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Using Real-Time Indoor Resource
Positioning to Track the Progress of
Tasks in Construction Sites
Jianyu Zhao* , Ergo Pikas, Olli Seppänen and Antti Peltokorpi

Department of Civil Engineering, Aalto University, Espoo, Finland

Lean construction methods have demonstrated potential to improve construction
productivity. For example, the location-based management system and the last
planner system have increased the reliability of planning and control in construction
production. However, these benefits are often reduced because of inaccurate manual
data collection. To alleviate these problems, technologies for automated monitoring of
workers have been developed to identify site events in chaotic environments. This paper
aims to investigate whether a Bluetooth low-energy-based real-time indoor positioning
system can monitor task progress from workers’ presence. Our findings suggest that the
proposed system is a feasible solution for monitoring task-level progress when there are
explicit dependencies between tasks. This method could automatically detect task start
and finish times and estimate the hours required to complete a task. This enables the
measurement of waste hidden inside tasks, which allows for interventions for improving
flows and eliminating waste.

Keywords: real-time tracking, production control, construction, Bluetooth low-energy tracking technology,
task-level uninterrupted presence, task progress

INTRODUCTION

Construction sites are often chaotic places, and any semblance of a smooth production workflow
is frequently disrupted. These disruptions are often caused by the unreliable flow of work
prerequisites, creating trade-offs to improvise and work under suboptimal conditions (known
as making do) (Ballard, 2000; Bertelsen, 2003). These trade-offs can cause unplanned, wasteful
activities, such as waiting for/after other workers, rework, and non-value-adding movements
between work locations (Sacks et al., 2010). Frequent workflow disruptions also hinder a
comprehensive understanding of the real-time situation on site (Sacks et al., 2010). According to
the lean construction method, workflow variability is a key root cause for waste (Arashpour and
Arashpour, 2015). Thus, to improve productivity and decrease waste, it is critical to measure and
address variability.

Lean production principles and methods for construction production planning and control
have been developed to address workflow variability (Thomas et al., 2002). For example, Takt
planning and control (TPC) (Tarek et al., 2014), the last planner system (LPS), the location-based
management system (LBMS), and their combinations (Seppänen et al., 2010) have demonstrated
benefits in reducing the amount of non-value-adding time in construction processes, known as
waste, and improving the utilization of resources (Seppänen et al., 2010, 2014; Heinonen and
Seppänen, 2016).
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In Takt planning and control, variability is reduced by
decreasing the batch size and standardizing the process using
small areas with consistent duration (Takt time) and making any
deviations visible to all. To protect against remaining variability,
capacity buffers are used in each Takt area. Case studies have
reported improved productivity and resource utilization and
reduced cycle times (Frandson and Tommelein, 2014; Frandson
et al., 2015; Heinonen and Seppänen, 2016). The LPS was
developed to support project teams in creating a network
of commitments and reliable workflows through continuous
learning and improvement, for example, by measuring the
percent plan complete (PPC) and addressing any failures by
using a root cause analysis (Ballard, 2000). The LBMS is
used to plan continuous workflow to maximize learning effects
and prevent the risk of waiting and additional mobilization.
Furthermore, when data on actual production rates and
labor consumption are collected, the LBMS can be used to
predict and identify future clashes between tasks, which would
potentially cause cascading delays (Kenley and Seppänen, 2009;
Frandson et al., 2015). What is common to all these different
methods is the goal of improving the reliability of construction
production workflow. Progress monitoring is an essential part
of these methods.

However, research has shown that the real-time data collection
of accurate progress information is a key challenge in production
control (Seppänen et al., 2014). First, the manual daily reporting
of work progress by workers often results in incorrect judgments
and human error (Goodrum et al., 2006; Costin et al., 2012).
Second, direct observations by production personnel for data
recording and collection are seldom able to provide useful and
timely information to respond to rapidly changing site conditions
(Akhavian and Behzadan, 2016). Third, the manual monitoring
and progress control of construction work is resource-intensive
in the context of many parallel works requiring a substantial
amount of resources. For example, Kala et al. (2012) found that
the full-scale implementation of the LBMS was time-consuming,
resulting in an average of 9.2 h for data collection and progress
reviews per week.

Decentralizing and automating progress data collection
could help improve production control. Mobile applications
for self-reporting the actual start and finish dates have been
developed (Dave et al., 2014; Zhao et al., 2019), but workers
or superintendents may not self-report accurately. Zhao et al.
(2019) proposed that automated real-time progress monitoring
of tasks and workers’ presence could improve construction
production control activities. However, their analysis focused
on the accuracy and coverage of the Bluetooth low energy
(BLE) system and workers’ presence on the project level; a
task-level analysis was left for further research (Zhao et al.,
2019). The expected benefits of automated production control
include (1) avoidance of errors caused by manual data collection
and (2) rapid and accurate forecasts to facilitate the LBMS or
other location-based methods by eliminating delays caused by
manual data entry (Costin et al., 2012). Furthermore, automated
progress monitoring could be used to estimate work effectiveness
by looking at the patterns of workers’ uninterrupted presence
(Zhao et al., 2019).

In the current study, we develop and implement an indoor
positioning system that tracks workers’ locations to support
data collection at the task level. This research aims to
demonstrate the proof of concept by realizing the proposed
method and expanding the discussion to other case types
for elaboration in future research. Therefore, in this study,
system development is confined to work locations with strict
workflow dependencies. In the discussion, we address the
developed method’s generalizability and opportunities to adopt
the proposed method in other contexts of project types.
Specifically, we aim to automate the identification of task start
and finish times based on heuristics to estimate the variability
of work processes. For that, workers’ uninterrupted presence in
work locations is measured at the task level (e.g., bathrooms). The
system is validated by comparing the results to original schedules
and self-report progress data from workers.

TASK MANAGEMENT AND
PRODUCTION CONTROL IN
CONSTRUCTION

The proper management of construction tasks for the effective
utilization of resources is critical for the coordinated and timely
delivery of construction projects (Lu and Li, 2003). Many
theories and methods regarding task planning and control in
construction projects have been developed. The critical path
method (CPM), which has been used since its creation in the
1950s, has benefited the construction industry in some areas, such
as planning and controlling projects and communicating plans
(Castro-Lacouture et al., 2009). However, researchers have called
for a shift from monthly CPM schedule updates to more real-time
control (Seppänen et al., 2010).

As a partial solution, location-based approaches based on
weekly control have been proposed (Kenley and Seppänen,
2009) to optimize task schedule and enforce a continuous
workflow (Frandson et al., 2015) by requiring details about
actual crew sizes, quantities, and start and finish dates, along
with suspensions for each task at each location (Seppänen et al.,
2010). Typically, a weekly interval for control actions is used to
ensure continuity. Researchers have also proposed focusing on
look-ahead planning (make tasks ready for execution) on the
specification of the hand-offs between trades, and on prioritizing
the completion of tasks that require a large space for material
laydown and work execution (Seppänen et al., 2013). Often,
production problems are revealed only on a weekly basis (e.g.,
in Seppänen et al., 2013) because the chosen resolution of
production control is a 1 week time frame. A weekly frequency of
production control also delays the information on task progress
needed to make production management decisions.

A weekly frequency is insufficient to evaluate factors
impacting productivity because this requires understanding
how time is spent when conducting an activity. Traditionally,
productivity has been investigated with observations (Costin
et al., 2012); however, human inspections and observations
are tedious and not feasible for conducting continuously on a
construction site due to the slow process of data collection and
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analysis (Akhavian and Behzadan, 2016). In order to automate
tracking, researchers have explored the use of computer vision-
based techniques (Yang et al., 2016; Luo et al., 2018; Konstantinou
et al., 2019).

