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Abstract: Batteries are everywhere, in all forms of transportation, electronics, and constitute a method
to store clean energy. Among the diverse types available, the lithium-iron-phosphate (LiFePO4)
battery stands out for its common usage in many applications. For the battery’s safe operation,
the state of charge (SOC) and state of health (SOH) estimations are essential. Therefore, a reliable
and robust observer is proposed in this paper which could estimate the SOC and SOH of LiFePO4

batteries simultaneously with high accuracy rates. For this purpose, a battery model was developed
by establishing an equivalent-circuit model with the ambient temperature and the current as inputs,
while the measured output was adopted to be the voltage where current and terminal voltage sensors
are utilized. Another vital contribution is formulating a comprehensive model that combines three
parts: a thermal model, an electrical model, and an aging model. To ensure high accuracy rates of
the proposed observer, we adopt the use of the dual extend Kalman filter (DEKF) for the SOC and
SOH estimation of LiFePO4 batteries. To test the effectiveness of the proposed observer, various
simulations and test cases were performed where the construction of the battery system and the
simulation were done using MATLAB. The findings confirm that the best observer was a voltage-
temperature (VT) observer, which could observe SOC accurately with great robustness, while an
open-loop observer was used to observe the SOH. Furthermore, the robustness of the designed
observer was proved by simulating ill-conditions that involve wrong initial estimates and wrong
model parameters. The results demonstrate the reliability and robustness of the proposed observer
for simultaneously estimating the SOC and SOH of LiFePO4 batteries.

Keywords: lithium-iron-phosphate battery; batteries modeling; state of charge (SOC); dual extend
Kalman filter (DEKF); state of health (SOH)

1. Introduction

Monitoring battery operation and measuring battery aging in real life have been a
challenging goal that includes a number of complex processes under complicated operat-
ing conditions. The state of charge (SOC) and state of health (SOH) of the lithium-iron-
phosphate (LiFePO4) battery must be estimated with an accurate method [1,2]. In addition,
batteries work under variable aging and thermal conditions. Therefore, a battery observa-
tion system to monitor the aging and the operation needs to be built. This is a multi-control
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problem that needs to be expressed via mathematical equations and a combined thermal
model, electrical model, and an aging model.

It is difficult to predict the behavior of batteries because of their non-linearity. Also,
many attempts have been conducted to estimate and model the system’s inner state [3–5].
Recently, battery modeling has been introduced using many approaches to achieve accurate
SOC estimation [6]. The model introduced in [7] took into consideration the robustness,
accuracy, and low-cost hardware requirements. It was based on the online parameter
identification of an electrical model using recursive least square (RLS) with the application
of an unscented Kalman filter (UKF) to estimate SOC. The model parameters used in the
filter were updated by the algorithm. An improved extended Kalman filter (EFK) algorithm
was introduced to estimate lithium-iron-phosphate (LiFePO4) battery SOC [8]. That model
incorporated a second-order RC circuit with a fuzzy controller to adjust the noise variance.
The results of that model showed better observable accuracy of the estimation than EKF.
A third-order RC circuit model was introduced [9] based on sampling point Kalman joint
algorithm in order to SOC estimation error correction. The error was controlled within 2%
and that model was better than the second-order RC circuit model.

The temperature effect under dynamic load on the LiFePO4 battery SOC has been
studied experimentally [10]. The estimation approach was based on the RLS method, along
with a model of an open-circuit voltage to SOC under different ranges of temperature. The
results showed a remarkable accuracy with an error below 5.2%. Moreover, the dynamic
characteristic of the LiFePO4 battery under different rates of current was studied [11]. The
proposed model to estimate the SOC showed reduced error results. It was based on both
current rates and direction. The electrochemical-thermal model introduced in [12] was
developed to simulate the temperature and voltage distribution three-dimensionally. The
comparison between the predicted variables was made to validate the model accuracy. It
was found that the main element for electrochemical performance improvement was the
self-heating in the large-sized cells. In the recent years, advanced artificial intelligence and
machine learning algorithms have been utilized in many worldwide practical applications
with superior performance in diverse power system topics, e.g., [13–20] while renewables
and storage systems are simulated intensively [21–25]. In [26], a single-particle model
(SPM) was used to introduce a physical-chemical model of the lithium-ion battery, which
governed its performance. The curves of charging and discharging were obtained for
different cycle depths and current rates. The effect of the high number of cycles on the
aging was introduced, as well as the electrolyte dynamics. The three-parameter method
(TPM) was implemented for comparison purposes to validate the proposed model. The
paper concluded that the used models had included a method to protect the battery via
cutting the current in charge and discharge based on the electrode maximum stoichiometric
concentration ranges of lithium. Besides, different values of the reff parameter were used to
study the direct influence on the discharge voltage.

