Bedawy, Ahmed; Yorino, Naoto; Mahmoud, Karar; Zoka, Yoshifumi; Sasaki, Yutaka

Optimal Voltage Control Strategy for Voltage Regulators in Active Unbalanced Distribution Systems Using Multi-Agents

Published in:
IEEE Transactions on Power Systems

DOI:
10.1109/TPWRS.2019.2942583

Published: 01/03/2020

Document Version
Peer reviewed version

Please cite the original version:
Optimal Voltage Control Strategy for Voltage Regulators in Active Unbalanced Distribution Systems Using Multi-Agents

Ahmed Bedawy, Student Member, IEEE, Naoto Yorino, Senior Member, IEEE, Karar Mahmoud, Yoshifumi Zoka, Member, IEEE and Yutaka Sasaki, Member, IEEE

Abstract—The rapid increase in the installation of renewable energy sources, particularly solar photovoltaic (PV) sources associated with unbalanced features of distribution systems (DS), disturbs the classic control strategy of voltage regulation devices and causes voltage violation problems. This paper proposes an effective control strategy for voltage regulators in the DS based on the voltage sensitivity using a multi-agent system (MAS) architecture. The features of the unbalanced distribution system (UDS) with the PV and different types and configurations of voltage regulators are considered in the proposed strategy. The novelty of the proposed method lies in realizing both the control optimality of minimizing voltage violations and the flexibility to accommodate changes in the DS topology using an MAS scheme. An advantageous feature of using the MAS scheme is the robust control performance in normal operation and against system failure. Simulation studies have been conducted using IEEE 34-node and 123-node distribution test feeders considering high PV penetration and different sun profiles. The results show that the proposed voltage control strategy can optimally and effectively manage the voltage regulators in the UDS, which decrease their operation stresses and minimize the overall voltage deviation.

Index Terms—Distribution system, multi-agents, renewable energy sources, voltage regulation, voltage violation.

I. INTRODUCTION

RECENTLY, the installation of distributed generations (DGs) in distribution systems (DS) has quickly expanded; approximately 178 gigawatts (GW) of renewable power energy has been installed in 2017 worldwide, and 55% of this capacity is generated from solar photovoltaic (PV) sources [1]. This increase can cause serious voltage problems in the DS. The DG installation changes the characteristic of a DS from passive to active, which causes voltage rise, voltage fluctuation and voltage imbalance because of the intermittent and unbalanced PV outputs [2]–[5].

The classic control strategies of the traditional voltage regulation devices, such as the on-load tap changer (OLTC), switchable capacitors (SC) and step voltage regulators (SVRs), are designed based on the unidirectionally power flow scheme from the substation to the loads. The bidirectional power flow caused by the intermittent PV generation can mislead such classic control strategies and cause voltage violations and tap oscillations of the transformers.

Various studies for voltage control have been performed, such as the local coordination techniques [6], [7], optimization techniques [8]–[10], neural network applications [11], [12], and agent-based techniques [13]–[17]. Various strategies have been conducted to mitigate the impact of the high DG penetration on the DS voltage. The approaches can be classified into centralized and distributed methods.

The centralized control methods coordinate voltage regulators by optimizing a certain objective, such as minimizing the voltage deviations and tap operations in DSs. The centralized control scheme is effective for the coordination among the DGs, OLTC, and SC. The approach can include day-ahead coordination [18], [19], management of the DG reactive power [20]–[22], voltage rise mitigation by coordination among battery energy storage systems (BESs) [23]–[26], microgrid voltage regulation [27], [28], and PV inverter reactive power control [29], [30]. These centralized control schemes can realize optimal control, whereas the high performance depends on the cost of the communication system, and its reliability against faults requires continued high investment.

