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The ubiquitous presence of shot noise sets a fundamental limit to the measurement precision in classical
metrology. Recent advances in quantum devices and novel quantum algorithms utilizing interference effects are
opening new routes for overcoming the detrimental noise tyranny. However, further progress is limited by the
restricted capability of existing algorithms to account for the decoherence pervading experimental implemen-
tations. Here, adopting a systematic approach to the evaluation of effectiveness of metrological procedures, we
devise the Linear Ascending Metrological Algorithm (LAMA), which offers a remarkable increase in precision
in the demanding situation where a decohering quantum system is used to measure a continuously distributed
variable. We introduce our protocol in the context of magnetic field measurements, assuming superconducting
transmon devices as sensors operated in a qudit mode. Our findings demonstrate a quantum-metrological
procedure capable of mitigating detrimental dephasing and relaxation effects.
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I. INTRODUCTION

Shot noise sets a fundamental limit to measurement preci-
sion, which is often referred to as “noise tyranny.” Quantum
algorithms utilizing interference effects offer new opportuni-
ties to overcome it [1–7]. However, existing algorithms cannot
account for decoherence-controlled experimental conditions
[8]. Our work develops a systematic approach in the evalua-
tion of the effectiveness of metrological procedures and the
seeking of efficient solutions. To that end, we devise the Lin-
ear Ascending Metrological Algorithm (LAMA), applicable
to and guaranteeing an enhanced precision in the case where a
decoherent quantum system is used to measure a continuously
distributed variable. We introduce our protocol in the context
of magnetic field measurements, assuming superconducting
transmon devices as sensors operated in a qudit mode [9].

Phase estimation protocols first appeared in abstract quan-
tum algorithms, where they served in estimating the phases
of a unitary operator’s eigenvectors, and soon found practical
applications in quantum metrology [10–16]. Among many
implementations, the Kitaev [17,18] and Fourier-transform
[19] algorithms, in combination with superconducting trans-
mon circuits [20] utilized as sensors, proved most efficient in
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magnetometry. The basic concept of a magnetic field sen-
sor based on a spin interacting with the field has evolved
into experimentally realizable devices based on charge and
flux qudits [8,21–23]. However, the standard quantum-
metrological protocols concede their optimal precision in the
most relevant situation where the field is continuously dis-
tributed and the quantum sensor suffers from decoherence.
Here, we devise a simple and practical protocol for qudits—
LAMA—allowing us to appreciably enhance the efficiency
of the measurement over the standard Fourier-transform and
Kitaev algorithms. Distinct from the latter, our protocol ben-
efits from a maximum average spin component perpendicular
to the field and takes advantage of a linear stepwise increase
in the Ramsey delay-time interval. Throughout our analysis,
the operation of the different metrological algorithms will
be addressed in the context of their qutrit [24,25] (base 3)
transmon realization, as, unlike the example of a qubit (base 2)
realization, this allows us to demonstrate the new algorithm’s
full potential.

II. GENERAL PHASE-SENSITIVE PROTOCOL

We begin with a description of the general base-d phase-
sensitive metrological procedure employing a sequential
strategy, with each step following the preparation-exposure-
readout (PER) logic. The procedure is aimed at the mea-
surement of a constant magnetic field H . We work with the
computational basis states |0〉, |1〉 , . . . , |d − 1〉 correspond-
ing to different magnetic components Md

Z with respect to the
field direction (Z axis): For instance, in the qutrit case, the
basis vectors |0〉, |1〉, and |2〉 correspond to M3

Z = −μ, 0,+μ,
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respectively, where μ denotes the magnetic moment of the
artificial atom [8], which serves as a coupling constant and
which is known a priori. The ith step of the general proce-
dure involves a Ramsey interference with delay time ti and is
described as follows:

P The qudit is prepared in a defined initial state |ψ0
(i)〉;

this is experimentally realized by applying a suitable rf pulse
to the qudit ground state [9].

E The qudit interacts with the external magnetic field
H during a time ti: |ψ0

(i)〉 →|ψ ti
(i)〉. The field changes the

phases inside the state vector such that the basis state |k〉
(k = {0, 1, . . . , d − 1}) transforms into eikωti |k〉, where ω =
μH/h̄ is the reduced magnetic field. We omit a common phase
factor; see Appendix A for details on the transmon phase
accumulation dynamics.

R The qudit is subjected to a readout operation (uni-
tary evolution) Û r

(i) generated by another rf pulse [9]. The
information about the field value is subsequently extracted
through the final state’s single-shot projective measurement
in the computational basis.

The probability of finding the qudit in the state |ξi〉 (ξi =
{0, 1, . . . , d − 1}) at the end of the ith step is

P(ξi|ω, ti, si ) = ∣∣ 〈ξi| Û r
(i)

∣∣ψ ti
(i)

〉 ∣∣2
, (1)

where si is the array of parameters determining the initial
state and the readout operation; see Appendix B. Through-
out the metrological procedure, or “learning” process, our
knowledge about the field is reflected in the probability dis-
tribution Pn(ω|{ξi, ti, si}n

i=1), where n indicates the number of
conducted PER steps. This distribution is updated in accord
with Bayes’s theorem via the recurrence

Pn
(
ω|{ξi, ti, si}n

i=1

)
= Pn−1

(
ω|{ξi, ti, si}n−1

i=1

)
P(ξn|ω, tn, sn)Nn, (2)

where Nn is a normalization factor; for ease of presentation
(see Appendix F), we will assume that the initial field distri-
bution is Gaussian with zero mean, P0(ω|ø) = N (0, σ 2). As
shown below, the initial field uncertainty δω0 = σ determines
the difficulty of further refinement: The smaller δω0 is, the
harder it is to achieve better precision.

III. EFFICIENT PROCEDURE

In an efficient metrological procedure, a measurement step
strongly reduces the uncertainty with regard to the possible
field values. This uncertainty is reflected in the Shannon en-
tropy associated with Pn,

Sn
({ξi, ti, si}n

i=1

)

= −
∫
Pn

(
ω′|{ξi, ti, si}n

i=1

)
lnPn

(
ω′|{ξi, ti, si}n

i=1

)
dω′.