The aging performances of different batteries including LiFePO4 were tested and com-
pared in [27] through a series of start-stop micro cycles. The model introduced in [28] was
used to estimate capacity loss during cyclic aging, based on the values of different current
rates using the incremental capacity analysis (ICA). The results showed a capacity reduction
with aging, with a prediction error below 3.2%. Moreover, a commercial LiFePO4/graphite
type aging cycle was tested in [29] via nineteen points, based on combinations of C-rate,
temperature, depth of discharge, and SOC. SOH prediction approach was introduced
in [30] based on grey Markov chain (GMC), considering the battery internal resistance
using a designed monitor device. The results showed that the model is efficient in SOH
estimation. Moreover, in [31], a SOH relative evaluation method was proposed based on
the ohmic resistance. First, a dual extended Kalman filter (DEKF) was used for the ohmic
resistance estimation along with the SOC. Then, the relative SOH was estimated based on
the proposed method. The method was verified using a LiFePO4 battery. An optimization
technique using non-dominated sorting genetic algorithm II (NSGA-II) was introduced
in [32] to estimate the SOH. The optimizer considered both accuracy and measurement cost.



Appl. Sci. 2021, 11, 3609 3 of 21

The validation was done using the measurement from two LiFePO4/C batteries, providing
the grid with the primary frequency regulation (PFR) service.

A combination of SOC and SOH estimation was introduced in [33]; a sequential algo-
rithm to improve estimation performance was proposed. It used frequency-scale separation
and estimated parameters/states sequentially by different frequencies of currents injection.
The proposed algorithm was verified by experiments at different temperatures for varying
battery capacities. As a combination of an electro-thermal model and a semi-empirical
cycle-life model, a coupled electro-thermal-aging model was introduced in [34], which
demonstrated the system dynamics for LiFePO4 batteries. It provided an assumption for
the behaviors of the battery, which would be discussed in the section of the mathematical
model, as well as an open-loop observer for both SOC and SOH.

As stated above, considerable studies have focused on the estimation problem in
LiFePO4 batteries, where various approaches were investigated. Several existing ap-
proaches implement assumptions due to the complexity of the problem, such as the simpli-
fied linear models, which affect the accuracy rates and produce unreliable estimations for
SOC and SOH of LiFePO4 batteries. To cover the gap in the literature, this paper proposes
a reliable and robust observer, which estimates the SOC and SOH of LiFePO4 batteries
in a simultaneous manner with high accuracy. To do so, comprehensive modeling of
LiFePO4 batteries was achieved via an equivalent-circuit model whose input is the ambient
temperature and the current, and its output was assumed to be the voltage. Furthermore,
a comprehensive model was proposed, which combines three parts: a thermal model,
an electrical model, and an aging model. To assure high performance of the proposed
observer, the use of the dual extended Kalman filter (DEKF) is adopted for the SOC and
SOH estimation of LiFePO4 batteries with current and terminal voltage sensors. A robust
voltage-temperature (VT) observer and an open-loop observer were also built to provide
an efficient method to monitor SOC and SOH for the battery. The system was constructed
and simulated using MATLAB. Furthermore, the robustness of the proposed observer
was verified by assessing its performance against ill-conditions that include wrong initial
estimates and wrong model parameters. The intensive results reveal the reliability and
robustness of the proposed observer for estimating both SOC and SOH of LiFePO4 batteries
simultaneously, thereby ensuring safe operation for them.

