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Abstract

Motivation: A key goal of computational personalized medicine is to systematically utilize genomic

and other molecular features of samples to predict drug responses for a previously unseen sample.

Such predictions are valuable for developing hypotheses for selecting therapies tailored for indi-

vidual patients. This is especially valuable in oncology, where molecular and genetic heterogeneity

of the cells has a major impact on the response. However, the prediction task is extremely challeng-

ing, raising the need for methods that can effectively model and predict drug responses.

Results: In this study, we propose a novel formulation of multi-task matrix factorization that allows

selective data integration for predicting drug responses. To solve the modeling task, we extend the

state-of-the-art kernelized Bayesian matrix factorization (KBMF) method with component-wise mul-

tiple kernel learning. In addition, our approach exploits the known pathway information in a novel

and biologically meaningful fashion to learn the drug response associations. Our method quantita-

tively outperforms the state of the art on predicting drug responses in two publicly available cancer

datasets as well as on a synthetic dataset. In addition, we validated our model predictions with lab

experiments using an in-house cancer cell line panel. We finally show the practical applicability of

the proposed method by utilizing prior knowledge to infer pathway-drug response associations,

opening up the opportunity for elucidating drug action mechanisms. We demonstrate that

pathway-response associations can be learned by the proposed model for the well-known EGFR

and MEK inhibitors.

Availability and implementation: The source code implementing the method is available at http://

research.cs.aalto.fi/pml/software/cwkbmf/.

Contacts: muhammad.ammad-ud-din@aalto.fi or samuel.kaski@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The fundamental aim of personalized medicine is to design and iden-

tify individualized therapies that maximize drug efficacy while mini-

mizing the undesirable side effects. The efficacy, however, depends

on a multitude of factors, including molecular, genetic, environmen-

tal and clinical characteristics of the samples, and much of this infor-

mation remains unknown. A promising research direction is to

computationally learn to predict, based on the available molecular

and genetic descriptions of the samples, the responses they elicit in

lab when exposed to a spectrum of drugs. The learned predictors

help identifying potential drug response associations, and can pre-

dict responses for a new sample.

The development of molecular and genetic models of drug re-

sponse has been made possible through several recent large scale

high-throughput screening efforts that profile large panels of human

VC The Author 2016. Published by Oxford University Press. i455
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i455–i463

doi: 10.1093/bioinformatics/btw433

ECCB 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i455/2450763 by guest on 30 April 2021

http://research.cs.aalto.fi/pml/software/cwkbmf/
http://research.cs.aalto.fi/pml/software/cwkbmf/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw433/-/DC1
http://www.oxfordjournals.org/


cancer cell lines and drugs (Barretina et al., 2012; Basu et al., 2013;

Garnett et al., 2012). Such models open up the opportunity to study

the impact of molecular characteristics on the response, increasing

our understanding of cancer vulnerabilities as well as making it pos-

sible to build predictive models of drug responsiveness.

Recent advances have demonstrated that molecular and genomic

features have been useful in predicting the drug responses in cell

lines (Costello et al., 2014; Jang et al., 2014). However, a key chal-

lenge underlying predictive modeling is the small sample size and

very large number of genomic features. The small sample sizes offer

limited statistical power leading to high uncertainty in the predic-

tions. The inherent heterogeneity across and within different cancer

types makes robust inference even harder. In the absence of technical

and practical facilities to overcome these limitations, a prospective

direction is to incorporate additional prior knowledge in a biologic-

ally meaningful way to facilitate the learning process.

From the computational perspective, several methodologies

have been used to predict drug response (a detailed discussion in

Section 2). A key constituent of inferring the molecular and genetic

model is the ability to effectively integrate multiple side-data views

(also called as side-data sources) for prediction of the drug re-

sponses. Methods commonly referred to as multiple kernel learning

MKL (Gönen and Alpayd, 2011) can extract the common signal

from multiple side-data views, effectively yielding an increased

signal-to-noise ratio in the parameter space and are currently the

state of the art in drug response prediction (Costello et al., 2014).

Multi-task learning makes it possible to learn a predictive model for

all of the drugs jointly (multi-task) making it possible to gather stat-

istical evidence across multiple drugs (Baxter, 2000).

In this study, we introduce component-wise multiple kernel

learning (MKL) into the recent kernelized Bayesian matrix factoriza-

tion (KBMF) method (Gönen et al., 2013). The proposed model sol-

ves the prediction task by gathering evidence from multiple side-

data views, selectively, for each of the output variable group. This

formulation is particularly useful in drug response prediction, for

taking into account multiple side-data views. It need not assume the

same views to be relevant to all drugs as earlier methods, but instead

predictions can be based on different views for different groups of

drugs.