The distributed control scheme relies on the independent decision of distributed controllers, where a coordination method is necessary to address the present voltage problems [31]. This strategy includes the off-line coordination of the parameters of conventional distributed controllers, and a multi-agent system (MAS) scheme that fully utilizes communications among them. There have been various works, such as the charge/discharge of BESs [32], controlling the DG active power generations [33], coordination among the OLTCs, SCs, and PV inverter reactive powers [34]–[36]. The distributed approach is generally more reliable, since the individual controllers can act autonomously, even in the case of faults. However, the optimal performance cannot be achieved in general, except certain cases [37]–[39], where the optimality can be reached when the agents are allowed to communicate and cooperate.
In this paper, an effective voltage control strategy for the voltage regulators in an unbalanced DS (UDS) is proposed by extending the previous studies [40], [13]. The proposed method considers the features of the UDS and different types and configurations of voltage regulators. The difference of the proposed method from the existing methods lies in ensuring an optimal control action to minimize the voltage deviations in a simple manner without using a central controller. Furthermore, it is flexible to handle the possible changes in the DS topology and operations of the PV systems using the distributed MAS scheme. The use of the MAS scheme yields a robust control performance in a flexible and reliable manner, even in the case of agent failure. The proposed method can optimally and effectively manage the voltage regulators in the UDS with an unbalanced PV distribution among the three-phases, decrease the device operation stresses and minimize the total voltage deviation. The proposed method can consider other conventional controllers (e.g., capacitors) to be operated as local controllers with their own setpoints.

The proposed method requires a small improvement in the existing DS devices by installing a blackboard memory and implementing a simple control unit at each voltage regulator. A highly simple communication tool is required in this instance between the blackboard and each local controller in the voltage regulator. In this case, the optimal control among regulators can be realized with a much lower installation cost than the centralized control scheme.

II. PROPOSED CONTROL STRATEGY

A. Proposed MAS Control strategy for the UDS

The construction of the DS includes unbalanced loads, unbalances in lines, single-phase or three-phase DG sources, and different configurations of voltage regulation devices. Therefore, a UDS can be represented as an MAS consisting of different agents. Each voltage regulator will act as a control agent that works autonomously according to the data received from the blackboard memory (BM). The BM is used to achieve the optimality of the control objective.

The proposed MAS architecture is illustrated in Fig. 1 for the UDS, and it has the following features:

- Each agent receives information from two sources: measurements from its own area and from the BM.
- Each agent can calculate its own control parameter (referred to as index S in this paper) based on the obtained information.
- The BM collects information from all agents, and each agent recognizes the status of the other agents through this information.
- Each agent takes action according to the received information from the BM to minimize an objective.
- In case of a communication failure, each agent can optimally control itself to achieve its desired goals based on the available data.

A management agent can be useful for system monitoring and real-time calculation, while the proposed method can autonomously work and optimally perform without using it.

![Fig. 1. Proposed MAS for the UDS.](image)

The optimality of the proposed method is explained in the Appendix.

B. Optimal voltage control strategy

The optimality is realized each time by selecting the most effective controller \((k)\) in the set of all discrete control parameters \((K)\) to reduce the absolute value of the total voltage deviations in the system. The objective is to minimize (1).

\[
\min_{k \in K} \int_0^\infty VD_{abc}(v) \, dt, \quad VD_{abc}(v) \geq 0 \quad (1)
\]

In this formula, \(VD_{abc}\) is the positive three-phase voltage deviation function, which is defined as the sum of the voltage deviations at all observation points in the DS from the reference values. Since UDSs can have different line configurations, including star and delta, the voltage deviation function consists of the voltages in the DS with all line configurations as follows:

\[
VD_{abc}(v) = VD_a(v) + VD_b(v) + VD_c(v) + VD_{ab}(v) + VD_{bc}(v) + VD_{ca}(v)
\]

\[
= \frac{1}{2} \sum_{Y=a}^c \sum_{j=1}^{M_Y} w_{jY}^v (v_j^Y - v_R^Y)^2 + \frac{1}{2} \sum_{Y=a}^c \sum_{l=1}^{M_{Y\Delta}} w_{lY}^\Delta (v_l^Y - v_R^Y)^2 \quad (2)
\]

For \(Y\)-connected regions:

- \(VD_a, VD_b,\) and \(VD_c\) are the voltage deviation functions for phases \(a, b,\) and \(c,\) respectively.
- \(v_j^Y\) is the voltage at node \(j\) phase \(Y (Y=a, b, c).\)
- \(w_{jY}^v\) is the weight coefficient of node \(j\) phase \(Y.
- \(v_R^Y\) is the reference value of the phase voltage.

For \(\Delta\)-connected regions:

- \(VD_{ab}, VD_{bc},\) and \(VD_{ca}\) are the voltage deviation functions for lines \(ab, bc,\) and \(ca,\) respectively.
- \(v_i^\Delta\) is the line voltage at node \(i,\) and \((\Delta=ab, bc, ca).\)
- \(w_{i\Delta}^\Delta\) is the weight coefficients of node \(i\) line \(\Delta.
- \(v_R^\Delta\) is the reference value of the line voltage.

