}$ on the surface with doping, which can be used as an indicator of the existence of oxygen vacancies. The existence of high content of $^{+3}$ is linked with more oxygen vacancies [60–62]. The peak heights also became dominant with the increase of Ce doping as shown in Fig. 8 (e). Moreover, the introduction of Tm-4d also helps in the creation of oxygen vacancies, however, the Tm-4d$^{3/2}$ core level with an oxidation state of $^{+3}$ is assigned at the binding energy of 176.21 \pm 0.05 eV accompanied by a small satellite peak observed for Ba$_{2-x}$Fe$_{0.2}$Ce$_x$Tm$_{0.1}$Zr$_{0.2}$Y$_{0.1}$O$_{3-x}$ ($x = 0.1–0.2$) shown in Fig. S4 (b) [40]. Furthermore, Fig. S4 (c) illustrates the binding energy peaks at 156 eV and 158.1 eV, conforming to Y-3d$_{5/2}$ and Y-3d$_{3/2}$, respectively [63]. The XPS analysis confirms the position of Zr-3d peaks at 180.6 and 182.9 eV attributed to the Zr-3d$_{5/2}$ and Zr-3d$_{3/2}$, respectively, indicating that Zr-3d$_{5/2}$ and Zr-3d$_{3/2}$ formed the Zr–O bonds. Also, the difference between binding energies is about 2.4 eV, suggesting the existence of Zr$^{+4}$ and Zr$^{+3}$ states, see Fig. S4 (d) [63].

According to the literature, the ionic conduction of any material is intimately concerned with the O-1s BE [64]. Barr and Dong et al. reported that this BE 528–530.5 eV range attributed to the lattice O and highly oxidant O in the oxides materials [65,66]. The O-1s spectra of BCFCe$_{0.2}$TZY and BCFCe$_{0.1}$TZY are displayed in Fig. 8 (f) and Fig. S4 (e–f). The peak at 530.5 eV of BCFCe$_{0.2}$TZY represents the lattice oxygen, while the peak of BCFCe$_{0.1}$TZY at 531.8 eV denotes the existence of the –OH ions, which helps to form O-
vacancies. It is also observed that increase in doping concentration, the O-1s spectra got broadened towards high binding energy, which directly infers the enhancement of O-vacancies and facilitate the increase in the ionic conductivity of the material, as illustrated in Fig. 8(f) and Fig. S4 (e–f). Thus, broadening of peaks and enlargement of peak area are suggesting that BCFCe0.2TZY has excellent high oxygen vacancies which are capable of fast transport of high ionic conduction.

3.6. UV–Vis and UPS analyses

The arrangement and transport of charge carriers in the semiconductor materials are the important perspective to understand and explain through energy band structure. In this sequence, UV–Vis and UPS were employed to determine the energy band gaps and the valence band maxima to visualize experimental parameters. Initially, UV–Vis was employed to record the absorbance spectra in the range from 350 to 850 nm. There was a sharp peak absorbed and the spectra of BCFCe0.2TZY slightly higher absorbance than BCFCe0.1TZY. It can be noticed that there was a redshift occurred at the absorption edge and this redshift signified by attaining the shallow levels in the energy bandgap due to an increase in doping concentration. The optical band gaps of both intermediate and lower concentrations of doping can be calculated via the following relation [67];

\[a_n \propto b_0 (\alpha_n - E_g)^n \]