The multiple side-data views can be generated based on the prior

biological knowledge; in the paper we use the pathways that are

linked to the known primary targets of the drugs. By systematically

utilizing this type of prior knowledge through kernelized Bayesian

matrix factorization with the component-wise MKL approach, we

hypothesize that pathway-drug response associations can be learned

which are more informative for response prediction, and addition-

ally are better interpretable for understanding drug action

mechanisms.

1.1 Contributions
In this paper, we present a novel approach for improving accuracy

of predicting drug responses and elucidating the underlying

pathway-drug response associations. Specifically, our contributions

are two-fold:

1. Methodologically we extend the current state-of-the-art model

kernelized Bayesian matrix factorization (KBMF) with

component-wise multiple kernel learning (MKL). The extension

can be seen as multi-task learning by task factorization, however

with selective data integration. Here the key assumption is that

component-wise MKL allows the method to better use prior bio-

logical knowledge (pathways) input as multiple side-data views.

2. We introduce a way for incorporating prior biological know-

ledge, in the form of pathways, for modeling pathway-drug re-

sponse associations. Instead of using a single side-data view for

the genomic features, we present pathway-based groups of fea-

tures as multiple side-data views. Here the key assumption is

that informed grouping of the features introduces additional

structure and knowledge that is valuable for prediction of par-

ticular drug groups.

We first demonstrate the model’s predictive abilities on a syn-

thetic dataset. We then substantiate the significantly better perform-

ance of our approach on predicting drug responses in two large

publicly available cancer datasets. In addition, we validate the in sil-

ico predictions of our model with lab experiments on an in-house

Acute Myeloid Leukemia (AML) cell line panel. Finally, we examine

the inferred associations between drug responses and pathways in

the larger dataset, demonstrating a mechanism for elucidating drug

action mechanisms.

2 Related work in drug response prediction

The computational task underlying personalized medicine is to pre-

dict drug responses on new cancer cell lines, given a set of cancer

cell lines for which some measurements of drug responses are

observed.

A common approach is to use the mean of the observed re-

sponses as predictions for the unobserved (unseen) drug responses

(used as baseline method here). Another well-known supervised ap-

proach uses the genomic and molecular features of the cell lines (as

input side-data) and the observed drug responses to learn a predict-

ive model of the drug responses (Jang et al., 2014). The available

molecular and genomic features range from gene expression to copy

number and point mutations for the cancer cell lines, respectively

(Barretina et al., 2012; Garnett et al., 2012).

Another widely used approach is the quantitative structure-

activity relationship (QSAR) analysis which uses chemical and struc-

tural properties (often called as descriptors) of the drugs and the

observed responses to learn a predictive model to infer the unob-

served responses. The descriptors vary from 2D fingerprints to spa-

tial characteristics and physiochemical features of the drugs (Myint

and Xie, 2010; Perkins et al., 2003; Shao et al., 2013). Recently, an

advanced approach has been proposed that learns a joint predictive

model of the observed drug responses by combining both the gen-

omic features of the cell lines and descriptors of the drugs (Ammad-

ud din et al., 2014; Cichonska et al., 2015; Cortés-Ciriano et al.,

2015; Menden et al., 2013; Zhang et al., 2015).

Previous studies have used linear as well as non-linear methods.

Linear methods including multivariate linear regression, partial least

squares (PLS) and principal component regression (PCR) are the

most prominent. Sparse linear regression has been well studied for

identifying potential features predictive of drug responses by enforc-

ing elastic net regularization techniques (Barretina et al., 2012;

Chen et al., 2015; Garnett et al., 2012).

Nonlinear drug response analysis including kernel method, neu-

ral networks and random forests have also been studied (Cichonska

et al., 2015; Cortés-Ciriano et al., 2015; Menden et al., 2013;

Sutherland et al., 2004; Yamanishi et al., 2012; Zhang et al., 2015).

In particular, Costello et al. (2014) proposed Bayesian multi-task

multiple kernel learning (BMTMKL) to predict drug responses on

new human breast cancer cell lines. The BMTMKL method uses a

kernelized regression approach that combines multi-task and multi-

view learning (i.e. learning from multiple side-data views) with
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D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i455/2450763 by guest on 30 April 2021

Deleted Text: ; Basu <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: W
Deleted Text: Perkins <italic>et<?A3B2 show $146#?>al.</italic>, 2003; 
Deleted Text: Menden <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: ; Cichonska <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: Garnett <italic>et<?A3B2 show $146#?>al.</italic>, 2012; 
Deleted Text: Sutherland <italic>et<?A3B2 show $146#?>al.</italic>, 2004; Yamanishi <italic>et<?A3B2 show $146#?>al.</italic>, 2012; Menden <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: ; Cichonska <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: ,


Bayesian inference to estimate the model parameters. Their results

showed that modeling nonlinearities in the data was an essential at-

tribute to predict drug responses. However, the model makes the

simplifying assumption that the predictions are based on a single

underlying component.

