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Topological superconductors represent one of the key hosts of Majorana-based topological quantum comput-
ing. Typical scenarios for one-dimensional (1D) topological superconductivity assume a broken gauge symmetry
associated to a superconducting state. However, no interacting 1D many-body system is known to spontaneously
break gauge symmetries. Here, we show that zero modes emerge in a many-body system without gauge
symmetry breaking and in the absence of superconducting order. In particular, we demonstrate that Majorana
zero modes of the symmetry-broken superconducting state are continuously connected to these zero-mode
excitations, demonstrating that zero-bias anomalies may emerge in the absence of gauge symmetry breaking.
We demonstrate that these many-body zero modes share the robustness features of the Majorana zero modes of
symmetry-broken topological superconductors. We further show that the interface between the interacting model
and a 1D topological superconductor does not support Majorana modes. We introduce a bosonization formalism
to analyze these excitations and show that a ground state analogous to a topological superconducting state can be
analytically found in a certain limit. Our results demonstrate that robust Majorana-like zero modes may appear
in a many-body system without gauge symmetry breaking, thus introducing a family of protected excitations
with no single-particle analogs.

DOI: 10.1103/PhysRevResearch.3.023002

I. INTRODUCTION

Superconductivity in topological quantum materials has
become one of the most fertile topics in modern con-
densed matter physics [1,2]. The search for topological
superconductors has been motivated by the emergence of
topological excitations, known as Majorana zero modes [3],
and by their potential for topological quantum computing
[4–13]. A variety of solid-state materials have been ex-
plored in recent years with the goal of engineering Majorana
bound states, including superconducting nanowires [14–22],
atomically engineered chains [23–27], topological insula-
tors [28–32], phase-controlled Josephson junctions [33,34],
helical quantum Hall edge states of graphene [35] with
controllable magnetic [36,37] and superconducting gaps, an-
tiferromagnetic topological superconductors [38–40], and van
der Waals heterostructures [41]. These different platforms
rely on the engineering of a specific kind of an effective
p-wave superconducting state, the nontrivial topological prop-
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erties of which give rise to the emergence of Majorana zero
modes [42].

Majorana bound states and unconventional superconduc-
tors in general rely on a single-particle description of the
effective excitations. In particular, conventional proposals for
Majorana bound states in topological superconductors rely on
explicitly broken gauge symmetry which is associated with
the existence of a nonzero superfluid order parameter [42].

In this scenario, the existence of Majorana bound states
in the presence of particle-particle interactions has been es-
tablished in terms of a renormalization of the single-particle
mean-field parameters [43–47]. Although additional sub-
tle many-body effects are prone to appear in this regime
[43,48–50], the Majorana zero remains to exist.

However, the scenario for systems lacking symmetry
breaking is distinctively different [51–60]. Namely, particle-
particle interactions cannot be reinterpreted as a renormal-
ization of single-particle terms as in a symmetry-broken
state. For typical single-particle models of topological su-
perconductivity, the pairing term explicitly breaks the gauge
symmetry since the term is not U(1) gauge symmetric. A
finite pairing term is a hallmark of superconductivity, and
thus such symmetry breaking is natural for proposals that
involve three-dimensional superconductors [61]. However,
for a purely one-dimensional (1D) system, the situation is
dramatically different, as spontaneous symmetry breaking
with finite pairing does not take place [62,63]. In particular,
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interacting 1D models have a ground state that is gauge
symmetric with a vanishing expectation value of supercon-
ducting pairing [62,63], and consequently their effective
single-particle Hamiltonian does not host Majorana zero
modes [42,61]. Thus, whether or not Majorana zero modes
may appear in the absence of gauge symmetry breaking is a
major outstanding question.

In this work, we demonstrate that robust zero modes appear
in a 1D many-body model without gauge symmetry breaking.
The model we focus on would give rise to a topological super-
conductor at the mean-field level if the gauge symmetry were
explicitly broken. We demonstrate that no such gauge symme-
try breaking is required for the emergence of Majorana-like
zero modes, establishing a peculiar paradigm of quantum
many-body excitations with no single-particle analog. Despite
their fundamental differences to Majorana zero modes, we
demonstrate that these two types of many-body excitations
share many properties, including robustness to perturbations
and disorder.