(3)

The decrease �In = Sn−1 − Sn in entropy then provides us
with the information gain in the nth measurement step. The
optimal procedure yielding the maximum information gain in
the (n + 1)st step requires the best choice of the parameters
tn+1 and sn+1. Since the values of parameters are required
before the step is executed, the optimization has to be done

by maximizing an estimate of the prospective information
gain. This estimate is taken as the information gain after the
(n + 1)st step averaged over all possible outcomes ξ̃n+1 of this
step.〈

�In+1
({ξi, ti, si}n

i=1, {ξ̃n+1, t, s})〉
= Sn

({ξi, ti, si}n
i=1

) − 〈
Sn+1

({ξi, ti, si}n
i=1, {ξ̃n+1, t, s})〉,

(4)

where 〈
Sn+1

({ξi, ti, si}n
i=1, {ξ̃n+1, t, s})〉

=
d−1∑

ξ̃n+1=0

∫
Sn+1({ξi, ti, si}n

i=1, {ξ̃n+1, t, s})

× P(ξ̃n+1|ω′, t, s)Pn
(
ω′|{ξi, ti, si}n

i=1

)
dω′. (5)

The optimal choice of parameters {t, s} = {tn+1, sn+1} is
dictated by the condition of maximizing the average gain
〈�In+1({ξi, ti, si}n

i=1, {ξ̃n+1, t, s})〉. In other words, the analyt-
ical expression for the average information gain serves as a
prognosis for the upcoming information gain, and its maxi-
mization yields the most beneficial choice of parameters.

In order to find the optimal choice for s1 defining the prepa-
ration and readout gates in the first step, we maximize the
expected information gain 〈�I1(ξ̃1, t, s)〉 for every possible
value of the Ramsey delay time t . Focusing on the case of a
continuously distributed field (i.e., ω can take any value from
a certain interval [ωmin, ωmax]) measured with a qutrit sensor,
a numerical analysis (see Appendix B) shows that, intrigu-
ingly, for any t the optimal initial state preparation requires a
maximum modulus of the spin projection into the XY plane,
perpendicular to the field vector 〈JXY 〉 =

√
〈ĴX 〉2 + 〈ĴY 〉2

(here, ĴX and ĴY are X- and Y-component spin operators,
respectively): Let Hd

XY be the subspace of such vectors for
the qudit (base d) system. For a qutrit, any vector |φ〉 ∈ H3

XY

can be written in the form |φ〉 = eiα

2 (eiβ,
√

2, e−iβ )T , where
α and β are real numbers. A convenient choice is the initial
state |ψ0

(1)〉 = (1,
√

2, 1)T /2 ∈ H3
XY , which is the eigenstate

of the spin operator ĴX . For comparison, in the standard
Fourier-based procedure (see Ref. [9] and Appendix D) as
optimized for the measurement of a discretely distributed field
[i.e., ω can only take M values {ωmin, ωmin + �ω,ωmin +
2�ω, . . . , ωmax} with �ω = (ωmax − ωmin)/M] the qutrit is
initially prepared in the balanced state [3] (1, 1, 1)T /

√
3 /∈

H3
XY . Physically, the larger spin component perpendicular to

the field (〈JXY 〉 = 1 in the optimal case versus 2
√

2/3 ≈ 0.94
in the case of the balanced state) ensures a better sensi-
tivity; note that in the qubit case, the balanced initial state
(1, 1)T /

√
2 already has the largest perpendicular component

and thus cannot be further optimized. Turning to the readout
gate, our analysis shows that for any t , the optimum is always
achieved with the Fourier-transform gate

F̂3 = 1√
3

⎛
⎝1 1 1

1 e4π i/3 e2π i/3

1 e2π i/3 e4π i/3

⎞
⎠; (6)

we remind the reader that for the discretely distributed field
the Fourier-transform readout operation is also optimal [3].

013257-2
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FIG. 1. Information gain for different initial states. Expected
information gain during the first measurement step assuming a con-
tinuously distributed magnetic field: Blue and red curves correspond
to the situations where the qutrit is initially prepared in the bal-
anced state (as in the standard Fourier procedure) and in the state
(1,

√
2, 1)T /2 ∈ H3

XY , respectively. The initial field distribution is
P0(ω|ø) = N (0, σ 2) with σ = 2π/(90 ns). The saturation time is
defined by the initial distribution of the magnetic field, Ts ∼ 1/σ ; the
plateau levels of the blue and red curves are (5/3 − ln 3)/ ln 2 ≈ 0.82
bits and 2[(ln 2)−1 − 1] ≈ 0.88 bits, respectively.

The difference between the standard Fourier-based pro-
cedure and the described new optimal procedure [with the
initial qutrit state |ψ0〉 = (1,

√
2, 1)T /2 ∈ H3

XY ] in the con-
tinuous situation is illustrated in Fig. 1, where we plot the
expected information gain 〈�I1(ξ̃1, t, s)〉 in the first step as
a function of the Ramsey delay time t with s corresponding
to different initial states and the standard Fourier-transform
readout operation. In both cases the information gain saturates
at the time Ts ∼ 1/δω0, which is defined by the initial field
uncertainty δω0 = σ ; a small δω0 increases Ts, what makes
it increasingly harder to further improve the precision, par-
ticularly in the presence of decoherence. For the described
optimal procedure, the curve reaches a plateau that is higher
by 8%, with an information gain of 2[(ln 2)−1 − 1] ≈ 0.88
bits against (5/3 − ln 3)/ ln 2 ≈ 0.82 bits for the balanced
state. Hence, when changing from a discrete to a continuous
field distribution, the metrological algorithm profits from a
refinement in the choice of initial states. We note that any
initial state fromH3

XY yields the same (high) plateau level but
with the information gain for t < Ts depending on the specific
choice of |ψ0

(1)〉 ∈ H3
XY ; as these differences are small, we do

not pursue them further here. In the second and further subse-
quent steps, both scenarios maintain the feature of saturation
in the information gain per step, although some interesting
new features appear; see Appendix G for a detailed analysis
of further optimization steps.

Ordinarily, it is the quantum Fisher information (QFI) esti-
mate which is used as a performance metric. Here, we rather
use the information gain as a performance metric, which
due to the postselection nature of our sensing protocol ap-
pears more appropriate. As described above, the probability
distribution of a magnetic field is updated according to the
measurement conducted over different quantum states on each
step of the algorithm. While the commonly used Cramér-Rao
bound, which is based on QFI, gives the asymptotic potential

accuracy that can be achieved with a fixed quantum state, our
protocol exploits a different approach and, therefore, cannot
be analyzed in the context of Fisher information in an evident
way.