Alternatively, matrix factorization models integrating side-data

views have also been studied in drug response analysis. The main

idea behind these methods is to jointly factorize the side-data views

and output matrix to find a better low-dimensional latent represen-

tation (components) for both rows and columns of the output ma-

trix. To this end, Zhou et al. (2012) proposed kernelized

probabilistic matrix factorization (KPMF), a low-rank matrix fac-

torization method that uses Gaussian process priors with covariance

matrix on side-data view. While the method can explain tasks with

multiple components, it is, however, limited to a single kernel for

each side and therefore, is unable to learn from multiple side-data

views.

Recently, a kernelized Bayesian matrix factorization (KBMF) ex-

tending kernelized matrix factorization with fully Bayesian infer-

ence, combining multiple side-data views to jointly factorize the

output matrix has been proposed (Gönen et al., 2013; Gönen and

Kaski, 2014). With side-data views encoded as kernel functions, the

main idea is to project each kernel onto a low-dimensional compo-

nent space, where they are combined with the kernel weights to get

a composite component space of the output matrix. The KBMF

method has been studied in various applications ranging from drug-

target to drug response predictions (Ammad-ud din et al., 2014;

Gönen, 2012). However, KBMF integrates multiple side-data views

assuming that a source is either relevant for all tasks or none, failing

to identify component-specific dependencies between the side-data

views and the output matrix.

3 Methods

3.1 Kernelized Bayesian Matrix Factorization (cwKBMF)
We introduce a novel extension of the state-of-the-art kernelized

Bayesian matrix factorization method to model the complex associ-

ations between a large number of side-data views and the latent

component space of the output matrix. This new formulation of ker-

nelized Bayesian matrix factorization (KBMF) allows component-

wise multiple kernel learning (MKL), referred to as cwKBMF for

brevity. cwKBMF is characterized by the ability to comprehensively

model the associations that allow two advancements: (i) improve

the predictive power of the model; and (ii) identify the component-

specific latent dependencies for interpreting the associations.

The model is defined for the factorization of a given matrix

Y 2 R
Nx�Nz , using known sets of Px side-data views for the rows

and Pz side-data views for the columns. In order to represent non-

linear associations, similarities between samples in the side-data

views are encoded as input kernel matrices fKx;m 2 R
Nx�NxgPx

m¼1 and

fKz;n 2 R
Nz�NzgPz

n¼1. Here matrices are denoted by capital letters,

with the subscript (x or z) indicating the corresponding side of the

model. All equations are formulated, however, with corresponding

scaler entities denoted by non-capital letters, with the superscript

denoting the row index and the last subscript representing the col-

umn index (i.e. ai
x;s denotes the entry at [row i, column s] of matrix

Ax). Without compromising the generalizability, the rest of this art-

icle focuses on multiple side-data views in the rows only.

The model is specified as a low-rank factorization of the matrix

Y such that the latent representations Hx 2 R
Nx�R and Hz 2 R

Nz�R

are learned jointly from Y and the Kx;m; Kz;m side-data views. This

is achieved by an interplay of two elements. First, each of the

fKx;mgPx

m¼1 kernels is transformed to a lower dimensional sub-

space fGx;m 2 R
Nx�RgPx

m¼1 through a common projection matrix

Ax 2 R
Nx�R. The low-rank transformations of the kernels are

combined using multiple kernel learning to compute the latent ma-

trix factors Hx.

The cwKBMF method is formulated in a Bayesian setting using

conjugate priors, where Nð�; l;RÞ denotes the normal distribution

with mean l and covariance R, while Gð�; a;bÞ is the gamma distri-

bution with the parameters, shape a and scale b. The matrix factor-

ization is formulated as

yi
jjhx;i; hz;j � Nðyi

j; h>x;ihz;j; r
2
yÞ 8ði; jÞ

where i ¼ 1 : Nx and j ¼ 1 : Nz denote the samples and ry the noise.

Here hx;i and hz;j are vectors of length R, the number of components,

and represent the low-dimensional factors of the samples in Y.

