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ABSTRACT

Nanophotonics—the science and technology of confining, guiding, and making photons interact with matter at the nanoscale—is an active
research field. By varying the geometry and constituent materials, nanostructures allow precise control of the scattering of incident light and
tailoring of emitted light. In this Tutorial, we outline the use of the Maxwell equations to model the optical response of nanostructures. This
electromagnetic optics approach uses the refractive indices of the constituent materials and the geometry of the nanostructures as input. For
most nanostructure geometries, analytical solutions to the Maxwell equations are not available. Therefore, we discuss varying computational
methods for solving the equations numerically. These methods allow us to simulate the optical response of nanostructures, as needed for
design optimization and analysis of characterization results.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041275

I. INTRODUCTION

The progress in recent years on controlled fabrication of nano-
structures has opened the door to precise control of both materials and
geometry (see Fig. 1 for examples).7–13 By proper design of such nano-
structures, we can tailor the interaction with light, that is, photons, to a
high degree and optimize the optical response for varying light-based
applications. Thus, nanophotonics—the science and technology of con-
fining, guiding, and making photons interact with matter at the nano-
scale—is a thriving field in both academic research and industry.

However, it is often difficult to intuitively predict the optical
properties of nanostructures. Optics modeling can thus be a valuable
tool. For the optimization of geometry and materials for varying
applications, modeling allows to scan the suitability of a far broader
range of nanostructures than feasible with costly and time-consuming
prototype fabrication. For complicated design problems, a broad
range of advanced and powerful optimization techniques exist,14 but
to employ these methods, it is crucial to be able to efficiently model
the optical response of the nanostructures. Furthermore, modeling

can help in analyzing the origin of varying features observed in
optical characterization as well as give access to optical properties that
are not possible to directly measure, such as the distribution of light
intensity in the interior of a nanostructure.

In this Tutorial, we give an overview to using electromagnetic
optics, as described by the Maxwell equations, for modeling the inter-
action between light and nanostructures. To keep the scope concise,
we focus on nanophotonics applications in the visible and near-
infrared (NIR) range, spanning approximately from 400 to 1700 nm
in wavelength (unless otherwise stated, we denote by wavelength the
wavelength of light in vacuum). Note however that nanostructures
are, in principle, of interest for a much broader range of photon ener-
gies, with applications spanning at least from x rays15 to THz radia-
tion.16 Furthermore, we focus on the linear optical response of the
nanostructures.

In Sec. II, we present a model for electromagnetic optics based
on the Maxwell equations. The materials and geometry define the
possible applications, whereas the intended application puts require-
ments on the materials and geometry (Fig. 2). Therefore, in Sec. III,
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we introduce common types of materials and their optical properties;
in Sec. IV, we give examples of popular nanostructure geometries in
nanophotonics; and in Sec. V, we discuss applications of nanopho-
tonics. In Sec. VI, we present briefly some of the popular analytical
and numerical methods used in solving the Maxwell equations in
nanostructures, and in Sec. VII, we reflect on the use of these varying
simulation methods. In Section VIII, we comment on the impact of
possible optical response beyond that within the model presented in
Sec. II. Finally, we give concluding remarks in Sec. IX.

II. ELECTROMAGNETIC OPTICS AND THE MAXWELL
EQUATIONS

Many optical phenomena, like mirror images and shadows, in
our everyday life can be described with geometrical optics where
rays of light are traced through the system. Such ray tracing can be
successful also for designing lens-based optical instruments like
telescopes and microscopes where the geometrical features of the

FIG. 1. Scanning electron microscope images of various nanostructures for photonics applications. (a) Al grating. Reproduced with permission from Kang et al., Appl.
Phys. Lett. 99, 071103 (2011). Copyright 2011 AIP Publishing LLC. (b) Black-Si surface. Reproduced with permission from Pasanen et al., Energy Procedia 124, 307
(2008). Copyright 2017 Elsevier. (c) Inversed TiO2 opal photonic crystal. Reproduced with permission from Guldin et al., Nano Lett. 10, 2303 (2010). Copyright 2010
American Chemical Society. (d) lnP nanowire array solar cell with n, i, and p indicating the regions of the lnP diode. Reproduced with permission from Wallentin et al.,
Science 339, 1057 (2013). Copyright 2013 the American Association for the Advancement of Science. (e) Nanopatterned Si substrate. Reproduced with permission from
Khan et al., ACS Appl. Nano Mater. 1, 2476 (2018). Copyright 2018 American Chemical Society. ( f ) A group of Au nanodimers where the dashed lines indicate the slant
of the nanostructures. Reproduced with permission from Husu et al., Appl. Phys. Lett. 93, 183115 (2008). Copyright 2008 AIP Publishing LLC.

FIG. 2. The interplay in nanophotonics between intended application and
available geometry and materials.
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optical components are much larger than the wavelength of light.17

However, the interaction of light with nanostructures is dominated
by diffraction effects and then the wave nature of light must be
taken into account in the analysis. Furthermore, the polarization
state of light affects the diffraction. Therefore, we turn to an electro-
magnetic optics description of light where the Maxwell equations
describe light as an electromagnetic field, which includes polariza-
tion through the vector nature of the field.

More specifically, to describe the scattering and emission of
light, we use the macroscopic Maxwell equations (see Chap. 6.6 in
Ref. 18),

∇ � B ¼ 0, (1)

∇ �D ¼ ρ, (2)

∇�H� @D
@t

¼ J, (3)

∇� Eþ @B
@t

¼ 0: (4)

Here, E is the electric field, D is the electric displacement, B is the
magnetic induction, H is the magnetic field, ρ is the free charge
density, and J is the free current density.

We assume a time-harmonic form of the optical response:
E(r, t) ¼ Re[E(r, λ) exp(�iωt)] and similarly for D, B, H, ρ, and J.
Note that the physical field E(r, t) is real-valued but E(r, λ), which
we use throughout for convenience, is complex-valued. Here,
ω ¼ 2πc/λ is the angular frequency with λ being the wavelength in
vacuum and c being the speed of light in vacuum (and the photon
energy is given by Eph ¼ �hω, where �h is the reduced Planck cons-
tant). For the material response, we assume that D(r, λ)
¼ ε(r, λ)E(r, λ) and B(r, λ) ¼ μ0H(r, λ) with ε(r, λ) ¼ n(r, λ)2ε0
being the permittivity, ε0 being the permittivity of vacuum, n being
the complex-valued refractive index, and μ0 being the permeability
of vacuum. Thus, we assume a linear, local, isotropic, non-magnetic,
and time-harmonic optical response of the materials (see Sec. VIII
for discussion of possible more complicated response types). In
such a linear optics description, the material response is thus fully
described through the wavelength-dependent refractive index.

In this model, E(r, λ) and H(r, λ) give full information of the
electromagnetic field, from which, for example, the (complex-
valued) Poynting vector S(r, λ) ¼ 1

2E(r, λ)�H*(r, λ) is obtained.
From S(r, λ), the time-averaged Poynting vector can be calculated
as Re(S(r, λ)), and the time-averaged flow of intensity at position r,
in a direction given by the direction unit vector n̂, is given by
n̂ � Re(S(r, λ)). The integration of n̂ � Re(S(r, λ)) over varying surfa-
ces, with n̂ being the surface normal, can be particularly useful. For
example, by integrating n̂ � Re(S(r, λ)) over a closed surface, with n̂
pointing to the volume enclosed by the surface, we obtain the (net)
absorbed power within the volume. In an emission problem, by
placing the surface to encompass a non-absorbing volume sur-
rounding the emitter, we obtain from the surface integration the
total emitted power (when we chose n̂ to point outwards from
the volume).

Importantly, dielectric, semiconductor, and metallic response,
including absorption in the materials, can be taken into account
through the wavelength dependence of the linear refractive index
(see Sec. III for discussion of some of the widely used materials and
their refractive indices). Such refractive index based modeling has
reproduced excellently, for example, the measured diffraction and
interference from absorbing semiconductor nanowire arrays, which
show complicated dependence on geometry.19

A. Scattering of light

When we consider scattering of incident light, we set
ρ and J to zero. Then, Eqs. (3) and (4) simplify to ∇� E(r, λ)
¼ i(2πc/λ)μ0H(r, λ) and ∇�H(r, λ) ¼ �i(2πc/λ)ε0n(r, λ)

2E(r, λ)
from which ∇ � ε0n(r, λ)2E(r, λ) ¼ 0 and ∇ �H(r, λ) ¼ 0, Eqs. (1)
and (2), follow.20,21 The incident light shows up as an external
boundary condition to these equations.

B. Emission of light

To analyze the modification of emission by nanostructures, we
consider a dipole emitter within or in the vicinity of the nanostruc-
ture. We include the dipole at position rs into the Maxwell equa-
tions through the source term [see Eq. (8.49) in Ref. 22],

J(r, λ) ¼ �i
2πc
λ

δ(r� rs)p, (5)

where the dipole moment p defines the strength and orientation of
the dipole emitter. Note that by the choice for J(r, λ), we formally fix
ρ(r, λ) since from Eqs. (2) and (3), ∇ � J(r, λ) ¼ i 2πcλ ρ(r, λ) follows.

This emission model includes the modified directionality and
modified polarization of emitted light.23 Furthermore, it allows
the calculation of the Purcell factor CPurcell (see Fig. 3 for
example), which shows how much the nanostructure modifies,
through diffraction effects, the optical (that is, radiative) recombi-
nation rate ΓRad of the dipole emitter [noting that the Purcell
factor is directly proportional to the local density of optical states
(LDOS) at the position of the emitter].24 In other words, the
Purcell factor tells how much the optical environment enhances
(or suppresses) the optical recombination rate.25 Thus, through
the Purcell factor, the nanostructure can modify the emitter’s
internal quantum efficiency (IQE), which quantifies the fraction
of recombination events resulting in the emission of a photon
(with the rest of the recombination occurring through non-
radiative recombination channels that do not give rise to the
emission of photons but instead heat the sample).26,27 Note that
Γtot ¼ ΓRad þ ΓNR is the total recombination rate, and the fraction
of recombination events resulting in the emission of a photon is
thus given by IQE ¼ ΓRad/(ΓRad þ ΓNR).

To exemplify the effect of the Purcell factor on IQE, let us
assume that the non-radiative recombination rate ΓNR is not modi-
fied by the nanostructuring and that ΓRad,0 is the underlying optical
recombination rate in the absence of nanostructuring. Thus,
ΓRad ¼ CPurcellΓRad,0 in the presence of the nanostructuring. Then,
IQE0 ¼ ΓRad,0/(ΓRad,0 þ ΓNR) is the original IQE, which is modified
to IQE ¼ ΓRad

ΓRadþΓNR
¼ CPurcellΓRad,0

CPurcellΓRad,0þΓNR
¼ CPurcellIQE0

CPurcell IQE0þ(1�IQE0)
by the

nanostructuring.26 Thus, with increasing CPurcell, the probability
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for a radiative transition increases, and in the limit
CPurcell ! 1, IQE ! 1 irrespective of the value of IQE0.
Conversely, with CPurcell ! 0, IQE ! 0:

With this emission model, we can analyze the modified pho-
toluminescence and blackbody radiation from extended emission
regions within nanostructures, if incoherent dipoles are distributed
throughout the emission region and their contributions summed to
obtain the overall emission.28 The spatially modified recombination
rate can be used further as an input for light-emitting diode (LED)
device modeling.29

Note that we study spontaneous emission with this model
(modeling of stimulated emission would require in addition to
the Maxwell equations, for example, the use of semiconductor
Bloch equations30).

C. Plane waves and polarization of light

From the Maxwell equations, plane waves follow as a solution
for a region where the refractive index n is constant. In other words,
due to Eqs. (3) and (4), oscillating electric and magnetic fields
sustain each other and allow for these types of propagating electro-
magnetic field solutions, even in the absence of sources. These plane
waves are characterized by their propagation vector k ¼ kk̂ where
k ¼ 2πn/λ ¼ k0n and k̂ is the unit vector defining the propagation
direction. The electric and magnetic field of the plane wave are of
the form E(r, λ) ¼ ~E(λ)exp(ik � r) and H(r, λ) ¼ ~H(λ)exp(ik � r).
Here, ~E(λ) defines the polarization of the light. From the Maxwell
equations, k � ~E ¼ 0, k � ~H ¼ 0 and ~H � ~E ¼ 0 follow. Importantly,
we can define two orthogonal polarization states with ~E ¼ ~E1 and
~E ¼ ~E2 such that ~E1 � ~E2 ¼ 0 (note that the magnetic field has corre-
sponding polarization state given by ~H ¼ ~H1 and ~H ¼ ~H2). A

general polarization state ~E of the plane wave can be expressed as a
linear combination of any two such orthogonal polarization states.