Our paper is organized as follows. In Sec. II, we introduce
the many-body model, highlighting the emergence of zero-
mode resonances. In Sec. III, we demonstrate the robustness
of the zero modes to a variety of perturbations. In Sec. IV,
we show the connection between these resonant zero modes
and Majorana bound states. In Sec. V, we demonstrate the
emergence of the edge modes from a continuum bosoniza-
tion formalism. Section VI summarizes our results and
Appendices A–C discuss some technical details such as criti-
cal points, Green’s functions, and persistent current in a ring.

II. ZERO MODES IN QUANTUM MANY-BODY CHAINS

We study a 1D chain of L spinless fermions with interac-
tions between the neighboring sites as illustrated in Fig. 1(a).
The system is described by the following Hamiltonian:

ĤI = −t
L−1∑
j=1

(ĉ†
j+1ĉ j + ĉ†

j ĉ j+1) − μ

L∑
j=1

ĉ†
j ĉ j

−V
L−1∑
j=1

(
ĉ†

j+1ĉ j+1 − 1

2

)(
ĉ†

j ĉ j − 1

2

)
, (1)

where t is the strength of the particle hopping between
neighboring sites, ĉ†

j and ĉ j are the fermionic creation and
annihilation operators at site j, respectively, μ is the chemical
potential, and V is the strength of the interactions between
the fermions. Such a system can be mapped onto a spin- 1

2
anisotropic XXZ chain in a longitudinal field using the Jordan-
Wigner transformation, resulting in

ĤI =
L−1∑
j=1

[
2t

(
ŝx

j ŝ
x
j+1 + ŝy

j ŝ
y
j+1

) − V ŝz
j ŝ

z
j+1

] − μ

L∑
j=1

ŝz
j,

where {ŝα
j }α=x,y,z denote the spin- 1

2 operators for site j. This
model is integrable by the means of the Bethe ansatz [64,65].
The resulting phase diagram at zero temperature and other-
wise in the thermodynamic limit is shown in Fig. 1(b) [66].
We focus on the region of the diagram corresponding to the
attractive interactions between the fermions V > 0, where
two different phases exist. Phase separation takes place at

FIG. 1. (a) Schematic illustration of the interacting one-
dimensional model we study. The Majorana-like zero-energy mode
at the left edge of the chain is highlighted with cyan color. The
fermionic creation and annihilation operators at site n (gray sphere)
are denoted by ĉ†

n and ĉn, respectively. The strength of the particle
hopping between neighboring sites (yellow color) is given by t , and
V describes the strength of the interactions between the fermions.
(b) The phase diagram of the Hamiltonian (1) at zero temperature.
Here, μ denotes the chemical potential. Regions corresponding to a
phase separation (PS), Tomonaga-Luttinger liquid (TLL), and charge
density wave (CDW) appear in addition to Majorana-like zero modes
(cyan color).

|μ| > 2t − V where the ground state corresponds, depending
on the sign of μ, to the vacuum state or to the completely
filled band. In this phase, zero-energy modes which mix the
number of particles are known to exist [67]. The other phase
corresponds to the Tomonaga-Luttinger liquid [68–70] which
is our main focus here. Remarkably, we have been able to ex-
plicitly construct the ground state at the critical point V = 2t ,
μ = 0 as shown in Appendix A. At this point it appears to be
L + 1 times degenerate, where the different degenerate states
correspond to the different numbers of particles.

Treated within the mean-field approximation such a model
gives rise to the well-known Kitaev model described by the
Hamiltonian

ĤK = −t
L−1∑
j=1

(ĉ†
j+1ĉ j + ĉ†

j ĉ j+1) − μ

L∑
j=1

ĉ†
j ĉ j

+
L−1∑
j=1

(� j ĉ
†
j+1ĉ†

j + �∗
j ĉ j ĉ j+1), (2)
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where the superconducting order parameter � j is determined
self-consistently as � j = V 〈ĉ j ĉ j+1〉. The Kitaev model spon-
taneously breaks the gauge symmetry which is present in the
original model (1). For L � t/|�| this model hosts Majorana
zero modes localized at the ends of the chain [42] whereas the
other excited states are separated from the ground state by |�|
in the bulk of the chain.

A. Local density of states

The local density of states, or the spectral function, of the
chain is defined as

A( j, ω) = 〈�0|ĉ jδ(h̄ω − ĤI + E0)ĉ†
j

+ ĉ†
jδ(h̄ω + ĤI − E0)ĉ j |�0〉

=
∑

m

[|〈�0|ĉ j |�m〉|2δ(h̄ω − Em + E0)

+ |〈�0|ĉ†
j |�m〉|2δ(h̄ω − E0 + Em)], (3)

where |�0〉 is the ground state with energy E0 and |�m〉 are
all the eigenstates of the system corresponding to energies
Em. The spectral function can be evaluated using exact diag-
onalization of the Hamiltonian for the short chains or using a
kernel polynomial method with matrix product states (KPM-
MPS) [71–77] for the reasonably long chains.