Current state-of-the-art vision-based techniques support the
identification of several types of activities and the detection
of task completion levels (Luo et al., 2018). The limitation of
vision-based approaches is that they require large datasets for
training the system (Zhao et al., 2019). Furthermore, problems
of false negatives and false positives, such as occlusion, remain in
state-of-the-art solutions (Park and Brilakis, 2016). It is critical
to estimate the time resources engaged in value-adding and
non-value-adding activities for production control purposes. In
many cases, non-value-adding activities require the sensing of
movement. In order to detect movement with a vision-based
system, the system needs to address both detection and tracking
because detection itself cannot differentiate resources of the
same type. Thus, movement trajectory data are unavailable from
detection-only methods (Park and Brilakis, 2016). This limitation
can be solved by tracking methods. Still, the initiation of the
vision-based tracking function demands the location of the
tracked resources to be determined on their first appearance in
the view. Therefore, compared with indoor positioning methods,
the mismatch error of the tracking based on vision technologies
can be propagated and affect later matching of other pairs (Zhang
et al., 2018), which potentially hinders task start and finish
recognition when it comes to task progress management. Also,
existing vision-based tracking methods lack applicability because
they usually require human operators to calibrate monitoring
when encountering congestion. Construction workers often
need to wear specific clothes, such as hi-vis apparel, to
create a necessary tracking environment for image recognition
(Konstantinou et al., 2019).

Alternatively, apart from vision-based approaches that usually
rely on site cameras, mobile-based applications have been used
to recognize and classify workers’ activities onsite (Akhavian
and Behzadan, 2016). In these instances, data collection has
been conducted by embedded accelerometers and gyroscope
sensors to capture the body movement of workers and enable
automated activity recognition (Akhavian and Behzadan, 2016).
These approaches have similar limitations, requiring large
training datasets for each activity type. Additionally, they require
workers to carry phones onsite at all times and keep them at
adequate battery levels.

Some of these limitations can be addressed by resource
positioning technologies, which allow for the automatic tracking
of workers’ and other asset positions. For example, the use of
radio-frequency identification (RFID) (Costin et al., 2012; Park
et al., 2016), magnetic field (Park et al., 2016), ZigBee (Liu et al.,
2007), Ultra-Wideband (UWB) (Cheng et al., 2013), and BLE
(Olivieri et al., 2017; Park et al., 2017; Zhao et al., 2017) have
been successfully used to reduce data collection efforts while
still assuring accuracy and providing real-time data through
the automated detection of workers. For example, researchers
proposed a passive RFID solution to estimate workers’ travel
and wait times for site elevators in a high-rise building (Costin
et al., 2012). However, this research had several limitations:

(1) the study did not consider the different tasks of workers;
(2) researchers used the passive RFID tags, which have no
self-reporting capability due to the data storage capacity of
approximately 128–256 bytes; and (3) a limited detection range
from 4 to 10 m, which may be further attenuated in proximity to
metal surfaces (Costin et al., 2012).

Lin et al. (2013) studied a ZigBee-based tracking solution
for the development of a real-time monitoring system to
understand workers’ behavior on large dam construction sites.
This could potentially provide a task progress management
of workers in practice. Using the dynamic wireless sensor
network, consisting of a mesh communication tree, workers’
tracking accuracy was reported to be 3–5 m. However, the
study did not address the indoor construction environment.
Furthermore, Cheng et al. (2013) introduced the integrated
UWB (for monitoring the real-time spatial and temporal data of
workers) and physiological status monitor (PSM) (for remotely
tracking the posture of the workers) system to measure the
proportion of the value-adding contribution of construction
tasks. However, the research’s objectives were to automatically
detect and characterize site geometries and estimate the direct
work time rate by classifying the types of workers’ activities, such
as wrench time, material time, travel time, and rest time. Task
differences in a multi-task environment were not considered, and
the research questions did not include determining when workers
switched to a different task.

When compared with other technologies, BLE has several
advantages in terms of the indoor tracking environment: (1) BLE
technology is reliable and reasonably accurate for indoor tracking
of workers, and (2) the solution is cost-efficient and easy to set
up and use. In the previous study, it was demonstrated that
BLE beacons are promising tracking technology for proximity
detection because Bluetooth beacons are light, resistant to
dynamic weather conditions, and have a satisfactory battery
life with minimal false negative alerts (Park et al., 2016). In
another study, where a BLE tracking solution was applied in three
construction cases for project-level presence analysis of workers,
it was reported that BLE beacons were cost efficient (four EUR
per beacon), took half a day to install, and needed only 1 or
2 h of weekly maintenance (Zhao et al., 2019). Therefore, BLE
technology could be a suitable technology for resource tracking
and progress monitoring of construction works (Zhao et al.,
2019). Furthermore, recent research has shown that the sensor
network powered by BLE technology achieves a location accuracy
of 5–10 m in construction, and the portable BLE beacons, with
easy deployability and good stability (Gómez-de-Gabriel et al.,
2019), enable the possibility of identifying working patterns,
thus quantifying productivity (Mohanty et al., 2020). However,
researchers using BLE tracking methods have not used the
technology to estimate workers’ task-level presence and discover
opportunities for improving productivity and eliminating waste.

The concept of uninterrupted presence was proposed by Zhao
et al. (2019). Uninterrupted presence as an efficiency metric is
calculated when workers are continuously present in one work
location without moving to another. In three case projects, the
uninterrupted presence of more than 10 min in work locations
was found to occur 24.5–35.5% of the time. This indicates a
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substantial amount of movement between work locations and
a seemingly inefficient process. However, Zhao et al. (2019)
did not investigate uninterrupted presence at an individual task
level. Instead, they estimated an overall share of uninterrupted
presence at the whole project level (i.e., project-level presence
indices). With project-level data, it is impossible to identify the
root causes of problems or figure out improvement interventions
at the task level. Furthermore, the project-level presence indices
consider the productivity of the whole project but do not
consider the workflow of tasks. Specifically, the project-level
presence indices did not consider the production schedule and
dependencies between different tasks. A task-level measurement
of uninterrupted presence opens new and interesting research
questions and opportunities. For example, what is the common
duration of uninterrupted presence on the level of individual
tasks? Do different types of tasks have unique characteristics
in terms of the variation in uninterrupted presence, which
would potentially account for task inefficiency? Are workers
following the production schedule (i.e., conducting the right
work in the right location)? How is work conforming to planned
requirements and predictions? How much buffer is included in
planned work durations? Also, if it is possible to evaluate the
work performed at the task level in real time, it would enable
a host of new services related to the short-cycle management
of construction production. Therefore, considering task and
location differences, workflow-specific metrics should be studied
as complementary techniques to project-level uninterrupted
presence indices. This, indeed, is the motivation of this study to
develop a method for task-level progress monitoring.

To achieve the objective of the study, we first need to develop
a method to automatically identify the uninterrupted presence of
workers at a task level and detect the actual start and finish times
of tasks at work locations. Second, we propose new KPIs that will
allow novel insights (such as evaluating task-level uninterrupted
presence against plans for schedule conformance) to be used
for better planning and production control in construction.
In the current paper, we apply a real-time tracking system
similar to Zhao et al. (2019) but consider an uninterrupted
presence analysis at the task level while using positioning data
to monitor task progress. For this, we propose the following
research questions:

(1). Can indoor positioning data be used to enable the
automatic detection of the start and finish times of
construction tasks?

(2). Does the uninterrupted presence at a task level provide new
insights that can help identify and develop interventions for
better production control in construction?

MATERIALS AND METHODS

Research Process
We use the design science research methodology; the process
of this research is divided into six stages (Peffers et al., 2007).
Table 1 summarizes the main stages and key aspects of the
stages. The first three stages are related to comprehending and

understanding the problem: deep comprehension of the task
management and production control, identification of a problem
related to the automated detection of task progress, and design
and development of the solution artifact. The latter three stages
are related to analysis and development: examine the applicability
of the solution, implement and test the solution, and analyze the
theoretical contribution of the solution.

A case study research method was selected to investigate the
phenomenon within a real-life context. Case studies are suitable
for answering questions of “why” or “how” (Yin, 2018). The case
study method was chosen to develop the performance of a new
automated task-based progress monitoring system.

For implementing and testing the solution (stage V in Table 1),
we followed six steps to increase the reliability of the research
results. The first three steps were related to setting up the system
and making sure that the system performed as expected: (1)
acquiring access to the initial project information and site and
setting up the tracking system; (2) verifying the accuracy of
the tracking system based on the ground-truth data; and (3)
verifying the coverage of the system based on the ground-truth
data (Zhao et al., 2019).