The weight coefficients in (2) can be considered indicators of the importance of individual observation points. The constraints of minimization (1) are the power flow equations (3) and those for the tap operations, which will be provided in the next section.
III. CONTROL METHOD FORMULATION

A. Mathematical formulation

The voltages in the UDS are governed by the power flow equations, and they are the function of the tap positions of voltage regulators n, and the load parameters L are described in (3).

$$v = f (Ln)$$ \hspace{1cm} (3)

where, $v = [v_1, v_2, ..., v_M]^T$, $n = [n_1, n_2, ..., n_N]^T$ and $L = [L_1, L_2, ..., L_P]^T$.

Since the proposed method depends on controlling the voltage regulator taps to minimize the overall voltage deviation, the next tap position of regulator k, $n_{k(t+1)}$ is a control parameter, which can be expressed as follows:

$$n_{k(t+1)} = n_{k(t)} + \Delta n_{k(t)} \quad \text{where,} \quad p \in \{a, b, c\} \text{ for Y connected regulators}$$

$$p \in \{ab, bc, ca\} \text{ for } \Delta \text{ connected regulators} \quad (4)$$

The tap change in regulator k at time t is described by $\Delta n_{k(t)}$, and it depends on the regulator step size and tap status, which can be expressed as follows:

$$\Delta n_{k(t)} = R_k \cdot Z_k \cdot \begin{cases} +1 & \text{(tap increase)} \\ 0 & \text{(no tap change)} \\ -1 & \text{(tap decrease)} \end{cases}$$

where R_k and Z_k are the step size and tap status of regulator k phase or line p, respectively.

According to (3), the change in the objective is given as:

$$\Delta VD_{abc}(v(t)) = VD_{abc}(v(t+1)) - VD_{abc}(v(t)) = \left[\frac{\partial VD_{abc}}{\partial v} \cdot \frac{dv}{dn} \right] \cdot \Delta n(t) \quad (5)$$

Equation (6) can be written as follows:

$$\Delta VD_{abc}(t) = \left[\frac{\partial VD_{abc}}{\partial Z} \cdot \frac{dv}{dn} \right] \cdot R \cdot Z(t)$$

$$= S_{abc}(t) \cdot Z(t) = \sum_{i=1}^{\text{Y regulators}} S_{abcij}(t) \cdot Z_i(t) + \sum_{i=1}^{\text{\Delta regulators}} S_{abcj}(t) \cdot Z_j(t) \quad (6)$$

where

$$Z(t) = [Z_1(t), Z_2(t), ..., Z_N(t)]^T \text{ and } R(t) = \text{diag}[R_1(t), R_2(t), ..., R_N(t)]$$

$S_{abc}(t)$ is the sensitivity of the objective with respect to the unit change in the regulator taps; therefore, $S_{abc}(t)$ can be used as an index for optimal control to find the most effective controller. The index can be computed as follows:

$$S_{abc}(t) = \left[\frac{\partial VD_{abc}}{\partial v} \cdot \frac{dv}{dn} \right] \cdot R = \left[\sum_{i=1}^{\text{Y regulators}} S_{abcij}(t) \cdot Z_i(t) + \sum_{i=1}^{\text{\Delta regulators}} S_{abcj}(t) \cdot Z_j(t) \right]_{\text{Y regulators}} \quad (7)$$

where $[dv/dn]$ is the voltage/tap sensitivity matrix calculated by (3), N_i and N_c are the number of phase and line voltage regulators for the star and delta configurations, respectively.

An optimal control to minimize the objective can be realized using the three-phase index S as follows.

$$\min_{i:k} VD_{abc}(v(t+1)) = VD_{abc}(v(t)) + \min_{i:k} \{S_{abc}(t) \cdot Z(t) \} \quad (9)$$

- **For optimal operation**

The proposed strategy can perform an optimal operation for the UDS by calculating only index S in each control agent. If the index values are shared among agents, each agent can independently take its control action. According to (9), the agent with the highest value of index S should change its regulator taps as follows:

$$S_{abc}(t) = \max_i \{S_{abc}(t) \cdot Z(t) \} > \alpha$$

$$\max_i \{S_{abc}(t) \cdot Z(t) \} > \alpha$$

where α is a threshold value, $i \in K = \{1, ..., N\}$, and N is the number of system regulators.