The mathematical model is explained in Section 2. The algorithms and implementation
are presented in Section 3. Section 4 introduces the results as well as their analysis. Finally,
conclusions are provided in Section 5.

2. Mathematical Modelling

A coupled electro-thermal-aging model is the base of the analysis for LiFePO4 batter-
ies [34]. The model consists of a two-state thermal model, a two RC pair electrical model,
and a semi-empirical aging model. The electrical model of LiFePO4 batteries contains an
open-circuit voltage (OCV, VOC), an ohmic resistor (R0), and two resistor-capacitor (RC)
pairs (R1, C1, R2, C2).

The state-space model is given by:

dSOC
dt

(t) =
I(t)
Cbat

(1)

dV2

dt
(t) = −V2(t)

R2C2
+

I(t)
C2

(2)

Vt(t) = VOC(SOC) + V1(t) + V2(t) + R0 I(t) (3)

where I(t) is the current (positive for charging), Cbat is the battery nominal capacity, and
Vt(t) is the terminal voltage. Three state variables are SOC and voltages across the two RC
pairs V1, V2.

The identification of the electrical parameters is in [35]. For this model, the listed
equations in Appendix A would be followed for the derivation of these parameters based
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on the SOC (I < 0) or discharge (I ≥ 0). As the core temperature could be greater than
the surface one under high current rates [35], a two-state thermal system was hereby
introduced to capture both core and surface temperature dynamics. The model of the radial
heat transfer dynamics of a cylindrical battery could be as follows:

dTc(t)
dt

=
Ts(t)− Tc(t)

RcCc
+

Q(t)
Cc

(4)

dTs(t)
dt

=
Tf (t)− Ts(t)

RuCs
+

Ts(t)− Tc(t)
RcCs

(5)

Cc, Cs, Rc, and Ru represent the core heat capacity, surface heat capacity, heat con-
duction resistance, and convection resistance, respectively. Table 1 shows their values.
The ambient temperature Tf is treated as uncontrollable input; the two-state variables are
surface temperature Ts and core temperature Tc.

Table 1. The thermal parameters.

Rc (KW−1) Ru (KW−1) Cc (JK−1) Cs (JK−1)

1.94 3.08 62.7 4.5

Q(t) = |I(VOC −Vt)| is heat generation including energy dissipated by electrode over-
potentials and joule heating. Based on Equations (3) and (4), this could be
rewritten as:

dTc(t)
dt

=
Ts(t)− Tc(t)

RcCc
+

I(t)(V1(t) + V2(t) + R0 I(t)
Cc

(6)

The aging model is based upon a matrix of cycling tests from [34]. Results of the
experiment suggest that capacity fade depends strongly on temperature and C-rate in the
cell at low charge/discharge rates while neglecting the sensitivity to depth-of-discharge.
The semi-empirical life model adopted the next equation, which describes the correlation
between the capacity loss (∆Qb, in%) and the discharged ampere-hour (Ah) throughput
(A, the discharge current, depends on the rated capacity (C-rate)):

∆Qb = M(c) exp
(
−Ea(c)

RTc

)
A(c)z (7)

where M(c) is the pre-exponential factor as a function of the rated capacity, which is denoted
by c, and Ea is the activation energy. R is the gas constant, which equals 8.3145 J mol−1 K−1.

Table 2 shows the C-rate and M(c) relation. The power-law factor z and the activation
energy Ea are given by:

Ea(c) = 31, 700− 370.3c & z = 0.55 (8)

Table 2. M(c) and C-rate relation.