In a system that contains a planar interface with surface normal
n̂ (as, for example, the top surface of a substrate), it is common to
define the so-called TE and TM (or alternatively s and p) polarization
states of incident light. These polarization states are defined with refer-
ence to the incidence plane, which is the plane that contains both n̂
and k̂. TE (or s) polarization is defined as the polarization state where
the electric field of the incident plane wave is perpendicular to this
incidence plane (and the magnetic field of the plane wave lies then in
this plane). Conversely, TM (or p) polarization is defined as the polar-
ization state where the electric field of the incident plane wave lies in
the incidence plane (and the magnetic field of the plane wave is then
perpendicular to the incidence plane). In this way, TE and TM polari-
zation denote which of the electric or magnetic field is transverse to
the incidence plane, whereas s- and p-polarization denote whether the
electric field is perpendicular (senkrecht in German, motivating the
designation s) or parallel to this plane. Note that this is the most
common definition for TE and TM, and s and p, polarization that we
have encountered in the literature, but we recommend the readers to
double-check the definitions whenever encountered in the literature.
Also, when we discuss below, for example, x-polarized incident light,
we mean light that has a non-zero electric field component only in
the x direction (and similarly for y- and z-polarized light).

III. MATERIALS—WITH FOCUS ON THEIR
WAVELENGTH-DEPENDENT REFRACTIVE INDEX

The refractive indices of the available materials set the founda-
tion for the type of optical response that we can achieve in nano-
photonics applications. To give general guidance in the options

FIG. 3. (a) Schematics of a semiconductor nanowire on top of a semiconductor substrate, with a dipole at the center of the nanowire. The black arrows pointing upward
indicate emission to the top side. The gray arrows pointing downward indicate emission into the substrate. (b) Simulated emission from a z oriented dipole (p ¼ pz ẑ)
within a nanowire of length L = 1000 nm and varying diameter. The dipole is located at z = 0.35L at the center of the x–y cross section of the nanowire and emits at
λ = 920 nm. Here, we assumed a refractive index of n = 3.5 for the nanowire and the substrate, and n = 1 for the air top side. The modeling was performed with FEM; see
Ref. 26 for technical details. We show (i) CPurcell , which is the Purcell factor giving the modification in the optical recombination rate compared to the same dipole in a
homogeneous semiconductor surrounding of n = 3.5, and (ii) ηext, the extraction probability for an emitted photon. Here, ηext is defined as the probability for the dipole to
emit the photon to the top side [the black arrows in (a)].
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available, we summarize the optical response of the three main
types of optical materials typically used—insulators, semiconduc-
tors, and metals. For the exact choice of materials, the readers are
referred to a detailed study of the refractive indices, for example,
through summarizing collections31 or online databases (e.g., www.
refractiveindex.info) of experimentally measured values.

A. Insulators

The simplest materials for manipulating the scattering and dif-
fraction of light could be considered insulators, e.g., oxides and

polymers. These materials, which are often referred to as dielectrics,
are governed in a large wavelength range (typically in an approxi-
mate range from 300 nm to 10 μm) by a real-valued refractive index.
In this transparency wavelength range covering the visible and a
large part of the IR region, the insulators show a real-valued, positive
refractive index, typically in the range of 1.4–2.2, but some insulators
like TiO2 show a refractive index in the range of 2.5. There can be
considerable dispersion in the refractive index, that is, variation of
the refractive index with wavelength [see Fig. 4(a) for examples of
refractive indices of insulators]. In the transparency region where Im

FIG. 4. (a) Refractive index of SiO2 (fused silica) with values from Ref. 32 and TiO2 with values from Ref. 33. In this wavelength range, Im(n) is negligible for these insula-
tors. For TiO2, which exhibits slight birefringence (in the form of a direction dependent refractive index defined by two components, no and ne), we show values for no, the
ordinary refractive index; the extraordinary refractive index ne is ∼0.2 higher. (b) Refractive index of Ag and Au, with values for both from Ref. 34. (c) Refractive index of Si
with values from Ref. 35 and GaAs with values from Ref. 36. (d) Absorption length in GaAs and Si calculated from the Im(n) in (c).
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(n(λ)) = 0, the real-valued refractive index can be considered to origi-
nate from the polarizability of the atoms constituting the material.31

For wavelengths below the transparency region, we observe Im
(n(λ)) > 0. The absorption here occurs due to the excitation of
valence electrons to the conduction band, that is, through interband
transitions (for very short wavelengths in the x-ray range, we can
also observe excitation of atomic core-states).31 Similarly, for long
enough wavelengths in the infrared region, the excitation of optical
phonons can give rise to absorption, and the wavelength-ranges
where such absorption shows up depend on the specifics of the
material.31 Importantly for this Tutorial, the wavelength range we
consider is limited such that these two absorption mechanisms do
not show up. Then, insulators can be considered non-absorbing
materials with a real-valued refractive index n(λ) = Re(n(λ)) > 1 [note
that for vacuum, n(λ) = Re(n(λ)) = 1, and for air the discrepancy
from a value of 1 is typically below 0.1%].

B. Semiconductors

For optics, semiconductors differ from insulators in two major
ways. First, the real part of the refractive index of semiconductors
tends to be much higher than for insulators. For example, Si and
III-V compound semiconductors show Re(n) in the range of 3–4.5
in the visible and NIR wavelength range [see Fig. 4(c)].31 Therefore,
semiconductors can, in principle, cause stronger diffraction of light
than insulators.

Second, the interband transitions in semiconductors can occur
in the visible or NIR range,37 depending on the semiconductor. In
other words, the bandgap energy Ebg, which defines the lowest
photon energy that can cause interband transitions from the (mostly
occupied) valence band to the (mostly empty) conduction band, is
lower in semiconductors than in insulators. For convenience, we note
that Ebg≈ 1240/λbg with Ebg expressed in eV and λbg in nm, where
λbg is the corresponding bandgap wavelength below which the inter-
band transitions can occur (and Eph ¼ �h2πc/λ).

One measure of absorption in semiconductors, and materials
in general, is the absorption coefficient α (and its inverse—the
absorption length Labs): α(λ) ¼ 4πIm(n(λ))

λ . This coefficient is a
measure of how far an electromagnetic plane wave can penetrate
into a material [the absorptance A, that is, the fraction of original
intensity that is absorbed, of a wave that has traveled a distance L
inside the material is given by the Beer–Lambert law
A(λ, L) ¼ 1� exp(�α(λ)L) ¼ 1� exp(�L/Labs(λ))]. For a low α
at a given wavelength, light absorption is poor, leading, e.g., to a
thin enough material layer appearing transparent at that wave-
length. Semiconductors with a higher α absorb more readily
photons, resulting in the photogeneration of excess electron–hole
pairs, i.e., exciting electrons into the conduction band from the
valence band, and hence creating holes in the valence band. In
general, α(λ) is a practically useful quantity when choosing the
material to be used to engineer solar cells and LEDs, for instance.

Note that since a photon with energy below the bandgap
cannot excite electrons into the conduction band from the valence
band, the absorption coefficient drops sharply at λbg, settling at
practically zero for λ > λbg. At this point, it is worth distinguishing
between direct bandgap (e.g., GaAs, InP, GaN) and indirect
bandgap (e.g., Si, GaP) semiconductors.37 In general, any photon

absorption or emission event is subject to momentum conservation
(or, equivalently, k-vector conservation). Note that the range of
momentum values for photons in the visible and NIR range is neg-
ligible compared to the range of crystal momentum values for elec-
trons in the semiconductor. Therefore, photons by themselves can
induce transitions between electron states in the conduction and
valence band at a fixed electron k-vector value.

In direct bandgap semiconductors, the conduction band
minimum and valence band maximum occur at the same
k-vector. Therefore, with Eph ≈ Ebg, a direct photon-mediated
transfer (absorption or emission) of electrons between the
valence and conduction band is possible. In contrast, in an indi-
rect bandgap semiconductor, the valence band maximum and
the conduction band minimum are offset in momentum space.38

Then, in addition to the photon, also a phonon is needed in the
transition for momentum conservation. Such requirement for an
additional particle (the phonon) to participate in the optical tran-
sition typically drops the probability (and hence strength) of the
transition by orders of magnitude. As such, a photon in an indi-
rect bandgap semiconductor can typically penetrate much farther
before its absorption, as compared to the direct bandgap case. This
can be observed, for example, in Fig. 4(d), where the absorption
coefficient for Si is considerably lower than that of GaAs (for
λ < 870 nm, with 870 nm the λbg of GaAs). Note that at high
enough photon energy, direct optical transitions become available
also in indirect bandgap semiconductors: For example, in Si with
Ebg = 1.12 eV, the direct transitions begin at Eph ≈ 3.4 eV.38

Importantly, for emission applications, the emission in bulk
semiconductors occurs (usually) in the vicinity of λbg when excess
electrons and holes, at the edge of the conduction and valence
band, recombine in such a way that the excess energy is emitted
through a photon. It is also worth noting that the emission, in
terms of the IQE, is typically much higher in direct bandgap semi-
conductors compared to indirect bandgap semiconductors.

Throughout this Tutorial, we focus on room temperature
applications, but we wish to note that the refractive indices of the
materials are temperature dependent. For semiconductors, the tem-
perature dependence of Ebg can cause noticeable effects where, as an
example, λbg could shift readily by >5% if the temperature is varied
by 200 K.37 Such a shift of λbg would have a considerable effect on
the transparency window of the semiconductor and the wavelength
of emitted photons.

Similarly as for insulators, at long wavelengths, the excitation
of optical phonons causes absorption in semiconductors; but again,
in this Tutorial, we consider a wavelength range around the visible
and NIR range where such absorption events are not observed.

C. Metals

In metals, a major part of the optical response can be under-
stood to originate from light that interacts with the large density of
electrons (of the order of ncarrier = 1023 cm−3) in the free electron
cloud. In contrast to the underlying polarizability of the atomic
lattice that dominates the Re(n) in insulators and semiconductors,
and which occurs in phase with the incident light, giving rise to Re
(ε/ε0) > 1 and Re(n) > 1, the electron cloud in metals interacts out
of phase with the incident light. Therefore, a perfect metal, which
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shows a response only from excitation of the electron cloud
without dissipation, will have Im(n) > 0 and Re(n) = 0, correspond-
ing to Re(ε) < 0 and Im(ε) = 0.34

A plane wave incident at a planar interface between a dielec-
tric and the metal will decay into the metal, similarly as inside a
semiconductor as discussed above, with a constant given by
α(λ) ¼ 4πIm(n(λ))

λ [with accompanying decay length, which for
metals is referred to as the skin depth: Lskin�depth(λ) ¼ 1/α(λ); note
the similarity to the absorption length Labs in semiconductors].
However, in contrast to the semiconductors, such exponential decay
of the plane wave inside the perfect metal would not be associated
with absorption, since Im(ε) = 0 for the perfect metal and absorption
requires Im(ε) > 0.39 Instead, perfect 100% reflection occurs. For real
metals, Re(n) is not exactly zero since the excited electron cloud can
dissipate energy to the lattice. Then, a small fraction of the incident
light is absorbed because Im(ε/ε0) = 2Re(n)Im(n) > 0 [see Fig. 4(b)
for examples of n(λ) for metals].

In contrast to interband transitions, so important for semi-
conductors where they occur for λ < λbg, the excitation of the elec-
tron cloud in a perfect metal shows instead a lower wavelength
limit λ0 below which the excitation of the electron cloud does not
occur, with λ0 proportional to (ncarrier)

−1/2; this corresponds to
the plasma frequency, which is proportional to (ncarrier)

1/2.34 In
principle, when semiconductors are doped to give a large electron
or hole concentration, also they can show such excitation of the
free carrier cloud. However, typical free carrier concentrations in
doped semiconductors are in the 1015–1019 cm−3 range, giving a
λ0 which is located above the visible and NIR wavelength range of
focus in this Tutorial.

A metal, such as Ag, whose optical response is dominated by
the excitation of the electron cloud through the whole visible range
shows a mirror-like, almost 100% reflecting, surface. In addition to
absorption through the excitation of the electron cloud, interband
transitions are also possible in metals. This additional absorption
reduces the reflection of a metal surface at selected wavelengths. Such
interband transitions give, for example, the yellowish color of Au.

D. Summary of the optical properties of insulators,
semiconductors, and metals

For the visible and NIR wavelength range considered in this
Tutorial (see Fig. 4 for examples), (1) most insulators show refrac-
tive index in the range of 1.4–2.0, with the exception of some high
refractive index oxides such as TiO2 with a refractive index of
around 2.5. (2) Semiconductors can show a much higher Re(n) and
hence a potentially stronger diffraction of light as compared to
insulators. (3) Semiconductors show Im(n) > 0 due to interband
absorption that creates excess charge carriers (electrons in the con-
duction band and holes in the valence band). The absorption
occurs for λ < λbg, whereas for λ > λbg, semiconductors behave as
high refractive index insulators. The absorption gives rise to a
wavelength-dependent absorption length for light entering a planar
semiconductor sample, which can range from a few nanometers to
hundreds of micrometers or more (depending on the choice of the
semiconductor material). (4) Metals show a response that corre-
sponds to a small Re(n) and a high Im(n). In this case, light that
enters a planar metal sample shows exponential decay, but in

contrast to semiconductors, this exponential decay is not associated
predominantly with absorption. Instead, strong reflection occurs.