The following three steps, which are connected to the main
aim of the current research, were related to the development of an
automated method for estimating the task start and finish times
based on indoor positioning data: (4) identifying the start and
finish dates based on the presence information of workers in a
specific work location and planning information; (5) validating
the automatically estimated task start and finish dates against
the self-report start and finish data by construction workers
and explaining any major differences; and (6) calculating the
task-level presence of workers in different tracking locations
and discussing the use of a task-level presence. We used the
concepts of presence indices (PIs) and uninterrupted presence
threshold when conducting the estimation of task-level presence.
PIs denote the share of workers’ presence time of their entire
operational day (from first detection in any location to last
detection in any location on the same day). The uninterrupted
presence threshold denotes the minimum duration that a worker
must be present at one work location without interruptions to
consider the presence value-adding (Zhao et al., 2019). We took
the highest value (10 min) in Zhao et al. (2019) as the threshold
for this case because we wanted to exclude potential non-value-
adding time, such as walking around the site, as much as possible.

System Architecture
In the current research, we used the system architecture described
previously by Zhao et al. (2019). Here, we briefly describe
the main elements and relationships of this architecture. In
this architecture (see Figure 1), BLE beacons that are assigned
to specific workers are used to track them periodically (with
approximately 1 s frequency), transmitting the media access
control (MAC) address of the beacon to the gateways (Raspberry
Pi) in specific locations and from gateways to the cloud.
Specifically, the information on a unique MAC address of a
beacon associated with the worker’s profile is collected, together
with the time intervals for worker presence in the database.
Periodic signals in the nearby gateways capture and transmit
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TABLE 1 | Summary of research methods.

Step 1: Understanding (i) Deep comprehension
of the topic

Theoretical references: lean philosophy, location-based management
system (LBMS), Bluetooth low energy (BLE) indoor positioning

Case study: Plumbing renovation;

(ii) Identify a relevant
problem

1. Can indoor positioning data be used to enable the automatic detection of the start and finish times of
construction tasks?
2. Does uninterrupted presence at a task level provide new insights that can help identify and develop
interventions for better production control in construction?

(iii) Artifact Propose how to measure the task progress information from real-time tracking so that the data can be used
to automatically detect the start and finish times of the construction tasks and calculate uninterrupted
presence at the task level.

Step 2: Analysis and
development

(iv) Examine
applicability of the
solution

Data analysis, visualization, and validation in case studies

(v) Implement and test
the solution (case
studies)

System implementation in the construction project Data analysis and simulation
(six steps)

Model refinement

(vi) Analyze the
theoretical contribution
of the solution

Final version of the integrated model: system for automated task progress detection and uninterrupted time
analysis to empower production control in lean construction.

FIGURE 1 | The architecture of indoor tracking application for a construction site (adapted from Zhao et al., 2019).

those signals using the Message Queuing Telemetry Transport
(MQTT) protocol. The Received Signal Strength Indication
(RSSI) from the beacons is measured by gateways together with
their MAC address. The broker in the cloud pushes the tracking
data to the clients, and the data analyzer module subscribes to a
topic published by the clients from gateways.

The data analyzer defines the location of beacons based on the
magnitude of RSSI: the farther the beacons are from the gateways,
the smaller the RSSI. That means the closest gateway can capture
the beacon signals and determine the location of the beacon based
on the event of the strongest signal (RSSI), which is compared
and analyzed in the data analyzer module. The data analyzer can
store the tracking data in the designed database, and a third-party

application can utilize the data through a database application
programming interface (API) module via representational state
transfer (REST) (Zhao et al., 2019). Because RSSI is measured
for closeness to the gateways, the value is dynamic under indoor
construction conditions, resulting in potential flickering issues
for detection. To solve this, the system utilized an array of N
recent RSSI values of every beacon in every gateway, so the
oldest values were pushed out when storing a new value in the
data analyzer. Therefore, the last N value of RSSI is averaged,
and the outlier values are eliminated from RSSI values so that
the flickering problems are eased. In this study, data were
downloaded from the cloud and then used for further analysis.
The main elements and relationships of the system architecture
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FIGURE 2 | Floor plan of the selected case study, with gateways marked.

are depicted in Figure 1 and are adapted from Zhao et al.
(2019).

Case Description: System Set-Up and
Selection of Tasks
For the purpose of the present research, a residential apartment
renovation project located in Helsinki, Finland, was chosen as
a case for two reasons: first, this type of project (plumbing
renovation) had been measured with indoor positioning
technology in a previous study (Zhao et al., 2019); and second, the
researchers had access to the resource-loaded task-level schedule.
The indoor positioning and tracking of workers took place from
March 8 to June 1, 2018. The residential building had seven floors,
with four apartments on each floor (see Figure 2).

The BLE beacons were assigned to eight workers, who gave
informed consent to participate in the study. The BLE beacons
can be attached to key chains or carried in the pockets of workers,
so the potential disturbance to tasks was minimal. The BLE
transmission range was set to the default value of 12 meters. The
placement of nine gateways is illustrated in Figure 2. To place the
gateways, we followed the guidelines developed in our previous
study (Zhao et al., 2019). Three gateways were installed at the exit

locations (two on the ground floor and one in the construction
site office) and one in a selected apartment on each floor (the red
stars in Figure 2). Because the logic of the workflow was from the
top to bottom floor, it made sense to track one apartment on each
floor. The selected apartments on each floor were one-bedroom
apartments with an area of approximately 50 m2. The selected
apartments shared the same layout; therefore, each apartment’s
wall structure and location were identical, which made it possible
to compare the tracking data across the selected apartments.
Because of the lack of required power supply for the Raspberry
Pi, we could not place gateways on the second floor.

The initial system set-up took half a day. After verifying
the system accuracy and coverage, the beacons were assigned
to the workers, each responsible for the execution of specific
tasks (Table 2). The construction site was visited weekly (1–
2 h each time) to maintain the tracking system, for example,
ensuring that the installed gateways had sufficient power supply
and internet connectivity.

Table 2 summarizes the selected tasks, which can be broadly
divided into two groups. First, workflow 1 (bathroom workflow)
is a set of tasks with a logical sequence because of the technical
dependencies in a constrained space. In the bathroom, the
selected tasks had to be completed in the following sequence:
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TABLE 2 | Summary of tracked workers in the selected case project.

Tasks (abbreviations) Work trade Workers assigned to the task

Masonry of shafts (MS) Carpentry Carpenter 1 Carpenter 2

Preparation of concrete
floor pours and pouring
(PP)

Carpentry Carpenter 1

Waterproofing (WP) Tiling Tiler 1

Tiling Tiling Tiler 1

Joints Tiling Tiler 2

Suspended ceiling (SC) Carpentry Carpenter 1 Carpenter 3

Caulking of suspended
ceiling (CSC)

Painting Painter 1 Painter 2

Painting of suspended
ceiling (PSC)

Painting Painter 1 Painter 2

Furnishing (Fu) Carpentry Carpenter 1

Finishing (Fi) Carpentry Carpenter 1

Shaft drywall (SD) Carpentry Carpenter 2

Kitchen furnishing (KF) Carpentry Carpenter 1 Carpenter 4

masonry of shafts → preparation of concrete floor pours and
pouring → waterproofing → tiling → joints → suspended
ceiling→ caulking of the suspended ceiling→ painting of the
suspended ceiling→ furnishing→ finishing. Second, workflow
2 (kitchen workflow) was a set of tasks that were not technically
dependent on the bathroom workflow tasks but had resource
dependencies, including shaft drywall and kitchen furnishing.

Overall, 12 tasks covering three trades (carpentry, tiling, and
painting) in six work locations [floors 7 through the ground floor
(see Figure 2)] were tracked, and a total of 88.95 h (5,337 min)
with 1,727 time intervals were recorded. The time intervals in the
tracking dataset contain information of a worker, trade, location,
and the corresponding durations at that location. A new time
interval was generated in the system when a worker moved to
a new location and was detected by a different gateway.