Tap k will change according to

- If $S_{abc}(t) < -\alpha \Rightarrow \text{then } Z_{abc} = 0$
- If $S_{abc}(t) > \alpha \Rightarrow \text{then } Z_{abc} = 1$
- If $S_{abc}(t) = \alpha \Rightarrow \text{then } Z_{abc} = 0$

In the optimal control strategy, each agent should know the index S values of the other agents. At each time t, the values of the indices are compared, and the controller with the highest value is activated as described in (11). This action ensures that the agents minimize the overall voltage deviation and local voltage deviations of the violated area. The proposed control strategy described in (10) and (11) can be useful even in the conventional centralized control scheme.

- **For suboptimal operation**

The proposed suboptimal scheme is to avoid the comparison process among the values of indices of the other agents. We propose that each agent performs control by its own index S when it is greater than a predefined threshold as below.

$$S_{abc}(t) < -\alpha \Rightarrow \text{then } Z_{abc} = 0$$

$$S_{abc}(t) > \alpha \Rightarrow \text{then } Z_{abc} = 1$$

$$S_{abc}(t) = \alpha \Rightarrow \text{then } Z_{abc} = 0 \quad (12)$$

where $\alpha_0 \geq \alpha \geq 0$.

Threshold α_0 is a common value among all controllers. This treatment expects that only one controller reacts at a time, which implies the optimal action. The suboptimal control strategy can be used even in the normal condition. In this case, each agent can act independently as a decentralized control system according to (12). This strategy is suitable for autonomous control but does not guarantee strict optimality (See Appendix). The suboptimal strategy is useful when the data from the other agents are not fully available or reliable. If an agent fails to know the index S values of other agents because of communication loss or any abnormal conditions, it will act based on its own measurements.

The threshold values (α and α_0) in (11) and (12) are used as tuning factors that determine the amount of voltage deviation that causes the taps to take actions. Therefore, the threshold values (α and α_0) are useful to adjust the response time of the
controllers. A large value admits a large voltage deviation, which implies that the responses of the controllers become slow and vice versa. The threshold value can be set by the system operator.

B. Formula of Index \(S \)

Based on (8) and (9), index \(S \) for regulator \(k \) is written as

\[
S_k(t) = r^p_p \sum_{j=1}^{M_j} \frac{V_{D_{dc}}}{\partial v_j^p} \cdot \frac{dv_j^p}{dn_j^p}
\]

\[
= r^p_p \sum_{j=1}^{M_j} w_j^p \cdot (v_j^p - v_k) \cdot \frac{dv_j^p}{dn_j^p}
\]

where \(M_j \) is the number of observation nodes for the area of regulator \(k \).

The voltage/tap sensitivity matrix \([dv/dn]\) is an important term in the computation of three-phase index \(S \) as in (13). It is a possible strategy that the accurate real-time calculation of the voltage/tap sensitivity matrix is performed on-line by the management agent based on the power flow computation using (3). In this case, the proposed method is effective for any networks including the meshed configuration. However, to reduce the computational burden of the control process, a simplified method for radial networks is proposed in the next section.

C. Voltage/tap sensitivity matrix formulation

The voltage/tap sensitivity matrix can be approximated based on only the network configuration assuming that all transformers are ideal [40], [41]. The voltage/tap sensitivities for different types of regulators and system configurations are given as follows:

1) **Single-phase regulators**

The approximate values for the voltage/tap sensitivity matrix for the single-phase regulator are described in (14).

\[
\frac{\partial v_{ia}}{\partial n_i} = 0, \quad \frac{\partial v_{le}}{\partial n_i} = 1
\]

where \(G \) is the set of system nodes that can be affected by changing tap \(k \) (downstream nodes), and \(H \) is the other nodes that are not affected by changing the tap (upstream nodes).

