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Abstract: Recently, the use of diverse renewable energy resources has been intensively expanding
due to their technical and environmental benefits. One of the important issues in the modeling and
simulation of renewable energy resources is the extraction of the unknown parameters in photovoltaic
models. In this regard, the parameters of three models of photovoltaic (PV) cells are extracted in
this paper with a new optimization method called turbulent flow of water-based optimization
(TFWO). The applications of the proposed TFWO algorithm for extracting the optimal values of
the parameters for various PV models are implemented on the real data of a 55 mm diameter
commercial R.T.C. France solar cell and experimental data of a KC200GT module. Further, an
assessment study is employed to show the capability of the proposed TFWO algorithm compared with
several recent optimization techniques such as the marine predators algorithm (MPA), equilibrium
optimization (EO), and manta ray foraging optimization (MRFO). For a fair performance evaluation,
the comparative study is carried out with the same dataset and the same computation burden for
the different optimization algorithms. Statistical analysis is also used to analyze the performance of
the proposed TFWO against the other optimization algorithms. The findings show a high closeness
between the estimated power–voltage (P–V) and current–voltage (I–V) curves achieved by the
proposed TFWO compared with the experimental data as well as the competitive optimization
algorithms, thanks to the effectiveness of the developed TFWO solution mechanism.

Keywords: photovoltaic; parameter extraction; TFWO; optimization; double diode model; and three
diode model

1. Introduction

Human life is stable and immovable due to energy. The development and progress
of energy are necessary for a better life. The conventional sources of energy are depleted
and cause environmental exacerbation, so the dependence on energy from renewable
energy sources is inevitable as they are clean, have no environmental problems, exist in
large quantities and provide energy with high capability [1–5]. One of the most important
renewable energy sources is solar energy, where solar irradiation can be transformed
effectively into electrical energy via photovoltaic (PV) cells/modules and may directly
supply electric loads or be stored in batteries or other storage devices [6,7].
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Several advanced applications have been introduced based on PV electricity, such
as feeding the required power for satellite communication [8], greenhouse cooling and
heating [9], water pumping for agriculture [10–12], supplying electronic devices and indoor
lighting [13,14], etc. The PV characteristics can be analyzed with power–voltage (P–V) and
current–voltage (I–V) curves. These curves are dependent on several parameters, such as
incident solar irradiance, ambient temperature, and the investigated equivalent circuit of
the PV model [15–18]. The PV characteristics depend on different unknown parameters due
to a lack of data from the PV manufacturing datasheet [19]. Improving and analyzing the
performance of PV cells/modules is imperative due to their widespread applications, which
require optimal extraction of the unknown parameters. These parameters are changed
according to the investigated PV models which can be a single diode model (SDM), double
diode model (DDM), and three diode model (TDM). Consequently, the number of unknown
parameters are five, seven and nine for the SDM, DDM, and TDM, respectively.

These parameters are estimated in three ways: iterative methods, machine learning,
and meta-heuristic optimization algorithms [20–26]. The iterative methods have been ap-
plied to estimate the PV parameters in [27–30], such as Lambert W function [27], linear least
squares [28], maximum likelihood-based Newton–Raphson [29], and Gauss–Seidel [30].
On the other hand, several researchers made an assumption or neglected some parameters
to reduce the number of variables required to be extracted.

Lately, various optimization techniques have been carried out in the extraction of PV
parameters, such as the elephant herd algorithm [31], multiple learning backtracking search
algorithm [32], gray wolf optimizer, cuckoo search algorithm [33], opposition-based sine
cosine approach with local search [34], logistic chaotic JAYA algorithm [35], moth–flame
algorithm (MFA), orthogonal Nelder–Mead MFA [36], and improved teaching–learning-
based optimization (TBLO) algorithm [37]. In [38], the MFA has been utilized for the three
diode PV model considering the ideality factors for the second and third diode as added
control variables. In [39], these parameters have been estimated with an interval branch
and bound global optimization algorithm. In [40], simplified TBLO has been applied to
estimate the parameters in a TDM. In addition, parameter extraction has been prepared
by an improved version of the whale optimization algorithm [41] and chaotic improved
artificial bee colony (CIABC) [42]. There is no doubt that the accuracy of the behavior of
PVs is based on the estimated parameters, so the optimization techniques need further
development to achieve high accuracy of these parameters. Additionally, in [43], another
optimization method called forensic optimizer was developed for finding the optimal
parameters of various solar cells. In [44], the gradient based optimizer was developed for
three diode models.

As seen in the literature, incredible work has been performed in the extraction of
the optimal PV model parameters. A global solution has not been accomplished as the
randomization process is a property of all optimization search algorithms. Among of the
previous optimization methods, a new optimization method called turbulent flow of water-
based optimization (TFWO) [45] is developed for finding the parameters of three models
of PV cells. Several new optimization techniques, such as the marine predators algorithm
(MPA), equilibrium optimization (EO), and manta ray foraging optimization (MRFO), are
used to compare the results of the proposed algorithm with the same dataset. Statistical
analysis is used to analyze the performance of the proposed optimization algorithm. The
P–V and I–V curves are simulated for the value of the estimated parameter that makes the
simulated data very close to the experimental data.