The results of our calculations are shown in Fig. 2. We
observe clear zero-bias peaks at the edges of the chain, cor-
responding to Majorana-like zero modes. We find that these
zero-energy peaks appear for all considered chemical poten-
tials μ. Similarly to Majorana edge modes, the peaks split
for short chains as shown in Fig. 2(b), stemming from the
hybridization of the excitations at the opposite edges. With
increasing chain length L, the edge peaks move towards zero
energy, constituting a zero-energy resonance in the limit L →
∞. Next, we systematically examine how the splitting of these
edge modes depends on the system size. Interestingly, their
behavior is different from that of Majorana zero modes in
topological superconductors.

B. Peak scaling

The nature of the above-found edge modes can be studied
by inspecting the scaling properties of the peak splitting. From
the series expression in Eq. (3), we observe that the peaks are
located at energies ±[E0(N0 ± 1) − E0], where E0(N ) is the
energy of the ground state in the subspace with N particles
and N0 is the number of particles in the global ground state of
the system. Thus, the peak splitting h̄ωp appears to be equal to
[E0(N0 + 1) + E0(N0 − 1)]/2 − E0 and its dependence of the
chain length L is shown in Fig. 3(a). For comparison, Fig. 3(a)
also shows the splitting for a noninteracting chain, which
corresponds to the level spacing at the Fermi energy. We
observe that the splitting scales as C(V )/L, in stark contrast to
the mean-field case where the splitting of the Majorana peaks
decays exponentially with an increasing length of the chain.

In the case of conventional Majorana states, the exponen-
tial dependence arises because of two reasons. First, the bulk
of the system has a gap stemming from the finite pairing.
Since the Majorana zero modes are located inside the gap
in the bulk of the system, they need to decay exponentially,

FIG. 2. Local density of states A( j, ω) as a function of the energy
ω and the site index of the chain j for (a), (b) L = 10, μ = 0, (c),
(d) L = 40, μ = 0, (e), (f) L = 40, μ = −0.2 × t . The interaction
strength is V = 1.5 × t in all panels. Note that (b), (d), and (f)
simply show the the local density of states in the vicinity of the
edge of the chain. The data in (a) and (b) have been obtained using
exact diagonalization of the Hamiltonian (1) and the other data are
obtained using the KPM-MPS method.

which gives rise to a hybridization between the zero modes
that decays exponentially with the system size. Second, the in-
duced superconductivity may be considered to arise from cou-
pling to an infinite superconductor. Since the Majorana wire
can exchange Cooper pairs with the infinite superconductor,

FIG. 3. (a) Energy splitting of the edge-mode peaks in the local
density of states as a function of chain length L for a chemical po-
tential μ = 0 and interaction strength V as indicated. (b) The scaling
coefficient C, defined as the edge-mode energy splitting multiplied
by L, as a function of the interaction strength V . All data are obtained
using the KPM-MPS method.
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there is no energy cost for adding particles to the system. As
a result of these two effects, the states with N0 and N0 ± 1
particles are degenerate up to the hybridization energy, which
decays exponentially with the system size.

Importantly, our system is different from that hosting con-
ventional Majorana states in both ways discussed above.
First, it does not have a gap stemming from the pairing,
and consequently the bulk remains gapless. As a result, the
Majorana-like resonances do not have an exponential local-
ization at the edge but rather power-law confinement. Thus,
the hybridization energy decays as a power law with the
system size. Second, we are considering a finite system which
cannot exchange particles with an infinite superconductor, so
that adding particles to the system costs energy ∝1/L, and
therefore a splitting ωp ∝ 1/L would be obtained indepen-
dently on the type of localization of the edge modes (see also
Sec. V). Both of these contributions are fully included in our
calculations.

The dependence of the scaling coefficient C(V ) on the
interaction strength is shown in Fig. 3(b). We observe that it
decays almost linearly to zero in the vicinity of the critical
point V = 2t .