IV. GEOMETRIES FOR NANOPHOTONICS

In this Tutorial, together with the refractive index discussed in
Sec. III, the geometry of the system at hand defines its optical
response for given incident light or for emission from a given
position in the system. Therefore, we give below a brief overview
of some of the geometries popularly used in nanophotonics (see
Fig. 5 for example schematics). In connection to describing the
geometry, we give examples of some of the possible optical
responses arising due to the geometry. We give more detailed
examples of applications in Sec. V. For the geometries, we make a
distinction between (a finite number of ) nanoparticles and large-
area structures (that could consist, in principle, of an arrange-
ment of nanoparticles). Notably, both types of structures can give
rise to geometry-tunable colors but due to different type of nano-
photonic effects.40

A. Nanoparticles

Nanoparticles refer, in general, to arbitrarily shaped structures
that are small compared to the considered wavelength of light.
There are arguably two distinctions that can be made considering
nanoparticles: whether the nanoparticles are metallic (plasmonic)
or dielectric and whether a single particle [see Fig. 5(a)] or an
arrangement of particles [e.g., an oligomer with a few particles; see
Figs. 5(b) and 5(c)] are considered. These considerations have
important implications on the physics, applications, and the choice
of simulation methods. Note that the following notions of dielectric
nanoparticles mostly apply to semiconductor nanoparticles as well.

1. Single nanoparticles

In metallic nanoparticles, collective oscillations of the free
conduction electrons can be considered plasmons, i.e., quasiparti-
cles and quanta of these oscillations at well-defined frequencies
that depend on the geometry and the choice of metal.42 Due to
the subwavelength scale of a single metallic nanoparticle, the
nanoparticle supports localized surface plasmons (LSP) in which
the plasma oscillations extend across the entire particle. It is possi-
ble to excite a LSP with an incident light field when its frequency
matches that of the oscillation. In a simplified picture, the cou-
pling takes place such that the electric field of the incident light
exerts a force that collectively displaces the conduction electrons
while the exposed positively charged lattice of ionic cores provides
a counter force that pulls the electrons back, thus creating a
system akin to driving a damped mass-on-a-spring oscillator.
Even such a simple model has found use in describing LSPs. In
general, the LSP oscillations are inherently lossy as their energy
dissipates to scattered electromagnetic fields and to heat [since Im
(ε) > 0 for any real, that is, non-perfect, metal].42 In the case
where the diameter of the metal nanoparticle is much smaller
than the wavelength of light, the wavelength position of the LSP
resonance is independent of the diameter of the nanoparticle and
given by an electrostatic solution [see Fig. 6(a)].42
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LSP resonances in metallic nanoparticles exhibit two effects
that are particularly relevant for applications. First, LSPs have a
maximum optical extinction at the resonance frequency with an
optical extinction cross section41 that can be much larger than the
geometrical cross section of the nanoparticle. Second, LSP resonan-
ces tend to focus the electromagnetic field close to the nanoparticle
surface creating an electrical near-field with greatly enhanced field
strength. Stronger and sharper resonances, as quantified by the
so-called plasmonic quality factor, enhance both the extinction cross
section and near-field strength. The LSP resonances depend on the

properties of the nanoparticle itself, including size, shape, and mate-
rial(s), as well as the dielectric environment and coupling to excita-
tions of other nearby structures. It should also be noted that,
depending on the nanoparticle size, some additional factors may
need to be taken into account. For example, with large enough nano-
particle diameter, as compared to the wavelength of light, the LSP
resonances redshift and may become multipolar and, with small
enough nanoparticles, quantum effects may become prominent.42

Dielectric nanoparticles, on the other hand, can exhibit
electric- as well as magnetic-type response of comparable strength

FIG. 5. Schematics of (a) a nanoparticle, (b) a nanoparticle dimer, (c) a nanoparticle tetramer, (d) a nanowire array, (e) a 1D grating, and (f ) a planar optical stack.

FIG. 6. Scattering efficiency Qsca for varying diameter D of (a) an Au sphere and (b) a Si sphere in a surrounding of nsur ¼ 1:5. The calculations were performed with
the Mie theory41 for an incident plane wave using the refractive index of Au from Ref. 34 and Si from Ref. 35 for the refractive index nsph of the sphere. Note that
Qsca ¼ Psca/(IincAcs) ¼ Psca/(IincπD2/4) with Psca being the power scattered by the particle, Iinc being the incident intensity of the plane wave, and Acs being the cross-
sectional area of the sphere. In (a), the LSP resonance settles toward a constant wavelength λLSP,small�D with decreasing D. This wavelength is obtained by solving from
the condition Re(εsph(λLSP,small�D)) ¼ �2εsur (λLSP,small�D), which occurs at λLSP,small�D ¼ 529 nm for the Au sphere in the surrounding of n ¼ 1:5.42
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and a much smaller energy dissipation to heat than in metallic
nanoparticles [with no dissipation if we use Im(n) = 0 for the nano-
particle material in the modeling]. The magnetic-type response can
be understood to arise from the coupling of the incident electric
field to circular displacement currents inside the particle. The reso-
nance conditions for the electric and magnetic response can also
have a different dependence on the nanoparticle geometry and,
therefore, the resonances can be tuned separately.43 In contrast to
the LSP resonance in the above metallic nanoparticles, in dielectric
nanoparticles, the resonance wavelength blueshifts continuously
with decreasing diameter [see Fig. 6(b) for an example of a Si
sphere].41 If the dielectric or semiconductor is either non-absorbing
or weakly absorbing in the wavelength range considered, essentially
all of the energy in the incident electromagnetic field coupling to
the nanoparticle will be re-radiated (scattered). Dielectric nanopar-
ticles can also support resonant modes, which concentrate the
fields inside the particle, which can be useful for absorption or
nonlinear optics applications, such as third-harmonic generation.44

2. Nanoparticle oligomers

Nanoparticle oligomers (“oligo-” meaning “a few” in Greek)
refer to arrangements of a few separate nanoparticles. The sim-
plest oligomer is a dimer, i.e., two nanoparticles close to each
other. Arrangements with more than two nanoparticles are
usually regular rather than random. A typical example would be
nanoparticles arranged at the vertices of a regular polygon or dis-
tributed along the circumference of a circle, possibly with an addi-
tional nanoparticle at the center. The nanoparticles also need not

be similar and can exhibit different shapes and sizes or even dif-
ferent materials.

The collective excitations in oligomers can be thought to arise
from the coupling of the excitations in each individual nanoparticle
in analogy to the formation of molecular electronic orbitals from
the valence electron wave functions of the individual atoms. Still
following this analogy, the individual nanoparticle eigenmodes
form symmetric and antisymmetric combinations, which hybridize
to collective eigenmodes with increased or reduced eigenenergy for
antibonding or bonding configuration, respectively.45 The coupling
strength is affected by the nanoparticle separation such that the
coupling is stronger for smaller gaps between the particles and
becomes negligible with a large enough separation. Therefore, the
particle separation becomes an important extra design factor in
addition to the properties of the particles themselves. In plasmonic
nanoparticle oligomers, the LSP resonances couple to form collec-
tive resonant modes, and with close spacing (typically less than a
few tens of nanometers), they tend to exhibit strongly enhanced
electric fields in the gaps between the particles (see Fig. 7),46 with
the possibility of coupling also with resonances of the substrate.47

The collective coupled resonances in dielectric nanoparticle oligo-
mers, on the other hand, can exhibit strong magnetic hotspots in
the gaps between particles.43 However, the resonances can alterna-
tively concentrate the fields inside the dielectric nanoparticles, in
which case the coupling does not show such a strong dependence
on the particle separation.48

The interaction of different resonances in nanoparticle oligo-
mers can result in the so-called Fano resonances. Fano resonances
are actually a more general concept, but in the context of optics,
they arise due to the interference between an excited narrower

FIG. 7. (a) Electric field at the middle of the gap between two Au nanoparticles of 140 nm in diameter, separated by a gap of 10 nm, in a surrounding medium of n = 1.
The axis of the dimer is in the x direction, and an x-polarized plane wave with |Einc| = 1 V/m is incident along the z direction. (b) The electric field in the x–z plane through
the center axis of the dimer in (a) at λ = 680 nm [that is, the peak in (a)]. The simulations were performed with FEM using the refractive index of Au from Ref. 34.
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resonance and a broader resonant or nonresonant excitation in a
nanostructure.49 For example, a resonant magnetic dipole in a
central, smaller Si nanoparticle interfering with the nonresonant
background of the other Si nanoparticles in an oligomer can show a
Fano resonance.48 Similarly, the interference between super and sub-
radiant modes in a plasmonic oligomer with in- and out-of-phase
oscillations of the LSP resonance in the central nanoparticle can lead
to Fano resonances.46 Fano resonances are seen as features with a
characteristic shape in the far-field spectra of absorption, transmis-
sion, or scattering.49 It should be noted that there are also other reso-
nant phenomena that can lead to similar spectral responses. The
proper distinction between several such phenomena and Fano reso-
nances has been recently addressed by Limonov et al.49 It should also
be noted that Fano resonances can occur in single nanoparticles as
well.43

B. Large-area structures

Other common geometries employed in nanophotonics can
often have a large, or theoretically infinite, extent even if they
exhibit local nanostructuring with features smaller or comparable
to the relevant wavelength of light. We restrict the following discus-
sion to concern planar structures, which still covers a large scope of
important applications.

1. Planar optical stack

The simplest case of large-area structures, beyond that of the
single top-interface of a bulk sample, is that of a stack of planar
layers with thicknesses comparable to or smaller than the wave-
length of incident light, infinite transverse extent in the in-plane
direction, and located in between two semi-infinite half spaces [see

Fig. 5(f )]. In this type of structure, all interfaces are planar and par-
allel, in which case plane wave incidence allows for analytical treat-
ment.17 Importantly, only a single reflected and transmitted plane
wave exists—and inside the optical stack, just a pair of forward and
backward propagating plane waves exist in each layer. While obvi-
ously neither plane waves nor transversely infinite interfaces actu-
ally exist, this is a good enough approximation for most practical
cases. Furthermore, other types of incident fields can be expressed
as a series or integral expansion of plane wave components.22

2. Gratings

Gratings are essentially planar periodic structures where the
period is roughly comparable to the wavelength of light (applica-
tions of gratings are discussed in Sec. V A). One-dimensional (1D)
gratings consist, for example, of parallel ridges (or corrugations)
[see Fig. 5(e)], while two-dimensional (2D) gratings constitute, for
example, of crossed ridges or a 2D array of nanoparticles [similarly
to the nanowire array in Fig. 5(d)]. In theory, gratings have an infi-
nite extent in the in-plane direction, which greatly facilitates their
analytical or numerical treatment. When analyzing the properties
of periodic structures, it is sufficient to consider just a single unit
cell, i.e., a smaller part of the structure with which the complete
structure can be constructed via periodic repetition. This is also a
good enough approximation for finite structures as long as the
impinging field extends over many periods of the grating such that
any edge effects due to the finite extent become negligible. The
parameters of a grating affecting its function and performance are
basically the shape and dimensions of the repeating structures, the
periodicity, and the materials involved. Both dielectric and metallic
grating structures have been used, depending on the application.

FIG. 8. (a) Schematic of a 1D SiO2 grating with air on top. (b) Reflectance of the array in (a) for a period of P = 500 nm and grating lines with 250 nm width and 350 nm
height. The incidence angle is θinc ¼ 30� and we consider TM polarization (the incidence plane is perpendicular to the grating lines, that is, we consider winc ¼ 0). The
simulations were performed with FMM using the refractive index of SiO2 from Ref. 32. Here, we show also the intensity carried by the 0th and −1st diffraction orders (here
we denote Rmx ,my with Rmx since my ¼ 0 in this system that has translational invariance in the y direction), which are the only propagating diffraction orders on the reflec-
tion side in this wavelength range. The minor kink around λ = 976 nm corresponds to the wavelength where the −1st diffraction order in transmission becomes evanescent.
In transmission, the +1st and −2nd diffraction orders become evanescent at λ = 482 and λ = 491 nm, respectively, and we find kinks also in that wavelength region in the
reflectance curves.
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Furthermore, with 1D gratings, whether the polarization of an
impinging field is parallel or perpendicular to the direction of peri-
odicity makes a significant difference in the interaction.