The organization of this paper is as follows: Section 2 explains the analysis of the
objective function to be handled in the problem formulation. Section 3 contains the details
of the proposed TFWO algorithm. Section 4 analyzes the results of the studied cases, while
the conclusion is drawn in Section 5.
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2. Problem Formulation and Objective Function

Three models of PVs are analyzed in this section, SDM, DDM, and TDM [44], to be
formulated in the objective function.

2.1. Analysis of SDM

Figure 1 explains the SDM equivalent circuit of the PV solar cell. The mathematical
equations to calculate the output current of the SDM can be formulated as follows:

I = Iph − Id1 − Ish (1)

I = Iph − Is1

[
e

q(V+IRs)
a1KTc − 1

]
− V + IRs

Rsh
(2)

where I is the current output from the solar cell SDM, Iph is the photogenerated current, Ish
is the current due to leakage in the PN junction, Id1 is the dark saturation current of the
SDM, Rsh is the shunt resistance, Rs is the series resistance, a1 is the diode ideality factor, K
is Boltzmann’s constant, q is the charge of the electron, and Tc is the cell temperature.

Figure 1. Single diode model (SDM) equivalent circuit.

According to the previous mathematical formula, the five unknown parameters re-
quired to estimate the SDM are

(
Iph, Is1, a1, Rs, Rsh

)
.

2.2. Analysis of DDM

Figure 2 explains the DDM equivalent circuit of the PV solar cell. The mathematical
equations to compute the output current of the DDM are as follows:

I = Iph − Id1 − Id2 − Ish (3)

I = Iph − Is1

[
e

q(V+IRs)
a1KTc − 1

]
− Is2

[
e

q(V+IRs)
a2KTc − 1

]
− V + IRs

Rsh
(4)

where Id2 is the dark saturation current of the second diode in the DDM, a2 is the ideality
factor of the second diode. In this model, seven parameters should be estimated, which are(

Iph, Is1, a1, Rs, Rsh, Is2, a2

)
.

Figure 2. Double diode model (DDM) equivalent circuit.



Processes 2021, 9, 627 4 of 23

2.3. Analysis of TDM

Figure 3 illustrates the TDM equivalent circuit related to the PV solar cell. The
mathematical equations to compute the output current of the TDM are as follows:

I = Iph − Id1 − Id2 − Id3 − Ish (5)

I = Iph − Is1

[
e

q(V+IRs)
a1KTc − 1

]
− Is2

[
e

q(V+IRs)
a2KTc − 1

]
− Is3

[
e

q(V+IRs)
a3KTc − 1

]
− V + IRs

Rsh
(6)

where Id3 is the dark saturation current of the third diode in the TDM, a3 is the ideality
factor of the third diode. In this model, nine parameters should be estimated, which are(

Iph, Is1, a1, Rs , Rsh , Is2 , a2 , Is3 , a3

)
.

Figure 3. Three diode model (TDM) equivalent circuit.

2.4. Estimated Objective Function

Minimizing the root mean square error (RMSE) of the PV characteristics between the
estimated parameters and the experimental results is an important objective function to be
considered. Therefore, the decision variables (X) are extracted in each run of the optimizer.
The mathematical formula to compute RMSE can be formulated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(J(V, I, X)2 (7)

J(V, I, X) = I − Iexp (8)

where Iexp is the experimental current, N is the reading data number, V is the experimental
voltage, I is the estimated current, and X is the decision variables that are calculated
as follows:

For SDM, X =
{(

Iph, Is1, a1, Rs , Rsh

)}
.

For DDM, X =
{(

Iph, Is1, a1, Rs , Rsh , Is2 , a2

)}
.

For TDM, X =
{(

Iph, Is1, a1, Rs , Rsh , Is2 , a2 , Is3 , a3

)}
.

3. Proposed Turbulent Flow of Water-Based Optimization Algorithm

The turbulent flow of water-based optimization algorithm (TFWOA), which was pre-
sented by Mojtaba Ghasemi et al. [45], is inspired by the principle of irregular fluctuations
of water turbulent flow. In this type of turbulent flow, the magnitude and direction speed
are continuously changing in a circular form. Then, the water flows downwards in a
spiral path. In this algorithm, a whirlpool represents a random behavior of nature that can
occur in seas, oceans or rivers. The center of the whirlpool is considered a sucking hole,
and it pulls the particles across it towards the middle. To illustrate, the whirlpool uses
centripetal force on them, which involves a volume of moving water created by the ocean
tide. Centripetal force is characterized as a force that is employed in a circular path on a
moving object, and its direction is in the direction of the center of the motion pathway of
the object and perpendicular to it. The centripetal force shifts the moving pathway of the
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object without changing the velocity. Firstly, the initial population of the algorithm (Np
members) (comprising X0) is split into an equal rate between Nwh groups which represent
the whirlpool sets. Secondly, the strongest member of each whirlpool set (the member with
better objective function values) f (X) is considered as the whirlpool that pulls the objects.