III. ROBUSTNESS OF THE ZERO MODES
TO PERTURBATIONS

Robustness against perturbations in the Hamiltonian is
a paradigmatic property of topological states in general,
and Majorana bound states in particular. To this end, we
study the robustness of the peaks with respect to perturba-
tions that break the integrability of the model. We consider
three different types of perturbations: second-neighbor hop-
ping, second-neighbor interactions, and onsite disorder. These
perturbations are described by the following Hamiltonians,
respectively:

Ĥ2nh = −t ′
L−2∑
j=1

(ĉ†
j+2ĉ j + ĉ†

j ĉ j+2), (4)

Ĥ2ni = −V ′
L−2∑
j=1

(
ĉ†

j+2ĉ j+2 − 1

2

)(
ĉ†

j ĉ j − 1

2

)
, (5)

Ĥd =
L∑

j=1

u j ĉ
†
j ĉ j, (6)

where t ′ and V ′ are the parameters determining the strengths
of the second-neighbor hopping and interactions, respectively,
and u j is the onsite potential chosen randomly in the range
[−W,W ]. The distributions of the local density of states for
these types of perturbations are shown in Fig. 4. In all cases
considered here, we find that weak perturbations do not affect
the existence of the edge states.

IV. CONNECTION TO A TOPOLOGICAL
SYMMETRY-BROKEN SUPERCONDUCTOR

Above, we focused on the disordered quantum state, show-
ing that the interacting gapless gas exhibits excitations sharing
the robustness properties of topological Majorana zero modes.
Although such similarity is suggestive of matching topologi-
cal properties, a rigorous proof calls for a demonstration that

FIG. 4. Local density of states as a function of energy and the
site index of the chain for perturbed systems with L = 40, V =
1.5 × t , μ = 0. The perturbations are (a), (b) second-neighbor hop-
ping, (c), (d) second-neighbor interaction, and (e), (f) onsite disorder.
The distinctive parameters are given by (a), (b) t ′ = −0.2 × t , (c),
(d) V ′ = 0.4 × t , (e), (f) W = 0.5 × t . In all cases, there are strong
zero-energy modes at the edges demonstrating the robustness of these
states.

the two types of excitations can be continuously transformed
into each other. The aim of this section is to provide such a
demonstration.

To this end, we introduce a family of Hamiltonians

Ĥ (s) = (1 − s)ĤI + sĤK − μ̃(s)N̂, 0 � s � 1 (7)

where N̂ is the number of particle operators. This family
yields a continuous transformation from the Hamiltonian of
the interacting chain at s = 0 to that of a topological super-
conductor with gauge symmetry breaking at s = 1. Therefore,
control of the parameter s enables us to track the trans-
formation from the Majorana-like modes without symmetry
breaking to standard Majorana modes with symmetry break-
ing. The chemical potential μ̃(s) is used to control the total
number of particles throughout the path.

The local density of states at the edge of the chain is shown
in Fig. 5 as a function of the transformation parameter s.
If |μ| < 2t − V and the chemical potential does not depend
on the parameter μ̃(s) = 0, the bulk gap exactly closes at
s = 0, as shown in Fig. 5(a). Another way to connect the
fully interacting model to the Kitaev chain is to keep the mean
number of particles 〈N̂〉(s) constant and sweep the parameter
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FIG. 5. (a), (b) Local density of states at the first site as a function
of the transformation parameter s and energy calculated for the
Hamiltonian (7) with L = 40, V = 1.5 × t , and � = t . In (a), we
use μ = −0.2 × t and μ̃(s) = 0, whereas in (b), μ̃(s) is adjusted
in such a way that 〈N̂〉(s)/L = 1/4. (c), (d) Local density of states
for each site in a heterojunction, described by the Hamiltonian (8),
between a topological superconductor and the interacting model (c),
and between a trivial superconductor and the interacting model (d).
In both panels, the lower half of the system shows data for the
interacting model. The parameters are set to L′ = 20, � = 0.5 × t ,
and μ = 0 in both panels and to (c) μ′ = 0 and (d) μ′ = 3.

s. This case is shown in Fig. 5(b) yielding qualitatively similar
results to those with a constant chemical potential.

We emphasize that the above-discovered connection be-
tween the Majorana-like modes and the symmetry-broken
Majorana zero modes in topological superconductors has
important consequences. In particular, similar to Majorana
zero modes, the Majorana-like modes in non-superconducting
states appear as a conductance peak at zero voltage bias if
probed with a scanning tunnel microscope at the edge of the
chain, a phenomenon referred to as zero-bias anomaly. Thus,
both modes have similar signatures in typical experiments.
These states will, however, coexist with a gapless background
of edge excitations in the bulk. In addition, the gapless na-
ture of the bulk excitations may give rise to decoherence of
the phase information in these Majorana-like modes different
from that in conventional Majorana bound states [78–80].