Diffraction gratings operate based on the diffraction of the
impinging light field (i.e., via scattering and interference) and can
direct the light to certain modes, the so-called diffraction orders (or
Floquet modes), in transmission or reflection (see Fig. 8). Let us
denote the refractive index on the incidence side as ninc(λ) and on
the transmission side as ntr(λ) (here assumed real-valued, but the
discussion and derivation can be generalized to an absorbing sub-
strate on the transmission side). We assume that the array has the
period px (py) along the x (y) direction. Next, we consider light that
is incident from a direction given by the angles θinc and winc. Then,
the incident k-vector has magnitude kinc(λ) ¼ k0ninc(λ) ¼ 2π

λ ninc(λ),
x-component kinc,x(λ) ¼ sin(θinc)cos(winc)kinc(λ), and y-component
kinc,y(λ) ¼ sin(θinc)sin(winc)kinc(λ). By Bloch’s theorem, the allowed
values for the in-plane k-vector in the system are given by
kx,mx (λ) ¼ kinc,x(λ)þ 2πmx/px and ky,my (λ) ¼ kinc,y(λ)þ 2πmx/py ,
where mx and my are integers. These allowed k-vectors correspond to
diffraction orders, that is, plane waves, in the homogenous incidence
and transmission side. The propagation direction of the (mx , my) dif-
fraction order can be calculated by first calculating its z-component:

kz,mx ,my ,R(T)(λ) ¼ ((k0ninc(tr)(λ))
2 � (kx,mx (λ))

2 � (ky,my (λ))
2)

1/2
. If

kz,mx ,my ,R(T)(λ) turns out imaginary-valued, we are considering an
evanescent diffraction order that decays exponentially away from
the grating. In contrast, if kz,mx ,my ,R(T)(λ) is real-valued, we are
considering a diffraction order that carries energy away from the
grating region. The angle at which such a diffraction order prop-
agates can be calculated from θmx ,my ,R(T) ¼ arctan(((kx,mx (λ))

2

þ (ky,my (λ))
2)1/2/kz,mx ,my ,R(T)(λ)]) and wmx ,my ,R(T) ¼ arctan2(ky,my (λ),

kx,mx (λ)). With increasing wavelength, each diffraction order,
except the one with mx ¼ my ¼ 0, transforms from propagating
to evanescent type. The wavelength at which this transformation
occurs is obtained by solving for λ from kz,mx ,my ,R(T)(λ) ¼ 0. For
the propagating diffraction orders, we can calculate the intensity
Rmx ,my (or Tmx ,my ) carried by each mode, that is, the diffraction
efficiencies (and each diffraction order can be separated into a
TE and TM component with respect to the propagation plane of
the diffraction order).20

3. Photonic crystals

Photonic crystals are, in the widest sense, structures with a spa-
tially periodic refractive index (the periodicity can occur in one, two,
or three directions), and they tend to operate in the region where the
wavelength of light is comparable with this periodicity.50 For example,
a 1D photonic crystal could be a stack of planar layers, a 2D photonic
crystal could constitute of parallel pillars (or holes) arranged in a 2D
transverse lattice embedded in a medium, and a three-dimensional
(3D) photonic crystal could constitute of identical inclusions arranged
in a 3D lattice embedded in a medium. Typically, the refractive
indices involved are real-valued or have a very small imaginary part at
optical frequencies, i.e., the materials exhibit negligible optical losses.

The key phenomenon in photonic crystals is the formation of
a photonic band structure and accompanying photonic bandgaps,

i.e., frequency bands for which there exist no solutions for propa-
gating modes in the photonic crystal. A photonic bandgap can be
thought to essentially arise due to Bragg scattering, i.e., due to
destructive interference between field components scattered by the
periodic structure (similar to the electronic band structure of
solids, as arising from the Schrödinger equation). It is of note that
the bandgaps only apply for the directions where the photonic
crystal exhibits periodicity, and, therefore, 1D and 2D photonic
crystals may still support modes with propagation perpendicular
to the lattice direction and plane, respectively. Furthermore, with
2D and 3D photonic crystals, there can also exist directional pho-
tonic bandgaps, in which propagating modes are forbidden for
some directions and allowed for others (again, only considering
directions in the plane of periodicity for 2D photonic crystals).
Notably, for an emitter in a 3D photonic bandgap, with its emis-
sion frequency within a 3D photonic bandgap of the photonic
crystal, inhibited radiative decay occurs due to the lack of available
radiative states for the decay.51

Another interesting phenomenon called slow light also
occurs in photonic crystals and results from the dispersion of the
photonic bands. The propagation speed of a light pulse envelope
is given by the group velocity (vg), obtained as the first order
derivative of the dispersion (vg = dω/dk), which converges to very
low values near the edges of the bands at the photonic bandgap.
However, the extent and usefulness of this phenomenon tends to
be limited by a trade-off with bandwidth and distortion from
higher order dispersion. Nevertheless, the slow light effect in pho-
tonic crystals could find applications, e.g., in lasers and optical
amplifiers due to the enhanced effective interaction length or as
buffers in optical computation.52 For a more detailed introduction
to the physics of photonic crystals, including photonic bandgaps
and slow light effects, the readers are referred to the various text-
books written on the subject, including that of Ref. 50.

4. Aperiodic structures

The term aperiodic structure is used here to refer to a set of
structures that lacks periodicity throughout their extent, i.e., includ-
ing random or quasi-random, deterministic aperiodic, and piece-
wise periodic structures. An example of random structures would
be an array of semiconductor nanowires grown on a substrate via
randomly dispersed Au nanoparticles or a rough randomly etched
surface with transverse feature sizes much smaller than the wave-
length [like in black-Si;53 see Fig. 1(b)]. Alternatively, a surface
defined through colloidal hole-mask self-assembly lithographic pat-
terning yields typically a structure with short range order and a
varying degree of long range order.54 Deterministic aperiodic struc-
tures, on the other hand, include fractal patterns and other ordered
but not periodic arrangements.

Random structures exhibit some interesting effects related to
light scattering, which can be exploited in certain applications. For
example, scattering in sufficiently dense random structures can lead
to Anderson localization of the light field.55 In essence, this localiza-
tion is the result of closed scattering paths with constructive interfer-
ence becoming more likely than diffusive scattering out of the
structure when the scattering mean free path is sufficiently small
(upon reaching this condition, the system makes a transition from
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diffusive transport to localized states). Such field localization effects
have been exploited in, e.g., random lasers where they provide the
feedback mechanism to reach sufficient gain for lasing.56

V. EXAMPLES OF APPLICATIONS

To illustrate the prospect of nanophotonics, we give an over-
view of a few selected applications, as well as some of the specific
optical effects arising in these cases. We start with the optics of
gratings and anti-reflection coatings, continue with nano-antennas,
nano-resonators, and single-photon sources, then move to opto-
electronic applications highlighting nanophotonic aspects of LEDs
and solar cells, and end with thermophotonics (TPX) for electrolu-
minescent cooling.

A. Gratings and diffractive optics

In the past several decades, diffraction gratings with differ-
ent periods have found extensive use in diverse areas. In this
context, it has become critical to accurately predict the diffrac-
tion efficiencies of the propagating diffraction orders of differ-
ent types of gratings (see Fig. 8 for examples of the diffraction
orders). If the grating period is far larger than the wavelength
of light, one can usually model the grating as a thin complex-
amplitude-modulating screen. In such circumstances, it is possi-
ble to employ simple scalar methods consistent with Fourier
optics57 to predict the efficiencies. 2D diffractive gratings can
also be designed to operate as various optical elements,58 such as
polarizers and wave-plates.

When the grating period approaches the wavelength of light,
the diffraction efficiencies become polarization-dependent, neces-
sitating the use of electromagnetic theory.59–61 In this so-called

resonance domain, only a few orders propagate (others being eva-
nescent), and several new features appear in the efficiency curves,
which can only be predicted by an exact solution of the grating-
diffraction problem. The most prominent of these features are
anomalies caused by, e.g., plasmon excitation in linear metallic
gratings in TM polarization and guided-mode excitation in
coated dielectric gratings. These effects, which allow efficient cou-
pling of light into guided surface waves or modes of thin film
waveguides,62–64 show up as rapid variations in the efficiency
curves of propagating orders when either the illumination wave-
length or the angle of incidence is varied (see Fig. 9).

By modulating the period of a grating as a function of posi-
tion, one can perform rather arbitrary wavefront transforma-
tions, such as conversion of a plane wave into a spherical wave
(diffractive lens) or shaping a Gaussian beam profile into some
more desirable form at a target plane. On the other hand, one
can modulate the internal structure of a single grating period to
form beam arrays with a desired distribution of intensities
among the beams. These are examples of diffractive elements.65,66

For example, grating couplers are designed to use diffraction to
couple modes propagating in a waveguide to freely propagating
modes or vice versa.

If all features in the diffraction structure have transverse
dimensions substantially larger than the wavelength, simple model-
ing based on the complex-transmittance approach are available. If
not, an exact electromagnetic analysis is required.67

B. Subwavelength structures and metamaterials

If the grating period is reduced sufficiently below the wave-
length, the grating equation dictates that only the zeroth reflected/

FIG. 9. (a) Schematics of a planar Si slab with a 2D grating of Si nanodisks on top. The arrows in the x–y plane inside the slab indicate the in-plane waveguide modes
whose excitation is enabled by the periodic nanopatterning. (b) Absorptance of normally incident x-polarized light. Here, the thickness of the Si slab is 300 nm, the period
of the nanodisk array is 400 nm, and the height of the nanodisks is 50 nm. The sharp peaks are assigned to excitation of in-plane waveguide modes, which enhance the
absorption. For comparison, we show also the corresponding absorptance of a 300 nm thick unpatterned Si slab, for which we see a smoother absorptance that is modu-
lated by the interference within the slab in the out-of-plane direction (that is, in the z direction). The simulations were performed with FMM using a 0.1 nm step in wave-
length with the refractive index of Si from Ref. 35 and SiO2 from Ref. 32 (see also Fig. 4 for the values used).
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transmitted orders propagate. In this subwavelength domain, the
grating behaves much as a thin film, but the structuring allows for
the realization of unusual optical properties.67 Even though simple
theories of effective media and form birefringence are available in
special cases, exact electromagnetic theory is generally required for
the analysis and design of such subwavelength structures (also
known as metasurfaces68 or, under certain conditions, also as 2D
photonics crystals).

Subwavelength structures can be either metallic or dielectric.
One example of dielectric structures is an anti-reflection layer con-
sisting of a subwavelength-period array of pillars or pyramids,
mimicking a moth’s eye.69 On the other hand, an inductive grid70

consisting of a subwavelength-period array of holes pierced in a
thin metal screen acts as a low-pass filter. Such a structure can,
near a resonant wavelength, transmit more light than one would
expect on purely geometrical arguments,71 up to 100% for a per-
fectly conducting screen.70

The concept of subwavelength area coding72 can be applied to
design binary structures that mimic the operation of any diffractive
surface-relief elements such as a diffractive lens.73 These structures
(sometimes referred to as metalenses)74 can be realized using a
number of different geometrical shapes, including pillars with cir-
cular or rectangular cross section.

In general, metamaterial structures essentially consist of
various arrangements (periodic or aperiodic) of nanoparticles or
nano-antennas. Among the notable applications of metasurfaces
is shaping and redirecting reflected or transmitted light fields in
order to either shrink conventional optical components (like
lenses) or to provide new functions.75–78 Metamaterials can be
designed to show a strongly anisotropic effective dielectric tensor
in a way that gives rise to hyperbolic dispersion for light in the
metamaterial.79 The hyperbolic dispersion can, for example,
strongly enhance the spontaneous emission from an emitter
within the metamaterial.79 Overall, metamaterials and their appli-
cations are a rather wide research field and a detailed discussion
goes beyond the scope here. For the interested readers, we recom-
mend Refs. 75–77 and 79–85.

C. Anti-reflection coatings or surfaces

The reflection of an incident plane wave at an interface between
two different materials is one of the most relevant optical effects in
many applications. The reflection can be described by the Fresnel
equations (see Sec. VI A 1 for details), which are a solution to the
Maxwell equations for a system consisting of a single planar interface
between materials of n1(λ) and n2(λ). At normal incidence, the
reflectance, that is, the fraction of incident intensity that is reflected,
is given by R(λ) = |n1(λ)− n2(λ)|

2/|n1(λ) + n2(λ)|
2. Therefore, for an

interface between air (with n = 1) and a typical semiconductor like Si
with n≈ 4 in the visible wavelength range, R = 36% for normally
incident light [see Figs. 10(b) and 10(c)].

Typically, we wish to minimize such reflections, which can be
done with anti-reflection coatings. An optimum anti-reflection
coating is broadband, omnidirectional, and polarization insensitive
and has a low cost and high stability. Anti-reflection coatings are
widely used for device and optical component production, for
example, in glasses, mirrors, camera lenses, solar cells, photodetec-
tors, LEDs, surface emitting lasers, flat panel displays, and in
optical sensing and imaging applications.86

The simplest way for reducing reflections is to use interfer-
ence within a thin film layer to suppress reflections. The thickness
of such a film is typically chosen to be λ/(4nARC)-thick to give a
destructive π phase shift to the reflected light (here, nARC is the
refractive index of the anti-reflection layer at the target wavelength
where R should be minimized). The drawback of such a single-
layer anti-reflection coating is that it shows a narrow bandwidth
and strong incidence angle dependence. With multi-layer anti-
reflection coatings, it is possible to increase the bandwidth and
reduce the sensitivity to incidence angle. However, finding materi-
als for multi-layer anti-reflection coatings can become demand-
ing, both with regard to available refractive indices and available
deposition methods.