M 31,630 21,681 12,934 15,512

C-rate c 0.5 2 6 10

This model considers a capacity loss of 20% for an automotive battery as the end-of-life
(EOL). The corresponding Ah throughput Atol and the number of cycles N are, therefore,
computed as:

Atol(c, Tc) =

 20

M(c) exp
(
−Ea(c)

RTc

)
 1

z

(9)
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N(c, Tc) =
3600Atol(c, Tc)

Cbat
(10)

Each cycle corresponds to 2 ×Cbat charge throughput, and since Atol is discharged Ah
throughput, the total throughput including both charged and discharged Ah should be
2 × Atol. Based on this, the battery SOH is defined as follows:

SOH(t) = SOH(t0)−

∫ t
t0

∣∣∣I(τ)dτ

2N(c, Tc)Cbat
(11)

where the initial time is t0. SOH varies among [0, 1], SOH = 1 denotes a new battery and
SOH = 0 means 20% capacity loss (EOL). The SOH derivative produces the aging model of
the battery:

dSOH
dt

(t) = − |I(t)|
2N(c, Tc)Cbat

(12)

Figure 1 shows the combination of the three models. The dynamics of the model
are that the inputs include the controllable current I(t), and the uncontrollable ambient
temperature Tf (t).

Figure 1. Electro-Thermal-Aging model coupling.

3. Algorithms and Implementation

The Kalman filter (KF) is the broad name given to a class of stochastic estimation
algorithms. However, in the strict sense, a KF refers to an estimation scheme for linear
systems under the assumption of additive white noise, which follows a Gaussian distri-
bution. Assuming that the system is stochastic in nature is truer to reality than assuming
a purely deterministic process. This means that the computation is performed in a KF
is accounting for variability and uncertainty within the system and attempts to supply
an estimate of the optimal value, given this extra information. This stands in contrast to
the deterministic observer, which uses a constant observation error gain, and does not
dynamically evolve [36–41].

The assumptions made within the formulation of the KF are linear dynamics and
additive Gaussian noises. Under these assumptions, properties of linear stochastic systems
could be applied and neatly manipulated into an exact closed-form algorithm. As with
many variants of Bayesian estimators, the algorithm for the KF is divided into two stages.
The first stage is termed the model prediction/time update, where it uses a linear model
with additive Gaussian process and measurement statistics to predict the next state in
the time evolution of the system. Meanwhile, the second one is the measurement update
that utilizes sensor measurements of the system and statistically updated “Kalman” gain
to correct the model prediction estimate of the next state to the most likely value. The
algorithm for the KF is shown below [42,43].
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Stochastic State-Space Model:

xk+1 = Akxk + Bkuk + Wk

yk = Ckxk + Dkuk + vk

Model Prediction:
xk = Axk−1 + Buk

Pk = APk−1 AT + Q

Measurement Update:

Kk = Pk HT
(

HPk HT + R
)−1

xk = xk + Kk(zk − Hxk)

Pk = (I − Kk H)Pk

3.1. Extended Kalman Filter (EKF)

The need to apply the EKF is the expected non-linearity of a true physical system.
Often, in engineering practice, the knee-jerk reaction to nonlinear systems is to linearize
them and hope that the resulting linearization errors prove to be insignificant. If this
approach is applied to KF, the result is linearized KF (LKF). Unfortunately, the KF typically
demonstrates very poor performance since it linearizes both the dynamics of the system and
covariance of the system, compounding the error due to linearization. The solution is the
EKF, which is an extremely important variant of the regular KF. Actually, the EKF is adapted
to work with nonlinear systems while requiring a minimal change to the fundamental
algorithm/processes [43].

The computing of a deterministic nonlinear equation is not easy for most users im-
plementing state observers. In addition, the nonlinear computations are preserved and
reducing linearization errors. On the other hand, nonlinear covariance and stochastic
properties must be linearized since closed-form transformations of nonlinear systems are
extremely challenging to solve or may not even exist. Consequently, linearization of these
stochastic quantities is necessary to attempt to preserve the Gaussian of the filter, even if
only an approximation. Therefore, the EKF is not an optimal observer since no guarantees
of performance could be made due to the need to linearize. Finally, there exist other more
advanced estimators, such as Bayesian estimator and particle filter, that could give more
accurate estimation results but at a trade-off of computational expensiveness [43–45].