The equivalence between the zero modes of the interacting
model and the conventional Majorana zero modes can be
further emphasized by studying a heterojunction between the
interacting model and a topological or trivial superconductor.
The model Hamiltonian of such a heterojunction between sites
L′ and L′ + 1 has the following form:

Ĥ = −t
L−1∑
j=1

(ĉ†
j+1ĉ j + ĉ†

j ĉ j+1) − μ

L′∑
j=1

ĉ†
j ĉ j

−V
L′−1∑
j=1

(
ĉ†

j+1ĉ j+1 − 1

2

)(
ĉ†

j ĉ j − 1

2

)

+�

L−1∑
j=L′

(ĉ†
j+1ĉ†

j + ĉ j ĉ j+1) − μ′
L∑

j=L′+1

ĉ†
j ĉ j, (8)

where � and μ′ are the superconducting order parameter
and the chemical potential in the topological superconductor,
respectively. Here |μ′| < 2t corresponds to the topological
superconductor and |μ′| > 2t to the trivial one.

The local density of states in the case of the heterojunction
is shown in Figs. 5(c) and 5(d). For an interface between
the interacting model and a topological superconductor, no
resonance is expected at the junction since the Majorana zero
mode of the topological superconductor and the Majorana-like
mode of the interacting model annihilate each other as shown
in Fig. 5(c). In contrast, for the interface between the inter-
acting model and a conventional superconductor, a zero mode
remains at the junction as is clearly visible in Fig. 5(d). Note
that a similar phenomenon would be observed if the interact-
ing model were replaced by a symmetry-broken topological
superconductor.

V. BOSONIZED CONTINUUM LIMIT

In order to show that the discovered zero-energy peaks ex-
ist for an arbitrarily weak attractive interaction, we employ a
bosonization technique for a continuous analog of our model,
described by the following Hamiltonian:

Ĥc =
∫ L

0

{
ψ̂†

(
− h̄2∂2

x

2m
− h̄2k2

F

2m

)
ψ̂ + g

8k2
F

: [∂xρ̂]2 :

}
dx,

(9)
where ψ̂† and ψ̂ are the fermionic creation and annihilation
operators, respectively, m is the mass of the fermion, h̄kF

is the Fermi momentum, g is the interaction parameter, ρ̂ =
ψ̂†ψ̂ is the density operator, and : . . . : denotes the normal
ordering of the operator. Here, we impose zero boundary con-
ditions ψ̂ (0) = ψ̂ (L) = 0. Following Ref. [81], we introduce
an auxiliary right-moving field ψ̂R(x) defined on the segment
[−L, L] as

ψ̂ (x) = eikF xψ̂R(x) − e−ikF xψ̂R(−x). (10)

Zero boundary conditions for ψ̂ (x) are equivalent to periodic
ones for ψ̂R(x) and, hence, the latter field can be straightfor-
wardly bosonized. The Hamiltonian expressed in terms of ψ̂R

has the following form:

Ĥc ≈
∫ L

−L

[
−ih̄vF ψ̂

†
R∂xψ̂R − g

2
: ρ̂R(x)ρ̂R(−x) :

]
dx, (11)

where vF = h̄kF /m, ρ̂R = ψ
†
RψR, and we have replaced the

quadratic dispersion by a linear one in the vicinity of the Fermi
surface. The bosonization expression for the field ψ̂R(x) reads
as [82]

ψ̂R(x) = F̂√
2πa

eiπ n̂x/Leiφ̂(x), (12)

where n̂ is a number operator for excess particles with respect
to the Fermi sea state, i.e., the ground state of a noninteracting
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wire with g = 0, and F̂ is the Klein factor [n̂, F̂ ] = −F̂ ,
F̂ †F̂ = F̂ F̂ † = 1. The phase field is given by the following
expression:

φ̂(x) = i
∑
k>0

√
π

kL
(e−ikxb̂†

k − eikxb̂k )e−ka/2, (13)

where k = π j/L, j is a positive integer, b̂k and b̂†
k are the

bosonic annihilation and creation operators for the mode k,
respectively, and we have introduced a regularization param-
eter a such that all the expressions are to be taken in the limit
a → +0. In terms of the bosonic operators the Hamiltonian is
expressed as