IV. LINEAR ASCENDING METROLOGICAL ALGORITHM

Expanding further on the above findings, we develop a
novel quantum-metrological procedure exploiting phase co-
herence which ensures a near-Heisenberg limit scaling even
in the presence of dephasing processes when the Kitaev and
standard Fourier protocols (see the descriptions in Appendixes
E and D) become ineffective.

The precision of a metrological algorithm is bounded by
the maximum possible number of iterations. In the case of
the standard Fourier and Kitaev procedures, the limitations
are imposed by the coherence time Tc and the characteristic
duration of the control pulse Tp (as described above, the evo-
lution of the transmon qudit is determined by the applied rf
pulses, which cannot be made arbitrarily short and are defined
by the hardware): These times bound the Ramsey delay on the
longest and shortest time steps of the procedure, respectively.
Since in both procedures the delay time of each consequent
step changes exponentially (meaning that at each consequent
step the delay time is either increased or decreased by factor
d), the number of steps which can be realized in practice
is small [8]. One could then think of performing multiple
PER steps with the same delay time, as recent state-of-the-art
techniques enable rather rapid transmon measurement and
reinitialization procedures [26,27]. However, such a routine is
essentially classical —hereinafter, this routine will be referred
to as the classical procedure—and its precision is therefore
restricted by the shot noise limit [6]. To overcome these
problems, we propose a novel Linear Ascending Metrolog-
ical Algorithm, or LAMA, for qudit sensors that combines
both classical productivity and quantum scalability and, fur-
thermore, surpasses the efficiency of the Fourier and Kitaev
algorithms in common realistic scenarios. The ith step of the
LAMA includes the following PER sequence:

P The qudit is prepared in an initial state |ψ0〉 within
Hd

XY (the same in every step). In the qutrit case, |ψ0〉 =
eiα

2 (eiβ |0〉 + √
2 |1〉 + e−iβ |2〉), where α and β are real num-

bers.
E The qudit is exposed to the magnetic field during the

predefined (rather than optimized) time interval tL
i = tL

1 +
(i − 1)�t , with �t chosen of order ∼ 1/δω0, where δω0 is
the initial field uncertainty and tL

1 = max (Tp, Ts).
R The qudit is subjected to the Fourier transform F̂d ,

F̂d |n〉 = 1√
d

d−1∑
k=0

e−2π ink/d |k〉, (7)

and a subsequent single-shot projective measurement of its
state in the computational basis. The probability distribution
of the magnetic field is updated in accordance with Bayes’s
formula.

A great simplification of the LAMA is the use of a fixed
parameter set si = s for preparation and readout that no longer
requires further optimization after each step. The following
discussion of the algorithm concerns again the case of a
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FIG. 2. First two steps of LAMA. Expected information gain
〈�I1,2〉 in the first (blue) and second (red) steps of the LAMA as
a function of Ramsey delay time t . The initial qutrit state is |ψ0〉 =
(1,

√
2, 1)T /2 ∈ H3

XY , and the initial field distribution is a Gaussian
P0(ω|ø) = N (0, σ 2) with σ = 2π/(90 ns). t L

1 and t L
2 are the selected

delay times on the first and second steps, respectively. The gain in
the second step depends on the outcome of the first step; see dashed
red curve when 0 is measured and solid red curve for outcomes 1
or 2.

continuously distributed field and refers to the example of a
qutrit with the optimized initial state |ψ0〉 = (1,

√
2, 1)T /2 ∈

H3
XY (α = β = 0), different from the balanced one. While

the qubit implementation of the new algorithm cannot make
use of a further optimization of the initial state, the linear
increase in the delay time ti characteristic of the LAMA is
still advantageous.

To see how the algorithm works, we first examine the case
of an ideal hardware in the absence of decoherence, Tc → ∞.
Figure 2 compares the information gain in the second step
(red; solid and dashed curves correspond to different out-
comes of the first step) with the result obtained in the first
step (blue) of the algorithm as a function of the delay time
t . In order to obtain the maximal information in the first step
within the shortest time interval, we choose the delay time
at the onset of the saturation plateau, tL

1 = Ts. The saturation
time Ts ∼ 1/σ is determined by the expected search range of
magnetic fields [ωmin, ωmax] that represents the dynamic range
of the sensing device. In Fig. 2, as well as in the following
numerical analysis, we set σ = 2π/(90 ns), which ensures
the maximum achievable dynamic range at reasonable satu-
ration time of the expected information gain. This choice of
σ gives Ts ≈ 15 ns, which corresponds to the fastest possible
manipulations of transmons: It becomes unfeasible to control
superconducting devices using Tp < 10−8 s rf pulses; thus
dynamics at shorter times is not meaningful for metrological
purposes. In the second step, the expected information gain
again saturates at large delay tL

2 but is reduced at small times
∼tL

1 . This reduction expresses the fact that we have already
obtained some information associated with the previous delay
time tL

1 ; nevertheless, due to the probabilistic nature of the
quantum procedure, the prospective information gain remains
nonzero. Depending on the outcome of the first step, the gain
in the second step may or may not exhibit an additional peak
at a delay time below tL

1 ; see the dashed curve. The appear-
ance of such a new peak in the information gain in step 2

depends on the relation between the previous outcome ξ1

and the chosen initial state for step 2 within the XY plane.
The nature of such dependence is the following: We update
the field probability distribution based on the measurement
outcome, reducing the distribution’s variance at each step. The
mean of the distribution indicates the most probable magnetic
field value, and it drifts to the true value during the sensing
procedure. For the qutrit case, while the ξ1 = 0 outcome does
not change the mean of the distribution, ξ1 = 1 and 2 out-
comes shift the mean on the right and on the left, respectively.
Besides this feature, with a proper choice of s2 the additional
peak in the information gain appears at 3tL

1 (dtL
1 for a qudit),

where the next step of the Kitaev procedure should be con-
ducted; the correspondence of the appearing peak with the
standard Fourier-based procedure is discussed in Appendix G.
Instead of attempting to extract this peak information gain by
choosing the new initial state parameters s2 in accordance with
the previous outcome, we prepare the qutrit in the same initial
state (with parameters s1) and adopt a time step tL

2 = tL
1 + �t

with �t = C/δω0, δω0 = σ . Evaluation of the optimal pref-
actor C for each step requires substantial computational time;
therefore we will not concentrate on this optimization. In-
stead, we numerically find the optimal C ≈ π and fix it for the
whole metrological procedure. As we will show further, this
choice of a constant time step already ensures performance
which, in the presence of decoherence, beats both the classical
procedure and the Fourier and Kitaev quantum procedures.
This choice of �t and tL

2 again enables us to exploit the
information gain near the plateau of step 2 and learn nearly
0.88 bits of information. The subsequent steps follow the
same route: Regardless of the previous outcomes, the qutrit
is always prepared in the same state parametrized by s1, while
the linear increase in the delay time allows us to operate away
from the emerging drops in the information gain, ensuring the
advantage of the LAMA over the classical procedure. This
straightforward algorithm then provides a great simplification
as compared with the other algorithms involving Bayesian
learning.