Therefore, a promising path for anti-reflection coatings
enabled by nanophotonics is to use nanostructured arrays where
the filling factor of the high refractive index material increases

FIG. 10. (a) Schematics of a Si substrate with a Si nanopyramid patterning on the top surface. (b) Reflectance of normally incident light on the nanopyramid array. Here,
the period of the nanopyramid array is 300 nm. (c) Wavelength averaging of the results shown in (b). The simulations were performed with FEM using the refractive index
of Si from Ref. 35 (see also Fig. 4 for the values used). For a pyramid height of 1000 nm, the average reflectance is <0.2%.
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gradually when moving further into the anti-reflection coating
from the incidence side (see Fig. 10). Then, we can imagine the
anti-reflection coating to consist effectively of infinitely many thin
film layers with a gradually increasing refractive index. However,
for proper design, a solution for the Maxwell equations for the full
3D optics problem is needed since the anti-reflection coating works
in the diffraction optics regime, with a subwavelength unit cell.
Such structures, inspired by the moth’s eye,69 exhibit promising
broadband and quasi-omnidirectional antireflective properties.86

D. Nano-antennas

Nano-antennas can be understood as nanostructures that either
redirect energy from a local light field into an outgoing freely propa-
gating light field, i.e., act as transmitters, or redirect energy from an
incident freely propagating light field into fields inside local struc-
tures, i.e., act as receivers. At radio frequencies, antennas are metallic
structures with features proportional to the wavelength of the radia-
tion, and the whole antenna design can be scaled with the wave-
length. However, this scaling does not extend to optical frequencies,
since field penetration inside the metal, that is, the skin depth,
becomes comparable to the size of the nanostructures, which leads
to a complicated size-dependence in the optical response. Therefore,
nano-antennas employ novel geometries and can consist of metals,
dielectrics, semiconductors, or hybrids thereof.87

The performance of a transmitting antenna can be assessed by
the efficiency with which it extracts power from the local emitter and
by the directivity toward a receiver, i.e., the fraction of power that is
carried from the emitter by freely propagating modes toward the
receiver. Taken together, these two measures define the antenna gain.
For example, a semiconductor nanowire nano-antenna with a cylin-
drical shape and a sharp tip88,89 can funnel the spontaneous emission
from an embedded quantum dot emitter to a guided wave mode
along the nanowire and then out-couple this mode via the tip to a
freely propagating mode with a Gaussian far-field profile.
Furthermore, it has been suggested that the interference between elec-
tric and magnetic resonances in a nanoparticle nano-antenna can be
exploited to tune the antenna directivity when the light originates
from a nearby dipole emitter.90 A nano-antenna can also greatly
enhance the spontaneous emission rate of an emitter, which can
usually be attributed to the Purcell effect, thus improving the effi-
ciency by also increasing the radiated power and not just the efficiency
with which it is collected. For example, a metallic nano-antenna laid
across a rod-shaped piece of semiconductor acting as the emitter was
observed to enhance the spontaneous emission rate by an estimated
factor of 115.91 It could also be noted here that the performance of
such a transmitting metallic nano-antenna could also be analyzed in
the framework of an equivalent electric circuit model.91

A receiving nano-antenna, on the other hand, couples the
incident light field to strong, localized fields. As mentioned in Sec.
IV A, plasmonic nanoparticles and oligomers can effectively trans-
fer energy from an incident field to strong, highly localized electric
fields, while dielectric or semiconductor nanoparticles and oligo-
mers are more suited to transferring energy to localized magnetic
fields. For example, in Ref. 92, an Au nano-antenna was used to
concentrate IR light to a deeply subwavelength active volume of Ge
to form a functional photodetector.

E. Resonator cavities

Compared to the nano-antennas in Sec. V D, which optimize
coupling between radiation and local light fields, resonator cavities
are instead designed to confine light. Nanoscale resonator cavities
can be nanostructures with a simple geometry such as a sphere,
disk, ring, or more specific as toroidal, tubular (including capillary
and bottleneck resonators), or microbubble, designed to confine
light to a small spatial volume of subwavelength in extent (see, for
example, Ref. 93).

The, arguably, simplest cavity structure is a Fabry–Pérot reso-
nator consisting of two highly reflecting mirrors that are placed
parallel to each other at some distance (see Fig. 11). The light
travels in the cavity and reflects from the mirrors, producing a reso-
nant standing optical wave. The constructive and destructive inter-
ference of the reflected waves determine the transmission maxima
and minima that are affected by the optical path length within the
cavity (see Fig. 11). The cavity performance is determined by the
following parameters: the finesse F (proportional to the number of
interfering beams within the cavity) and the quality factor Q (the
ratio of the stored energy to the energy dissipated per radian of the
oscillation). Both parameters can be improved by changing the
reflectivity of the mirrors. Additionally, the Q factor can be modi-
fied by changing the cavity length. The resonator has found many
applications, particularly in lasers where one of the mirrors is char-
acterized by a slightly higher transmission in order to guide radia-
tion into one specific direction. High-Q laser resonators can be
used for obtaining laser output with a very narrow linewidth.

High-Q dielectric resonators, like microrings and photonic
crystal micro-cavities, are enabling the use of microphotonic cir-
cuits for telecommunications and fundamental research, such as
filtering, sensing, nonlinear interaction, lasers, quantum optics,
and metrology.94 In Ref. 95, optical cavities have been summar-
ized and categorized into two groups: standing-wave cavities and
traveling-wave cavities. The photonic crystal cavity and distribu-
ted feedback cavity are considered standing-wave cavities while
the ring cavity is a typical example of a traveling-wave cavity. In
Ref. 96, a review is given of optical resonators based on whisper-
ing gallery modes, which are a type of traveling waves. This type
of resonators is typically characterized with a high Q factor and,
consequently, has low losses.

F. Single-photon sources

The controlled emission of single photons can be applied for
many applications, such as quantum communication, cryptogra-
phy, computation, detecting, sensing, non-classical light sources,
quantum metrology, and accurate measurements.97,98 A single-
photon source is expected to be mechanically robust, have single-
photon purity, indistinguishability, high efficiency, high brightness
(that is, high maximum single-photon emission rate), ease of fabri-
cation, and cover through proper design as wide of a wavelength
range as possible.98

Nowadays, there are many available quantum systems that
are suitable for single-photon emitters, although the most prom-
ising is typically considered to be a solid-state single-photon
source based on an artificial atom embedded into a system that
geometrically will support and control the propagation, direction,
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and polarization of the light.97,98 For such control, for example,
micropillar cavities, circular dielectric gratings, photonic crystal
cavities, and microlenses have been considered.99 As an example
from nanophotonics, semiconductor nanowires with an embed-
ded quantum dot single-photon emitter show great potential for
single-photon source applications due to the nanowires’ inherent
waveguide properties, leading to efficient light coupling, high
directivity, and polarizability of the emitted light.98 Optimization
of such properties defines a challenging design problem in nano-
photonics modeling.100 In such modeling, the single-photon
emitter can typically be considered a classical dipole emitter,
which captures the most important optical aspects, such as the
Purcell effect, coupling of the single-photon emitter into varying
optical modes, and emission directionality.98

G. LEDs

LEDs are driven by electroluminescence, where excess elec-
trons and holes are supplied to the active region of a semiconduc-
tor (a p–n junction or, more commonly, a quantum well) by an
external electric source. The excess electrons and holes subse-
quently recombine, leading to the emission of photons. As com-
pared to the spatially localized point-like emitter in single-photon
sources in Sec. V F, in an LED, the emitter region is typically of
larger spatial extent (area) to allow for larger output intensity.
The range of possible applications for LEDs is broad, e.g., general
illumination, different types of displays, short-haul communica-
tions, optoelectronic computer interconnects, and even solid-state
cooling.101,102

For accurate electro-optical modeling of LEDs, accounting
for coupled electron–hole transport should be performed to
include effects, for example, from (i) the injection of charge car-
riers to the active region to induce net radiative recombination

and (ii) non-radiative recombination through the Shockley–
Read–Hall (SRH) recombination in the active region, at sidewalls,
and at other interfaces, and (iii) Auger recombination at high injec-
tion level,29,103,104 in addition to radiative recombination processes.
However, much of the LED design can be performed with purely
optical modeling, which predicts the Purcell factor, the extraction
efficiency of internally emitted photons, the amount of parasitic
absorption of emitted photons, and emission directionality and
polarization to the free space outside the LED.29 Reduced non-
radiative recombination, increase of radiative recombination rate,
and increased extraction efficiency are the guiding direction for
higher performance LEDs.105 The external quantum efficiency
(EQE) of an LED becomes an important optimization parameter.
The EQE can be expressed as a product of the IQE and the extrac-
tion efficiency.106 The EQE shows the probability that an injected
electrical charge carrier results in the emission of photons to the
exterior of the LED. In the typical case where a recombination event
can give rise to maximally one emitted photon, EQE < 100%, while
for some tailored systems, EQE > 100% is predicted.107

In Ref. 108, the influence of adopting anti-reflection coatings for
LEDs has been highlighted. However, even with a perfect anti-
reflection coating, the high refractive index of the semiconductor in the
LED active region limits severely the size of the escape cone through
which internally emitted photons can be extracted from a planar LED.
For a typical semiconductor, only 4% of the internally emitted photons
are within the escape cone, the rest experiencing total internal reflec-
tion. The potential of increasing the LED extraction efficiency by using
photonic crystals was highlighted in Ref. 108. Also, dielectric gratings
have been used to improve the light extraction from LEDs.109 In both
cases, the nanostructures circumvent, thanks to diffraction effects, the
limited escape cone of the corresponding planar structure. On the
other hand, metallic gratings can significantly enhance the emission
rate (via the Purcell effect) for emitters close enough to the grating by

FIG. 11. (a) Schematics of a Fabry–Pérot cavity consisting of a SiO2 layer of thickness tSiO2 between two Au mirrors of thickness tAu on top of a SiO2 substrate. The
arrows inside the cavity indicate the counter-propagating plane waves inside the cavity. (b) The transmittance of normally incident light through the cavity in (a) for
tAu = 10 nm, simulated with FMM using the refractive index of Au from Ref. 34 and SiO2 from Ref. 32 (see also Fig. 4 for the refractive index values used).
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allowing the emitter to couple to surface plasmon modes.110 At the
same time, the grating structure can efficiently scatter light from the
surface plasmon modes to freely propagating modes outside the LED,
increasing the extraction efficiency. Unfortunately, parasitic absorption
losses introduced by the metal tend to limit the overall LED efficiency
enhancement attainable with such metallic gratings.111

Thus, nanophotonics offers for LEDs the prospect of increased
IQE (through the Purcell effect), enhanced extraction of emitted
photons, and built-in shaping of the output directionality and polari-
zation without the need for bulky external optical components.

H. Solar cells

Solar cells provided by the end of year 2019 almost 3% of the
world electricity demand, with an increase in installed capacity by
an impressive factor of 30 since the year 2009.112 This clean source
of energy is predicted to continue its growth in the coming years,
and any improvements on solar cell design and performance are
expected to have a large impact on the global society.