Ĥc =
∑
k>0

k

[
h̄vF b̂†

kb̂k − g

4π
(b̂k b̂k + b̂†

kb̂†
k )

]

+ π

2L

(
h̄vF − g

2π

)
n̂2. (14)

This Hamiltonian can be diagonalized by the Bogoliubov
transformation

b̂k = b̃k cosh ϕ + b̃†
k sinh ϕ, tanh 2ϕ = g

2π h̄vF
, (15)

and reduced to the following form:

Ĥc =
∑
k>0

k

√
h̄2v2

F −
(

g

2π

)2

b̃†
kb̃k + π

2L

(
h̄vF − g

2π

)
n̂2.

(16)
We note that the Bogoliubov transformation requires |g| <

2π h̄vF since otherwise the Hamiltonian (14) is not bounded
from below. Note that the case of strong interactions corre-
sponds to the phase separation or charge density wave which
are not accurately described by this bosonization formalism.

The local density of states of the bosonized wire is given
by

A(x, ω) = i
∫ ∞

−∞
[G>(x, x, t ) − G<(x, x, t )]eiωt dt, (17)

where

G>(x, x′, t ) = −i〈ψ̂ (x, t )ψ̂†(x′, 0)〉
≈ G>

R (x, x′, t ) + G>
R (−x,−x′, t ), (18)

G>
R (x, x′, t ) = −i〈ψ̂R(x, t )ψ̂†

R(x′, 0)〉, (19)

G<(x, x′, t ) = i〈ψ̂†(x′, 0)ψ̂ (x, t )〉
≈ G<

R (x, x′, t ) + G<
R (−x,−x′, t ), (20)

and

G<
R (x, x′, t ) = i〈ψ̂†

R(x′, 0)ψ̂R(x, t )〉. (21)

On the right side of Eqs. (18) and (20) we have neglected the
terms oscillating as e±2ikF (x+x′ ). The Green’s function of the
field ψ̂R can be evaluated analytically (see Appendix B for
details). Figure 6 shows the local density of states of the wire
as a function of the coordinate and energy. We clearly observe
zero-energy peaks at the ends of the wire.

The form of the Hamiltonian in Eq. (16) allows us to
analytically evaluate the gap in the local density of states.

FIG. 6. (a), (b) Local density of states A(x, ω) for the continu-
ous wire of interacting fermions normalized by the local density of
states of the noninteracting system as a function of the position x
and energy ω. (b) Shows data close to the end of the wire. Here,
h̄vF = g and the energy broadening of the local density of states
equals δ = h̄vF /(2L).

This gap is equal to π/(2L)[h̄vF − g/(2π )] since it is the
lowest energy needed to add or remove a single particle to or
from the wire without exciting any of the bosonic modes. This
expression is in the good qualitative agreement with the results
shown in Fig. 3. Namely, the peak splitting scales as C/L
and the factor C linearly decays with increasing interaction
strength up to the point of transition to phase separation.

VI. CONCLUSIONS

In summary, we demonstrated the emergence of zero-bias
modes at the edges of a 1D chain of attractively interacting
fermions. We showed that these modes can be continu-
ously transformed to conventional Majorana zero modes of
a topological superconductor, yet with the striking difference
that they emerge in the absence gauge symmetry breaking.
These many-body zero modes are found to exist at arbitrarily
weak attractive interaction and are robust to perturbations
which break the integrability of the model, including long-
range hopping and interactions, and disorder. In addition,
we demonstrated that these zero-mode resonances can be
analyzed with both a lattice quantum many-body formalism
based on tensor networks and a continuum low-energy model
based on bosonization. Our results introduce an unexpected
type of protected zero modes in a pure many-body case, with
no single-particle analog, providing a stepping stone towards
the exploration of topological modes in generic disordered
quantum many-body systems.