Shown in Fig. 3(a) are the numerically simulated probabil-
ity distributions for the magnetic field for a six-step procedure;
in turn, Fig. 3(b) displays a series of expected information
gains [see Eq. (4)] before the next measurement. As the algo-
rithm proceeds, the extracted information per step decreases
below the saturation limit of 0.88 bits with the plateau level
first shifting farther out to longer delay times and then de-
creasing over the entire time interval. Nevertheless, as shown
below, the practical realization of the LAMA can be quite
beneficial in terms of the total information accumulation and
scalability. More three-dimensional (3D) plots such as Fig. 3
for different sets of outcomes are presented in Appendix H.

Next, we compare the LAMA with the existing metro-
logical procedures for the experimental situation where the
initial field distribution is continuous and the qutrit is subject
to decoherence, i.e., Tc is finite; details on how our model
accounts for dephasing and relaxation are given in Appendix
C. For simplicity, we assume that the minimal pulse dura-
tion Tp is much smaller than the saturation time Ts in the
first step, which limits the delay time tL

1 = max (Tp, Ts). We
base our comparison on a numerical simulation constituting
a series of 103 separate computational experiments. In each

013257-4
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FIG. 3. LAMA operation. (a) Field distributions and (b) expected information gains (before subsequent measurement) at six different steps
of the new algorithm as obtained through numerical simulation without dephasing. The initial distribution function is P0(ω|ø) = N (0, σ 2)
with σ = 2π/(90 ns); the outcomes of the steps are chosen {ξ1, ξ2, . . . , ξ6} = {0, 0, . . . , 0}. Given our choice of small delay times, the field
distribution in all of the steps is given by an ever-narrowing single peak. We translate the value of reduced magnetic field ω into the magnetic
flux � = ω01|d�/dω01| (ω01 is the transition frequency) by putting [8] μ = 105 μ0, where μ0 is the Bohr magneton. In (b), the delay times at
each step are marked by the vertical lines.

experiment, we numerically perform 50 sequential steps of
the LAMA in accordance with the above scheme, keeping
the parameters Tc, Ts, tL

1 , and �t the same for every ex-
periment. The outcomes of the simulated experiments are
generated randomly: In the nth step, the computer samples
the outcome ξn from the probability distribution P(ξn|tn) =∫

P(ξn|ω′, tn)Pn−1(ω′|{ξi, ti}n−1
i=1 )dω′. To determine the effi-

ciency of the procedure, we compose the results of all
computational experiments; that is, we plot the information
gain averaged over the series of individual experiments as a
function of the total phase accumulation time. We compare
the LAMA with other algorithms through simulating the op-
erations of the latter in an analogous manner, although the
number of steps in the individual experiments may change as
required by the different algorithms.

The results of the simulations are summarized in Fig. 4(a),
where we show the total information gain as a function of the
phase accumulation time tφ = ∑

i ti (the sequence ti denotes
all Ramsey delay times). The plot demonstrates that for a
typical device and almost any total phase accumulation time
tφ , the LAMA allows for a larger information gain, thus pro-
viding a higher precision, as compared with the more intricate
standard Fourier and Kitaev protocols. This is particularly
evident for large accumulation times tφ � Tc when the LAMA
surpasses other algorithms by �30%, whereas the standard
Fourier and Kitaev procedures provide no significant advan-
tage over the trivial classical procedure.

Finally, we analyze the scaling behavior of the new LAMA.
The efficiency of a metrological procedure is reflected in the
dependence of the field uncertainty on the total phase accu-
mulation time [8], δω(tφ ) ∝ t−α

φ . A proper quantum algorithm
should exceed the shot noise limit of α = 0.5, ideally reaching
the Heisenberg limit α = 1. Since for any accumulation time
tφ the total information gain is given by I � − ln [δω(tφ )] +
ln [δω(0)] [see Eq. (3)], the scaling can be analyzed in a plot of
I as function of ln tφ . The linear-log plot in Fig. 4(b) displays
the scaling behavior of the classical [in black, same curve for
any (classical) delay time tC 
 Tc; if tC � Tc, the procedure
operates below the shot noise limit] and standard Fourier and
Kitaev procedures (in green, three curves for Tc = {5, 10, 30}

μs), as well as the new LAMA (in red, Tc = 5 μs) for the
continuous field with decoherence included. The curves cor-
responding to the standard Fourier and Kitaev procedures
(green) are indistinguishable. The scaling parameter α can be
obtained from the slope of a tangent to a curve at any partic-
ular point. As one expects, for any Tc larger than the delay
time of a step, the classical procedure complies with the shot
noise limit, α = 0.5. We also see that although for tφ 
 Tc the
standard Fourier and Kitaev procedures approach the Heisen-
berg limit, for tφ ∼ Tc, the value of α drops almost to zero. In
turn, the new LAMA, though behaving classically for small
tφ , becomes much more efficient than the Fourier and Kitaev
procedures for tφ ∼ Tc, with α reaching its maximum �1 in
an intermediate region at tφ � 1.1Tc, at which point the delay
time per step tL

i � Tc/7. One can see that a finite coherence
time Tc does not posit any notable limitation on the LAMA’s
efficiency until the delay time tL

i becomes comparable with Tc;
at large accumulation tφ ∼ 10Tc the algorithm still operates
close to the shot noise limit with α � 0.5. Importantly, we
see that even when implemented on a mediocre transmon
qutrit device with Tc = 5 μs, the new LAMA is capable of
outperforming other algorithms realized with a cutting-edge
device with Tc = 30 μs [28].