Our extension formulates this factorization with the novel

component-wise MKL and has the distributional assumptions:

gs
x;m � Gðgs

x;m; ag;bgÞ 8ðm; sÞ

es
x;mjgs

x;m � Nðes
x;m; 0; ðgs

x;mÞ
�1Þ 8ðm; sÞ

hs
x;ijfes

x;m; g
s
x;m;ig

Px

m¼1 � N hs
x;i;
XPx

m¼1

es
x;mgs

x;m;i;r
2
h

 !
8ðs; iÞ

where superscript s ¼ 1 : R denotes the components. The novel ad-

vancement of this formulation is in learning the latent components Hx

as a combination of kernel-specific components fGx;m 2 R
Nx�RgPx

m¼1

while segregating between kernels that are component-specific and

those which are shared across all components. This is achieved by

introducing component-specific kernel weights es
x;m 2 R

Px�R that

control the activity of each kernel in each component. This exten-

sion makes it possible for the method to effectively learn the under-

lying structure for identifying the associations between kernels and

components. The method can also be viewed as combination of

component-wise multiple kernel learning and matrix factorization.

The gs
x;m defines an element-wise prior for the kernel-weights es

x;m,

making it possible to effectively switch off some of the weights in a

component-wise fashion.

Finally, the dimensionality reduction of the model has the distri-

butional assumptions:

ki
x;s � Gðki

x;s; ak; bkÞ 8ði; sÞ

ai
x;sjki

x;s � Nðai
x;s; 0; ðki

x;sÞ
�1Þ 8ði; sÞ

gs
x;m;ijax;s; kx;m;i � Nðgs

x;m;i; a>x;skx;m;i; r
2
gÞ 8ðm; s; iÞ

where a joint Ax matrix projects each of the kernels to a low-

dimensional representation. The hyper-parameters ak; bk; ag; bg; rg;

rh;ry can be used to express prior knowledge about the data-

generating process, or set to uninformative values (as in this paper).

The model is formulated with conjugate priors and variational ap-

proximation is used to perform model inference. The computational

complexity of the model isOðRmaxðN3
x ;N

3
z Þ þ RmaxðP3

x;P
3
z ÞÞ which

is faster than standard pair-wise kernel approaches (Ben-Hur and

Noble, 2005) and slower only linearly with a factor of R in

maxðP3
x;P

3
z Þ, in comparison to original KBMF formulation. The

model achieves a run time to the tune of minutes for reasonably sized

datasets (�5 minutes of wall clock time on a standard computer, for

a single cross validation fold on the largest data studied in this

manuscript).
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3.2 Publicly available datasets and preprocessing
We used two publicly available cancer datasets to model drug re-

sponse associations in this study.

Genomics of Drug Sensitivity in Cancer: The first data come

from Genomics of Drug Sensitivity in Cancer (GDSC) project initi-

ated by Wellcome Trust Sanger Institute version release, June 2014

(Yang et al., 2013). The data comprised of 124 human cancer cell

lines and 124 anti-cancer drugs, for which complete drug response

measurements are available and the response range is consistent

with earlier publications (Garnett et al., 2012; Menden et al., 2013).

Drug response measurements are summarized as log IC50 values

(micro molar concentration of a drug required to inhibit 50% of the

cell growth) obtained by curve fitting through the 9-point dose re-

sponse data. The cell lines are annotated with tissue type, and drugs

with their primary therapeutic targets.

Cancer Therapeutic Response Portal: The second data originate

from Cancer Theraupetic Response Portal (CTRP) version release

v1 2013, (Basu et al., 2013) by Broad Institute summarizing area-

under-concentration-response curve (AUC) values from 8-point dose

response data measured on human cancer cell lines. For our case

study, we focus on the set of 66 cell lines and 63 anti-cancer drugs,

whose AUC values were observed without missing values. The mo-

lecular profiles for the cell lines was obtained from Cancer Cell line

Encylopedia CCLE (Barretina et al., 2012). As in GDSC, the cell

lines are annotated with tissue type and gene expression, while drugs

with their primary therapeutic targets.

As the input data, we used the baseline gene expression values of

all the cell lines quantizing the number of transcripts expressed in a

cell. These measurements characterize the genome-wide molecular

profiles that may be indicative of the response patterns.

Prior Biological Knowledge: In order to incorporate prior biolo-

gical knowledge, we used a selected set of pathways and gene sets

from Molecular Signature database MSigDB (Liberzon et al., 2011).

Specifically, we extracted the C2CP and C6 collections of pathways

and genesets from MSigDB, respectively. C2CP contains pathways

compiled from online pathway databases, biomedical literature,

published mammalian gene expression studies and MYC target gene

database. C6 gene sets denote oncogene signatures of cellular path-

ways which are often dis-regulated in cancer. These oncogene signa-

tures are computed using microarray data from NCBI GEO and

from profiling experiments involving perturbation of known cancer

genes. For simplicity in the rest of the paper, we use a common term

for both of the collections: pathways.