Every whirlpool (Wh) behaves as a sucking well and has a tendency to unify the
locations of objects inside its set (X) with its central position through applying a centripetal
force on them and pushing them into its well. Thus, the jth whirlpool and the local
position on W hj combines the ith object position (Xi) with itself (Xi = Whj). However,
other whirlpools produce some deviations (∆Xi) because of the distance between them
(Wh−Whj) and their objective values ( f (X)) as well. Accordingly, the new position of the
ith object becomes Xnew

i = Whj − ∆Xi.. and the objects (X) move with their special angle
(δ) across their whirlpool’s center and move toward it. Hence, this angle in each iteration is
changing according to Equation (9):

δnew
i = δi + r1 ∗ r2 ∗ π (9)

To model and calculate the farthest and nearest whirlpools (∆Xi ), Equation (10)
depicts the whirlpools with the least weighed distance from all objects, and then ∆Xi is
calculated using Equation (11). Equation (12) is used to update the position of the particle.

∆t = f (Wht) ∗ |Wht − sum(Xi)|0.5 (10)

∆Xi = (cos(δnew
i ) ∗ r(1, D) ∗ (Wh f − Xi)

− sin(δnew
i ) ∗ r(1, D) ∗ (Whw − Xi))∗

(1 +
∣∣cos(δnew

i )− sin(δnew
i )

∣∣) (11)

Xnew
i

= Whj − ∆X
i

(12)

where Wh f and Whw manifest the whirlpools with the minimum and maximum of ∆t,
respectively, while δi characterizes the ith object’s angle.

Centrifugal force (FEi) sometimes overcomes the centripetal force of the whirlpool
and randomly transfers the object to a new location. The centrifugal force is modeled
as illustrated in Equation (13), which randomly occurs in one dimension of the decision
variables. To attain this, the centrifugal force is calculated according to the angle between
the whirlpool and object, as manifested in Equation (13), and if this force is greater than a
random value in the range [0,1], the centrifugal action is performed for a randomly selected
dimension, as shown in Equation (14). This phenomenon is formulated mathematically as:

FEi = ((cos(δnew
i ))2 ∗ (sin(δnew

i ))2)
2

(13)

X
i,p

= Xmin
p − r ∗ (Xmax

p − Xmin
p ) (14)

The whirlpools interact with and displace each other. This phenomenon can be
modeled in the same way as the impacts of whirlpools on the objects, where every whirlpool
has a tendency to pull other whirlpools and apply the centripetal force on them. The
nearest whirlpool can be mathematically represented based on the minimum amount and
its objective function, as illustrated in Equation (15). Then, the whirlpool’s position can be
updated according to Equations (16) and (17).

∆t = f (Wht) ∗
∣∣Wht − sum(Whj)

∣∣0.5 (15)

∆Whj = r(1, D) ∗
∣∣∣cos(δnew

j ) + sin(δnew
j )

∣∣∣
∗(Wh f −Whj)

(16)

∆Whnew
j

= Wh f −Whj (17)

where δj represents the jth whirlpool hole angle value.
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Eventually, when the strongest member has more strength among the new members
of the whirlpool set, which means that the value of the objective function is less than
its corresponding whirlpool, it is chosen as a new whirlpool for the next iteration. The
flowchart of the TFWOA is depicted in Figure 4.

Figure 4. Flowchart of the turbulent flow of water-based optimization algorithm (TFWOA).

4. Simulation Results and Discussion

This section presents the application and analysis of the proposed TFWO algorithm
for extracting the optimal values of the parameters of various PV models. Real data of
a 55 mm diameter commercial R.T.C. France solar cell [7,44] and experimental data of a
KC200GT module [46] are considered. The considered boundaries of the parameters are
explained in Table 1.

Table 1. The extracted parameters boundaries of test solar cells and modules.

R.T.C. France Solar Cell [7] KC200GT Module [7]

Parameters Lower Bound Upper Bound Lower Bound Upper Bound

Iph 0 1 0 9
Is1 . Is2 . Is3 (µA) 0 1 0 1

Rs 0 0.5 0 0.5
Rsh 0 100 0 100

a1 . a2 . a3 1 2 1 2
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4.1. Compared Algorithms

Several optimization algorithms are employed and compared to the proposed TFWO
(Turbulent Flow of Water Optimizer) for the same purpose. These algorithms are the
backtracking search optimization algorithm (BSA) [47], gray wolf optimizer (GWO) [48],
crow search optimization algorithm (CSO) [49], equilibrium optimizer (EO) [50], marine
predators algorithm (MPA) [51], Bernstein–Levy search differential evolution algorithm
(BSDE) [52] and manta ray foraging optimization (MRFO) [53]. The BSA, GWO and CSO
have different successive applications, while the EO, MPA, BSDE, and MRFO are very
recent algorithms from 2020. Table 2 represents examples of their recent applications.