Space Model:
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk

where wk and vk are independent, zero-mean, Gaussian of covariance matrices, respectively.
Considering:

Ak =
∂ f (xk, uk)

∂x

Ck =
∂g(xk, uk)

∂x
For k = 1, 2, . . . compute:
Time Update:

x̂−k = f
(

x̂+k−1, uk−1

)
−
∑
x̃,k

= Ak−1

+

∑
x̃,k−1

AT
k−1 + ∑

W
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Measurements Update:

Lk =
−
∑
x̃,k

CT
k

[
Ck

−
∑
x̃,k

CT
k + ∑

v

]−1

x̂+k = x̂−k + Lk
[
yk − g

(
x̂−k , uk

)]
+

∑
x̃,k

= (I − LkCk)
−
∑
x̃,k

3.2. State and Parameter Estimation

In the case of parameter estimation, the desired quantity to estimate is not a state of
the system but some other parameter that is related to the system. In the general sense,
to incorporate the desired parameter into the structure of whatever filter is being used,
the parameter must be included (augmented) into the state-space model, as shown in the
following form [44,45]:

xk+1 = Fk(p)xk + Gk(p)uk + Lk(p)wk (13)

yk = Hkxk + vk (14)

where p is an unknown parameter vector, and by applying the following augmentation.

x′ =
[

xk
pk

]
(15)

The system state space could be derived with parameter estimation:

x′k+1 =

[
Fk(p)xk + Gk(p)uk + Lk(p)wk

pk + wpk

]
(16)

or:
x′k+1 = f

(
x′k, uk, wk, wpk

)
(17)

Additionally:

yk =
[

Hk 0
][ xk

pk

]
+ vk (18)

The same algorithm used for state estimation could be implemented as estimate
system parameters. It should be noted that the equation in the form given above treats the
parameter as a constant value, only adding a small fictitious noise wpk, to allow the small
changes to be applied to the initial parameter value [46].

3.3. Dual Extended Kalman Filter (DEKF)

In the domain of parameter estimation with EKF, there are several approaches to
achieve the same overall objective. Joint EKF runs a single filter that directly implements the
augmented state-space shown above. The DEKF performs two coupled and simultaneous
filters for state and parameters estimation. In general, there seems to a consensus that dual
EKF demonstrates a computational advantage, while joint EKF demonstrates an accuracy
advantage. For the purposes of this paper, the DEKF is implemented as the easiest solution
to code and debug, where its process map has been clarified as follows [46–50].

State-Space Model:

xk+1 = f (xk, uk, θk) + wk and θk+1 = θk + rk

yk = g(xk, uk, θk) + vk and dk = g(xk, uk, θk) + ek
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where wk, vk, rk and ek are independent zero-mean Gaussian noise processes of covariance
matrices ∑w, ∑v, ∑r, ∑e, respectively.

Definitions:

Ak−1 =
∂ f
(
xk−1, uk−1, θ̂−k

)
∂xk−1

Cx
k =

∂g
(
xk, uk, θ̂−k

)
∂xk

Cθ
k =

dg
(
x̂−k , uk, θ

)
dxk

Computation:
For k = +1, 2, . . . compute:
Weight filter time update:

θ̂+k = θ̂+k−1

θ̂±k = ∑
θ,k−1

+∑
r

State filter time update:

x̂−k = f
(

x̂+k−1, uk−1, θ̂−k

)
−
∑
x,k

= Ak−1

±
∑

x,k−1
AT

k−1 + ∑
w

State filter measurement update:

Lx
k =

−
∑
x,k
(Cx

k )
T

[
Cx

k

−
∑
x,k
(Cx

k )
T + ∑

v

]−1

x̂+k = x̂−k + Lx
k
[
yk − g

(
x̂−k , uk, θ̂−k

)]
+

∑
x,k

= (I − Lx
k Cx

k )
−
∑
x,k

Weight filter measurement update:

Lθ
k =

−
∑
θ,k

(
Cθ

k

)T
Cθ

k

−
∑
θ,k

(
Cθ

k

)T
+ ∑

e

−1

θ̂+k = θ̂−k + Lx
k
[
yk − g

(
x̂−k , uk, θ̂−k

)]
+

∑
θ,k

=
(

I − Lθ
kCθ

k

) −
∑
θ,k

3.4. Sensor Estimator

The estimators utilize the measurable physical quantities, i.e., current and terminals
voltage, of the cell in order to estimate its internal state. In a real application, the measure-
ment is achieved by an acquisition unit collected by voltage and current sensors as well
as single or multiple analog-to-digital converters (ADC). This ADC converts the attained
analog signals into digital values. Typically, this procedure introduces a measurement
noise. The estimators must be able to execute a correct estimation even in the presence of
these perturbations. In order to develop reliable algorithms and to test their capability to
work in an actual system, a model of the sensors has been developed.