System Accuracy and Coverage
To evaluate the reliability of the results, it is important to
understand the positioning system’s accuracy and coverage. Here,
accuracy refers to the system’s capability to record the trackable
objects in the right location at the right time (Zhao et al.,
2019). Coverage refers to how large a share of the total time
the system can detect the tracked object in any location on site.
To verify the accuracy and coverage, we followed the approach
described by Zhao et al. (2019).

The system accuracy was evaluated based on comparing
tracking results to ground-truth data. For creating the ground-
truth data, two researchers walked around the site and manually
recorded the time they spent in each location. Beacons were in
the researchers’ pockets during the accuracy tests because the
same instructions were also given to workers. The researchers
attempted to simulate the workers’ daily routines in work
locations, such as moving from floor to floor, staying in one
location for some time, leaving and returning to the site from
exits, etc. Then, the self-report data by the researchers were
compared against the data recorded by the tracking system.

Out of 114 min of the researchers’ movements, 102 min were
detected in the correct location and at the right time, resulting in
89% accuracy. Floors 4 and 6 registered the most inaccurate times
with 7 min (6%) and 3 min (3%), respectively. Those inaccurate
minutes were registered for two reasons: (1) An incorrect
gateway detected the beacon. Because the indoor environment,
such as concrete walls, contributes to the complexity of real-
time monitoring, thus impacting the detection of signals, some
beacons could be identified by a gateway that was not closest
to them. For instance, on the fourth floor, an incorrect gateway
detected the beacons for 4 min 43 s. To tackle this kind of
inaccuracy, it is possible to decrease the beacon signal strength,
but this could lead to situations where the beacons are not
detected by any gateway. (2) Data flickering is a system reliability
issue in real-time tracking methods (Zhao et al., 2019). It means
that multiple gateways catch the signal, and the system reports
rapid switching of locations. Data flickering can be caused by
the proximity of gateways to each other. On floor 4, data was
flickering for 1 min 51 s (all falsely registered to the adjacent
floor: floor 5). To minimize the effects of inaccuracy, we followed
the guidance from Zhao et al. (2019) for a similar renovation
project where the researchers proposed to place gateways in work
locations enclosed by concrete walls (such as apartments) to allow
for small overlapping of detection areas from nearby gateways in
case of no coverage.

For coverage, the time that the researchers were detected by
any gateway during the simulated time was 112 min, resulting
in a coverage ratio of 98.2%. We placed all gateways in the
bathroom area, and the researchers recorded their movements
around the bathrooms where the workers were supposed to work.
Therefore, compared with our previous study using the same
tracking technology, which achieved a 71.2% coverage and 55.3%
accuracy in a plumbing renovation project (Zhao et al., 2019),
the current case study achieved a higher level of coverage and
accuracy. However, because we were not able to place gateways on
floor 2, those workers could theoretically sometimes be detected
on floors 1 or 3. We did not observe a substantial amount of
inaccuracy on those floors because only 1 min on floor 2 was
incorrectly grouped into floor 1 during the validation period.

RESULTS

Detection of Task Start and Finish Times
The tracking system can detect the time period of each worker in
a specific location. These raw data were used to estimate the actual
start and end times of the tasks. This was done by implementing
the following steps.

(1) Because the first task in the bathroom workflow (MS) was
always scheduled one full day ahead of the first task in
the kitchen workflow (SD) for each location, we started
analyzing the bathroom workflow first. According to the
schedule, there was a time when task PP in the bathroom
was conducted at the same time as task SD in the kitchen
workflow, but those two tasks were scheduled for two
different workers, so their presence could be differentiated.
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(2) In both workflows, the first detected uninterrupted
presence on each floor was compared with the schedule of
a task that was the closest to that presence, so that we could
determine from which task in the workflow the worker had
started the job.

(3) Task switching took place between two tasks within the
same workflow. If the given task’s successor was scheduled
for the same worker, we assumed that the task switch
happened when there was an absence of at least 4 h at
that location after the last presence of the task had been
detected. We used 4 h because all tracked tasks at a single
location were scheduled for 4 h, except kitchen furnishing.
If we could not find any absence period longer than 4 h, we
took the scheduled start time of its successor and used it
to search for the closest detected uninterrupted presence to
determine the time of the task switch. When determining
absence, we did not count the absence time outside the
construction hours: (1) the workday started at 7:00 a.m.; (2)
the workday ended at 3:30 p.m.; and (3) a lunch break was
between 11:00 and 11:30 a.m. In this case, the task switch
rule was applied on the following task sequences where
the same workers were doing multiple tasks in the same
location: MS-PP; WP-Tiling; CSC-PSC; and Fu-Fi.

(4) If the given task’s successor was scheduled for different
workers other than the one for the given task, we
assumed that the task switch was happening when the first
uninterrupted presence of the successor task was detected,
regardless of the length of the absence time between the two
tasks. This task switch scenario was applied to the following
task sequences: PP-WP; Tiling-Joints; Joints-SC; SC-CSC;
PSC-Fu; and SD-KF.

(5) In summary, the start time of a given task was the start of
the first detected period of uninterrupted presence, and the
finish time was the end of the last uninterrupted presence
of that task until the task switch.

The scheduled and tracked start and finish times for the
selected tasks were derived based on these task detection rules.
Information related to the bathroom on floor 5 is presented as
an example. Figure 3 illustrates how the raw data on floor 5 for
consecutive tasks (waterproofing, tiling, and joints in tiling trade)
were used to determine the tasks’ switching. Task switch 1 took
place when there were 272 min of absence after the waterproof
task’s detected presence, which is longer than 4 h. Task switch 2
took place when the other tiler’s presence was detected, regardless
of the absence time length. March 24 and 25 landed on the
weekend, so no presence of workers was detected.

Based on the steps, Table 3 presents the plans and tracking
results of the tasks in the sequence of how work was actually
performed, from the tasks “masonry of shafts” (top) to “painting
of suspended ceilings” (bottom). There is a discrepancy between
the tracked and planned start and finish times. This is expected
because workers do not or cannot follow their plans all the
time in practice.

In summary, the presented method can begin to answer
the first research question on how to automatically identify
the task start and finish times based on the information of

worker presence in specific locations. Next, the automatically
detected information on the task start and finish times in different
locations is validated against the construction workers’ self-
report information.

Validation of Task Times Against
Workers’ Self-Report Data
The validation aims to evaluate the differences between the
automatically identified start and finish dates and the workers’
self-report records. We are particularly interested in cases where
information from the automated tracking system does not match
the information reported by the construction workers and site
managers. The self-report task start and finish data were collected
in two different ways, depending on the workers’ willingness to
use a mobile application. (1) Workers self-report the information
on a mobile application (SiteDrive), or (2) workers reported the
information to site managers, who entered the records into the
SiteDrive system.

Table 4 summarizes the differences between the system-
detected results and workers’ self-report results, giving a total
of 11 tasks (excluding the task “shaft drywall”). We used a
4 h time difference to divide the observations into “accepted”
and “not validated” categories because all the tracked tasks at
a single location were scheduled for 4 h, except for the task
of kitchen furnishing (3 h). Workers were supposed to enter
start and finish events into the system “in real time,” but some
entered information later. In those cases, we expect to see some
inaccuracy in the data. The natural way workers segment their
time is based on breaks, which occur roughly every 2 h (i.e.,
morning before coffee break, afternoon after coffee break, before
lunch). For this reason, we categorized 2 h (= 1 break) as
“close” and 4 h (= 2 breaks) as “accepted.” We considered 4 h
as a limit for acceptance (= 2 breaks) and further divided the
“accepted” category to “close” (2–4 h, 1–2 breaks) and “validated”
(<2 h, <1 break).

In summary, the following scenarios were defined for each task
for both start and finish times:

(1). If longer than 4 h, the results are considered “not validated.”
(2). If between 2 and 4 h, the results are “close.”
(3). If less than 2 h, the results are “validated.”

Several time intervals that were “not validated” resulted from
obvious errors in the progress data, self-reported by workers.
For example, the task “shaft drywall” had the same self-report
start and end times in all locations, and therefore, the task was
excluded from the analysis. The task “masonry of shafts” on floor
1, task “caulking of suspended ceiling” on floor 3, task “painting
of suspended ceiling” on floor 5, and task “finishing” on floor
1, as reported in SiteDrive, had the same start and finish times.
Therefore, those tasks were also excluded from the analysis.