2) **Three-phase star connected regulators**

The three-phase star connected regulators can be classified into two categories as follows:

a) **Three taps ganged together**: In this type, the three taps simultaneously change; therefore, they can be modeled as one controller, as described in (15) and (16).

\[
n_a = n_b = n_c = n_{(abc)}
\]

The voltage/tap sensitivity matrix is as follows:

\[
\begin{pmatrix}
\frac{\partial v_{ia}}{\partial n_{(abc)}} \\
\frac{\partial v_{ib}}{\partial n_{(abc)}} \\
\frac{\partial v_{ic}}{\partial n_{(abc)}}
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]

b) **Three independently controlled regulators**: In this type, the tap of each phase can change separately, which is modeled as three independent regulators. The voltage/tap sensitivity matrix for this type of regulators is as follows:

\[
\frac{\partial v_{ia}}{\partial n_{a}} = \frac{\partial v_{ib}}{\partial n_{b}} = \frac{\partial v_{ic}}{\partial n_{c}}
\]

\[
\begin{pmatrix}
\frac{\partial v_{ia}}{\partial n_{a}} \\
\frac{\partial v_{ib}}{\partial n_{b}} \\
\frac{\partial v_{ic}}{\partial n_{c}}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

where \(n_a, n_b, n_c \) are taps a, b, and c, respectively, for regulator \(k \). The number of independent taps in (17) vary with the existing phases.

3) **Delta connected regulators**

a) **Closed delta**: The voltage equations for closed delta regulators in [7] is used to derive the approximated voltage/tap sensitivity matrix as follows:

\[
\begin{pmatrix}
\frac{\partial v_{(ab)}_{ia}}{\partial n_{(ab,ca)}} \\
\frac{\partial v_{(bc)}_{ib}}{\partial n_{(ab,ca)}} \\
\frac{\partial v_{(ca)}_{ic}}{\partial n_{(ab,ca)}}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\]

where \(n_{lab}, n_{hbc}, n_{eca} \) are the taps of lines ab, bc, and ca, respectively, for regulator \(k \). As observed from (18), the change in a single tap will affect the voltages in two phases.

b) **Open delta**: In this type of regulator configuration, two single-phase regulators are connected between two phases. The voltage/tap sensitivity matrix for the two single-phase regulators connected between phases \(AB \) and \(CB \) is expressed in (19).

\[
\begin{pmatrix}
\frac{\partial v_{ia}}{\partial n_{a}} \\
\frac{\partial v_{ib}}{\partial n_{b}} \\
\frac{\partial v_{ic}}{\partial n_{c}}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{pmatrix}
\]

D. **Control procedure**

The proposed control algorithm for each agent is illustrated in Fig. 2, which is explained as follows:

1) **Agent measurement process**.

In this stage, the agent measures the present tap position and voltages of the observation points in its monitoring area.

2) **Agent calculation process**.

Based on the measurements, the agent will calculate the following parameters:

a) **Center voltage**: The minimum and maximum voltage values are identified to compute the center voltage as follows.

\[
v_{c}^p = \frac{v_{c}^{p}_{\min} + v_{c}^{p}_{\max}}{2}
\]

where \(v_{c}^{p}_{\min} \) and \(v_{c}^{p}_{\max} \) are the minimum and maximum voltages, respectively, at phase or line \(p \) of area \(k \) as shown in Fig. 3.
The agent sends the voltage deviation of (21) and average values of index S of (24) to the BM. (When the data are accepted by the BM, the BM will classify the status of each agent data as “1” for updated data and “0” for old data).

4) Agent control action:
The agent reads the BM data for the other agents and takes action. The action will differ according to the agent data status as follows:

a) Optimal action: When all agents work normally, the own index S is maximum compared with the others, and the tap is within limits, the agent initiates the control action according to (10) and (11).

b) Suboptimal action: The agent initiates the control action when the tap is within limits and the own index S is greater than the presetting threshold value according to (12). This case is useful under system fault. This situation may be identified from the status of the other agent data.

It is noted that the proposed suboptimal control process can easily be completed by only the individual agents without the interaction of the central management agent, since it avoids the comparison process of the indices. Nevertheless, the optimal control performance is realized as shown in Fig. 13 and the Appendix.

IV. RESULTS AND DISCUSSION

In this section, different case studies are conducted to evaluate the overall performance of the proposed control strategy. The maximum and minimum system voltages limits used for the simulation are 1.05 p.u. and 0.95 p.u., respectively. All measurements are equally weighted in (2). Two IEEE test systems are used in this study as follows:

A. IEEE 123-node test feeder

The IEEE 123-node test feeder in Fig. 4 represents the UDS characterized by unbalanced loading and four voltage regulators with different configurations as illustrated in Table I [42]. The feeder is classified into four areas; each area can act as a control agent.

