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A new approach for modelling lattice energy in finite crystal 
domains 

Y Bilotsky and M Gasik 
Department of Material Science and Engineering, Aalto University Foundation School 
of Chemical Technology, P.O. Box 16200, FIN-00076 AALTO, Finland 

E-mail: yevgen.bilotsky@aalto.fi 

Abstract. Evaluation of internal energy in a crystal lattice requires precise calculation of lattice 
sums. Such evaluation is a problem in the case of small (nano) particles because the traditional 
methods are usually effective only for infinite lattices and are adapted to certain specific 
potentials. In this work, a new method has been developed for calculation of lattice energy. 
The method is a generalisation of conventional geometric probability techniques for arbitrary 
fixed lattices in a finite crystal domain. In our model, the lattice energy for wide range of two-
body central interaction potentials (including long-range Coulomb potential) has been 
constructed using absolutely convergent sums. No artificial cut-off potential or periodical 
extension of the domain (which usually involved for such calculations) have been made for 
calculation of the lattice energy under this approach. To exemplify the applications of these 
techniques, the energy of Coulomb potential has been plotted as the function of the domain 
size.  

1.  Introduction 
We recently developed a new method for evaluation of the lattice energy in finite crystals [1]. This 
method initially was created for the medium with continuous distributed mass. The central idea of this 
method is an adaptation of the geometric probability approach [2] for the lattices in finite domain. We 
applied the above mentioned method for calculation of long-range Coulomb interaction between 
lattice nodes (point charges) and continually distributed charge density (jellium). The Coulomb 
interaction, which has been intensively discussed in the literature from the end of nineteenth century, 
plays a central role in condensed matter crystals systems [3]. We assumed that the domain is neutral 
(the number of positive and negative charges is equal) and it has zero dipole moment. Our final result 
made under this assumption has been expressed in terms of unconditionally convergent sums. In real 
crystals negative and positive charges on the surface usually separated, and they form the surface 
dipole moment. For example, the electron gas above the surface of the metals together with positive 
charges of the ions on the metal surface creates the dipole moment. In presence of the dipole moment 
some sums do not converge absolutely for Coulomb potential. The problem has been solved by 
considering the finite size of the lattice nodes (ions or molecules).  This leads to the expressions of the 
lattice energy in the form of absolutely convergent sums. We derived the expression for interaction 
energy in lattices domains by using this method. The interaction energy included node-node, jellium-
jellium and node-jellium components. This method is applicable for any two-body central potential. 
Essentially, that we do not use periodic boundary conditions or vanishing exponential method [4] in 
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our approach. Moreover, all kinds of interactions: lattice-lattice, lattice-jellium and jellium-jellium can 
be evaluated separately. 

2.  Geometric probability techniques for crystals lattice 
The common expression for the self-energy of two-body potential 

 1 2 1 1 2 2( ) ( ) ( ) ( ),U R drdr r U r r r   (2.1) 

where ( )r  is a density of the particles, has been written by Schleef et al. [2] in very useful form 
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with 0r  being the minimum possible distance between the points. Inside the jellium, we assume that 

0 0r  due to contiunuum. The radial density distribution function (RDF) 12 1 2( ; , )G r  for the 
number of points of the pairs inside the sphere can be written [2] as 
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The normalized probability density for finding two points in the sphere to be a distance 12r apart, is 
simply normalized RDF 
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Therefore, using these expressions, the problem of self-energy of two-body potential can be 
considered with the probability theory. The advantage of this approach is in separation of purely 
geometrical factor (in the function 12( , )G r R ), from the interaction potential 12( )U r . For that reason, 
when RDF solution was obtained once, it can be used for calculation of the self-energy for the 
different central two-body potentials by simple integration in (2.2). In our recent publication1 [1] this 
technique has been extended for crystals systems, by using the set of Dirac delta-functions as a 
microscopic density distribution function.   
The interaction energy (self-energy) of N particles set 
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may be written in the continuous form as 