In summary, for the task start time, we found 35 out of 45
observations (78%) as “validated” or “close” and for the task end
time, we found 27 out of 45 locations (60%) as “validated” or
“close” (Table 4), resulting in a total of 31% of observations that
were categorized as “not validated.”
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FIGURE 3 | Task switch example for three consecutive tasks on floor 5.

TABLE 3 | The scheduled start and finish time of tasks on floor 5 compared with the results based on the real-time tracking system.

Tasks Look-ahead plan Tracking result

Start time End time Start time End time

Masonry of shafts March 20 7:00 March 20 11:00 March 20 12:42 March 20 15:12

Preparation of concrete floor pours and pouring March 21 7:00 March 21 11:00 March 21 7:31 March 21 11:04

Waterproofing March 22 7:00 March 22 11:00 March 22 8:01 March 22 12:05

Tiling March 23 7:00 March 23 11:00 March 23 8:07 March 23 15:55

Joints March 27 7:00 March 27 11:00 March 26 9:31 March 27 14:38

Suspended ceiling April 03 7:00 April 03 11:00 April 03 7:32 April 03 12:13

Caulking of suspended ceiling April 04 7:00 April 04 11:00 April 04 7:24 April 04 10:09

Painting of suspended ceiling April 05 7:00 April 05 11:00 April 05 7:29 April 05 9:56

Shaft drywall March 21 7:00 March 21 11:00 March 21 7:31 March 21 13:11

Kitchen furnishing March 22 13:30 March 23 8:00 March 22 9:50 March 23 13:06

TABLE 4 | Differences between self-report data and the tracking results of the workers (number of observations).

Task Difference in start time Difference in end time

<2 h 2–4 h >4 h <2 h 2–4 h >4 h

Masonry of shafts 1 1 1 1

Preparation of concrete floor pours and pouring 4 1 4 1

Waterproofing 3 2 1 3 3

Tiling 3 1 1 2 2 1

Joints 2 2 2 1 1

Suspended ceiling 4 1 1 1 1 4

Caulking of suspended ceiling 1 2 1 1 3

Painting of suspended ceiling 1 2 3

Furnishing 2 1 3

Finishing 1 1 2

Kitchen furnishing 3 1 1 2 2 1

Total 23 12 10 15 12 18
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TABLE 5 | Count percentage of the recorded time intervals inside of the
self-reported data of each task (the whole dataset).

Tasks Number of time
intervals between
the self-reported
start and finish

time

Total number
of time

intervals

Percentage

Masonry of shafts 129 129 100%

Preparation of
concrete floor
pours and pouring

171 171 100%

Waterproofing 94 101 93%

Tiling 108 120 90%

Joints 33 43 77%

Suspended ceiling 67 72 93%

Caulking of
suspended ceiling

217 281 77%

Painting of
suspended ceiling

69 72 96%

Furnishing 25 30 83%

Finishing 94 110 85%

Kitchen furnishing 381 381 100%

Total 1,388 1,510 92%

For each of the 11 tasks, we evaluated all detected time
intervals over the whole dataset to see how many of those were
between the self-report start and finish times (Table 5). In total,
92% of the detected time intervals occurred between the task
self-report start and finish times.

We made several observations based on the validation results.
(1) The task start and finish times, as reported by the workers or
site managers, were generally close to the automatically derived
task start and finish times (see Tables 4, 5). However, there were
issues with the self-report data. For example, there were cases
where the start time and finish time of a task at one work location
were reported with the same timestamps in the SiteDrive system.
This confirms that manual data collection and entry are subject
to human error. (2) The self-report data represent the time range
of the task execution but do not show how much time the
workers were present at the work location. For example, although
a worker reported the whole day for their tiling task on March 23
on floor 5, the tracking system identified several periods when
no one was present. Time gaps are visible both in the handovers
between tasks and inside the task execution periods. Based on the
tracking data, the tasks were regularly suspended, but in the self-
report data, these suspensions were not captured. Therefore, the
self-report data do not give an overview of how the workers’ time
was actually used on site.

Next, we visualized workers’ uninterrupted presence in all
tasks and work locations to obtain a broader picture of the work
progress (Figure 4). The figure demonstrates two workflows of
tracked tasks in one timeline. The dashed lines separate the
kitchen workflow and bathroom workflow on floors 3, 5, 6, and 7
in the figure, where tracking data for both workflows are available.

Due to several inaccuracies, we decided to exclude floor 4
from further analysis. Five out of seven tasks on floor 4 were

not validated due to more than 4 h’ difference between estimated
and self-recorded start times. Additionally, on floor 4, we could
only capture uninterrupted presence related to seven tasks out
of 12, which was the fewest when compared to other floors.
For tiling on floor 4, we detected only 59 min of presence for
tiler 1 from 12:30 to 13:52 on March 23. According to our task
detection rules, the presence was classified as “waterproofing,”
but tiler 1 reported doing this task on March 22 and “tiling”
from 8:29 to 15:10 on March 23. Therefore, it appears that the
period of uninterrupted presence was adequately related to the
task “tiling,” but the duration was too short when compared to
the self-report task duration.

The lack of uninterrupted presence captured could result from
the fact that the workers may need to remove gateway power
plugs at times for their own task uses, but forgot to plug them
back in straight away. This was discovered during the system
accuracy test observed by the researchers, but it was not possible
to estimate how long the gateways were unplugged because
the system could not determine whether the undetected time
was from absence of workers or gateway offline periods. On
floor 4, the uninterrupted presence in six tasks (out of seven
tasks detected in total) did not appear to be during the same
times as the workers’ self-report records. This suggests that the
unplugged gateways did not capture the uninterrupted presence
of workers during their self-report time range of the work, thus
shortening the total captured uninterrupted presence on floor 4.
Furthermore, there were also problems with workers’ self-report
data on floor 4 to make the real picture even more complex. For
example, the tiler reported working on the task “waterproofing”
on floor 4 from March 22 at 7:38 to 14:31, but there were
no detected uninterrupted presences during that time on floor
4. Instead, they were detected on floor 5 from 7:31 to 11:03.
However, the worker also reported the exact same period for
the task “waterproofing” on floor 5; therefore, the uninterrupted
presence was allocated on floor 5 and not 4. We confirmed that
workers on floor 4 were not incorrectly detected by floor 3 or
5 gateways by checking that uninterrupted presence on floors
3 and 5 matched (validated) worker self-report data on those
floors, except in a few special cases. However, even though in
those special cases the uninterrupted presences on floors 3 and
5 did not match worker self-report data on respective floors, they
either did not match worker self-report data on floor 4 or workers
reported being on floor 4 at the same time as floor 3 or 5. Because
this was the case, we concluded that missing data was caused by
unplugged gateways and workers on floor 4 were not incorrectly
detected by floor 3 and 5 gateways, and other data remains valid.
For future studies, the system should be developed so that it
reports unplugged gateways and the status should be monitored
more frequently and corrected (e.g., 2–3 times a week instead of
weekly in this case) to avoid the potential poor quality of tracking
data during the test stage caused by power supply issues.

Evaluation of Task-Level Presence With
Schedules
To answer the second research question regarding the
possibilities of using task detection data for better production
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FIGURE 4 | Tracked tasks in all locations, excluding floor 4. Abbreviations: Masonry of shafts (MS); Preparation of concrete floor pours and pouring (PP);
Waterproofing (WP); Suspended ceiling (SC); Caulking of suspended ceiling (CSC); Painting of suspended ceiling (PSC); Furnishing (Fu); Finishing (Fi); Shaft drywall;
(SD); and Kitchen furnishing (KF).

control, we first followed the method proposed by Zhao et al.
(2019) for calculating the indices for workers’ uninterrupted
presence for each task. The task-level presence indices (PIs) of
the workers were calculated by dividing the total uninterrupted
presence in a location between the start and finish times of the
task by the actual duration of the task. The task’s actual duration
was defined as the duration between the first and last detected
task times, excluding breaks and hours outside of standard
working hours (evenings, weekends, and holidays).