A solar cell can be considered the reciprocal of an LED. In
a solar cell, incident light creates excess charge carriers that are
extracted from the device as an electric current, in contrast to
the LED where excess carriers are electrically injected to the
device to result in emission of light out from the device.
Currently, a record efficiency of 47.1% has been shown in a solar
cell consisting of six III-V compound semiconductor subcells
stacked on top of each other in a tandem configuration.113 The
market-dominating single-junction Si solar cell technology has
demonstrated laboratory cells with an efficiency above 26%.114

Nanophotonics offers prospects to enhance solar cells, for
example, through (1) nanostructured anti-reflection coatings,86

(2) nanophotonic light trapping to reduce the absorber thick-
ness,115 and (3) nanostructured absorber region to open up for
new materials configurations.116

By modifying the surface of a solar cell to enhance total internal
reflection of the entering light, the optical path length of the light
inside the active layer can be increased, and consequently the absorp-
tion is enhanced.117 In a ray optics description, such light-trapping
scheme gives an absorption enhancement by up to a factor of 4n2

for an active region of a refractive index n.115,117 In the nanophoton-
ics regime, varying geometry arrangements show promise for beating
this conventional light-trapping limit, including, e.g., 1D periodic
semiconductor or dielectric structures, 2D diffraction gratings and
photonic crystals, plasmonic structures, nanowires, and randomly
structured semiconductor surfaces.115,118,119

As an example of using nanostructuring for the whole
absorber region, in 2009, it was shown that a single semiconductor
nanowire could be used to strongly alter the absorption of light.120

By designing the diameter of the horizontal nanowire, analytically
predicted absorption resonances through leaky-mode resonances
were also found in measurements.120

Such single-nanowire absorption resonances are promising
for solar cells and photodetectors.120–122 In parallel, for large-
area solar cells and photodetectors, nanowire arrays gained
interest.4,89,123–128,129–134 For example, already in 2013, a semicon-
ductor nanowire array solar cell, consisting of 4 × 106 vertical
nanowires connected in parallel [see Fig. 1(d)], demonstrated an

efficiency of 13.8%,4 thanks to enhanced absorption through
guided modes in the nanowires.126,135

I. Electroluminescent cooling and thermophotonics

Contrary to widespread belief, the application of LEDs is not
limited to solid-state lighting. In fact, LEDs are thermodynamic
machines that can also be used for solid-state cooling102 when an
LED breaks the unity wall-plug efficiency (WPE) barrier.136 LED
refrigeration is enabled by a phenomenon referred to as electrolumi-
nescent cooling,136 which is experienced by an electrically biased
LED when the extracted optical power is higher than the input elec-
trical power, corresponding to an above-unity electricity-to-light
conversion efficiency (i.e., WPE > 1). The cooling originates from the
capability of semiconductor materials, such as GaAs, to maintain an
electronic excitation that enhances the spontaneous emission beyond
its thermal value. In a semiconductor LED, with an excitation energy
qUb (Ub being the LED bias voltage), photons with an average
energy≈ Ebg + kBT are emitted, even if qUb < Ebg. The remaining
energy is drawn from lattice heat (thermal energy≈ kBT, with kB the
Boltzmann constant and T the temperature), which thus has the
prospect of cooling.102 Then, WPE = EQE × (Ebg + kBT)/qUb can
exceed unity (the cooling threshold) for an appropriate combination
of the EQE (<100%) and bias (qUb < Ebg). At such a condition, the
amount of emitted optical energy exceeds the parasitic heating of the
LED, which is caused, e.g., by the non-radiative relaxation processes,
leading to cooling.

To fully harvest the potential of electroluminescent cooling, a
highly efficient LED can be included in a thermophotonic configura-
tion,136 where the emitted optical energy is recycled by an absorbing
photovoltaic device (we refrain from using the term solar cell here
since it is not sunlight incident on the device). Thermophotonics
(TPX) is the concept of harnessing the inseparable thermodynamics
of electroluminescence (superthermal emission) from LEDs and pho-
tovoltaic energy production. For electroluminescent cooling, TPX is
expected to boost the coefficient of performance to levels that are out
of reach for other competing or established technologies, such as pho-
toluminescent cooling or thermoelectricity.102 TPX provides an envi-
ronmentally friendly framework for cooling and energy production,
as it uses photons as the heat carriers to achieve solid-state cooling
(without employing harmful refrigerant substances) or generate elec-
trical power from waste heat, offering huge and new opportunities for
harvesting thermal energy from the abundant waste heat sources,
outside the original concept of solar energy harvesting.137 In these
devices, nanophotonics could play a crucial role, for example, in the
design and implementation of a vacuum nanogap layer between the
LED and the photovoltaic device. Such a layer would minimize con-
ventional lattice heat transfer (which counteracts the TPX operation)
but allows for efficient optical near-field heat energy transfer from the
LED to the photovoltaic device.102,137

VI. BRIEF DESCRIPTION OF SELECTED SIMULATION
METHODS

A. Analytical methods

The strength of analytical methods lies in their ability to give
exact results for the light scattering problem (in the form of exact
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solutions to the Maxwell equations). Therefore, analytical solu-
tions are excellent for validating the accuracy of numerical solu-
tions. Furthermore, analytical methods can give insights into the
underlying physics of the optical response, which can at times be
difficult to extract from fully numerical methods. However, ana-
lytical solutions exist only for a limited set of special (highly sym-
metric) geometries.

1. Single planar interface and thin film

For a plane wave incident on a planar interface at an angle θi
from the surface normal, the reflection and transmission of the plane
wave are also of plane wave form and given by well-known formulas.
The angle of reflection is simply equal to the angle of incidence
(θr ¼ θi), while the angle of transmission (θt) is given by Snell’s law,

ni sin(θi) ¼ nt sin(θt), (6)

where ni is the refractive index of the incident side medium and nt is
the refractive index of the transmission side medium. The reflection
and transmission coefficients, which relate the electric field of the
reflected and transmitted plane wave to that of the incident plane
wave, are given by the Fresnel formulas and depend on the polariza-
tion of the incident light (here, for simplicity, we assume materials
with real-valued refractive index; for the more general case of a
medium on the transmission side with complex-valued refractive
index, the readers are referred, for example, to Ref. 138),

rs ¼ ni cos(θi)� nt cos(θt)
ni cos(θi)þ nt cos(θt)

, (7)

ts ¼ 2ni cos(θi)
ni cos(θi)þ nt cos(θt)

, (8)

rp ¼ ni cos(θt)� nt cos(θi)
ni cos(θt)þ nt cos(θi)

, (9)

tp ¼ 2ni cos(θi)
ni cos(θt)þ nt cos(θi)

, (10)

where rs is the reflection coefficient for s-polarization, ts is the
transmission coefficient for s-polarization, rp is the reflection coef-
ficient for p-polarization, and tp is the transmission coefficient for

p-polarization. The reflectance is given by R ¼ jrj2 and for a non-
absorbing transmission side medium, the transmittance, that is,
the fraction of incident intensity that is transmitted, is given by
T ¼ nt cos(θt )

ni cos(θi)
jtj2 (see Ref. 139 for generalization to absorbing trans-

mission side medium).
In the case of a single layer, there are two planar interfaces at

which reflection and transmission of the field takes place. In addi-
tion to the initial reflection and transmission at the first interface,
the field inside the thin film, which is in the form of a plane wave,
experiences multiple (that is, infinitely many) reflections inside the
layer (with partial transmission out of the layer, with each trans-
mission contribution interfering with the previous contributions)
at the interfaces while phase delay accumulates during propagation

between the interfaces. As a result, summing the infinitely many
field components yields a geometric series, and the resulting reflec-
tion and transmission coefficient can actually be obtained analyti-
cally [see, e.g., Eqs. (7.1)–(8) in Ref. 17 for the resulting equations
and Eq. (S15) in supplementary information of Ref. 64 for an
example of such a derivation generalized for a single-layer grating).

2. Mie theory for spheres

For the thin film above, the translational invariance in the
in-plane direction guarantees plane wave solutions. Another
system of high symmetry is the sphere, for which the so-called
Mie theory, which in reality is a mathematical calculation method
rather than a theory, supplies solutions for the Maxwell equations
in terms of spherical harmonics.41,140 For an exact solution, infi-
nitely many such harmonics should be used, but in practice the
expansion is truncated at some large number of harmonics to
yield sufficient accuracy in the results. The Mie theory yields the
full solution to the Maxwell equations in terms of the spatially
resolved electric field around the particle as well as the polariza-
tion and angle dependent scattering to the far-field41,140 and
applies also for cylinders.41 Note that the well-known Rayleigh
scattering,141 which explains why small dielectric particles scatter
shorter wavelengths more efficiently than longer wavelengths,
follows from the Mie theory when D≪ λ (that is, the small-
diameter or alternatively long-wavelength limit), where electro-
statics applies for the analysis. Spherical harmonics are used also
in the numerical Waterman’s T-matrix approach for non-
spherical particles and composites of particles.142

B. Other analytical tools

1. Effective medium theory

Whereas the above analytical treatment of the thin film and
the Mie theory for the sphere yield solutions to the Maxwell equa-
tions, effective medium theory is a simplification to help the analy-
sis of optical response from nanostructures made of a multiphase
medium consisting of underlying materials mixed at the (deep)
subwavelength scale. Effective medium theory provides a descrip-
tion of the optical response of the multiphase medium starting
from the refractive indices and the fractions of the constituent
materials forming the multiphase material. The effective medium
theory results in an effective refractive index neff(λ) for the multi-
phase material, which can be used in the Maxwell equations for the
modeling of light scattering from the nanostructure.

Typically, in effective medium theories, retardation effects are
not taken into account, and the optical response is hence calculated
in the electrostatic limit [by assuming that inclusions of one mate-
rial into another surrounding host material are at the (deep) sub-
wavelength scale and randomly distributed]. This approximation
allows for simple analytical equations for calculating neff(λ).

143

Depending on the assumptions made for the type of inclusion, dif-
ferent effective medium theories like the Bruggeman and the
Maxwell–Garnett effective medium theory have been used.143

Indeed, we use implicitly an effective medium theory constantly
when using the n(r,λ) of bulk materials in the Maxwell equations:
n(r,λ) describes the effective material response from the underlying
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atomic nuclei and electrons at position r and wavelength λ (see
section 6.6 in Ref. 18).

Importantly, we could perform a full solution of the Maxwell
equations including the spatial distribution of the constituent mate-
rials. However, such a solution would require a very fine spatial res-
olution in the simulations, making the solution process numerically
heavy and possibly prohibitive, beyond available computational
resources. Also, if the inclusions are randomly distributed, we prob-
ably need ensemble averaging of modeled results from randomly
distributed inclusions. The use of the effective medium theory cir-
cumvents both these issues and allows us to focus on the resulting
diffraction effects from larger geometrical features of the nanostruc-
tures instead. However, we must be aware that we use the effective
medium theory for the underlying materials response and should
assess possible impact of it on the resulting optical response (for
example, by using several different effective medium theories to
assess how the choice of the theory affects the resulting optical
response of the nanostructures).

2. Lorentz reciprocity

Lorentz reciprocity can be used for relating results from the
scattering of an incident plane wave to the resulting emission from
a dipole emitter within the system. For example, with the reci-
procity, we can analyze the far-field emission from nanostructures
through scattering modeling,26 which can, depending on the
problem type, be more convenient to perform than actual dipole
emission modeling.

Let us consider the case of two dipole emitters, denoted as 1
and 2, located at positions r1 and r2 with dipole moments p1 and
p2. The electric field emitted by dipole 1 and 2 are denoted as E1(r)
and E2(r), respectively. The Lorentz reciprocity, which originates
from the Maxwell equations,144 states that E1(r2) ⋅ p2 = E2(r1) ⋅ p1.
Thus, Lorentz reciprocity can be used for analyzing how two emit-
ters couple to each other.

Importantly for the current nanophotonics modeling, by
moving emitter 2 toward infinity, the field emitted from dipole 2
toward dipole 1 or from dipole 1 toward dipole 2 resembles a plane
wave due to the large distance between the dipoles. Hence, we can
use this reciprocity to relate the far-field emission from dipole 1 to
a given emission angle (in a certain polarization state) to the local
electric field E2(r1) caused by a plane wave incident from that direc-
tion toward dipole 1 in the same polarization state (see supporting
information of Ref. 29).

Thus, with the Lorentz reciprocity, we can link scattering
and emission modeling, and it applies for any method that can
solve the Maxwell equations. For example, the electric field
induced by an incident plane wave in and around the nanostruc-
ture allows then to quantitatively assess how strongly a dipole
emits into that direction for varying dipole position. Similarly, the
emission from a dipole allows then to quantitatively assess how
strongly an incident plane wave couples to the position of the
dipole for varying incidence angle and polarization. Note that due
to the three orthogonal dipole moment orientations and the two
orthogonal polarization states of a plane wave, either three sepa-
rate emission simulations or two separate scattering simulations
are needed to fully employ the Lorentz reciprocity.

3. Near-to-far-field transformation

When modeling dipole emission with methods like the finite
element method (FEM) or finite-difference time-domain (FDTD)
method that yield the solution E(r,λ) of the electric field from the
dipole emitter in a finite simulation domain around the dipole
emitter, a near-to-far-field transformation (NFFT) is needed for
extracting information about the emission of light to far away from
the nanostructure. In the NFFT, the near-field solution E(r,λ) in
the vicinity of the nanostructure is propagated analytically toward
infinity, where it yields information of the far-field emission direc-
tionality and polarization. An extended solution for the NFFT has
been presented in Ref. 145, which can take into account a semi-
infinite substrate together with a stack of uniform layers (including
the case of no layers). Then, it is possible to obtain the far-field
pattern to the bottom (substrate) and top side, as well as the excita-
tion of possible guided modes along the layers (when one or more
layers are present).145

Note that the Purcell factor can be obtained directly from the
near-field solution E(r,λ), as described in Sec. II B, by integrating
the Poynting vector over a closed surface around the dipole (and
dividing by the emitted power from the same dipole but in a
homogeneous medium). Also, as discussed in Sec. VI B 2, we can
circumvent the need of the NFFT by obtaining the far-field emis-
sion characteristics from the corresponding scattering problem with
the Lorentz reciprocity. However, the Lorentz reciprocity does not
yield information about parasitic absorption of the emitted light,
which is readily available from the near-field solution (by integrat-
ing the spatially resolved absorption in the parasitically absorbing
region) when modeling with the dipole emitter in the system.