3.3 Experimental setup
Incorporating Prior Biological Knowledge: We focused the analysis

on drug targets by, for each of the two collections, carefully selecting

the subset of pathways that were directly linked to the known pri-

mary targets of the drugs. This was done by examining the corres-

pondence between pathway names and the known primary targets

of the drugs. The drug target data coming from the original annota-

tions of GDSC and CTRP was used for this purpose. The gene ex-

pression data were then split into groups of genes, where each group

represented one pathway. All the other genes which were not part of

any of the target-based pathway selection, were collected in a separ-

ate single group (collectively called as ‘other genes’). When the vari-

able groups in the data are constructed in this way, the component-

wise MKL based data integration can choose what prior knowledge

is useful for predicting responses. Still, no knowledge is lost as all

variables have been included, and additionally allows to learn asso-

ciations between other genes and the responses. The total number of

groups formed per case study are listed in Table 1. We term each

group with a keyword ‘view’.

Additional information about the data including the names of the

cell lines, drugs, primary targets and pathways can be found from the

supplementary material. The response data consist of both types of

drugs: FDA approved ‘drugs’ and ‘investigational chemical com-

pounds’. In the paper, we use both of these terms interchangeably.

Cross-Validation: We compared the performance of cwKBMF

with several methods including KBMFmulti-view; kernelized Bayesian

matrix factorization with pathway based groups, BMTMKLmulti-view;

Bayesian multi-task learning with pathway based groups,

KPMFsingle-view; kernelized probabilistic matrix factorization with-

out pathway based groups, MT-LRsingle-view; multi-task sparse

linear regression without pathway based groups and the classical

Baseline; mean of the training drug response data (assuming no

genomic data is available).

We performed a 5-fold cross validation procedure, where in each

fold a randomly selected subset of cell lines is completely held-out

(as test cell lines) and models were trained on the remaining cell lines

(training data). To establish robust findings the 5-fold cross valid-

ation procedure was repeated 10 times with different random cross-

validation folds.

For the kernelized Bayeisan methods (BMTMKL, KBMF and

cwKBMF), we use uninformative priors for the projection matrices

and the kernel weights. In particular, the hyperparameter values for

BMTMKL are selected as (ak; bk; at; bt; ac; bc; ax; bx; a�; b�)¼ (1,

1, 1, 1, 1, 1, 1, 1, 1, 1) and for KBMF, cwKBMF are selected as

(ag; bg; ak; bk)¼ (1, 1, 1, 1), and the standard deviations (rg, rh, ry)

are set to (0.1, 0.1,1). For KPMF, the standard deviation ry is set

to one. For the side-data views, we computed Gaussian kernels,

where the width parameter r was set in the standard way

(r¼dimensionality of the side-data view). The drug response meas-

urements were normalized to have zero mean and unit variance.

We used multi-task sparse linear regression (MT-LR) using the

glmnet package (Friedman et al., 2010). The sparse linear regression

has two parameters that are to be optimized: a (elastic net mixing

parameter) and k (the penalty parameter). For each test set predic-

tion, we performed a nested 5-fold cross validation procedure on the

training data, to choose optimal values for a 2 ½0;1� with an incre-

ment of 0.1 and k (from 100 values). We finally selected a combin-

ation of a and k values that gave minimum error averaged over the

cross-validated folds.

Evaluation Criteria: We evaluated the predictive performance of

cwKBMF and other methods using drug-wise spearman correlation

as an evaluation criterion and report an averaged correlation for

each drug from 10 random repeats of the cross-validation proced-

ure. In addition, the correlations were averaged to obtain a cumula-

tive correlation value for each method.

Table 1. Data used in the drug response predictions

Datasets Cell lines Drugs Genes Primary Targets Views

GDSC 124 124 13 321 60 72 (71 pathways, 1 other genes)

CTRP 66 63 18 988 58 26 (25 pathways, 1 other genes)
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4 Results and discussion

4.1 Synthetic dataset
To demonstrate that the model can infer the true associations be-

tween multiple side-data views and components, we perform the

first experiment using synthetic dataset. Specifically, the cwKBMF

method has been designed to learn the complex relationships pat-

terns, by representing them as activity profiles of components over

the views.

To this end, 100 synthetic datasets Y with Nx ¼ 100;Nz ¼ 100

and R¼3 components were generated such that each dataset was

supplemented with Px¼10 side-data views (encoded as kernels).

The associations between the Px¼10 side-data views and K¼3

components were encoded such that one view is active in all the

components (shared), while the rest are equally split into Kþ1 sets,

where each view is either active in one component (specific) or not

active in any of the components (empty). Here the key assumption is

that given the kernels for Px¼10 side-data views and the output ma-

trix Y, the model decomposes Y into components while accurately

learning the associations between kernels and components. In add-

ition, 1% values in each Y were marked as missing data (test set) to

measure the predictive accuracy of the model.