Task−level presence indices (PIs) =

uninterrupted presence time during task
actual duration of the task

(1)

Table 6 summarizes the results of the task-level PIs for workers
in each location and the mean and standard deviation across all
work locations. During the observation period, tasks were not
detected or self-reported in all locations. Locations with missing
data have been marked N/A (not available) in the table.

The actual duration of a task, uninterrupted presence during a
task, and PIs by location and tasks indicate a significant amount
of variation, even though the bathrooms were similar in terms
of work quantity. High variation can also be found between the
tasks. The mean presence level of all tracked tasks ranged from 21
to 65%, with a standard deviation between 2% and 28%.

As a result, we also found the phenomenon of work splitting
between multiple locations. This was found in the tiling task.
Although the tiler was scheduled to work on floor 7, the actual
presence of a tiler in that location was very low, and they spent
much of this time on floor 6 (Table 6). For the waterproofing
task, we identified that the crews were working on floors 6 and 7
in parallel on March 21 (Figure 5). During the crew’s operational

time that day (240 min), we found that 71 min were spent on
floor 7 and 107 min on floor 6, resulting in 74% of uninterrupted
presence for the worker but only 29 and 45% of uninterrupted
work presence in the respective work locations. Here, the look-
ahead plan assumed completely finishing one location before
moving to the next location.

By comparing the actual worker presence in a specific location
and the expected level of presence derived from the construction
plans, it was possible to identify opportunities for productivity
improvement interventions. Thus, we introduce a metric to
evaluate the conformance between plan and realized work:

Presence−to−plan ratios (PPs) =

uninterrupted presence time during task
planned duration of the task

(2)

The PPs show how much presence is required compared
with the planned duration to complete the task; therefore, it
measures the buffer included in the task’s duration to account
for waste and variability. If interruptions could be completely
eliminated by diminishing waste and improving the process,
it indicates how much the schedule could be compressed.
For instance, with a perfect flow in the task of “caulking of
suspended ceiling,” durations could be compressed to an average
of 33% of existing planned durations, indicating opportunities for
significant improvement (Table 7). This metric could be used to
assess the task-level potential impact of lean interventions that
target improving workflow, that is, by removing interruptions.
Furthermore, based on equations 1 and 2, the ratio of PPs and
PIs is equal to the actual duration divided by planned duration,
which has been used in other studies as a metric of schedule
conformance (e.g., Al-Momani, 2000).

Frontiers in Built Environment | www.frontiersin.org 11 April 2021 | Volume 7 | Article 661166

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-07-661166 April 24, 2021 Time: 18:17 # 12

Zhao et al. Task Progress Tracking in Construction

TABLE 6 | Task-level presence indices of the workers on each floor and on average (uninterrupted presence time during task / actual duration of the task).

Tasks Floor 7 Floor 6 Floor 5 Floor 3 Floor 1 Mean Standard deviation

Masonry of shafts N/A N/A 8% (13/150) 26% (108/424) 28% (125/440) 21% 9%

Preparation of concrete
floor pours and pouring

N/A 26% (142/549) 55% (117/213) 54% (114/212) 64% (129/202) 50% 14%

Waterproofing 26% (71/277) 41% (107/262) 39% (94/244) 23% (94/413) 33% (102/306) 34% 7%

Tiling 13% (30/235) 34% (132/389) 31% (143/468) 22% (71/317) 46% (30/65) 29% 11%

Joints 21% (43/208) 15% (41/267) 14% (43/315) 81% (377/463) N/A 33% 28%

Suspended ceiling 13% (53/411) 8% (32/420) 42% (107/251) 36% (130/356) 49% (102/208) 30% 16%

Caulking of suspended
ceiling

25% (53/215) 75% (116/155) 36% (120/330) 69% (287/418) 12% (41/336) 43% 25%

Painting of suspended
ceiling

12% (54/456) 64% (51/80) 17% (25/147) N/A 35% (40/116) 32% 20%

Furnishing 32% (47/150) N/A N/A N/A 14% (31/225) 23% 9%

Finishing 25% (32/129) N/A N/A N/A 31% (134/434) 28% 3%

Shaft drywall N/A 91% (138/151) 46% (154/340) 59% (114/194) N/A 65% 19%

Kitchen furnishing 26% (195/754) 28% (154/542) 22% (106/479) 25% (403/1632) N/A 25% 2%

FIGURE 5 | The task of waterproofing and workers’ presence visualization against the schedule and self-report records.

DISCUSSION

The results indicate that worker positioning information
enables the detection of the start and finish times of
tasks, providing an estimate of the task-level uninterrupted
presence. This information can be further used for improving
production planning and control. In this section, we discuss the
generalizability of the method, the use of task presence indices
(PIs) and presence-to-plan ratios (PPs), the comparison of task
PIs and project-level PIs, contribution to knowledge, managerial
implications, and limitations.

Generalizability of the Method to Track
the Progress of Tasks
The current method relies on workflow dependencies. There are
several issues that should be considered when evaluating the
generalizability of the developed method. Our case study is an
example of strict and confined locations where there is a process
of re-entrant flow (Brodetskaia et al., 2013) and where the same
workers return multiple times to the same location to perform

different tasks. On the one hand, this case project is simpler than
other contexts because the small locations and strict technical
dependencies enable detection of a sequence of work activities.
On the other hand, the workers were undertaking several small
tasks, so the method included the added difficulty of determining
task switch in the same person’s tasks. In larger and more complex
projects, the tasks are generally longer. For example, Ballesteros-
Perez et al. (2020) reported that in building projects, the actual
average duration for task activities is 11.35 days, while in our case,
most of the tasks were 4 h. It could be argued that smaller time
resolution made tracking in our case more difficult because the
uninterrupted presence patterns were very short to detect.

Another feature of our project was small locations enclosed
within walls, which made the tracking system accurate. In
projects with large open spaces, accuracy may not be as high as
in the described case. In our previous study (Zhao et al., 2019),
we presented some heuristics and gateway placement strategies
for open areas (roughly 30-meter intervals with a beacon range of
roughly 15 meters), which can decrease the impact of open spaces
on accuracy. Open spaces are also complicated in many areas
of construction management. For example, in Takt planning,
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TABLE 7 | Results of PIs, PPs in all tracked tasks and their ratios.

Task
presence

indices (PIs)

Presence-to-
plan ratios

(PPs)

Actual duration/
Planned duration

(PPs/PIs)

Masonry of shafts 21% 18% 86%

Preparation of concrete
floor pours and pouring

50% 34% 68%

Waterproofing 34% 39% 115%

Tiling 29% 34% 117%

Joints 33% 53% 161%

Suspended ceiling 30% 26% 87%

Caulking of suspended
ceiling

43% 33% 77%

Painting of suspended
ceiling

32% 10% 31%

Furnishing 23% 11% 48%

Finishing 28% 34% 121%

Shaft drywall 65% 57% 88%

Kitchen furnishing 25% 57% 228%

Average 34.42% 33.83% 98%

there is an ongoing debate on how to define boundaries for
locations, and methods such as work density planning have been
proposed (Jabbari et al., 2020). Open spaces are challenging
because any location boundaries are more or less arbitrary and
there are no natural obstacles guiding the workers to follow
the plan (e.g., Kenley and Seppänen, 2010). For our system, the
accuracy in open spaces is noticeably smaller (Zhao et al., 2019),
the system may not record the actual boundary assumed in the
plan, and the boundary may shift. Accuracy problems occur,
especially on the edges of work areas. In future research, the
system could be generalized to open spaces by differentiating
between hard technical dependencies, and “soft” planning and
resource dependencies (Kenley and Seppänen, 2010). Task switch
in technical dependency can be determined by assuming a start-
to-start relationship and classifying periods of uninterrupted
presence based on their sequence. However, it can be argued that
open spaces present a challenge to any kind of automatic progress
evaluation system (and indeed even for manual observation).