C. Numerical methods

When analytical methods are not available, for example, due
to complex geometry, we turn to numerical methods to obtain an
approximate solution to the Maxwell equations. Below, we discuss
some of the most popular methods employed in nanophotonics
and give brief details of their most important technical aspects. The
readers are referred to the cited references for additional technical
details and numerical implementation of the methods.

1. Transfer matrix method (TMM)

As discussed in Sec. VI A 1, the single thin film layer allows
for a closed-form analytical solution for the scattering of a plane
wave. With an increasing number of layers stacked on top of each
other, a similar closed-form solution becomes intractable. Also
with increasing number of layers, due to the translational invari-
ance in the x–y plane, only a single plane wave (that can propagate
forward and backward) shows up in each layer.

The transfer matrix method (TMM) allows for a systematic
analysis of an optical stack consisting of an arbitrary number of
layers (see p. 426–428 in Ref. 146). For illustration and discussion
purposes, we outline here a TMM implementation for the case of
non-absorbing materials and propagating waves in each layer (for
the more general case of decaying waves, due to absorption or total
internal reflection, within a system, the readers are referred, for
example, to Ref. 139).
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Let us consider a system consisting of N layers where layer j
has thickness dj and refractive index nj. We denote the incidence
side as the left side and the transmission side as the right side,
using subscripts L and R. On the incidence side, which we could
denote also as layer 0, we have refractive index nL and incidence
angle θL. The right side, which we could denote also as layer N + 1,
has refractive index nR.

For each layer, we consider the forward propagating plane
wave Eþ

j and the backward propagating plane wave E�
j . The electric

field solution within layer j can be obtained from the solution at
the left end of the layer, that is, at z ¼ zj, by propagating the fields
by the distance z � zj. Such propagation can be expressed in a
matrix form as

Eþ
j (z)

E�
j (z)

� �
¼ Pj(z)

Eþ
j (zj)

E�
j (zj)

� �
, (11)

where

Pj(z) ¼ exp(ikz,j(z � zj)) 0
0 exp(�ikz,j(z � zj))

� �
, (12)

with kz,j ¼ kj cos(θj) with kj ¼ 2πnj/λ. The angles within the layers
satisfy the relationship nL sin(θL) ¼ nj sin(θj).

The electric fields at the interface between layer j and j + 1 are
related through

Eþ
jþ1(z jþ1)

E�
jþ1(z jþ1)

� �
¼ D j,jþ1

Eþ
j (z jþ1)

E�
j (z jþ1)

� �
, (13)

where

D j,jþ1 ¼ (t j,jþ1t jþ1,j � r jþ1,jr j,jþ1)/t jþ1,j r jþ1,j/t jþ1,j

�r j,jþ1/t jþ1,j 1/t jþ1,j

� �
: (14)

Here, t j,jþ1 (r j,jþ1) is the Fresnel coefficient for transmission
(reflection) for the plane wave incident from layer j toward layer
j + 1. We solve for either s or p polarized incident light [note that
we use in the calculation of these coefficients the angles obtained
from the relationship nL sin(θL) ¼ nj sin(θj)].

We can then propagate through all the layers of the system,
via matrix multiplications, giving the transfer matrix Mtot for the
system,

Mtot ¼ DL,1P1(d1)D1,2 � � �D j�1,jPj(dj)D j,jþ1 � � �DN�1,NPN (dN )DN ,R,

(15)

where element-wise,

Mtot ¼ Mtot,11 Mtot,12

Mtot,21 Mtot,22

� �
: (16)

This transfer matrix relates the field at the right edge of the
incidence side to the fields at the left edge of the transmission

side by

Eþ
R

E�
R

� �
¼ Mtot

Eþ
L

E�
L

� �
: (17)

From the assumption that light is incident from the left, so that
E�
R¼0, we obtain

E�
L ¼�Mtot,21

Mtot,22
Eþ
L , (18)

Eþ
R¼ Mtot,11 �Mtot,12Mtot,21

Mtot,22

� �
Eþ
L , (19)

leading to the relationships r ¼ �Mtot,21

Mtot,22
and t ¼ Mtot,11

�Mtot,12Mtot,21

Mtot,22
with R ¼ jrj2 and T ¼ nR cos(θR)

nL cos(θL)
jtj2 (for the generaliza-

tion to the case of an absorbing substrate such that nR is
complex-valued, please see, for example, Ref. 139).

2. Fourier modal method (FMM)

The Fourier modal method (FMM), also known as the rig-
orous coupled-wave analysis (RCWA) method, can be seen as an
extension of the TMM to a case where the structure shows a
periodic variation in one or both of the in-plane directions
within a layer. With such periodicity, the optics is no longer
described by a forward and a backward propagating plane wave
in each layer as in the TMM. Instead, in each layer, infinitely
many optical eigenmodes show up, and modal in FMM refers to
the use of these eigenmodes as a basis for expanding the total
electric field.20 Each of these eigenmodes has a characteristic
propagation constant kαj for the direction through the layer.
Here, j denotes the layer, similarly as in the TMM description
above, and α denotes the αth mode in that layer. These modes
propagate with an exp(+ikαj z) dependence through the layer,
similar to the plane wave in TMM. Fourier in FMM refers to the
use of an underlying Fourier basis, that is, plane waves, in the x–
y plane onto which the Maxwell equations are projected, which
gives a matrix for each layer. After such a projection, the eigen-
modes in each layer are solved for from the corresponding
matrix (we solve for all the eigenmodes of the matrix). Hence,
the electromagnetic field Eα

j (x, y) [and accompanying Hα
j (x, y)]

of each eigenmode is expressed in terms of the underlying plane
wave basis. The number of considered eigenmodes is determined
by the number of plane waves used in the underlying expansion.
In other words, by choosing the truncation of that underlying
plane wave basis, we fix the size of the finite matrices, which
fixes the number of eigenmodes solved for and which in turn
affects the accuracy of the simulation. [Here we would like to
note the resemblance of FMM with the method of lines (MOL)
approach147 where, similarly, eigenmodes propagating along the
z direction are solved for and used for the solution of the full
scattering problem. However, in the MOL, instead of projecting
the Maxwell equations onto a plane wave basis, a finite-
difference scheme is used for numerically approximating the
derivatives in the two other directions.]

Journal of
Applied Physics TUTORIAL scitation.org/journal/jap

J. Appl. Phys. 129, 131102 (2021); doi: 10.1063/5.0041275 129, 131102-19

© Author(s) 2021

https://aip.scitation.org/journal/jap


Thus, in each layer, Cþ
j denotes the expansion coefficients of

the forward propagating modes and C�
j denotes the backward

propagating modes.20 By considering the continuity of Ex , Ey , Hx ,
and Hy at the interface between two layers (which fundamentally
follows from the source-free Maxwell equations), we link together
the expansions coefficients in adjacent layers (similarly as with
the Fresnel coefficients for the single plane wave in the TMM
with the D j,jþ1, but in FMM, we generalize for the multiple eigen-
modes present—see Eq. (20) in Ref. 20). Then, we could, in prin-
ciple, use a transfer matrix approach to connect the incident side
to the transmission side [similarly as in Eqs. (15)–(17)]. However,
in FMM, since we use an infinite set of eigenmodes (limited only
by the numerical truncation), the higher order modes become
increasingly evanescent, causing numerical issues due to overflow
in floating point precision when propagating the exp(�ikαj z) terms
through the respective layer [since we define Im(kαj ) . 0 for the
eigenmodes]. To circumvent such overflow, a scattering matrix
approach, where only terms with exp(ikαj z) show up in the actual
numerical evaluations in the implementation,20,148–150 can be
employed [see, for example, the notes after Eq. (25) in Ref. 20 for
implementing the numerical evaluations]. The use of such a scattering
matrix approach can make also the TMM numerically stable in a case
when exponentially decaying plane waves show up within the system
(either due to absorption or due to total internal reflection).

Note that FMM reduces in essence to TMM if the in-plane
corrugation in the system disappears. Formally, there is still an infi-
nite number of eigenmodes in FMM, now in the form of plane
waves, in each layer. However, the incident plane wave excites only
one eigenmode in each layer—the same single plane wave as in
TMM—and we can truncate the underlying plane wave basis in
FMM to that single plane wave without loss of accuracy.

In the FMM formulation, the refractive index in each of the
layers is assumed to vary only in the x and y directions [and the
z-invariance within each layer allows for the exp(+ikαj z) depen-
dence in the eigenmodes, which is crucial for the method]. With
the staircase approximation,151 FMM can be extended to cases
with slanted sidewalls of the nanostructure, like nanocones.21

Furthermore, in FMM, it is possible to include a dipole emitter by
inserting an artificial interface at the location of the dipole (thus
splitting the original layer into two new layers). At that added
interface, the continuity of Ex , Ey , Hx , and Hy between the two
new layers is modified in a way that corresponds to including the
dipole into the system.149

3. Finite element method (FEM)

In the finite element method (FEM), the simulation domain is
divided, using a meshing process, into finite elements, which are typi-
cally triangles in 2D simulations and tetrahedral volumes in 3D simu-
lations. In the simulation, the values for E(r) (in an electric field
formulation of the method) are obtained at the discrete nodes, that is,
vertices, of each element.21,152 Within each element, typically, a second
order polynomial is assumed as the shape function for the variation of
E(r), and the values for the polynomial are set by the values at the
nodes.21 Thus, FEM yields as solution the spatial variation of the elec-
tric field throughout the simulation domain. The magnetic field can
then be evaluated from the electric field using the Maxwell equations.

In the actual FEM simulation, the Maxwell equations are pro-
jected onto these finite elements with the help of the shape func-
tion. This results in a linear equation set that can be written in the
matrix form Ax = b. Here, x contains information about the electric
field values at the nodes of all finite elements, b contains informa-
tion about the boundary conditions, and A contains information
about the geometry and the materials forming the structure. Here,
we would like to note that a finite-difference frequency-domain
(FDFD) formulation153 gives rise to a similar equation system, high-
lighting the large difference to the FDTD formulation (see below)
where such linear equation sets do not show up.

In FMM and TMM, the outgoing radiation condition is ful-
filled naturally by semi-infinite superstrate and substrate regions
into which light can propagate (in the form of plane waves if
homogenous regions; otherwise in the form of more complicated
eigenmodes if 1D or 2D patterned superstrate or substrate regions
are considered in FMM) without backreflection. In FEM, a finite
simulation domain is considered, and unphysical backreflection of
outgoing radiation must be suppressed to avoid artifacts in the sim-
ulation. Typically, perfectly matched layers (PMLs) are used to sup-
press such backreflection artifacts. PMLs are artificial domains that
absorb incident waves, in practice giving the same result as radia-
tion into a domain extending to infinity.154

For emission modeling, a dipole can be included directly
within the simulation domain in FEM. Alternatively, the Lorentz
reciprocity (as discussed in Sec. VI B 2) can be readily used since
the E(r) at the location of the emitter, as induced by the incident
plane wave, is obtained directly from the solution process.26

4. Finite-difference time-domain (FDTD) method

As the name indicates, the finite-difference time-domain
(FDTD) method works in the time domain,155 whereas the above
methods typically work in the wavelength domain (that is, the fre-
quency domain). To solve the Maxwell equations for materials with
a response described by n(λ), a fitting of the refractive indices into
an analytical oscillator form, suitable for time-domain simulations, is
needed.21 In FDTD, the spatial derivatives in the Maxwell equations
are approximated with finite differences, and time is propagated
forward, typically with a leapfrog time-stepping scheme.156

In a typical FDTD scattering simulation, an incident pulse is
propagated toward the structure. To obtain wavelength-dependent
information, the fields are recorded at selected spatial positions
during the time-stepping and Fourier transformed to the wave-
length domain afterward. For example, to model the transmission
through a grating, the electromagnetic field through the x–y plane
just below the grating is recorded for each time step. Then, after the
propagation of the pulse is finished (such that a negligibly small
field strength exists in the simulation domain), the Fourier trans-
formation yields information of the wavelength-dependent trans-
mitted power. To obtain the transmittance, we normalize with the
wavelength-dependent intensity within the incident pulse, which
can be obtained either analytically from the known incidence pulse
shape or from a numerical reference simulation of power measure-
ment in an empty system.

Also in FDTD, as in FEM, PMLs can be used for represent-
ing regions extending to infinity.154 For emission modeling, the
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dipole emitter can be included directly in the system in FDTD
simulations.157,158

5. Discrete dipole approximation (DDA)

The discrete dipole approximation (DDA) has received its
name from the replacement of each scattering object by a discrete
set of dipoles where the dipole moments are chosen to represent
scattering from the replaced bulk volume of the scatterer.159 The
scattering from a dipole is known analytically, and the discrete set
of dipoles couple to each other. This coupling gives rise to a linear
equation set, with the solution of this coupled equation set yielding
the solution for the overall light scattering problem. For additional
technical details, including the mathematical foundation of the
DDA and how it connects to Green’s functions, the readers are
referred, e.g., to the extensive review in Ref. 159.