This specified model uses the current I as input during the cell voltages Vi produced
by the model of the battery and delivers as output. The measured current Î and voltages V̂i.
Both current and voltage sensors are modeled in the same way, as shown in Figures 2 and 3.
They introduce measurement noise as well as offset errors. Note that the mean and variance



Appl. Sci. 2021, 11, 3609 9 of 21

of the noise that was injected into the system were computed upon ±10%. The value of
these errors is settable to simulate systems with different specifications. Furthermore, the
acquisition system block can model the quantization error, i.e., the difference between the
input signal value and its quantized value. This error depends on the number of bits of
the ADC and its input range. These are editable parameters of the acquisition system. In
particular, the current sensor input range is different from the voltage one. In fact, in this
application, the voltage is a quantity included in the cell operating voltage range, which is
always greater than zero. On the contrary, the current ADC has a large bipolar range.

Figure 2. Current sensor model; (a) the Matlab/Simulink block, and (b) current sensors with and
without noises.

Figure 3. Voltages sensor model.

4. Results and Discussion

In this paper, the used parameters are based on A123 LiFePO4 battery parameters. In
the 1-h of simulation, the controllable input was the charging rate (=0.9 C-constant value).
The uncontrollable one, ambient temperature, was assumed as a half-sine wave. Figure 4
presents the system inputs.
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Figure 4. System inputs. (a) Temperature input values; (b) Current input values.

For the outputs of the simulation, after 1-h charging, the SOC reached 90%. As the
SOC increased, the terminal voltage increased. As time passed, SOH decreased. Surface
and core temperatures of the LiFePO4 battery changed as they are affected by the ambient
temperature and the current. Figure 5 presents these outputs.

Figure 5. Systems outputs; (a) SOC%, (b) terminal voltage, (c) SOH%, and (d) temperature changing.

With adding white noises to both surface temperature and terminal voltage data with
SNR = 60, the generated synthetic data produced surface temperature and terminal voltage
measurements. Figure 6 introduces these synthetic measurements.
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By using the EKF method, three different observers were created. Table 3 shows the
three observer’s components.

Table 3. The components of the three observers.

Control Inputs Observer Measured Inputs

Tf, Current Temperature-measured observer TS
Tf, Current Voltage-measured observer VT
Tf, Current VT-measured observer VT, TS

To examine the three observers’ robustness, wrong initial estimates and wrong param-
eter values were used, respectively. The voltage-measured observer values for that test are
shown in Figures 7 and 8, respectively. Note that these upper and lower bounds have been
defined as the common bounds used in the literature.

Figure 7. Cont.
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Figure 7. Voltage-measured observer estimation values using wrong initial values; (a) terminal
voltage, (b) service temperature changing, (c) core temperature changing, (d) SOH, (e) SOC.

Figure 8. Voltage-measured observer estimation test using wrong parameters; (a) terminal voltage, (b) service temperature changing,
(c) core temperature changing, (d) SOH, (e) SOC.
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Both terminal voltage and SOC were estimated well for the voltage-measured ob-
server. After 1000 s, the estimated core and surface temperatures converged with their
true values. However, that did not happen to the estimated SOH. That result indicated
that the SOH was unobservable. The reason for that was that the observability matrix of
the voltage-measured observer was not full rank. Span ([0, 0, 0, 1, 0, 0]T, [0, 0, 0, 0, 1, 0]T,
[0, 0, 0, 0, 1]T) is the observability matrix null space. That indicates that the Tc, Ts states,
and SOH were unobservable. Nevertheless, when the model of the observer is accurate, the
convergence of the temperatures to their true values would occur, although temperatures
are unobservable for the voltage-measured observer. The reason for that is the core and sur-
face temperatures would only reach their equilibrium states after a long time as the thermal
system is asymptotically stable. Figures 9 and 10 present temperature-measured observer
estimation tests using wrong initial estimates and wrong parameter values, respectively.