Precedence relationships (Benjaoran et al., 2015) and planning
the sequence of activities are not unique to our case. Olivieri
et al. (2019) reported that 71% of survey respondents used
CPM to plan activities, and CPM includes defining logical
dependencies. Some dependencies are strict and technical (e.g.,
walls must be built before they can be painted), while others
are “soft” (Kenley and Seppänen, 2010). Several tasks can
technically happen in any sequence but not at the same time
because of space requirements. Expansion of our system to
these more complex contexts would require the identification
of hard and soft logic. Because of generally longer durations
of activities and less re-entrant work in larger projects, this
should not pose a difficult obstacle, and the same approach
should be usable with slight modifications. Brodetskaia et al.
(2013) analyzed a residential construction case of interior and
finishing works for 120 apartments in 480 days. The seven
activities monitored (trade activity durations varied from 1.3 to

6.9 days per apartment) were performed by five trades (drywaller,
plumber, electrician, HVAC, and tiler) with just one re-entrant
flow loop (the drywaller). With these longer durations and less
re-entrant flow, task switch would be easier to evaluate. Thus,
mapping periods of uninterrupted presence while knowing the
approximate sequence of activities in each location should be
enough to make reasonable progress estimates. We will validate
this in future research.

In any case, it is hard for a system relying only on BLE
tracking to determine when one task of the same worker finishes
and the next one starts. To improve the robustness of the
system in these kinds of situations, the system should include a
function in the future to automatically send push notifications
to workers to ask for verification whether they have started a
new task or are continuing the previous task. This could enable
a learning system by adjusting the assumptions of the model
based on user feedback. Asking for verification could also be
used to identify rework in a location, for example, if the system
detects a high amount of presence in a work location where
the worker’s tasks have been previously finished. Nevertheless,
even if we keep the single application possibility of indoor
positioning system, tests with more extended periods of time, a
larger number of individual workers etc., should be conducted to
see if the system could be implemented in a more dynamic and
complex environment.

Use of Task Presence Indices (PIs) and
Presence-to-Plan Ratios (PPs) for Lean
Interventions
Although the self-report information can be used to estimate
the start and finish times of the task, outlining task execution
boundaries or what is happening during the task is not visible
using the data collected in traditional production control
methods. The real-time tracking system can help reveal the actual
presence of workers in the location. Based on our findings,
the level of uninterrupted workers’ presence for the task is
typically low and subject to a great deal of variation. This finding
provides empirical evidence for studies highlighting the high
variability of the construction process (Picard, 2002; Arashpour
and Arashpour, 2015).

The task PIs show that despite workers’ self-reported duration
of tasks to achieve completion, 43–90% of the time was spent
either in other work locations than those scheduled, or they
remained undetected in the scheduled location. This result
agrees, for example, with the empirical research related to LPS,
where the percentage of plans completed has been found to be
generally low in construction (Ballard, 1997; Seppänen et al.,
2010). This finding also raised another question of how much
onsite presence from workers is required to complete tasks and
how large buffers should be included inside the task to reach an
optimal workflow.

The results of PP measurement from this study have
opened a black box between the task first start and last end
date on construction sites. Current construction production
management approaches, methods, and techniques often
overlook this in the planning and control of construction
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production. Although LBMS forecast calculations are critically
impacted by task suspensions (e.g., Kenley and Seppänen, 2009),
in practice, data are typically not entered into any system, which
was also illustrated by our case study where no interruptions
were entered by workers.

In the current study, we calculated PPs to show how much the
presence of different tasks is required to complete the planned
score. The remaining portion of task duration can be considered
a buffer required to account for waste and variability. Therefore,
this metric could be used to assess the task-level potential for lean
interventions on that particular task. PPs suggest the minimum
duration in which the task could be completed if wasteful
interruptions were eliminated. On average, in our case study, just
34% of task durations were needed for actual work, indicating a
considerable improvement opportunity if perfect or near perfect
flow could be achieved. To achieve this duration reduction, only
factors causing interruptions of work need to be eliminated,
which would still not consider work efficiency when workers are
present in the work location.

Other studies have shown that efficiency is low (Gouett
et al., 2011; Cheng et al., 2013), but our method is unable to
quantify that inefficiency directly because the system does not
consider the amount of output achieved by workers. Rather
than making value-adding time more productive, the waste
caused by interruptions may be easier to address because it
does not necessarily require interventions impacting the methods
of a particular work type; instead, general interventions such
as improved material logistics, better work instructions for
workers, and situational awareness on the worker level (Cheng
and Teizer, 2013; Reinbold et al., 2019; Tetik et al., 2019)
can be implemented.

The PP as a temporal indicator cannot be used to judge
the actual quality of the resulting work. However, achieving a
higher PP of the task at the same level of quality would be
essential in future production control studies in construction.
Pushing toward shorter schedules based on PP to advance
lean interventions should include a prerequisite that the work’s
quality is not compromised. In the current study, we would
like to emphasize that PP can increase by decreasing waste
in the production process, ensuring more time spent at work
locations. Therefore, a higher PP does not mean that a worker
is hurrying to improve task performance. Instead, there are
fewer interruptions, and the worker is able to spend more time
at work locations. If we shorten the duration by eliminating
interruptions, quality should improve. For instance, LPS for
production planning and control in construction, focusing
on minimizing the negative influence of variability (e.g., task
interruptions) and enhancing the reliability of workflow has
achieved success in improving production performance and
generating a predictable workflow (Hamzeh et al., 2009). In a
future study, we propose that, for example, computer vision
approaches (e.g., Yang et al., 2016; Luo et al., 2018; Zhang
et al., 2018) could be used to supplement our approach and
system, providing means to automate the inspection of possible
defects of the work. Pushing for speed at the cost of quality
or vice versa is not feasible. This way, the two systems would
complement each other.

The connection between PIs and PPs is presented in the
results. PPs denote how much presence is required to achieve
planned duration with the same productivity of tasks. PIs denote
how much presence is required to achieve the actual durations.
PPs have implications, such as showing how much of a buffer
there is in the planned duration, while PIs are a workflow metric
revealing the extent of uninterrupted time for that task. When
lean interventions in construction have successfully decreased
PIs, durations in future schedules can be reduced, leading to
increased PPs. Furthermore, the ratio of PPs/PIs (Table 7) is a
metric of schedule conformance: if over 100%, the task’s actual
duration will be longer than its planned duration. This could be
measured in real time to give early warning of delays.

Compared with other flow metrics, PIs and PPs have their
own characteristics and connect to other metrics in practice. For
example, Hamzeh and Aridi (2013) calculated LPS metrics to
explore the relationship between task anticipated (TA), a task
made ready (TMR), and PPC. However, all LPS metrics are based
on fully completed activities, whereas PIs and PPs allow for
measurement during the progress of tasks. Seppänen et al. (2014)
evaluated the impact of control actions on production rates
and productivity numerically. When production rates had to be
increased, this was primarily achieved by improved productivity
(i.e., decreased labor consumption), which challenged the LBMS
theory that control actions could mainly be implemented by
adding resources. This phenomenon could be seen in real
time, with increased PI values if productivity interventions
were successful.

Comparison of Task Presence Indices
(PIs) and Project-Level Presence Indices
Project-level PIs are used to indicate the amount of uninterrupted
presence of workers on site in proportion to their daily
operational work time for an overall project (Zhao et al., 2019).
The project-level presence is a measure of efficiency at the
project level. In a plumbing renovation project, Zhao et al. (2019)
reported a project-level presence index at 25.1% using 10 min
as the threshold value. In the current research, the project-level
presence index was 24.8% with the same threshold, matching the
previous measurements in the same project almost exactly on the
project level. However, the task-level presence index was found to
vary significantly between different tasks.

Compared with project-level PIs, task presence indices are
evaluated based on the presence between the task start and
finish dates. Because the project-level presence index considers
the uninterrupted presence of all measured workers, without
considering their task or specific work location, it can be
considered a metric of resource flow at the project level. Because
task-level indices consider task and location differences, they can
additionally be used as a metric of workflow and can be used to
warn management in real time of potential problems at the task
level. Thus, the indices are complementary. The advantage of a
project-level index is that it requires little context information,
just defining the work and non-work areas. A task-level presence
index requires a resource-loaded schedule and dependencies
between tasks but provides information that can be used to
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improve the process at the task level. Therefore, both indices
contribute to site production control and waste elimination from
two different perspectives.