However, despite the demonstration of the robustness of
the many-body zero modes with respect to integrability break-
ing perturbations, it is not clear whether these modes have
truly topological origin, i.e., can be rationalized by introduc-
ing some topological invariant. It must be noted though that
the topological classifications for interacting systems have,
in general, not been understood up to date. We hope that
our results of the existence of these zero modes will inspire
work in this direction, and motivate future studies addressing
the topological invariant for such many-body system. Another
question we do not consider in this work is implications for
the quantum computing. The gapless nature of the system and
power-law localization of the observed zero modes are disad-
vantageous for any practical purposes. However, the effects
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detrimental for conventional Majorana-based computing like
dephasing or quasiparticle poisoning may be less pronounced
in the considered many-body system. This issue should also
be addressed in future researches.
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APPENDIX A: CRITICAL POINT

In the general interacting case the Bethe ansatz expression
for the ground state of the system is complicated except for
the critical point μ = 0, V = 2t . In this case the ground state
has the form [83]

|�0〉 = 1

2L/2

L∏
j=1

(1 + ĉ†
j )|0〉, (A1)

corresponding to energy E0 = t (1 − L)/2. Interestingly, this
is actually the same ground state as in the Kitaev model, and

thus it would be possible to construct Majorana operators
describing localized zero-energy excitations [84]. It must be
noted that in the present model there will be also additional
low-energy excitations as we are considering a truly interact-
ing model instead of mean-field Hamiltonian.

In order to prove this result we define |� j−1〉 be defined as

|� j−1〉 = 1

2L/2

L∏
k= j

(1 + ĉ†
k )|0〉. (A2)

At the same time we define Ĥj−1 as

Ĥj−1 = −t
L−1∑
k= j

(ĉ†
k+1ĉk + ĉ†

k ĉk+1)

− 2t
L−1∑
k= j

(
ˆ̂c†
k+1ĉk+1 − 1

2

)(
ĉ†

k
ˆ̂ck − 1

2

)
. (A3)

It is obvious that Ĥ0 = ĤI at V = 2t and μ = 0. We are going
to prove that |� j−1〉 is the eigenstate of the Hamiltonian Ĥj−1

with the energy t ( j − L)/2. For j = L this fact is obvious
because ĤL−1 = 0. Assume that for some j − 1 this statement
is true. Then let us prove it for j − 2:

Ĥj−2|� j−2〉 =
[
−t (ĉ†

j
ˆ̂c j−1 + ĉ†

j−1ĉ j ) − 2t

(
ĉ†

j
ˆ̂c j − 1

2

)(
ĉ†

j−1ĉ j−1 − 1

2

)
+ Ĥj

]
(1 + ĉ†

j−1)|� j−1〉

= t ( j − L)

2
|� j−2〉 − t

{
ĉ†

j−1|� j〉 −
[(

ĉ†
j
ˆ̂c j − 1

2

)
+ ĉ†

j ĉ j−1ĉ†
j−1 + 2

(
ĉ†

j
ˆ̂c j − 1

2

)(
ĉ†

j−1ĉ j−1 − 1

2

)
ĉ†

j−1

]
|� j−1〉

}

= t ( j − L)

2
|� j−2〉 − t

[
ĉ†

j−1|� j〉 − ĉ†
j |� j〉 + 1

2
|� j−1〉 + ĉ†

j |� j〉 +
(

ĉ†
j ĉ j − 1

2

)
ĉ†

j−1|� j−1〉
]

= t ( j − L)

2
|� j−2〉 − t

[
ĉ†

j−1|� j〉 + 1

2
|� j−1〉 + ĉ†

j−1ĉ†
j |� j〉 − 1

2
ĉ†

j−1|� j−1〉
]

= t ( j − L)

2
|� j−2〉 − t

[
1

2
|� j−1〉 + 1

2
ĉ†

j−1|� j−1〉
]

= t ( j − 1 − L)

2
|� j−2〉. (A4)

In order to prove that the found eigenstate is the ground state, i.e., has the minimal possible energy, we notice that the Hamiltonian
can be written as

ĤI = −t
L−1∑
j=1

[
ĉ†

j+1ĉ j + ĉ†
j ĉ j+1 + 2

(
ĉ†

j+1ĉ j+1 − 1

2

)(
ĉ†

j ĉ j − 1

2

)]
. (A5)

Each term of the sum has the lowest eigenvalue equal to −t/2 and there are L − 1 terms total, then the energy of the ground state
cannot be lower than t (1 − L)/2.