The model is run for each of the 100 datasets to learn the associ-

ations. The component-view weights es
x represent the activity of

each view x ¼ 1 : Px in components s ¼ 1 : R. Since the model is

encoded with an element-wise prior it can be effectively thresholded

to illustrate component-view activity. In order to focus on the most

important associations for each component, we consider the associ-

ations that are notably strong with respect to the prior (i.e. z-score

(es
x)>0.67) as active. Figure 1 (left panel) shows the resulting

component-view activities inferred by the model for Px¼10. The

figure demonstrates that the model is able to accurately discover the

component-view activities as inserted in the data (described above),

up to a random permutation of the components.

Next, we measured the accuracy of the model in inferring the

component-view activities as well as in predicting unobserved values

in Y over a range of side-data views Px. The associations were

learned and prediction performance was evaluated for 100 datasets

for each value of Px. Figure 1 (right panel) demonstrates the accur-

acy of learning the associations, particularly the model performs

well in discovering the shared, specific as well as empty components

over the range of input views. In addition, Figure 1 (middle panel),

cwKBMF consistently outperforms KBMF in the prediction task as

well, especially when the number of views is large. As expected, the

performance of the methods deteriorates as the number of views

(dimensionality) increases. However, cwKBMF performs reasonably

well over the number of views applicable to the drug-response pre-

diction datasets in this study.

4.2 Cancer datasets
We next compare cwKBMF with alternatives on two case studies

GDSC and CTRP, and report their predictive performance in the 5-

fold cross validation procedure (described in Section 3). To evaluate

the new model extension and the benefit of the principled incorpor-

ation of prior knowledge, we compare cwKBMF’s performance to

other methods in two scenarios,

1. Genomic Data þ Prior Knowledge: The genomic features are

divided into several side-data views based on the prior know-

ledge about the pathways. We represent this scenario with a sub-

script multi-view in the results and

2. Genomic Data (only): The genomic features are used as a single

view and does not benefits from the prior knowledge. We denote

this scenario with a subscript single-view in the results.

Figures 2 show the predictive performances of all the methods

on the GDSC (left) and CTRP (right) datasets. cwKBMF outper-

forms its competitors for both scenarios. Even though the differ-

ences in performances are rather small, the predictive performance

obtained by cwKBMF for both scenarios is found to be significantly

higher than the others (P<0.05; one-sided paired Wilcoxon Sign-

Rank test corrected for multiple testing, Supplementary Table S3) in

GDSC dataset respectively. Similarly in CTRP dataset, the predictive

performance obtained by cwKBMF for both scenarios is also signifi-

cantly higher than the others (P<0.05; one-sided paired Wilcoxon

Sign-Rank test, corrected for multiple testing, Supplementary Table

S6). In the GDSC and CTRP datasets, the maximum predictive per-

formance of cwKBMF is achieved with 10 and 20 components, re-

spectively. However, in-case of multiple maxima a practical choice

could be to prefer solutions with smallest-R in the interest of simpler

representations. We chose these components and discuss a detailed

comparison of the predictions of cwKBMF with other methods.

In GDSC dataset, cwKBMFsingle-view outperforms Baseline,

MT-LRsingle-view and KPMFsingle-view (P<0.05; one- sided paired

Fig. 1. Identification of component-view activities and predictions on synthetic dataset. Method abbreviation: cwKBMF, kernelized Bayesian matrix factorization

with component-wise MKL; KBMF, kernelized Bayesian matrix factorization. Left: The component-view activities learned by the model. Black indicates that a view

is active in a component while white represents not-active. Middle: the mean squared error (MSE) of predictions, averaged over 100 datasets at each point (and

bars denoting 1-standard error of the mean (1SE)). The performance is indicative of the models ability to discover the underlying structure of the data. Right: The

accuracy of the model to discover component-view associations. The true and the inferred, averaged accuracy of the associations from 100 datasets are marked

for shared, specific and empty component, along with 1SE. The figure demonstrates the models ability to accurately discover the component-view associations
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Wilcoxon Sign-Rank test, for comparing Spearman correlations).

cwKBMFmulti-view outperforms KBMFmulti-view and Baseline

methods (P<0.05; one-sided paired Wilcoxon Sign-Rank test,

Supplementary Fig. S1). Although cwKBMFmulti-view performance is

better than BMTMKLmulti-view (averaged Spearman correlations 0.

2253 and 0.2167, respectively), the difference is not statistically sig-

nificant (P ¼ 0.11; one-sided paired Wilcoxon Sign-Rank test).