The total daily active and reactive power of loads and PV output (Clear and cloudy day) are shown in Fig. 5. The locations of the PV sources and the system configuration are illustrated in Fig. 4. Four cases are investigated to study different scenarios for the PV and network. The investigation is summarized in Table II. In this study, we use $\alpha = 2.45 \times 10^{-7}$ and $\alpha_0 = 3.5 \times 10^{-7}$ for optimal and suboptimal controls. The simulation results will be discussed below:

1) Case C0: Without control

a) Clear day condition

This case illustrates the voltage problems that occur in different regions of the IEEE 123-node test feeder during the clear day of PV as shown in Fig. 5. As illustrated in Fig. 4 and described in Table I, the system is divided into four regions with different regulator configurations.

Fig. 6 illustrates the maximum voltage deviation in the area of regulator no. 4, where the voltage rise problem occurs in phase (c) feeder during the PV peak time due to high PV penetration. Simultaneously, a voltage drop problem appears in phase (a) between hour 11 and 23; the area of three-phase regulator no. 1 also has a voltage drop problem between hour 17 and 22.
b) Cloudy day condition

As shown in Fig. 7 (a), voltage fluctuations with voltage rise and voltage drop problems occur at the peak time of PV power in the area of regulator no. 4 in phases (a) & (c) (nodes 85, 83 and 111). The voltage profile in Fig. 7 (b) illustrates that the area of three-phase regulator no. 1 has a voltage drop problem during hours 17 and 22.

Fig. 7 (b) illustrates the voltage profiles of the nodes at which the large voltage deviations occur; the maximum voltage rise occurs in the area of regulator no. 4 in phase (c) feeder at nodes 83 and 85. The voltage profiles of nodes 65, 111, and 83 show that the maximum voltage drop occurs at phase (a) for the areas of regulators no. 1 and no. 4.

2) Case C1: Proposed method (Optimal)

a) Clear day condition

After applying the proposed optimal control strategy, the voltage profiles are improved, where voltage violations are removed as shown in Fig. 8 (a). Fig. 8 (b) illustrates the tap position for each regulator; only three regulators act to mitigate the voltage problems. Based on the proposed control strategy at time t, only the regulator with the most effective ability takes action to mitigate the voltage problems.
Thus, the proposed method effectively coordinates the tap operations of various voltage regulators, thereby preventing undesirable tap oscillations. The system overall voltage deviation is minimized as illustrated in Table II. Thus, the proposed method can completely solve the voltage violations in the active UDS.

b) Cloudy day condition

A cloudy day of PV generation in Fig. 5 is used to check the performance of the proposed control strategy in the presence of voltage fluctuations. Applying the proposed control strategy to this case clearly mitigates the voltage violation without tap oscillations, as shown in Fig. 9 and Table II. The number of tap changes is slightly increased in the cloudy day compared with the clear day because of the PV output fluctuations. These results show that the proposed optimal control strategy works effectively to reduce the voltage violations without tap oscillations even in the case of PV output fluctuations.

3) Case C2: Proposed method (Suboptimal)

This case represents the proposed suboptimal method in normal condition. As shown in Figs. 8 and 9 and Table II, the performances of the suboptimal method (dashed lines) and the optimal method (solid lines) are almost equivalent. It is noticed from the figures that the regulators react one by one at a different time instant, which implies that the proposed suboptimal law succeeds.

4) Case C3: Proposed method (Suboptimal, Agent failure)

In the case of communication failure among the agents, the performance of the proposed suboptimal method is evaluated. We assume that regulator no. 4 fails to communicate with the BM. The regulator no. 4 agent will act autonomously using only the available data. In this case, since the status of agent no. 4 in the BM has not been updated and is indicated as “0”, the other agents will neglect agent no. 4 data and takes their actions to minimize the voltage deviation.

The results for clear and cloudy days are shown in Table II. Both the voltage deviation and number of tap operations are approximately identical to those in the optimal strategy for the clear day. Meanwhile, the voltage deviation is increased...
for the cloudy day since reg. no. 4 works individually based on the suboptimal rule with no cooperation with the other agents as observed in Fig. 10. Thus, the proposed method works effectively even in the case of communication failure.

5) Case C4: Conventional method

Table II lists the performance of a classical control method, which is the line drop compensator approach in [6], [7]. Fig. 11 and Fig. 12 show the voltage profiles and tap operations for clear and cloudy days, respectively. Compared with the conventional method, the proposed method has a high performance in both clear and cloudy days.