Figure 9. Temperature-measured observer estimation test using wrong initial values; (a) terminal
voltage, (b) service temperature changing, (c) core temperature changing, (d) SOH, (e) SOC.
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Figure 10. Temperature-measured observer estimation test using wrong parameters; (a) SOC,
(b) service temperature changing, (c) SOH, (d) terminal voltage, (e) core temperature changing.

For that observer, the core and surface temperatures are estimated well. The estimated
SOC and SOH did not converge to their true values. The result of that test indicated that
SOC and SOH were unobservable for that observer. The observability matrix rank of that
observer was 4, which was not a full rank. Span ([1, 0, 0, 0, 0, 0]T, [0, 0, 0, 0, 0, 1]T) is the
observability matrix null space, which indicates the unobservability of SOC and SOH for
the observer as well.

Figures 11 and 12 present the results of the estimation test for the VT-measured
observer using wrong initial estimates and wrong parameter values, respectively.

For the VT-measured observer, VT, TC, TS, and SOC were well estimated, except for
the SOH. The observability matrix rank of that observer was 5. Span ([0, 0, 0, 0, 0, 1]T)
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was the observability matrix null space, which indicated the SOH unobservability as well.
For the three observers’ performance evaluation, six battery states’ observability of the
observers are shown in Tables 4–6, which present these three observers’ root-mean-squared
error (RMSE) and two tests.

Figure 11. VT-measured observer estimation test using wrong initial values; (a) SOC, (b) service
temperature changing, (c) SOH, (d) terminal voltage, (e) core temperature changing.
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Figure 12. VT-measured observer estimation test using wrong parameters; (a) SOC, (b) service
temperature changing, (c) SOH, (d) terminal voltage, (e) core temperature changing.

Table 4. Observers’ observability for different states.

The Observers SOC% V1 V2 TS TC SOH%

Temperature-measured observer No Yes Yes Yes Yes No
Voltage-measured observer Yes Yes Yes No No No

VT-measured observer Yes Yes Yes Yes Yes No

Table 5. RMSE of EKF using wrong initial values.

The Observers VT TS TC SOC% SOH%

Temperature-measured observer 0.0861 0.0055 0.0554 51.3642 0.1004
Voltage-measured observer 0.0163 0.0060 0.0607 0.2848 0.1009

VT-measured observer 0.1063 0.0059 0.0594 0.2758 0.1009
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Table 6. RMSE of EKF using wrong parameters.

The Observers VT TS TC SOC% SOH%

Temperature-measured observer 0.0034 0.0078 0.0798 51.4638 0.0669
Voltage-measured observer 0.0004 0.0090 0.0878 0.7590 0.0669

VT-measured observer 0.0004 0.0083 0.0848 0.7551 0.0669

Analyzing the previous results, SOC and SOH are unobservable for temperature
observers, while TC, TS, and SOH are unobservable for voltage observers. Nevertheless,
the resistance of the circuit could affect the temperature. On the other hand, the temperature
would affect the resistance as well. Therefore, TC and TS could be observed by an indirect
approach with the voltage observer since the convergence of the temperature after a long
time. That could lead to the idea that both voltage and temperature observers might be
combined together as a VT-observer. Based on the results, there is an advantage for the
VT-measured observer as most of the states could be estimated because it combines the
two observers. It should be indicated that the SOH could not be estimated by any observer.
However, the SOH values could be estimated well by an open-loop observer, provided
that the model of the battery and the initial values are accurate. Additionally, based on the
results, a positive linear relationship between SOC and the charging time could be noticed,
while SOH has a negative one. It requires about two hours for the SOC to replenish from
0% to 90% in the simulation, with an associated SOH decay of 0.005%. The reason for
running the simulation with an upper limit of 90% is to keep the health of the battery
because this test will be applied many times. The lowest SOH is 99.995%, and the highest
SOC is 87.4% compared to the original status. That indicates that the battery health and
charging time is a tradeoff. This led to a rise in the balance between efficiency and safety.
For higher efficiency, the charging time should be minimized; For the highest safety, the
aging condition should be minimized. Through comparing these results with the proposed
model in [29], in real-life cases, a balanced point should be found in different scenarios,
which leads to a new topic—optimal control for battery charging. Since the importance
of batteries as an energy storage device, the proposed observer would definitely advance
sustainability. Therefore, the importance of the estimation of the states in energy systems
could be noticed.