V. CONCLUSION

In summary, we have proposed a simple and robust se-
quential quantum-metrological algorithm for magnetometry,
the LAMA, which is characterized by two important features:
(i) Each measurement step involves a linear increase in the
Ramsey delay time, and (ii) the qudit is always initialized
in the same state of maximal spin perpendicular to the field.
The prescription of these measurement parameters drastically
reduces the complexity of the algorithm as compared with al-
gorithms requiring learning. The linear increase in the Ramsey
delay time guarantees an improved performance as compared
with the classical algorithm, where the repeated measurement
at the same Ramsey time produces a steadily reduced infor-
mation gain with each additional step. We have compared
our algorithm with quantum Fourier and Kitaev algorithms
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(a) (b)

FIG. 4. Comparison of the algorithms for a transmon qutrit. (a) Linear and (b) linear-log plots of the information gain defined in Eq. (4)
in the classical (black), Kitaev (green), and standard Fourier (blue) procedures as functions of the total phase accumulation time; the red
curve provides the result for the new LAMA. The symbols mark the individual steps of the four procedures. All curves are averaged over a
series of 103 numerical experiments (for details of the simulation, see the main text). We have chosen Ts = 15 ns, P0(ω|ø) = N (0, σ 2) with
σ = 2π/(90 ns) and Tp < Ts. The initial delay time in the classical, tC

1 , and Kitaev, tK
1 , procedures and in the LAMA, t L

1 , is 15 ns; in the case
of the LAMA, the time increase per step is �t = 40 ns. In (a) the standard Fourier procedure is represented by three curves corresponding
to different initial delay times: tF

1 = 0.5, 2.4, and 5 μs. In the case of the Fourier procedure, a larger tF
1 allows us to perform more steps

of the algorithm since on each step we are decreasing time from tF
1 to Ts. However, due to the decoherence, it also results in an insufficient

information gain in the first steps; tF
1 approaches Tc. In the case of the Kitaev procedure, decoherence affects last steps since they are performed

at larger delay times. The final gain in the Fourier case corresponds to the gain obtained with the Kitaev procedure at the same total phase
accumulation time. Note that the highest points of the blue curves collapse onto the green curve. This is not a surprise since the Fourier and
Kitaev procedures are expected to provide the same performance; for that reason we do not plot curves for the Fourier procedure in (b). All
curves in (a) are obtained for the same coherence time Tc = 5 μs, whereas in (b), we show three green curves corresponding to the Kitaev
procedure for three different values of Tc, 5 μs (circles), 10 μs (squares), and 30 μs (triangles); the red and black curves referring to the LAMA
and to the classical procedure are obtained for Tc = 5 μs. The yellow straight line marks the Heisenberg quantum limit with scaling parameter
α = 1.

and demonstrated that the LAMA provides a markedly bet-
ter performance in the realistic situation where the qudit is
subject to decoherence and the measured field is distributed
continuously. As the decoherence limits the delay time range,
the LAMA should enable us to utilize the resource of quantum
coherence more effectively: In comparison with other algo-
rithms, the LAMA better spans the full available range of
times and thus allows for more iterations and better scaling.
The presented results have far-reaching implications going
beyond the context in which they were derived. We antici-
pate that our findings will accelerate progress towards reliable
quantum magnetic sensors and find use in other applications.
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APPENDIX A: TRANSMON PHASE ACCUMULATION
DYNAMICS

Here, we discuss the working principles of the transmon
device in the context of magnetic field sensing; an extended
discussion on the subject can be found in Ref. [9]. Let us
examine the evolution of the transmon device operating in a
qudit mode (having effectively d energy levels) in the pres-
ence of the magnetic field. The transmon’s transition energies
can be described to leading order by the expression

En,n+1(ω) = En+1(ω) − En(ω)

=
√

8EJ (ω)Ec − Ec(n + 1), (A1)

where En is the energy of the nth level, EJ (ω) is the Josephson
energy sensitive to the field ω, and Ec is the charging energy.
Note that the dependence of the different transition energies
on the magnetic field is identical, as it is determined solely
by EJ (ω). As a result, the first-order correction to the energy
separation E0,n = En − E0 in the presence of the magnetic
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field is given by

∂ωE0,nω = n∂ωE0,1ω

for any n ∈ {0, . . . , d − 1}. Thus the phase accumulation due
to the field is linear in n, and we obtain the following expres-
sion for the effective evolution operator in the rotating frame
approximation:

Û e = e−i(diag[0,∂ωE0,1ωt,2∂ωE0,1ωt,...,(d−1)∂ωE0,1ωt]). (A2)

For simplicity, in what follows we put ∂ωE0,1 = 1. The above
linear phase accumulation dynamics is crucial for the imple-
mentation of all algorithms discussed in this paper. At the
same time, the LAMA can be realized on any other multilevel
system beyond the transmon, provided that the level separa-
tions scale equally in the magnetic field.

APPENDIX B: OPTIMIZATION METHOD

Here, we elaborate on the general qutrit realization of the
PER protocol in the ith step [9] (all matrices are represented
in the computational basis |k〉, k = {0, 1, 2}):

P The qutrit is initialized through the application of a
two-tone rectangular rf pulse [9] to the ground state |0〉. The
unitary evolution induced by the pulse has the form

Û p
(i) = exp

⎛
⎝−i

⎡
⎣ 0 �

p
1(i) 0

�
p
1(i) 2ε

p
(i) �

p
2(i)

0 �
p
2(i) 0

⎤
⎦

⎞
⎠ (B1)

and results in the state |ψ0
(i)〉 = Û p

(i) |0〉. Here, �
p
1,2(i) are

effective transition amplitudes between qubit states, and ε
p
(i) is

related to the pulse frequencies; their optimal values can be
found by numerical optimization [9].

E The qutrit interacts with the external magnetic field H
during time ti: |ψ0

(i)〉 → |ψ ti
(i)〉. The field changes the phases

inside the state vector: |k〉 → eikωti |k〉 (k = {0, 1, 2}), where
we omitted a common phase factor. In the absence of deco-
herence, the evolution operator is given by

Û e
(i) = exp

⎛
⎝−i

⎡
⎣0 0 0

0 ωti 0
0 0 2ωti

⎤
⎦

⎞
⎠. (B2)

R The qutrit undergoes a readout operation generated
again by the pulse

Û r
(i) = exp

⎛
⎝−i

⎡
⎣ 0 �r

1(i) 0
�r

1(i) 2εr
(i) �r

2(i)
0 �r

2(i) 0

⎤
⎦

⎞
⎠. (B3)

Finally, the information about the field value is extracted
through the single-shot projective measurement of |ψ f

(i)〉 =
Û r

(i) |ψ ti
(i)〉 in the computational basis.