Contribution to Knowledge
The current research provides a method based on automated
data collection to estimate the start and finish times of tasks
and measure the task-level presence of workers. The validation
of the method has shown that it can detect the start and finish
dates reasonably and accurately in confined locations with strict
workflow dependencies. Additionally, the method allows for
seeing into the black box between the start and finish times of
tasks. In the measured project, a small fraction of task duration
had workers present in the work location. The system can be
implemented with an inexpensive set-up, and it can retrieve
automatic tracking data from the cloud.

Previous studies have not focused on investigating the
possibility of automating detection of start and finish times at the
task level by using the BLE tracking method. Our results indicate
that automatic detection is feasible in the case of workflow
dependencies in confined spaces, such as the bathrooms of
residential apartment buildings. The results showed that it was
possible to get good results in the selected case using a real-
time tracking system in an indoor environment: here, 69% of
the selected locations were validated by workers’ self-report data,
and 92% of the tracked time intervals fell between the self-report
task start and finish dates. This indicated the robustness of the
proposed approach and the system for the automated detection
of task start and finish times.

The possibility of integration with vision-based approaches
would improve the method to track task progress, which enables
extended contribution in future studies. For example, Zhang
et al. (2018) proposed a method from camera views that can
be used to match construction site resources such as workers
and equipment. This method is useful for identifying workers’
site activities from different camera views and automatically
matching them, therefore providing possibilities for dynamically
tracking the workers’ continuous workflow. However, despite
good research results, the study still left room for further
exploration of using matched visual appearances under different
camera views onsite to evaluate workflow qualities, such as
proposed task-related KPIs. In addition, Yang et al. (2016) studied
vision-based worker action recognition based on a proposed Bag-
of-Feature framework using a cutting-edge video representation
method. The research has the potential to contribute to our study
objective, since the capabilities of workers’ action classification
based on this vision-based approach advanced the accuracy of
task progress identification and validation, therefore improving
the soundness of our proposed new KPIs as PIs and PPs. Our
results indicate that only an average of 34% of workers’ task
time was spent in scheduled work locations. It urges vision-based
approaches in construction to shift focus to the time workers
were actually in designated work locations rather than scanning
through a full scale of video monitoring for action recognition.
This provides possibilities for integrating the BLE system with
a vision-based action recognition approach to improve the
identification of task progress and interruptions.

Because the proposed BLE indoor positioning system relies
on location information but not on action classification to
determine task status, video clips need only to be analyzed
when workers are detected in designed work locations. In turn,
vision-based technology for action recognition (e.g., Yang et al.,
2016) pinpoints workers’ behaviors so that task interruptions are
more accurately identified for calculating PPs and PIs, which are
the main contribution of the current study. Previous attempts
to empirically research production at the task level have been
reported as related to mainstream CPM scheduling (e.g., Senior,
2007; Castro-Lacouture et al., 2009), LBMS (e.g., Seppänen and
Kankainen, 2004; Seppänen, 2009, Seppänen et al., 2014) and
LPS (e.g., Ballard, 2000). Although LBMS studies have tried
to manually account for the suspension of tasks to get more
accurate production rate data at a daily level, studies based on
CPM and LBMS have mostly focused on comparing the planned
and actual duration and dates. However, these studies have all
been conducted by looking at a week’s time frame. Instead, the
interruptions detected by the automated system of this paper
happened continuously during implementation and were not
considered by workers or superintendents in the self-reported
progress information.

PPC is a metric of the LPS (Ballard, 2000), which measures
the reliability of the planning process. PPC was not explicitly
measured in the current study, but based on our results, it is
likely that even a 100% PPC can be achieved with a relatively
low presence. Existing metrics still consider the events between
the start and finish times of a task (CPM and LBMS) or within a
weekly plan assignment (PPC) as being a black box. More recent
metrics, such as the construction flow index (Sacks et al., 2017),
are also based on the start and finish dates and, thus, operate
with the same limitations. Together with the tracking system,
our study proposes more accurate metrics (PI and PP) for daily
production planning and control of site activities.

The implications of our results are that there seems to be
a lot of unrecognized waste in an activity duration. This has
previously been observed with time-motion studies (e.g., Jenkins
and Orth, 2004; Saukkoriipi, 2007; Kalsaas, 2010), and results
related to the measurement of waste with various approaches
tend to agree that the share of value-adding time averages around
25% in construction (Pasila, 2019). However, time-motion studies
cannot be performed in a scalable way, so automation has
been proposed by various authors. Computer vision approaches
have been proposed to detect and classify workers’ construction
activities and thus their work performance. For example, Luo
et al. (2018) proposed an activity recognition method to achieve
continuous activity labels of workers onsite. With an average
accuracy of 80.5%, they argued that activity recognition to
implement an efficient work sampling method (Dozzi and
AbouRizk, 1993) was feasible. However, these methods require
extensive training datasets specific to each task, and creating a
scalable method that generalizes to most of the construction work
is not currently feasible. Our contribution is an automated light-
weight approach, which is low cost and effortless to set up, and
provides useful data related to the start and finish times of tasks
and information about waste between those times, allowing for
targeting lean interventions.
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Managerial Implications
The proposed framework has several important implications for
construction management. (1) The task-level progress tracking
system can provide just-in-time information on task start and
finish times. In cases where obvious errors occur from workers’
self-report records, the tracking data are a good alternative and
can be automatically obtained. (2) The proposed evaluation
metrics for the tasks, such as PPs and PIs, can be used to
automatically raise alarms for onsite management problems in
real-time, thus supporting efforts to decrease waste.

In the current project, workers or site managers manually
recorded the task start and finish times in the SiteDrive
information system. We found that the task self-entered progress
information from five tasks was subject to manual errors. The
automated data collection for tracking in real time the task
start and finish times could help avoid inaccuracy and reduce
the need for resources to collect control data from construction
production systems.

The real-time tracking system could be an alternative for
traditional human-based observations and inspections to report
task progress. In our study, the concept developed for the real-
time tracking of workers and the progress of tasks satisfied the
accuracy requirement in most tracked tasks. There is also the
potential to improve the system by adding notification features
and asking whether the worker has started a task after an
uninterrupted presence has been detected, rather than simply
letting a worker manually enter the task start and finish dates.

Limitations
One of the main limitations of the method is the inaccurate
identification of the correct duration range for some tasks.
Specifically, (1) task schedules are still needed to identify the first
task in each workflow or to detect a task switch when there is
no absence between two tasks conducted by the same worker;
(2) with this method, we cannot distinguish between several tasks
done by the same person unless we define a threshold time range
until the next presence appears (in this case, it is 4 h). In future
research, we propose placing beacons to monitor the movement
of materials that the tasks use so that more accurate identification
of task switching can be made based on the interactions of tracked
workers and materials. (3) In the investigated project, because the
locations were small (bathrooms) and the dependencies between
tasks were technical, it is reasonable to assume that the successor
task could not start before the predecessor had been finished.
Without technical dependencies, it may not be as easy to identify
the correct task that should be performed. (4) In our validation
process, we found that a small number of tasks did not match

the workers’ records very well. In future work, the system could
ask for verification of the start and finish times from workers to
resolve ambiguities.

CONCLUSION

This research has demonstrated how the proposed BLE
technology-based real-time tracking system can be implemented
in construction sites to detect task start and finish times based
on dependencies and task schedules. The automated detection of
progress information was validated against workers’ self-report
data. After analyzing 12 selected tasks in carpenter, tiling, and
painting work trades, we learned that only an average of 34.42%
of presence was needed to complete the tasks based on task PIs,
and up to 66.17% of the task schedule could be compressed if the
optimal workflow was reached, which shows great improvement
potential in construction planning and control. Task presence
indices indicate the presence level required to achieve the actual
duration, while the presence-to-plan ratios indicate the presence
level required to achieve the planned duration and capacities to
compress the schedule. The results show that the high variability
of task presences is an indication of waste. The information
provides new insights that could contribute to establishing better
workflows from lean interventions in construction.
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