where \(n = 1/2 \) denotes the absorbance coefficient, energy of photons, energy band gap, constant, and the type of bandgap, respectively. The linear part of the graph between \(\alpha_n \) and \((\alpha_n)^2 \) meets the x-axis gives the value of bandgap [68]. The obtained energy bandgaps via equation are 2.3 eV and 2.02 eV of BCFCe0.1TZY and BCFCe0.2TZY, respectively, which shows that intermediate doping has a lower bandgap value than the 10% Ce-doping as shown in Fig. 9(c and d). These lowering of energy bandgap value suggest the formation of intermediate energy level in between conduction and valence band levels. Additionally, the decrease in the bandgap is also helpful in the reduction of activation energy for the transport of ionic conduction. Therefore, in more detail, the valence band maxima were determined via ultraviolet photoelectron spectroscopy (UPS) having an energy cut-off of 21.2 eV, which is evaluated with He–I photon energy as shown in Fig. 9(a–d). The electrical properties of semiconductors can be controlled by changing the band offset. This implies that the incorporation of impurity atoms in semiconductor oxides can control the Fermi level (EF) associated with modifying the carrier concentration. Therefore, investigation of the valence band offsets is very important to understand changes in the charge carrier concentration, which helps to explain the electrical characteristics. Typical ultraviolet photoelectron spectroscopy (UPS), He (I) spectra are shown in Fig. 9. The valence band maxima are calculated via the following equation [69];

\[\phi = 21.2 \text{ eV} - (E_{\text{cutoff}} - E_{\text{onset}}) \]

Where \(h \nu \) is the incident He (I) energy at 21.2 eV and where \(E_{\text{cutoff}} \) is the cutoff energy and \(E_{\text{onset}} \) is the onset of energy, calculated from UPS. Fig. 9 shows a qualitative energy band diagram based on the energy level parameters calculated from UPS where the calculated Vb values of BCFCe0.1TZY and BCFCe0.2TZY are 5.5 eV and 6.48 eV. Furthermore, the conduction band minima (Cb) were calculated by combination of Vb and the energy bandgap of BCFCe0.1TZY and BCFCe0.2TZY are 3.2 eV and 4.46 eV, respectively. Actually, an increase of oxygen vacancies creates more electron-rich material (basically more n-type) and shrink the energy bandgap. Thus, the Fermi level shifts closer to the conduction band. As a result, the Ce-doped sample’s bandgap is subsequently reduced. Additionally, a change in fermi level and EVBM could enhance the density of state (DOS) near the Fermi level, which increases the efficiency of
electron transfer to the adsorbed oxygen species O_2^- and thus reducing the activation energy. This adjustment of bands offset and decrease of energy band gaps provides a smart pathway, which signifying the easy transport of charge carriers and facilitates the fast transport of ions, as a result, enhance the power output of fuel cell.

3.7. Stability of fuel cell

The longer lifetime of the fuel cell in terms of good electrochemical performance and stabilized OCV of semiconducting materials is a prerequisite to commercial use of LT-SOFC. Therefore, a lot of efforts have been put into the long-term and stabilized performance, but the improvement has often been limited [1]. The long-term stability is confronted with various factors such as lab-scale facility of cell fabrication, unavailability of committed technical skills, and effort of a professional engineering enterprise. Using a lab-based facility, we succeeded to accomplish a stable operation of a fuel cell with Ni-NCAL/BCFC$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-δ}$ yielding 0.87 V stable voltage under a constant current density of 120 mA cm$^{-2}$ for approximately 97 h, see Fig. 10. Indeed, there is a

![Fig. 9. (a–b) UPS values maintaining E_{cutoff} energy and E_{onset} energy; (c–d) UV–Vis spectra with obtained energy band gaps of BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-δ}$ [x = 0.1–0.2]; the schematic diagram with energy band alignment structure of BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-δ}$ [x = 0.1–0.2].](image)

![Fig. 10. The durability of BaCo$_{0.2}$Fe$_{0.1}$Ce$_{0.2}$Tm$_{0.1}$Zr$_{0.3}$Y$_{0.1}$O$_{3-δ}$ as prepared electrolyte under the current density of 120 mA cm$^{-2}$ at 530°C.](image)
great deal of long-term operation required for at least 200 h is mandatory for practical applications but it needs compatible electrodes and good instrumentation.