6) Cases C5 and C6: Proposed methods (High PV penetration)

In cases C5 and C6, the number of installed PV sources is increased to check the performance of the proposed optimal and suboptimal control strategies, respectively. The results for the clear and cloudy days are shown in Table II. The observed performances are equivalent in both cases, and the number of tap movement is increased compared with Cases 1 and 2 due to the high PV penetration.

7) Overall Performance Evaluations

Fig. 13 shows the performance of the proposed optimal and suboptimal control strategies compared with the conventional control method in the case of the clear day. The total voltage deviations vs. number of tap changes are plotted, where parameters α for optimal and α_0 for suboptimal methods are gradually changed from 0 to 1.1×10^{-4}. Each plot is obtained by a 24-hour simulation. The plots of the optimal (circle) and suboptimal (triangle) cases are mostly identical, which implies that the reactions of all regulators (e.g., Figs. 8 and 9) are identical for each 24-hour simulation for different threshold values. Thus, the suboptimal control method can be optimal for a wide range of selected values of α_0. Fig. 13 shows that the threshold values α and α_0 are useful to adjust the response time of the controllers. The proposed control system clearly shows a Pareto-optimal characteristic between the number of tap operations and the total voltage deviations.

The performance of the conventional method is also shown in Fig. 13, where the time delay of the line drop compensators is changed as a parameter. Fig. 13 also shows the result for the agent failure for the proposed method. The performance of the proposed method degrades in the case of failure, but it remains acceptable, which is better than the conventional method in normal conditions, since the coordination is performed among the normal agents using the available data.

B. IEEE 34-node test feeder

The IEEE 34-node test feeder is characterized by the unbalanced loading condition with two three-phase star-connected voltage regulators as shown in Fig. 14 [42].
proposed control strategy effectively reduces the total voltage deviation with the small number of tap changes compared with the line drop compensator method, as illustrated in the case study of the clear day in Fig. 15 and Table III. Table III also lists the total computation time to determine the control actions for all agents in each control time. The computational burden of the proposed method to obtain the optimal control is sufficiently fast, but it is greater than the conventional method. Thus, the proposed method can effectively act in real-time circumstances.

V. CONCLUSIONS

An effective voltage control strategy is proposed in this paper using an MAS architecture. The objective of the proposed strategy is to optimally minimize the voltage deviation of the UDS under the condition of high PV penetration. The unbalanced features of the DS with different types and configurations of voltage regulators are considered in the formulation. The optimal and suboptimal methods are realized in the proposed voltage control strategy, where each agent can act autonomously based on the available information to minimize the objective. The simulation results show that the proposed strategies can effectively adjust the tap operations to minimize the voltage deviation with no tap oscillations under different sun profiles (sunny or cloudy).

The optimal method requires a comparison process among the indices of the agents, which is more suitable for a centralized control, although it can be applied to an MAS.

The suboptimal method avoids the comparison process among the agents, which can be easily realized by a simple decentralized control strategy using the MAS. The proposed suboptimal method shows an equivalent performance to the optimal method and works reliably even in the case of communication failure. The method can be easily applied to the existing voltage regulators within a reasonable cost of investment compared to a centralized scheme.

As part of the future work, we will upgrade the control algorithm to coordinate with the DG reactive power capability and PV smart inverter functionalities. A hierarchical scheme is under development, where each agent in Fig. 1 will act as a sub-management agent that manages the DGs in its area [43].

VI. APPENDIX

This appendix explains the optimality of the proposed method from the mathematical viewpoint based on [43]. The equivalent forms to objective functions (1) and (2) are

\[
\min U(t) = \sum_{k=1}^{n} VD_{ac}(u(t)) \tag{A1}
\]

where

\[
VD_{ac}(u(t)) = \frac{1}{2} \sum_{k=1}^{N} w_k (u_k(t))^2 \tag{A2}
\]

In this equation, \(u(t)\) is the voltage deviation vector at time \(t\) and defined as

\[
u(t) = g(v(t)) = v_{ct}(t) - v_{cr} \tag{A3}
\]

where, \(v(t) = [u_1(t), u_2(t), ..., u_N(t)]^T\), \(v_{ct} = [v_{c1}, v_{c2}, ..., v_{cN}]\) vector of center voltages defined in (20).

Fig. 14. IEEE 34-node test feeder.

Fig. 15. Voltage profile of node 890 (phase A).