Since the state |�0〉 is not an eigenstate of the number of particle operators, one can project it onto the subspaces with the
fixed number of particles yielding L + 1-times degenerate ground states corresponding to the different number of particles N
from 0 to L:

|�0N 〉 = 2L/2√(L
N

) P̂N |�0〉, (A6)

where P̂N is an orthogonal projector onto the subspace with N particles.
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APPENDIX B: GREEN’S FUNCTIONS OF THE CONTINUOUS WIRE

The greater and lesser Green’s functions of the field ψ̂R are equal to

G>
R (x, x′, t ) = − i

2πa
〈F̂ (t )eiπ n̂(x−x′ )/LF̂ †eiφ̂(x,t )e−iφ̂(x′ )〉, (B1)

G<
R (x, x′, t ) = i

2πa
〈e−iπ n̂x′/LF̂ †F̂ (t )eiπ n̂x/Le−iφ̂(x′ )eiφ̂(x,t )〉, (B2)

where F̂ (t ) = eiĤct/h̄F̂ e−iĤct/h̄ and φ̂(x, t ) = eiĤct/h̄φ̂(x)e−iĤct/h̄. After long but straightforward calculations one obtains

G>
R (x, x′, t ) = − ic

2L
exp

[
− iπt

2L

(
vF − g

2π h̄

)
+ iπ (x − x′)

L

]

× [1 − e− π
L (a+iṽF t+ix+ix′ )]

s
2 [1 − e− π

L (a+iṽF t−ix−ix′ )]
s
2 [1 − e− π

L (a+iṽF t+ix−ix′ )]
1−c

2

|1 − e− π
L (a−2ix)| s

2 |1 − e− π
L (a−2ix′ )| s

2 [1 − e− π
L (a+iṽF t−ix+ix′ )]

1+c
2

, (B3)

G<
R (x, x′, t ) = ic

2L
exp

[
iπt

2L

(
vF − g

2π h̄

)]

× [1 − e− π
L (a−iṽF t−ix−ix′ )]

s
2 [1 − e− π

L (a−iṽF t+ix+ix′ )]
s
2 [1 − e− π

L (a−iṽF t−ix+ix′ )]
1−c

2

|1 − e− π
L (a+2ix)| s

2 |1 − e− π
L (a+2ix′ )| s

2 [1 − e− π
L (a−iṽF t+ix−ix′ )]

1+c
2

, (B4)

where c = cosh 2ϕ, s = sinh 2ϕ, and ṽF =
√

v2
F − g2/(2π h̄)2. Finally, the expression for the local density of states reads as

A(x, ω) = 2
∫ +∞

−∞
eiωt Re

{
e− iπt

2L (vF − g
2π h̄ ) (1 − e− πa

L )c[1 − e− π
L (a−iṽF t−2ix)]

s
2 [1 − e− π

L (a−iṽF t+2ix)]
s
2

πa|1 − e− π
L (a+2ix)|s[1 − e− π

L (a−ivF t )]c

}
dt . (B5)

APPENDIX C: PERSISTENT CURRENT IN A RING

We close up the chain into a ring with a weak link and
pierce it with a magnetic flux. The Hamiltonian of such a

FIG. 7. (a), (b) Persistent current in the ring as a function of flux.
(c), (d) The local density of states at the site adjacent to the weak link
as a function of energy and flux. The parameters are tw = 0.2 × t ,
L = 10, μ = 0, (a), (c) V = 1.5 × t , (b), (d) V = 2t . The data are
obtained using an exact diagonalization of the Hamiltonian (C1). The
energy broadening of the local density of states equals δ = 0.05 × t .

system reads as

Ĥ ′
I = ĤI − tw(ĉ†

Lĉ1ei + ĉ†
1ĉLe−i), (C1)

where tw is hopping parameter through the weak link between
the first and the last sites of the chain, and  determines
the flux in the units of 0/(2π ), where 0 is the normal
(not superconducting) flux quantum. The current operator is
defined as

Ĵ = ∂Ĥ ′
I

∂
= −itw(ĉ†

Lĉ1ei − ĉ†
1ĉLe−i). (C2)

The current dependence on the flux is shown in Figs. 7(a) and
7(b) for different values of interaction strength. The disconti-
nuities in the current-flux relation correspond to the number
of particle switches in the ring. Figures 7(c) and 7(d) show
the local density of states at the site adjacent to the weak link
as a function of flux and energy. The peak splitting oscillates
as a function of flux, the number of particle switches take
place exactly at the peak’s intersections. The behavior of
the current and spectral function at the critical point V = 2t
mostly resembles the behavior of the mean field Kitaev model
where these quantities are π periodic with the flux if one
allows parity switches, and 2π periodic if the parity is kept
fixed. Away from the critical point we do not observe exact
π periodicity of the current in the presence of parity switches
which may be a consequence of a finite overlap of the peaks
through the bulk of the chain.
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