The above PER sequence yields a fairly cumbersome ex-
pression for the final state (before the measurement) |ψ f

(i)〉 =
Û r

(i)Û
e
(i)Û

p
(i) |0〉, and we refrain from providing it here.

The optimization of the (n + 1)st step for a given delay
time t attempts to find the preparation and readout parameters
sn+1 = (ε p

(n+1),�
p
1(n+1),�

p
2(n+1), ε

r
(n+1),�

r
1(n+1),�

r
2(n+1)) that

produce the maximum expected information gain on that

step, 〈
�In+1

({ξi, ti, si}n
i=1, {ξ̃n+1, t, sn+1}

)〉
= max

s

〈
�In+1

({ξi, ti, si}n
i=1, {ξ̃n+1, t, s})〉, (B4)

where the averaging is done in accordance with Eqs. (4) and
(5).

To implement and optimize numerically the above pro-
cedure, we model the continuous field by an evenly spaced
grid with the large number of points M = 105; the initial field
values are Gaussian weighted, P0(ω|ø) = N (0, σ 2) with σ =
2π/(90 ns). We choose σ in a way that the saturation time
of the expected information gain is Ts ≈ 15 ns—it becomes
impracticable to apply gates faster than 10−8 s to transmon
devices. In the first step, the optimal choice of s1 for a given
t corresponds to the maximum of the averaged information
gain 〈�I1(ξ̃1, t, s)〉. Since for the numerical calculations the
continuous distribution is modeled by a discrete one, the inte-
gral with respect to ω′ has to be replaced by a sum

〈�I1(ξ̃1, t, s)〉

= −
M∑

m=1

P0(ωm|ø) lnP0(ωm|ø)

−
2∑

ξ̃1=0

M∑
m=1

S1(ξ̃1, t, s)P(ξ̃1|ωm, t, s)P0(ωm|ø). (B5)

Here, P(ξ̃1|ωm, t, s) is given by Eq. (1); the expression for
S1(ξ̃1, t, s) can be obtained from Eqs. (2) and (3),

S1(ξ̃1, t, s) = −
M∑

m=1

P0(ωm|ø)P(ξ̃1|ωm, t, s)∑M
m′=1 P0(ωm′ |ø)P(ξ̃1|ωm′ , t, s)

× ln
P0(ωm|ø)P(ξ̃1|ωm, t, s)∑M

m′=1 P0(ωm′ |ø)P(ξ̃1|ωm′ , t, s)
. (B6)

APPENDIX C: RELAXATION AND DEPHASING
PROCESSES

We extend our model to account for the decoherence pro-
cesses appearing in the transmons. When the Ramsey delay
time ti becomes comparable to the coherence time Tc, the state
analysis requires solving a kinetic equation, which we choose
to be of the Lindblad form [29]

d ρ̂

dt
= −i[ρ̂, Ĥint] + �01D̂[σ01]ρ̂ + �12D̂[σ12]ρ̂, (C1)

where Ĥint is the interaction Hamiltonian

Ĥint = h̄

⎛
⎝0 0 0

0 ω 0
0 0 2ω

⎞
⎠,

�i j are the energy relaxation rates, and the superoperator D̂
describes the process of energy relaxation,

D̂[σi j]ρ̂ = σ̂i j ρ̂σ̂
†
i j − 1

2 {σ̂ †
i j σ̂i j, ρ̂}, (C2)

with the Lindblad operators σ̂i j = |i〉 〈 j| (i, j = {0, 1, 2}). In
addition, we consider fluctuations δH of the field due to
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fluctuating electric currents or magnetic impurities, assuming
Gaussian noise parametrized by the dephasing rate �ϕ ,

〈δH (t )δH (t )′〉 =
(

dω

dH

)−2

�ϕδ(t − t ′). (C3)

The above extensions are incorporated in our PER proce-
dure in the following manner:

P In the ith step, the qutrit is put in the initial state defined
by the density matrix ρ̂0

(i) = |ψ0
(i)〉 〈ψ0

(i)|.
E The qutrit interacts with the external magnetic field

H with corresponding changes of the phases in the density
matrix, which is furthermore affected by the decoherence pro-
cesses, ρ̂0

(i) → ρ̂(i)(ti ). The elements ρ
pq
(i) (ti ) (p, q ∈ {0, 1, 2})

of the resulting density matrix can be expressed through the
elements of π̂(i)(ti ) describing the qutrit state after the interac-
tion in the absence of decoherence,

ρ22
(i) (ti ) = π22

(i) (ti )e
−�21ti , (C4)

ρ11
(i) (ti ) = π11

(i) (ti )e
−�10ti

+π22
(i) (ti )

�21

�21 − �10
(e(�21−�10 )ti − 1), (C5)

ρ00
(i) (ti ) = 1 − ρ11

(i) (ti ) − ρ22
(i) (ti ), (C6)

ρ01
(i) (ti ) = π01

(i) (ti )e
− (�10+�ϕ )ti

2 , (C7)

ρ10
(i) (ti ) = π10

(i) (ti )e
− (�10+�ϕ )ti

2 , (C8)

ρ02
(i) (ti ) = π02

(i) (ti )e
− (�21+4�ϕ )ti

2 , (C9)

ρ20
(i) (ti ) = π20

(i) (ti )e
− (�21+4�ϕ )ti

2 , (C10)

ρ12
(i) (ti ) = π12

(i) (ti )e
− (�21+�01+�ϕ )ti

2 , (C11)

ρ21
(i) (ti ) = π21

(i) (ti )e
− (�21+�01+�ϕ )ti

2 . (C12)

R The qutrit undergoes the readout operation Û r
(i), and the

final state is subjected to the single-shot projective measure-
ment.