4. Conclusion

This work presented an effective approach to design and synthesize a novel single-phase perovskite structured electrolyte, BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-δ, which exhibits triple charge conduction. The fuel cell utilizing this promising material as electrolyte produced a high full cell performance of 873 mW cm⁻² with OCV of 1.09 V at 530 °C. Furthermore, a variation in the dopants’ composition enables the use of this material as a cathode due to its reasonable ORR activity. We found that an appropriate concentration of Ce doping produces more oxygen deficiencies within the BaCo0.2Fe0.3-xCexTm0.1Zr0.3Y0.1O3-δ structure and played a key role in enhancing the ionic transport as well as the ORR activity. Both XPS and UPS spectra revealed that Ce doping led to the high oxygen vacancies and shifted the Fermi level closer to the conduction band that ultimately reduced the valence band. Ce-doping can induce appropriate and tailored conduction properties into the semiconductor materials for the LT-SOFC application. Therefore, the obtained results presented not only a solution to solve the hurdles of the electrolytes for LT-SOFCs but also an effective strategy to design effective electrolytes as well as the electrocatalyst perovskite for new advanced LT-SOFCs.

Credit author contribution statement

B.Z., and C.P.Y., conceived the idea, designed the experiments, and analyzed the data. S.R carried out synthesis, characterizations, paper write. M.A.K.Y., and Z.T. carried out few characterizations and device optimizations. N.A. revised some parts of the manuscript and performed a stability test. S.R., C.X., C.P.Y., B.Z., M.I.A, and P.D.L. participated in device optimization and data analysis. F.A. analyzed the XRD results. S.R., verified fuel cell results. S.R., Z.T., B.Z., and P.D.L. wrote the paper. All authors commented on the manuscript.

CRediT author contribution statement

Sajid Rauf: carried out synthesis, characterizations, paper write, participated in device optimization and data analysis, verified fuel cell results, wrote the paper. All authors commented on the manuscript. Bin Zhu: conceived the idea, designed the experiments, analyzed the data, participated in device optimization and data analysis, wrote the paper. All authors commented on the manuscript. M.A.K. Yousaf Shah: carried out few characterizations and device optimizations. Chen Xia: participated in device optimization and data analysis. Zuhra Tayyab: carried out few characterizations and device optimizations, wrote the paper. All authors commented on the manuscript. Nasir Ali: revised some parts of the manuscript and performed a stability test. Changping Yang: conceived the idea, designed the experiments, and analyzed the data, participated in device optimization and data analysis. Naveed Mushqaq: commented on the manuscript. Muhammad Imran Asghar: participated in device optimization and data analysis. Fazli Akram: analyzed the XRD results. Peter D. Lund: participated in device optimization and data analysis, wrote the paper. All authors commented on the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) under the (grant # 11674085 and 51772080) and National Laboratory of solid-state Microstructures, Nanjing University for project support is also acknowledged. Dr. Asghar thanks the Hubei overseas Talent 100 program (as a distinguished professor at Hubei University) and Academy of Finland (Grant No. 13329016 and 13322738) for their support. Muhammad Akbar helped in the Scanning electron microscope (SEM) images assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.renene.2021.03.031.

References

[7] S. Rauf, B. Zhu, M.K.Y. Shah, Z. Tayyab, S. Attique, N. Ali, N. Mushqaq, B. Wang, C. Yang, M.I. Asghar, Application of a triple-conducting heterostructure electrolyte of Ba0.65Sr0.35CuO3−δ/Zr0.9Y0.1O2−δ and Ca0.6Cu0.4Zr0.9Sm0.1O2−δ for high performance low-temperature solid oxide fuel cell, ACS Appl. Mater. Interfaces (2020).
[15] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, Enhanced sulfur and coke tolerance of a mixed ion conductor for SOFCs: Ba0.6Sr0.4Ce0.15Y0.5O2−δ, J. Power Sources 326 (2016) 129–132.