Table 2. Several recent applications of the compared algorithms.

Algorithm Published Year Recent Applications

BSA [47] 2013 Reconfiguration in distribution networks (2020) [54], reactive power dispatch (2018) [55], parameter
optimization of the support vector machine (2020) [56].

GWO [48] 2014 Coordination of VAR compensators and distributed energy resources (2020) [57], allocation of distributed
generation in power systems (2020) [58], energy management, and battery size optimization (2020) [59].

CSO [49] 2016 Short-term wind speed forecasting (2020) [60], capacitor allocation in distribution networks (2017) [61],
emission economic dispatch [62]

EO [50] 2020 Multi-thresholding image segmentation problems [63], operation of hybrid AC/DC grids (2020) [64].

MPA [51] 2020 Large-scale photovoltaic array reconfiguration (2020) [65], task scheduling in IoT-based fog computing
applications (2020) [66].

BSDE [52] 2021 Not applicable yet.

MRFO [53] 2020 Fuel cell exergy analysis (2020) [67], optimal power flow (2020) [68], maximum power point (2020) [69].

TFWO [45] 2021 Not applicable yet.

All these algorithms have the merit of utilizing adaptive internal control parameters.
For all algorithms, the population size is specified as 100, where the maximum number of
iterations is taken as 1000 and 2000 for an R.T.C. France solar cell and KC200GT module,
respectively. The compared algorithms in Table 3 are employed for optimal extraction of the
PV parameters with the SDM, DDM, and TDM. The convergence performance, robustness,
and accuracy for all algorithms used in this work are found based on 30 separate runs for
each algorithm.

Table 3. The parameters extracted for R.T.C. France SDM at the best root mean square error (RMSE).

Algorithm Iph (A) Id1 (A) a1 Rs (Ω) Rsh (Ω) RMSE

TFWO 0.760775529 3.23 × 10−7 1.481183723 0.036377085 53.71858096 0.000986022
MRFO 0.760778817 3.22884 × 10−7 1.481141648 0.036380748 53.67819867 0.000986034
BSDE 0.760773529 3.23008 × 10−7 1.481179386 0.036378015 53.74364455 0.000986023
MPA 0.760846832 3.22991 × 10−7 1.48119268 0.036361364 52.76698061 0.000987369
EO 0.76077794 3.22162 × 10−7 1.480915424 0.036387935 53.64156933 0.000986035

CSO 0.760757142 3.24211 × 10−7 1.481546607 0.036366384 54.0990705 0.000986181
GWO 0.760695583 3.58429 × 10−7 1.491737687 0.035974121 57.26269608 0.001008231
BSA 0.760850914 3.11696 × 10−7 1.477614787 0.036510097 51.96067738 0.000989471

4.2. Statistical Analysis for R.T.C. France Solar Cell
4.2.1. Single Diode Model

Table 3 provides the optimal values of the control variables related to the best run for
the compared algorithms. As shown, TFWO obtains the minimum RMSE of 0.000986022
compared to the others. Based on TFWO, the photo-generated current is 0.760775529 A; the
dark saturation current of the SDM is 0.323 µA; the diode ideality factor is 1.481183723; the
series resistance is 0.036377085 Ω; the shunt resistance is 53.71858096 Ω. Figure 5 describes
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the convergence rates of the algorithms and shows that the capability of the proposed
TFWO in finding the minimum RMSE is the fastest.

Figure 5. Convergence curves for R.T.C. France SDM.

Based on the extracted PV parameters using the TFWO, Figure 6 describes the I–V and
P–V characteristic curves in comparison to the experimental data. This figure illustrates
the great similarity between the extracted curves based on TFWO and the experimental
results. Figure 7 shows this capability, where the error for each value of current and power
is shown between the simulated and experimental data to measure the quality of the result.

Table 4 records the minimum, maximum, mean, and standard deviation of the RMSE
for the SDM. This table declares that TFWO presents the highest robustness characteristics.
It gives the lowest values of the minimum, maximum, mean, and standard deviation
of the RMSE, at 0.000986022, 0.000986205, 0.00098603, and 3.35307 × 10−8, respectively.
Meanwhile, the second-best RMSE (0.000986023) is achieved by the BSDE, followed by
MRFO, EO, CSO, MPA, BSA, and GWO. Figure 8 displays the RMS values of the 30 runs for
the R.T.C. France SDM. This figure shows the significant robustness feature of the proposed
TFWO since all the acquired values of the RMSE based on TFWO are the lowest values
compared with the other methods.