5. Conclusions

In this paper, electric, thermal, and aging models have been built, and the state
estimation using DEKF and open-loop simulation has been implemented to construct
an observing system for the LiFePO4 battery. The constructive feature of the proposed
observing system is that its reliable and robust performance for estimating both SOC
and SOH of LiFePO4 batteries, and so, yielding secure operation and extending their
lifetime. Interestingly, the proposed open-loop observer monitors the SOC and SOH
with curves’ trend as expected due to the accurate model parameters and initial values.
Unlike these existing observers, the proposed VT-observer could observe the SOC, and the
proposed open-loop observer could observe the SOH using correct parameters and initial
estimates. The results of 1-h duration with 1-s resolutions demonstrate the reliability and
robustness of the proposed observer for simultaneously monitoring the SOC and SOH of
LiFePO4 batteries.
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Appendix A

The parameters of Equations (1)–(3) are identified in the following equations [30].
They varied across the state of discharge (I ≥ 0) or charge (I < 0). Tables A1–A4 presents
the values of the parameters:

R1 =

{
R1d I ≥ 0
R1c I < 0

}
(A1)

R1∗ = (R10∗ + R11∗(SOC) + R12∗
(

SOC)2
)

exp

(
Tre f R1∗

Tm − Tshi f tR1∗

)
(A2)

Table A1. Parametric R1 Function Parameters.

R10d R10c R11d R11c R12d

7.1135 × 10−4 0.0016 −4.3865 × 10−4 −0.0032 2.3788 × 10−4

R12c TrefR1d TrefR1c TshiftR1d TshiftR1c

0.0045 347.4707 159.2819 −79.5816 −41.4578

R2 =

{
R2d I ≥ 0
R2c I < 0

}
(A3)

R2∗ = (R20∗ + R21∗(SOC) + R22∗

(
SOC)2

)
exp

(Tre f R2∗
Tm

)
(A4)

Table A2. Parametric R2 Function Parameters.

R20d R20c R21d R21c

0.0288 0.0113 −0.073 −0.027

R22d R22c TrefR2d TrefR2c

0.0605 0.0339 16.6712 17.0224

C1 =

{
C1d I ≥ 0
C1c I < 0

}
(A5)

C1, = C10, + C11,(SOC) + C12,(SOC)2 + (C13, + C14,(SOC) + C15,

(
SOC)2

)
Tm (A6)
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Table A3. Parametric C1 Function Parameters.

C10d C10c C11d C11c

335.4518 523.215 3.1712 × 103 −6.4171 × 103

C12d C12c C13d C13c

−1.3214 × 103 −7.5555 × 103 53.2138 50.7107

C14d C14c C15d C15c

−65.4786 −131.2298 44.3761 162.4688

C2 =

{
C2d I ≥ 0
C2c I < 0

}
(A7)

C2∗ = C20∗ + C21∗(SOC) + C22∗(SOC)2 + (C23∗ + C24∗(SOC) + C25∗

(
SOC)2

)
Tm (A8)

Table A4. Parametric C1 Function Parameters.

C20d C20c C21d C21c

3.1887 × 104 6.2449 × 104 −1.1593 × 105 −1.055 × 105

C22d C22c C23d C23c

1.0493 × 105 4.4432 × 104 460.3114 198.9753

C24d C24c C25d C25c

1.0175 × 104 7.5921 × 103 −9.5924 × 103 −6.9365 × 103
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