As an example, we consider the first step of the standard
Fourier procedure in the presence of dephasing. Using the
above formulas and Eq. (1), we can write the probability of
finding the qutrit in state |ξ1〉 in the form

P(ξ1|ω, t ) = ∣∣ 〈ξ1| Û r
(1)ρ̂(1)(ti)Û

r†
(1) |ξ1〉

∣∣2

= 1

3
+ 2

9
cos

(
ωt − 2π

3
ξ1

)
e− �10+�ϕ

2 t

+ 2

9
cos

(
2ωt + 2π

3
ξ1

)
e− �21+4�ϕ

2 t

+ 2

9
cos

(
ωt − 2π

3
ξ1

)
e− �10+�12+�ϕ

2 t . (C13)

In our simulations, we assume �01 = �12/
√

2 = �ϕ = � and
describe the decoherence rate by the coherence time Tc =
1/�.

APPENDIX D: FOURIER-BASED METROLOGICAL
ALGORITHM

The standard Fourier-based algorithm is a sequence of PER
steps performed with different delay times. Including learn-
ing, the algorithm involves a conditional initial preparation
at each step that depends on the previous outcome. The ith
step of the base-3 procedure can be described by the following
scheme:

P The qutrit is prepared in the state |ψ0
(i)〉 = 1√

3
(|0〉 +

eiαi |1〉 + e2iαi |2〉), where αi = − 2π
3 ( ξi−1

31 + ξi−2

32 + · · · + ξ1

3i−1 )
and ξ j is the outcome of the jth step (and α1 = 0).

E The system is exposed to the magnetic field during time
tF
i = tF

1 /3i−1.
R The qutrit undergoes the Fourier transform given by

Eq. (6). The subsequent single-shot projective measurement
of the final state in the computational basis provides the new
information on the field. The probability distribution is up-
dated in accordance with Bayes’s formula.

In order to illustrate the principle of the algorithm, we con-
sider the situation where the measured field can be expressed
in a ternary decomposition,

ω = ω0

( rK

30
+ rK−1

31
+ · · · + r1

3K−1

)
, (D1)

where trits rn, n ∈ {1, . . . , K} can assume values 0, 1, and 2.
In the first step, the qutrit is prepared in the balanced

state |ψ0
(1)〉 = 1√

3
(|0〉 + |1〉 + |2〉) and is exposed to the

field for time tF
1 = 2π · 3K−2/ω0. The qutrit thus assumes

the state |ψ t1
(1)〉 = i 1√

3
(|0〉 + eiφ1 |1〉 + e2iφ1 |2〉) (we omit the

overall phase factor e−iωt1 ), where φ1 = (2π/3)r1 is the field-
dependent phase, which can be unambiguously determined
through the application of the Fourier transform and a projec-
tive measurement of the final state F̂ |ψ t1

(1)〉 = |r1〉; the latter
constitutes one of the computational basis vectors |0〉, |1〉, or
|2〉. The outcome of the measurement is ξ1 = r1.

Turning to the second step and accounting for the
first outcome, the qutrit is prepared in the modified bal-
anced state |ψ0

(2)〉 = 1√
3
(|0〉 + eiα2 |1〉 + e2iα2 |2〉) with α2 =

− 2πr1
9 . After an exposure time tF

2 = tF
1 /3, the qutrit evolves

to the state |ψ t1
(1)〉 = 1√

3
(|0〉 + ei(α2+φ2 ) |1〉 + e2i(α2+φ2 ) |2〉),

where φ2 is the field-dependent phase and α2 + φ2 =
− 2π

9 r1 + 2π
3 (r2 + r1

3 ) = 2π
3 r2. The digit r2 can then be found

through proper readout and measurement as in the previous
step. Similarly, the subsequent steps provide the further digits.

APPENDIX E: KITAEV ALGORITHM

While the standard Fourier procedure allows one to pro-
gressively learn the ternary value of the field starting from the
“smallest” digit r1, the Kitaev algorithm works in the reverse
manner outputting the leading digit rK first. The ith step of the
base-3 procedure is as follows:

P The qutrit is prepared in the state |ψ0
(i)〉 = 1√

3
(|0〉 +

|1〉 + |2〉).
E The system is exposed to the magnetic field during the

time tK
i = tK

1 · 3i−1.
R The qutrit undergoes a Fourier transform F̂3 given by

Eq. (6). The information about the field value is extracted
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through the single-shot projective measurement of the final
state in the computational basis, and the probability distribu-
tion is updated in accordance with Bayes’s formula.

As distinct from the standard Fourier procedure, with each
step the delay time increases, ensuring that the field distribu-
tion is always represented by a single peak.

APPENDIX F: OSCILLATORY FEATURES IN THE
INFORMATION GAIN

In this Appendix, we discuss the oscillatory features intrin-
sic to the expected information gain as a function of the delay
time. The plots describing the information gain and presented
in the text [e.g., Fig. 3(b)] have been obtained under the as-
sumption that initially, the field is distributed continuously and
the distribution function is Gaussian centered at ω = 0. Under
these conditions, no oscillatory features show up; the latter
are not central to the main discussion, but we shall address
them now as they may show up in other circumstances. Given
the complexity of the underlying mathematical expressions,
our numerical analysis has a rather qualitative character. The
analysis concerns the base-3 standard Fourier procedure (with
no dephasing in the system), but the results are also relevant
to the other metrological algorithms proposed in the main
text.

In general, there are three types of oscillations showing
up in the information gain related to the edges, the cen-
ter position, and the discretization scale of the distribution
function. We shall study each of them separately by evalu-
ating the information gain as a function of delay time in the
first step of the standard Fourier procedure under different
conditions.

Edges. We consider the situation where the field is
distributed continuously over the interval [−�/2,+�/2].
Figure 5(a) displays the information gain for a uniform dis-
tribution, with a saturation plateau modulated by oscillations
with period Tedge ∝ 1/�. Such oscillations are imposed by the
abrupt edges of the distribution function and disappear for the
case of a Gaussian distribution with smooth tails.

Center position. Another type of oscillation originates from
a nonvanishing field average. Figure 5(b) depicts the informa-
tion gain for a continuous field with a Gaussian distribution
centered at different positions ωcenter �= 0 and at ωcenter = 0.
Again, oscillations with a period Tcenter ∝ 1/|ωcenter| show up,
this time in the rising part of the gain function.

Discreteness. The third type of oscillation appears for the
case of a discretely distributed field. In this paper, the contin-
uous case is modeled with a fine-grained discrete distribution
built from outcomes with a large number of measurable val-
ues. Numerically, the continuous distribution on the interval
[ωmin, ωmax] implies that the field can assume M ∼ 105 pos-
sible values {ωmin, ωmin + �ω,ωmin + 2�ω, . . . , ωmax} with
�ω = (ωmax − ωmin)/M. As revealed in Fig. 5(c), a nonzero
spacing �ω gives rise to a periodic pattern with period T� ∝
1/�ω; the depicted plots are obtained for the case of a Gaus-
sian distribution on the interval [−�/2,+�/2] with different
values of M.