Table 4. Statistical analysis of RMSE for R.T.C. France SDM.

Algorithm
RMSE

Min. Max. Mean SD

TFWO 0.00098602 0.00098620 0.00098603 3.353 × 10−8

MRFO 0.00098603 0.00105788 0.00100505 2.143 × 10−5

BSDE 0.00098602 0.00103025 0.00099520 1.056 × 10−5

MPA 0.00098736 0.00481175 0.00217485 0.00065237
EO 0.00098603 0.00105604 0.00100209 1.783 × 10−5

CSO 0.00098618 0.00130296 0.00105888 8.095 × 10−5

GWO 0.00100823 0.03816637 0.00637283 0.0112567
BSA 0.000989471 0.001161862 0.001037488 4.42885 × 10−5
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Figure 6. Characteristic curves for R.T.C. France SDM based on parameters extracted from TFWO: (a) Current–voltage (I–V)
ch/s and (b) power–voltage (P–V) ch/s.

Figure 7. Error values for R.T.C. France SDM based on parameters extracted from TFWO: (a) Current error values and (b)
power error values.
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Figure 8. The RMS values of the 30 runs for R.T.C. France SDM.

4.2.2. Double Diode Model

The proposed TFWO and the compared algorithms are applied for this model. Table 5
provides the optimal values of the control variables related to the best run, while Figure 9
describes their convergence rates. From both, it can be observed that the best RMSE
value (0.000982723) is achieved by the TFWO algorithm, while the second-best RMSE
(0.000983378) is achieved by MRFO, followed by CSO, EO, BSDE, BSA, GWO, and MPA.

Table 5. The parameters extracted for R.T.C. France DDM.

Algorithm Iph (A) Rs (Ω) Rsh (Ω) RMSE Id1 (A) a1 Id2 (A) a2

TFWO 0.760782016 0.036839463 55.91920478 0.000982723 2.06 × 10−7 1.443289469 9.24 × 10−7 2
MRFO 0.760743575 0.036597626 54.95169271 0.000983378 4.37429 × 10−7 1.998364786 2.62887 × 10−7 1.463671024
BSDE 0.760782257 0.036991096 54.62889674 0.000989247 1.38431 × 10−7 1.416972632 5.71114 × 10−7 1.764756216
MPA 0.760918727 0.037865706 53.18011281 0.001026823 7.66125 × 10−8 1.36857525 9.99997 × 10−7 1.815337209
EO 0.760741801 0.036329661 54.62831228 0.000986861 3.06281 × 10−7 1.492418793 2.85646 × 10−8 1.428995768

CSO 0.760756875 0.03652498 54.63222775 0.000983888 3.22867 × 10−7 1.992580518 2.7755× 10−7 1.46831668
GWO 0.760583028 0.036533827 58.81767959 0.001003603 3.2814 × 10−7 1.563347542 8.25411× 10−8 1.41082037
BSA 0.760980002 0.036723119 53.23192348 0.000993668 2.64414 × 10−7 1.705891588 1.99393 × 10−7 1.446025602

Figure 9. The convergence curves for R.T.C. France DDM.
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Based on the extracted PV parameters using the TFWO, Figure 10 describes the I–V
and P–V characteristic curves in comparison to the experimental data, while Figure 11
displays the related errors. From both figures, the coincidence of the simulated data based
on TFWO with the experimental data is very high.

Figure 10. Characteristic curves for R.T.C. France DDM based on TFWO: (a) I–V ch/s and (b) P–V ch/s.

Figure 11. Error values for R.T.C. France DDM based on TFWO: (a) Current error values and (b) power error values.



Processes 2021, 9, 627 12 of 23

Table 6 records the minimum, maximum, mean, and standard deviation of the RMSE
for the DDM. This table declares that TFWO presents the highest robustness characteristics.
It gives the lowest values of the minimum, maximum, mean, and standard deviation of
the RMSE as 0.000982723, 0.0012, 0.00099392, and 3.9352 × 10−5, respectively. Figure 12
displays the RMSE values of the 30 runs for the R.T.C. France DDM. The acquired values
of the RMSE based on the proposed TFWO are lower than their comparable values based
on the others.

Table 6. Statistical analysis of RMSE for R.T.C. France DDM.

Algorithm
RMSE

Min. Max. Mean SD

TFWO 0.000982723 0.0012 0.00099392 3.9352 × 10−5

MRFO 0.000983378 0.001353061 0.001077661 8.45223 × 10−5

BSDE 0.000989247 0.001492072 0.001113348 0.000112212
MPA 0.001026823 0.002869201 0.001779704 0.000616954
EO 0.000986861 0.001256857 0.001033158 6.33746 × 10−5

CSO 0.000983888 0.001428127 0.00113901 0.000155378
GWO 0.001003603 0.038150899 0.00640054 0.011254562
BSA 0.000993668 0.001214824 0.001080621 5.45125 × 10−5

Figure 12. The RMS values of the 30 runs for R.T.C. France DDM.