6. Boundary element method (BEM)

Above, TMM and FMM are eigenmode methods in which
eigenmodes are used for propagating the electromagnetic fields
through z-invariant regions. FEM and FDTD on the other hand
solve for the equations in the whole simulation volume, and the
DDA distributes dipoles into the scatterer volume. In contrast, the
boundary element method (BEM) is a surface integral approach
where the Maxwell equations are formulated in a boundary integral
form on the interfaces that separate two materials.160–162 Typically,
the boundary is discretized, yielding a matrix equation for the cou-
pling between the discretized elements on the boundary. Thus, the
BEM is a type of method of moments (MOM) approach where an
infinite dimensional function space is approximated by a matrix
equation in a finite dimensional subspace.163

After solving for the terms at the relevant boundaries, the elec-
tromagnetic field in the whole system can be obtained by propagat-
ing fields from the boundaries into the interior of the volume
domains. This propagation can be achieved by propagating Green’s
functions from the boundaries into the homogenous domains. Such
surface Green’s functions are typically used already in constructing
the matrix equations that are solved for,160–162 and their use is con-
nected with the Ewald–Oseen extinction theorem in optics.164

7. Green’s function methods

Green’s function (also known as the Green’s dyadic)
G
$
(r, rs, λ) contains extensive system information. It is particu-

larly useful in emission problems involving an arbitrary ensem-
ble of incoherent emitters, since it is by definition linked to the

electric field by E(r, λ) ¼ iωμ
Ð
G
$
(r, rs, λ)J(rs, λ) drs [see, e.g., Eq.

(2.79) in Ref. 22]. Also, the LDOS at rs and λ can be obtained

from the imaginary part of G
$
(rs, rs, λ).

22 Therefore, knowledge

of G
$
(r, rs, λ) is very valuable for the design of light-emitting

structures and the analysis of their underlying optical response.

However, it is typically not trivial to find G
$
(r, rs, λ) for geome-

tries beyond the homogenous medium. For a system consisting
of two semi-infinite half spaces separated by a planar interface,
G
$
(r, rs, λ) can be obtained analytically (see section 10.4 in Ref. 22).

Developed computational schemes for the calculation of G
$
(r, rs, λ)

exist, for example, with finite-difference165 and finite-element166

approaches. For layered media, including periodic in-plane pattern-
ing, plane waves combined with a transfer matrix scheme can be used
for calculating the Green’s function (see, e.g., Refs. 167 and 168).

VII. COMMENTS ON THE USE OF THE DIFFERENT
METHODS

Typically, if an analytical solution exists for a given light scat-
tering or emission problem, it is highly recommended to use it in
order to minimize simulation time and to achieve better accuracy.
Arguably, the most elegant means of dealing with the Maxwell
equations is with Green’s function approach. If possible to con-
struct with analytical or numerical means, Green’s function for a
system can be used over and over again to calculate the generated
fields from different source distributions, saving precious comput-
ing resources and simulation time.

As discussed partly in Secs. IV B 1 and V C, common applica-
tions for a planar optical stack include anti-reflection coatings, dis-
tributed Bragg reflectors, and optical filters. A distributed Bragg
reflector stack aims to maximize reflection for a given wavelength
band and is composed of alternating layers of different refractive
indices. The layers in a stack-based optical filter are chosen such
that either the reflection or transmission of the stack is minimized
in the target wavelength band. For any of these applications, the
TMM is sufficient and convenient.

FMM, FEM, and FDTD allow readily the implementation of peri-
odic boundary conditions, which has made them the three most
popular methods for modeling periodic nanostructures (it should be
noted here that with periodic boundary conditions, it is enough to
consider just a single unit cell of the periodic structure). FEM and
FDTD yield directly information about the spatially resolved fields.
FMM, on the other hand, yields direct information of the excitation of
eigenmodes of the system.21 For a recent comparison of FMM, FEM,
and FDTD for modeling absorption in periodic semiconductor nano-
structure arrays, the readers are encouraged to see Ref. 21. In that
study, it was concluded that the preferential method depends on (i) the
exact type of array solved for, even if the considered arrays resembled
each other closely, and (ii) on the output sought for from the simula-
tions (e.g., overall absorption or spatially resolved absorption).

The main drawback of FMM is its scaling with unit cell area
in the in-plane directions (where the plane wave basis is used for
determining the eigenmodes). Typically, the number N of plane
waves needed scales with this unit cell area, and the computational
time scales approximately as N3 and the random access memory
(RAM) usage as N2.21 However, for a small unit cell area, FMM
can outperform FEM and FDTD by orders of magnitude in com-
putational time and RAM usage.21

Concerning optics simulations, aperiodic structures, like meta-
surfaces, can typically be modeled with a supercell approach, that
is, with a unit cell with a large-area in the in-plane directions. Our
testing indicated that FDTD might be most suitable as compared to
FMM and FEM for such structures.21

In FDTD, which works in the time-domain, it is not possible
to use exactly the same broadband refractive index values as tabu-
lated from experimental measurements (instead, analytical fitting
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needs to be done). Therefore, discrepancies can emerge between
the results obtained from FDTD and other methods, such as FMM
or FEM, that work in the wavelength domain where tabulated
values can be directly used.21 On the other hand, the time-domain
nature of FDTD allows us to cover a wide range of wavelengths in a
single simulation run.21

One of the strengths of FEM is its natural ability for adaptive
meshing to finely resolve physical regions where strong gradients in
the electric field show up (particularly at a sharp tip of metallic
particles where the lightning rod effect can show up, in the gap
between two close lying metallic nanoparticles, or generally in
boundary corners). However, for periodic systems, the memory
requirement of FEM appears rather high compared to FDTD, and
for small unit cell area also compared to FMM.21

In FEM and FDTD, PMLs can be used in one, two, or three
dimensions. PMLs in all three dimensions allow modeling of a
finite number of nanoparticles or other nanostructures. Also in
FMM, it is possible to employ PMLs to model regions extending to
infinity perpendicular to the propagation direction of the eigen-
modes.169 Formally, in FMM, it is thus possible to model scattering
from even a single nanoparticle by choosing the direction of the
incident light as the direction along which eigenmodes are solved
for and using PMLs in the other two directions. However, we
believe that the use of such PMLs in FMM is more efficient for
analysis of waveguides, for example, in integrated optics where the
waveguide modes then show up as the eigenmodes in FMM.169

DDA and BEM are popular for analyzing nanoparticles.162

DDA appears to be promising for structures where only a limited
scatterer volume needs to be represented by the discrete dipoles.
Similarly, BEM discretizes only the surface where the refractive
index changes between materials. BEM can be implemented for
periodic structures, see, e.g., Ref. 170. Also, DDA supports periodic
structures,171 but in our initial testing, its numerical cost for model-
ing absorption in a semiconductor nanowire array was considerably
higher as compared to FMM, FEM, and FDTD.

Regarding numerical implementations of the methods, for
Green’s function method in layered grating structures, we have used an
in-house developed implementation.167 For FMM, S4 is a popular
open source implementation,172 but we have again relied on our
in-house developed implementations.20,173 For FDTD, we have
employed the commercial software Lumerical FDTD solutions21 and
also tested the open source package MEEP.174 For FEM, we have used
exclusively the commercial software COMSOL Multiphysics, relying on
its Wave Optics module, which gives built-in support for Maxwell
equations, including PMLs.21,26 For DDA, DDSCAT is a popular open
source implementation,175 which we have used for single nanowires.176

VIII. COMMENTS ON MORE ADVANCED MATERIAL
RESPONSE

In this Tutorial, we focused on an optical response of the
constituent materials that was fully described by n(λ), with n(λ)
being the values for the corresponding bulk material. As discussed
above, such type of response governs a large range of materials
and applications of interest. However, by allowing for a more
complicated optical response, new avenues for nanophotonics
open up. First, even though we focused on the linear type of

optical response (which is at the heart of many optics applica-
tions), it is worthwhile to mention that there is noticeable interest
in controlling and designing the nonlinear optical response in and
with nanostructures.177–180

Some materials show an anisotropic refractive index (e.g.,
III-nitride semiconductors which due to the symmetry of their
wurtzite crystal structure induce directional dependence in the
refractive index). Such anisotropic optical response is hence
described by a 3 × 3 refractive index tensor n̂(r, λ). Most simulation
methods allow the use of such anisotropic materials in modeling
with just a minor modification to the solution formulation, by
including n̂(r, λ) in the governing equations.

At very small length scale, the use of the (macroscopic)
Maxwell equations with the bulk refractive index could be question-
able. For example, in very closely lying plasmonic nanoparticles,
effects from quantum mechanical confinement and tunneling of
the electrons in the electron cloud can strongly modify the optical
response, as compared to the predictions from the conventional
macroscopic Maxwell equations.181

We focused on transparent materials (where Im[n(r, λ)] ¼ 0)
and absorbing materials (where Im[n(r, λ)] . 0). However, in
various application, e.g., in optical amplifiers182 and lasers,183 active
materials with Im[n(r, λ)] , 0, giving rise to optical gain, are used.
In absorption modeling, we typically assume that the absorption is
weak enough to not saturate the capability of the material to absorb
further, hence assuming a constant Im[n(r, λ)] . 0. However, in
amplifiers and lasers, the amplified optical field could start to
deplete the gain available from the underlying active medium. In
such a case, the assumption of a constant Im[n(r, λ)] , 0 is not
necessarily appropriate. One approach to simplify the analysis is to
set Im[n(r, λ)] ¼ 0 for the gain medium, after which the optical
modes of the structure are solved for, yielding valuable information
for the design of high-gain nanostructures.183

The Lorentz reciprocity, which relates the response from one
emitter to another (as discussed in Sec. VI B 2), holds for materials
where ε and μ are symmetric tensors (including thus symmetric
scalars) that are time-independent.184 Thus, by inducing either
non-symmetry or time-dependence to ε or μ, we can break the
Lorentz reciprocity. With such Lorentz reciprocity breaking materi-
als, it would be possible to construct optical isolators that allow
transmission of light only in one direction, which would thus func-
tion as the equivalent of a diode for integrated optics.184

In this Tutorial, we focused on the fully coherent Maxwell
equations. Thus, in that model, we find interference for light
reflected from two interfaces, no matter the distance between the
interfaces. Such an assumption is typically appropriate if we focus
on diffraction from small-sized nanostructures or from a thin
nanostructured layer (or on light from a light source with a long
coherence length, such as a continuous wave laser). However, in
some systems, the coherence of light can be lost between more
remote interfaces, particularly if considering thermal radiation (such
as sunlight) that has a limited coherence length. For more informa-
tion on how to study such systems, see, for example, Ref. 185 that
presents the modeling of a Si solar cell with a nanostructured front
and rear interface. There, the fully coherent Maxwell equations are
solved for at each of the interfaces, but light is propagated in an
incoherent fashion through the thick Si absorber.
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Here, we focused on bulk-like materials. In contrast, the
emerging 2D materials are essentially crystalline solids with atoms
arranged in a 2D lattice. The reduced dimensionality open up new
avenues for photonics.178,186–188 The most well-known and studied
2D material is graphene, which is composed of carbon atoms in a
2D hexagonal lattice (the multi-layer bulk form of graphene is
known as graphite). Other notable 2D materials include several
transition metal dichalcogenides, hexagonal boron nitride, molyb-
denum disulfide, and black phosphorus. The planar structure of 2D
materials and resulting quantum confinement effects in the direc-
tion perpendicular to the lattice plane lead to many extraordinary
electronic and optical properties. A database is available, listing
optical and several other properties for a large number of 2D mate-
rials.189 For example, graphene has a high optical transparency, yet
relatively large absorption coefficient, and a mostly flat, wide
absorption spectrum reaching from around 300 to 2500 nm in
wavelength. Many other 2D materials exhibit a bandgap making
them insulators or semiconductors while certain surface treatments
can open a bandgap in graphene.186

Finally, throughout this Tutorial, we have taken a classical
footing on optics. However, particularly when moving to the level of
single or few photons in the optical field, additional quantum
mechanical aspects of light can become important.190 In such
systems, effects like squeezed light,191 entanglement,192 and quantum
coherence193 start to appear, opening up a manifold of possible pho-
tonics applications in quantum information processing.194

IX. CONCLUDING REMARKS

The aim of this Tutorial is to provide the reader with inspir-
ing information on the many possibilities that nanostructures
bring to photonics and on the avenues opened by computational
electromagnetic optics for the design and analysis of nanophoton-
ics applications. We recommend the testing and continuous use
of multiple simulation methods to gain hands-on experience of
their strengths and weaknesses for varying types of materials,
geometries, and intended applications.
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