Similarly, in CTRP dataset, cwKBMFsingle-view outperforms

Baseline and MT-LRsingle-view (P<0.05; one-sided paired Wilcoxon

Sign-Rank test). Although cwKBMFsingle-view performance is better

than KPMFsingle-view (averaged Spearman correlation 0.1776 and

0.1673, respectively), the difference is not statistically significant

(P¼0.07; one-sided paired Wilcoxon Sign-Rank test).

cwKBMFmulti-view give better predictions than Baseline,

BMTMKLmulti-view and KBMFmulti-view (P<0.05; one-sided paired

Wilcoxon Sign-Rank test, Supplementary Fig. S3).

The prediction results generalize previous findings that non-

linear models improve drug response predictions (Costello et al.,

2014). Figure 2 clearly shows that non-linear methods are better

than the linear counterpart, for predicting drug responses in both

datasets.

Having established that our model outperforms existing methods

in both single-view and multi-view settings, we next specifically

study the advantage of using prior pathway and target knowledge.

To this end, Figure 3 illustrates the improvement in performance (in

% units) relative to Baseline and when genomic data is supple-

mented with prior knowledge.

As the first observation, the introduction of genomic data via dif-

ferent methods outperforms the baseline predictions demonstrating

the genomic features are response predictive. Secondly, incorporat-

ing prior biological knowledge improves the prediction performance

systematically over a range of methods. Third, systematically model-

ling the associations between pathway-based genomic profiles and

drug response with cwKBMF outperforms the existing approaches

in predicting drug responses. Specifically, in case of the GDSC data-

set, using genomic data with cwKBMF improves the prediction per-

formance by 21% and when the genomic data is supplemented with

prior knowledge the performance is improved by 22%. Similarly, in

case of the CTRP dataset, using genomic data with cwKBMF im-

proves the prediction performance by 17% and when the genomic

data is supplemented with prior knowledge the performance is im-

proved by 20%. The findings also suggest that incorporating the

Fig. 2. Prediction performances (Spearman correlation) averaged over drugs with a 5 fold cross-validation procedure repeated 10 times. GDSC dataset (left) and

CTRP dataset (right). Method abbreviation: cwKBMF, kernelized Bayesian matrix factorization with component-wise MKL; KBMF, kernelized Bayesian matrix fac-

torization; BMTMKL, Bayesian multi-task MKL; KPMF, kernelized probabilistic matrix factorization; MT-LR, multi-task sparse linear regression; Baseline, mean of

the training data. The predictive performance obtained by cwKBMF for both scenarios is found to be significantly higher than the others (P<0.05; one-sided

paired Wilcoxon Sign-Rank test corrected for multiple testing, Supplementary Tables S3 and S6)

Fig. 3. Pathway-based groups of genes (prior biological knowledge) improves predictive performance. Left, GDSC dataset and Right, CTRP dataset. The height of

the bar (y-axis) denotes the percentage increase in performance relative to Baseline, computed using the Spearman correlations averaged over drugs. On x-axis,

the bars are grouped based on the type of learning data used, where ‘Genomic Data’ means that all of the genes are used as one group and ‘Genomic

DataþPrior Knowledge’ means that all of the genes are used, grouped into several sets based on the pathway knowledge and lastly ‘No Genomic Data’ implies

that only mean of the training drug response data is used for prediction
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prior knowledge is more beneficial when the number of samples is

smaller (for instance, in the CTRP dataset).

Fully Blinded Experimental Validations: Finally, we experimen-

tally validated the drug response predictions of our model using an

in-house Acute Myeloid Leukemia (AML) cell line panel (Malani

et al., manuscript in preparation). The model is learned, analogously

to the experiments with public datasets above, using the available

training drug response data. Specifically, we made drug response

predictions for 8 compounds using 6 AML cell lines of which 83%

measurements were not available for initial model training. To

validate the predictions, an independent experiment was carried out

in laboratory. The predicted drug responses were found to be corre-

lated with the independent lab measurements (Spearman correlation

0.44 Figure 4, p<0.05; compared to the distribution of correlation

values obtained via randomization; Supplementary Fig. S4). This

fully-blinded experimental validation confirms the predictive power

of the model, and gives confidence that in silico predictions are fairly

robust and may be used to study the spectrum of therapeutic

choices.

4.3 Inferring pathway-drug response associations
The use of prior knowledge not only improves the prediction per-

formance, but also helps to infer pathway-drug response associ-

ations by cwKBMF, being the first kernelized method making it

possible to study such associations. We next study the pathway-drug

response associations in the GDSC dataset.

We selected the model learned with 10 components based on

cross-validation (as discussed in section 4) and show the pathway-

drug response associations in Figure 5. A component can be charac-

terized by the set of pathways that are active in it and the drugs

whose responses they are predictive off, yielding hypotheses of path-

ways associated with drug responses. The hypotheses generated by

all the ten components are illustrated in Figure 5, while those from

the first two components are elaborated in detail below. In order to

analyze target-driven effects, the components were sorted based on

the consistency of the drug targets in the components.