4.2.3. Three Diode Model

For this model, Table 7 provides the optimal values of the control variables related
to the best run of the proposed TFWO and the compared algorithms, while Figure 13
describes their convergence rates. From both, it can be observed that the best RMSE
value (0.000983646) is achieved by the TFWO algorithm, while the second-best RMSE
(0.000984242) is achieved by CSO, followed by MRFO, EO, BSA, MPA, BSDE, and GWO.
Figure 14 describes the I–V and P–V characteristic curves in comparison with the experi-
mental data, while Figure 15 displays the related errors. From both figures, the coincidence
of the simulated data based on TFWO with the experimental data is very high.

Table 7. The parameters extracted for R.T.C. France TDM.

Algorithm BSA GWO CSO EO MPA BSDE MRFO TFWO

Iph (A) 0.76088788 0.761840018 0.760767839 0.760733925 0.760665312 0.76060128 0.760721516 0.7608
Is1 (A) 6.11525 × 10−8 6.26386 × 10−7 8.65078 × 10−7 2.29078 × 10−7 2.60174 × 10−15 1.33125 × 10−7 2.6918 × 10−7 0

a1 1.665282347 1.972178035 1.992247826 1.945636832 1.025249938 1.715044852 1.880941278 1
Rs (Ω) 0.036740001 0.036238306 0.036859716 0.036427424 0.037130986 0.036693181 0.036566016 0.0367
Rsh (Ω) 53.18712346 43.25339883 54.98736983 55.52914763 59.57973022 60.17938354 55.20751535 55.2261
Is2 (A) 8.13561 × 10−8 7.69448 × 10−9 4.64418 × 10−11 9.51489 × 10−8 6.85783 × 10−7 2.119 × 10−7 7.27156 × 10−8 2.39243 × 10−7

a2 1.951596911 1.982906016 1.583874031 1.981076476 1.670531807 1.449412901 1.755268871 1.4558
Is3 (A) 2.62168 × 10−7 2.41707 × 10−7 2.06159× 10−7 2.78562 × 10−7 4.54209 × 10−8 4.27168 × 10−7 2.41083 × 10−7 6.38605 × 10−7

a3 1.464894557 1.457809556 1.443266003 1.469223538 1.348012837 1.942277098 1.458171437 2
RMSE 0.001002321 0.001293402 0.000984242 0.000985451 0.001002377 0.001029117 0.000984843 0.000983646
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Figure 13. The convergence curves for R.T.C. France TDM.

Figure 14. Characteristic curves for R.T.C. France TDM based on TFWO: (a) I–V ch/s and (b) P–V ch/s.

For the 30 runs, the minimum, maximum, mean, and standard deviation of the
RMSE are tabulated in Table 8. As shown, the proposed TFWO gives the lowest values
of the minimum, maximum, mean, and standard deviation as 0.000983646, 0.00102314,
0.000987683, and 7.32713 × 10−6, respectively. Figure 16 displays the RMSE values of the
30 runs for the R.T.C. France TDM, which demonstrate the efficacy of the proposed TFWO
in finding the minimum RMSE values compared to the others.

Table 8. Statistical analysis of RMSE for R.T.C. France TDM.

Algorithm
RMSE

Min. Max. Mean SD

TFWO 0.000983646 0.00102314 0.000987683 7.32713 × 10−6

MRFO 0.000984843 0.001492643 0.001164256 0.000129441
BSDE 0.001029117 0.002051955 0.001320873 0.000243075
MPA 0.001002377 0.005305369 0.002200116 0.000900812
EO 0.000985451 0.001393105 0.001131243 0.00011292

CSO 0.000984242 0.00191729 0.001164341 0.000184491
GWO 0.001293402 0.033393772 0.006435657 0.01033541
BSA 0.001002321 0.001567976 0.001189651 0.000119982
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Figure 15. Error values for R.T.C. France TDM based on TFWO: (a) Current error values and (b) power error values.

Figure 16. The RMS values of the 30 runs for R.T.C. France TDM.
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4.3. Statistical Analysis for KC200GT Solar Module
4.3.1. Single Diode Model

The comparison of the results for the SDM is explained in Table 9; this table includes
the best RMSE and the parameters extracted from each algorithm. From Table 9, it can
be observed that the best RMSE value (0.000636657) is achieved by the TFWO algorithm,
while the second-best RMSE (0.002888472) is achieved by EO, followed by MRFO, BSDE,
BSA, MPA, CSO, and GWO. Based on TFWO, the photo-generated current is 8.216747428
A; the dark saturation current of the SDM is 0.0262486 µA; the diode ideality factor is
1.212957711; the series resistance is 0.004825464 Ω; the shunt resistance is 6.284632281 Ω.
Figure 17 describes the convergence rates of the algorithms which show that the capability
of the proposed TFWO in finding the minimum RMSE is the fastest. Added to that, the
P–V and I–V curves for the SDM based on the estimated data from TFWO at the best RMSE
are explained in Figure 18, which illustrates the high coincidence of the simulated with the
experimental data.