The oscillations appearing in Figs. 7(b), 7(d), and 7(f)
presented below are mainly of the second type, as after the
first step the center of the distribution shifts away from zero. In

(a)

(b)

(c)

FIG. 5. Oscillations in the information gain. Expected informa-
tion gain during the first step of the standard Fourier procedure as a
function of the delay time evaluated under different conditions. The
detailed behavior of the information gain function is determined by
the initial field distribution. (a) Information gain for a continuous
uniformly distributed initial field with zero mean and continuous
sampling for three different sharp intervals of width �. Oscillations
with period Tedge ∝ � appear due to the sharp edges of the uniform
distribution. (b) Information gain for a continuous Gaussian initial
distribution with σ = 2π/(90 ns) and continuous sampling for three
different mean values ωcenter . The period of the observed oscillations
is given by Tcenter ∝ 1/|ωcenter|. (c) Information gain for a Gaussian
initial distribution with σ = 2π/(90 ns) and zero mean and different
sampling rates. The oscillatory pattern has a period T� ∝ 1/�ω.

addition, oscillations of the third type play an important role.
When the field values are discrete with spacing �ω > 0, the
standard Fourier procedure generates peaks with the largest
ones corresponding to the maximum possible information
gain of 1 trit = log2(3) bits. This reaffirms that for the dis-
crete case, the standard Fourier procedure is indeed optimal,
given an appropriately chosen delay time. However, this is no
longer the case when the field distribution is continuous and
�ω = 0, since the oscillatory peak would correspond to an
infinite delay time. Nevertheless, as we will see in Appendix
G, this type of oscillation still manifests itself in the second
and subsequent steps of the procedure.

APPENDIX G: STANDARD FOURIER PROCEDURE
IN THE CONTINUOUS CASE

We now consider in more detail the second and further
steps of the base-3 standard Fourier procedure for the case of
a continuous field distribution when the dephasing is absent.
With the delay time in the first step chosen to be relatively
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(a) (c)

(b) (d)

FIG. 6. Standard Fourier algorithm. (a) Field distributions and (b) expected information gains at six different steps of the standard Fourier
procedure as obtained through numerical modeling. In (b), the delay times at each step are marked by the vertical lines. The initial distribution
function is normal with P0(ω|ø) = N (0, σ 2) and width σ = 2π/(90 ns); dephasing is absent. (c) The expected information gain per step
(expressed in trits) in the standard Fourier procedure at each of the steps in the continuous case with no dephasing. The dashed red line
indicates the maximum possible information gain of 1 trit. The information gain on the seventh step is 0.99 trits. (d) Expected information
gain in the second step of the standard (in blue) and modified (with alternative preparation step, in red) Fourier procedures for a continuously
distributed field with no dephasing processes.

large in comparison with the saturation time Ts, the field distri-
bution function becomes periodic and hence semidiscrete; see
Fig. 6(a). These oscillations are reflected in the behavior of the
information gain of the second step [see Fig. 6(b)]: Although
it continues to be a saturation curve, it now exhibits oscillatory
peaks which we previously classified as of the third type;
the largest of such peaks corresponds exactly to delay time
tF
2 = tF

1 /3. In the subsequent steps, with the field distribution
becoming increasingly more discrete-type, the information
gain per step tends asymptotically to the maximum of 1 trit;
see Figs. 6(b) and 6(c).

We have previously learned that in the first step, the bal-
anced initial state used in the standard Fourier procedure is
inferior as compared with choosing a state from H3

XY . Given
this fact, it is interesting to check whether the standard Fourier
procedure could be improved through a modification of the
preparation stage at each step. We consider the following
modification of the standard procedure:

P’ In the ith step, the qutrit is prepared in the
state |ψ0

(i)〉 = ( 1
2 |0〉 + eiαi√

2
|1〉 + e2iαi

2 |2〉) ∈ H3
XY , where αi =

− 2π
3 ( ξi−1

31 + ξi−2

32 + · · · + ξ1

3i−1 ) and ξ j is the outcome of the jth
step (α1 = 0).

E The system is exposed to the magnetic field during time
tF
i = tF

1 /3i−1.

R The qutrit is subjected to a Fourier transform F̂3 as
given by Eq. (6). The information about the field value is
extracted through the single-shot projective measurement of
the final state in the computational basis. The probability
distribution is updated in accordance with Bayes’s formula.

Figure 6(d) displays the information gain in the second step
for the two cases of standard (shown in blue) and modified
(shown in red) Fourier procedure. It turns out that although
the modified algorithm produces a higher saturation level and
the conditional preparation allows us to extract information
above the plateau, after the first step the standard procedure
becomes more efficient as the peaks are larger in this case.
One should note, though, that this improved efficiency of the
standard algorithm can only be exploited with very precisely
chosen delay times; otherwise, if the time does not comply
with the protocol, the information would be extracted from
the plateau level, which is higher in the case of the modified
procedure. Note also that the outlined modified procedure is
not the same as the one proposed in the main text.

APPENDIX H: LAMA OPERATION

Shown in Figs. 7(a), 7(c), and 7(e) are the numerically
simulated probability distributions for the magnetic field for
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(a) (c) (e)

(b) (d) (f)

FIG. 7. LAMA operation. (a), (c), and (e) Field distributions and (b), (d), and (f), expected information gains at six different steps of
LAMA obtained through numerical modeling in the absence of dephasing. The corresponding outcome sets ({ξ1, ξ2, . . . , ξ6}) are (a) and
(b) {0, 2, 0, 1, 1, 2}, (c) and (d) {1, 1, 1, 1, 1, 1}, and (e) and (f) {1, 2, 0, 0, 1, 2}. The initial distribution function is P0(ω|ø) = N (0, σ 2) with
σ = 2π/(90 ns).

different six-step procedures; Figs. 7(b), 7(d), and 7(f) display
three corresponding series of expected information gains be-
fore the next measurement. The plots correspond to different

outcome sets (see Fig. 7 caption) and illustrate the appearance
of oscillations in the second and later steps due to the nonzero
mean value of the updated distribution.
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