Component 1 is characterized by EGFR/ERBB2 inhibitors lapa-

tinib, erlotinib, BIBW2992 (afatinib) and gefitinib. On the pathway

side, we found reactome SHC1 events in EGFR signalling, reactome

GRB2 events in ERBB2 signaling, among the top 10 pathways. It is

biologically meaningful that the inhibitors are related to the EGFR

signaling, making it possible to inhibit the pathway activity in can-

cer using the EGFR inhibitors. It is also evident that signaling path-

ways RAS-RAF-MAPK, PI3K/AKT and JAK/STAT mediate the

downstream effect of EGFR autophosphorylation, thus affecting cel-

lular proliferation, anti-apoptosis, metastasis and tumor invasion

(Whirl-Carrillo et al., 2012). We give additional details of compo-

nent 1 explaining the variation of EFGR responses in Supplementary

Figure S2 (left). Other drugs explained by the component are aicar

(target: AMPK agonist), thapsigargin (target: ATPase, Caþþ trans-

porting, cardiac muscle, slow twitch 2), OSU-03012 (target: PDK1/

PDPK1), GSK-650394 (target: SGK3), WZ-1-84 (target: BMX) and

AZD-0530 (target: SRC, ABL1). The pathways involved in media-

ting the downstream signaling may generate novel hypotheses for

the action mechanism of these drugs.

Component 2 is representative of MEK inhibitors RDEA119

(refametinib), PD-0325901, CI-1040 and AZD6244. Interestingly,

on the pathway side, MEK up.v1 up is identified as one of the top

pathways (shown in Fig. 5). It is biologically plausible that the drugs

are connected to the up-regulation of MEK pathway, making it pos-

sible to inhibit the pathway activity in cancer using the MEK inhibi-

tors. It is also known that MEK inhibition leads to PI3K/AKT

activation (Turke et al., 2012), supporting the identification of the

AKT-related pathways in this component. In general, stimulation of

the PI3K/AKT/mTOR cascade enhances growth, survival and me-

tabolism of many cancer cells, and therefore PI3K/AKT/mTOR sig-

naling pathway is a promising therapeutic target for cancer therapy.

We give additional details of component 2 explaining the variation

of MEK responses in Supplementary Figure S2 (right). Other drugs

explained by the component are bexarotene (target: Retinioic acid X

family agonist), bicalutamide (target: Androgen receptor ANDR),

MG-132 (target: Proteasome), TGX221 (target: PI3K beta),

Salubrinal (target: GADD34-PP1C phosphatase) and FH535. In par-

ticular FH535 primary target is unknown, however it has been

shown to downregulate the activity of Wnt/b-Catenin signaling

pathway (Gedaly et al., 2014; Liu et al., 2014). The presence of

FH535 in this component suggests potential associations between

FH535 response, MEK and AKT-related pathways, which could be

further investigated in the lab to identify novel biomarkers for pre-

dicting FH535 responses.

The analysis conclude that pathway-drug response associations

provide biologically meaningful findings. Even though these are

well-known cancer-related pathways (serving as proof-of-concept

positive controls), the current clinical challenge is to find the pa-

tients in which these pathways are perturbed, making it possible to

select targeted treatments like MEK inhibitors individually.

5 Conclusion

We extended the KBMF method with a novel approach of

component-wise MKL. In experiments with two publicly available

cancer datasets, the new method showed improved predictive per-

formance compared to other methods (including its predecessor

KBMF). Additionally, we confirmed the predictive performance of

the method using an in-house AML cell line panel with experimental

validation, performed independently in the lab. We also showed

that incorporating prior knowledge in the form of pathways helps to

improve the prediction performance. We also demonstrated the use-

fulness of component-wise MKL, combined with prior knowledge

for inferring the associations between pathways and drug responses.

This way of analyzing drug responses with groups of genes (encoded

in the form of pathways) may enhance our understanding of the

Fig. 4. Prediction of the drug sensitivity score (DSS; (Yadav et al., 2014)) of 8

compounds in 6 AML cell lines. The y-axis shows the predictions made by the

cwKBMF model and the x-axis the corresponding validations as measured in

the lab. The predictions have a spearman correlation of 0.44, and the correl-

ation increases to 0.70, if the outlier venetoclax is excluded
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action mechanism of drugs and can potentially be used to identify

novel predictive biomarkers for designing new therapies in cancer.

In the future, the method could further be extended with strict spars-

ity assumptions for component-wise MKL, facilitating the discovery

of potentially strong associations between pathways and drug

responses.
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