 1 1 2 2 1 2
1 ( ) ( ) ( )
2 V V

H r U r r r drdr  (2.6) 

with the microscopic density distribution function [5] 
 1 1 2 2 3 3

inf
( ) ,

n
r r n a n a n a  (2.7) 

where  being the Dirac delta-function, ia is the basis vectors of the 3-D lattice, in  - integers. The Eq. 
(2.3) is applicable only for a spherical-symmetric density ( )r , which depends only on the distance 
r  (scalar). In our case the density function in (2.7) depends on the vector r . Therefore, the approach 

has to be modified. By repeating steps leading to (2.3), but without initial integrations over azimuthal 
angles 1  and  2 , we came to the expression 

 
1

12 1 1 1 12 2

2 2
2

12 12 1 1 1 1 2 2 2 2 1
0 0 0

2

( , ) 2 ( ) ( ) .
rR

r r r

G r R r r r d d r d r dr dr  (2.8) 

 

4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015) IOP Publishing
Journal of Physics: Conference Series 633 (2015) 012014 doi:10.1088/1742-6596/633/1/012014

2



 
 
 
 
 
 

3.  A new model 
In the conventional model of lattice crystal described above, the real charges (which occupy some 
finite volume) are substituted by the infinite small charged nodes (points). The advantage of this 
discretization method is its relative simplicity, but the main disadvantage is the problem with 
convergence of the lattice sums, especially for spherical lattice domain [3]. Many publications, starting 
from early Ewald’s article [5] have considered the solution to this problem for infinite lattice domain 
by using a lattice assembled from finite size objects rather than point nodes. Under this approach, 
atoms or ions in the lattice are represented as smeared-out 3D density distribution of lattice nodes [7]. 
This method also describes lattice vibrations.  
In our new model, explicitly distribution has been used due to the specifics of the geometric 
probability method. The integrals in (2.8) for point charges (atoms) of the lattice model now are 
generalized for smeared-out spatially-distributed objects with the distribution function ( )df . It means 
that while the integration over 1r  gives the contribution for counting the number of the centers of the 
charges on the spherical surface, the integration over  corrects this expression for smeared-out 
objects by integration over the spherical surface layer. The distribution function can also involve 
effects of thermal vibrations, lattice imperfections and the uncertainty principle. Here we are using 1D 
Gaussian 
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g
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 (3.1) 

as the distribution function. Generalizing the Eq. (2.8) with this distribution function (3.1) we receive  
RDF as 

 12 12 12 12( , ) ( , ) ( , ) ( , )jj jl llG r R G r R G r R G r R  (3.2) 
with jellium-like component 
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jellium-lattice correction 
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and lattice-lattice correction 
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components. Here the Poisson summation and the Rayleigh expansion formulas (up to second order) 
similar to Ref. [1] have been used.  

4.  Discussion 
The part of the whole lattice energy, which corresponds the uniform charge distribution, is contained 
within the term: 
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This energy is compensated by the background energy of the opposite charge in the Wigner model. 
Such compensation eliminates the lattice Coulomb energy from divergence in infinite crystal. Other 
parts of lattice energy contain only absolutely convergent sums, even for Coulomb energy. RDF 

12( , )jlG r R  can be interpreted as the number pairs of points with one point belongs to continuum 
distributed matter and another - to the lattice nodes. Therefore, the corresponding ( , )jl gH R r  
contribution to the whole lattice energy is equal to background-lattice interaction energy. Last energy 
component llH  (with RDF 12( , )llG r R ) has exclusively discrete lattice origin.  
As an example of application of this theory we calculate jellium-lattice contribution ( )jlH R  
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for Coulomb potential in the spherical domain with zero total charge. The result is shown in the Figure 
1.  
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Figure 1. Variations of the jellium-lattice component (Eq. 4.2) per one charge, for Coulomb 
potential in primitive cubic lattice vs. sphere radius R, expressed in numbers of the minimal distance 

between nodes a  and 0.3gr a. 
 

This new approach allows calculations of lattice energy in different finite systems with various 
interaction potentials and lattice structures, which does not suffer from convergence problems 
commonly seen in traditional lattice sums methods. 
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