Table 9. Extracted parameters for KC200GT SDM.

Algorithm Iph (A) Is1 (A) a1 Rs (Ω) Rsh (Ω) RMSE

TFWO 8.216747428 2.62486 × 10−8 1.212957711 0.004825464 6.284632281 0.000636657
MRFO 8.212405132 3.36662 × 10−8 1.228520397 0.004754881 7.037075568 0.003374264
BSDE 8.210553583 3.43101 × 10−8 1.229705769 0.004756865 7.555908952 0.003467884
MPA 8.184927 7.94459 × 10−8 1.285180059 0.004537611 92.14823504 0.0148696
EO 8.209152899 2.85259 × 10−8 1.218067754 0.004814539 7.714703106 0.002888472

CSO 8.188955905 8.18358 × 10−8 1.287282057 0.004540479 87.91105559 0.015480743
GWO 8.193721562 1.72203 × 10−7 1.341187392 0.004264421 84.34172349 0.023476598
BSA 8.187828492 4.39672 × 10−8 1.245523356 0.004706406 17.16016059 0.009775873

Figure 17. The convergence curves for KC200GT SDM.
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Figure 18. Characteristic curves for KC200GT SDM based on TFWO: (a) I–V ch/s and (b) P–V ch/s.

4.3.2. Double Diode Model

For this model, Table 10 shows the optimal values of the control variables related
to the best run of the compared algorithms, while Figure 19 illustrates their convergence
rates. From both, it can be observed that the best RMSE value (0.000464919) is achieved
by the TFWO algorithm, while the second-best RMSE (0.002599915) is achieved by EO,
followed by CSO, MRFO, GWO, BSA, BSDE, and MPA. Figure 20 describes the I–V and
P–V characteristic curves in comparison to the experimental data.

Table 10. Extracted parameters for KC200GT DDM.

Algorithm Iph (A) Rs (Ω) Rsh (Ω) Is1 (A) a1 Is2 (A) a2 RMSE

TFWO 8.215931265 0.00490447 6.55275986 9.75 × 10−11 1 4.58 × 10−8 1.266697565 0.000464919
MRFO 8.207554293 0.004729 7.962198358 1.30925 × 10−7 1.956231371 3.89385 × 10−8 1.237993335 0.008229492
BSDE 8.199742079 0.004618981 11.00371597 1.70333 × 10−7 1.898851719 5.22564 × 10−8 1.257319714 0.009849963
MPA 8.184775806 0.005037849 96.10264033 8.62345 × 10−7 1.581206361 4.01866 × 10−10 1.017081239 0.01025436
EO 8.210884382 0.004777302 7.422135219 9.02611 × 10−9 1.822712307 3.13628 × 10−8 1.224039636 0.002599915

CSO 8.204148086 0.004890878 9.331329018 7.23319 × 10−8 1.304927843 1.27128 × 10−10 1.000421712 0.004212996
GWO 8.188942442 0.004865207 20.87443954 7.54227 × 10−7 1.765240036 1.56333 × 10−8 1.185224915 0.009625309
BSA 8.204090314 0.004601853 10.29800978 5.53 × 10−8 1.260653585 3.03837 × 10−8 1.998785758 0.009625725

Figure 19. The convergence curves for KC200GT DDM.
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Figure 20. Characteristic curves for KC200GT DDM based on TFWO: (a) I–V ch/s and (b) P–V ch/s.

4.3.3. Three Diode Model

For this model, Table 11 and Figure 21 show the optimal values of the control variables
of the compared algorithms and their convergence rates, respectively. From both, the best
RMSE value (0.000379678) is achieved by the proposed TFWO. The P–V and I–V curves
for the TDM based on the estimated data from TFWO at the best RMSE are explained in
Figure 22, whilst the error for each value of current and power between the simulated and
experimental data is found to measure the quality of the result, as shown in Figure 23.
From both, the coincidence of the simulated data based on TFWO with the experimental
data is very high.

Figure 21. The convergence curves for KC200GT TDM.
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Figure 22. Characteristic curves for KC200GT TDM based on TFWO: (a) I–V ch/s and (b) P–V ch/s.

Figure 23. Error values for KC200GT TDM based on TFWO: (a) Current error values and (b) power error values.
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Table 11. Extracted parameters for KC200GT TDM.

Algorithm BSA GWO CSO MPA EO BSDE MRFO TFWO

Iph (A) 8.20173508 8.194693695 8.181855948 8.17852875 8.197397535 8.202679685 8.196629725 8.216333065
Is1 (A) 0.004614443 0.004525605 0.004692599 0.004752779 0.004683395 0.004733114 0.004684349 0.004855332

a1 13.66542752 23.11163887 99.9201098 99.98707579 14.01948329 9.497022092 11.43921825 6.406246831
Rs (Ω) 3.75184 × 10−8 8.7 × 10−9 9.49405 × 10−8 2.87148 × 10−7 3.86696 × 10−8 2.40491× 10−7 3.43285 × 10−7 1.65 × 10−14

Rsh (Ω) 1.238796687 1.590792134 1.481550006 1.983137731 1.238348021 1.797831823 1.89039067 1.00002872
Is2 (A) 1.6158 × 10−7 6.62556 × 10−9 1.99524 × 10−8 3.79051 × 10−8 7.61616 × 10−7 3.2756 × 10−8 3.85165 × 10−8 2.04 × 10−9

a2 1.775790984 1.295053844 1.213009208 1.236293271 1.991605757 1.228057245 1.238261076 1.11890891
Is3 (A) 4.33175 × 10−7 7.22637 × 10−8 1.60734 × 10−8 1.20422 × 10−7 2.11766 × 10−7 1.75316 × 10−7 7.55869 × 10−8 3.78866 × 10−8

a3 1.743389601 1.284146864 1.310004248 1.967323029 1.958780659 1.917122756 1.748171665 1.270101351
RMSE 0.011035788 0.013924443 0.013060563 0.013504282 0.008423459 0.006771142 0.008878327 0.000379678

4.3.4. Statistical Analysis for KC200GT Models

For the KC200GT module, the robustness accuracy for all algorithms is evaluated for
the SDM, DDM, and TDM. Table 12 records the minimum, maximum, mean, and standard
deviation of the RMSE for the DDM. This table declares that TFWO presents the highest
robustness characteristics. It gives the lowest values of the minimum, maximum, mean,
and standard deviation of the RMSE for the three PV models.

Table 12. Statistical analysis of RMSE for KC200GT module with SDM, DDM, and TDM.

Model Algorithm
RMSE

Min. Max. Mean SD

SDM

TFWO 0.000636657 0.000776307 0.000643757 2.76367 × 10−5

MRFO 0.003374264 0.015283988 0.01143509 0.003320893
BSDE 0.003467884 0.014320685 0.010188693 0.002289554
MPA 0.0148696 0.048448767 0.039118106 0.010156791
EO 0.002888472 0.01320854 0.009771334 0.002376063

CSO 0.015480743 0.023739498 0.019620651 0.002077078
GWO 0.023476598 0.468609138 0.164042826 0.180451636
BSA 0.009775873 0.020577736 0.015024514 0.002330391

DDM

TFWO 0.000464919 0.003991719 0.000784157 0.000677807
MRFO 0.008229492 0.017508428 0.013106997 0.002099435
BSDE 0.009849963 0.029252608 0.016694172 0.004448939
MPA 0.01025436 0.049871846 0.035790405 0.012557606
EO 0.002599915 0.013710246 0.009972209 0.002673846

CSO 0.004212996 0.025007328 0.017745851 0.004339108
GWO 0.009625309 0.467884375 0.149515185 0.179605814
BSA 0.009625725 0.026600837 0.017425267 0.003984149

TDM

TFWO 0.000379678 0.026665602 0.001706197 0.004771068
MRFO 0.008878327 0.023401173 0.014709966 0.003787592
BSDE 0.006771142 0.032728388 0.019233922 0.006086967
MPA 0.013504282 0.051722136 0.039748254 0.012810733
EO 0.008423459 0.015285328 0.011790041 0.001841909

CSO 0.013060563 0.025146228 0.017635053 0.003334599
GWO 0.013924443 0.4172306 0.226455866 0.174785582
BSA 0.011035788 0.026603176 0.018267773 0.00416284

5. Conclusions

In this paper, a new application has been carried out for a new optimation algorithm
called turbulent flow of water-based optimization (TFWO) for the parameter extraction of
three models of PV cells. These applications are implemented on the real data of a 55 mm
diameter commercial R.T.C. France solar cell and experimental data of a KC200GT module.
An assessment study comparing several recent optimization techniques is employed to
show the capability of the proposed TFWO algorithm. The comparative study is carried
out for the same dataset and for the same computation burden. Statistical analysis is used
to analyze the performance of the proposed TFWO algorithm. The high closeness between
the estimated P–V and I–V curves is achieved by the proposed TFWO compared with
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the experimental data as well as the competitive optimization algorithms. Added to that,
the proposed method has a robust performance as well as good convergence rates for all
tested cases.

In future work, various environmental impacts, such as temperature, moisture, and
noise, as well as the unidentifiability of parameters concept presented in [70–73], are
suggested to be considered for different models as an extension of this work. Another
direction is the development of solution methods with a multi-objective framework that
combines the closeness of parameters and maximum benefits for power system operators.
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