**TABLE III
RESULTS OF THE IEEE 34-NODE TEST FEEDER.**

<table>
<thead>
<tr>
<th>Method</th>
<th>Total VD</th>
<th>Tap changes</th>
<th>Computation time (sec/step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed method</td>
<td>3.51</td>
<td>122</td>
<td>0.00210</td>
</tr>
<tr>
<td>Conventional control</td>
<td>14.01</td>
<td>165</td>
<td>0.00031</td>
</tr>
</tbody>
</table>

\[v_{ct} = [v_{c1}, v_{c2}, ..., v_{cN}]\] vector of center voltages.\(\hat{A}(t)\) becomes minimal in the neighborhood of \(u = 0\), which is referred to as the Equilibrium area in this paper and expressed as follows:

\[E = \{u_1, u_2, ..., u_N | [u_k] < \varepsilon_k, k = 1, ..., N\} \tag{A4}\]

with \(\varepsilon_k\) : dead band of tap \(k\).

Then, we set another objective defined as

\[\min T, u(T) \in E \tag{A5}\]

\(T\): number of tap operations to reach the equilibrium from \(t=0\).

The voltages in UDS are governed by the power flow equations, and they are the function of tap positions of voltage regulators \(n\) and load parameters \(L\), as described in (3).

\[v = f(L,u) \tag{3}\]

The linearization of (3) with \(v(t)\) at time \(t\) around the target voltage with tap control \(Z(v(t))\) and load disturbance \(\Delta L(t)\) yields

\[u(t+1) = u(t) + \hat{A}(t) \cdot Z(t) + B(t) \cdot \Delta L(t) \tag{A6}\]

where

\[\hat{A}(t) = A(t) \cdot R, A(t) = [a_{ij}] = \left[\frac{\partial g}{\partial v} \frac{\partial h}{\partial n} \right]_{n(t) \in N} \in \mathbb{R}^{N \times N} , \]

\[B(t) = \left[\frac{\partial v}{\partial L} \frac{\partial L}{\partial n} \right]_{L(t) \in L} \in \mathbb{R}^{N \times p}, \Delta L(t) = L(t+1) - L(t) , \]

\[Z(t) = R^{-1} \Delta n(t) = R^{-1} (n(t+1) - n(t)) = [Z_1(t), Z_2(t), ..., Z_N(t)]^T \]

\(R = \text{diag} [r_1, r_2, ..., r_N]\): regulator step size.

Equation (A2) represents a dynamic system with disturbance
\(\Delta L(t) \) and control \(Z(t) \). Then, we find the optimal control \(Z(t) \) under the following assumptions.

a) At each time \(t \), only one tap can act, i.e., only one component of \(Z(t) = [Z_1(t), Z_2(t), \ldots, Z_N(t)] \) is “+1” or “-1”, and the others are “0” (see (5)).

b) Linearization errors are neglected in the control problem (A1)-(A6).

c) The initial voltage deviation \(u(0) \) is \(u^0 \) (\(u(0) = u^0 \)).

d) Future load disturbances are unknown, which are treated as \(\Delta L(\tau) = 0 \), \(\tau = t, t + 1, \ldots \).

Minimization of the voltage deviations (A1)

The change in (A2) at time \(t \) is described as follows:

\[
\Delta V_{abc}(u(t)) = V_{abc}(u(t + 1)) - V_{abc}(u(t))
\]

(A7)

If the control is executed to satisfy \(\Delta V_{abc}(t) < 0 \), \(V_{abc} \) satisfies the condition of Lyapunov function for the dynamic system. According to the Lyapunov stability criterion, the asymptotic stability of the system (A6) is guaranteed. Therefore, if there is an equilibrium point, the system converges to the equilibrium area \(E \) within the finite step \(T \):

\[
u(t) = u^* \in E, \quad t \geq T
\]

(A8)

If there is no equilibrium point, the system converges to a certain point that minimizes \(V_{abc} \).

Now, Lyapunov function at time \(T \), (A2), is expressed as follows:

\[
V_{abc}(T) = \sum_{\tau=0}^{T-1} \Delta V_{abc}(\tau) + V_{abc}(0) = 0
\]

(A9)

Assuming that \(u^* = 0 \) due to (A8) at \(t = T \),

\[
U = \sum_{\tau=0}^{T-1} V_{abc}(\tau)
\]

\[
= (T + 1) \cdot V_{abc}(0) + T \cdot \Delta V_{abc}(0) + (T - 1) \cdot \Delta V_{abc}(1) + \ldots + \Delta V_{abc}(T - 1)
\]

\[
= (T + 1) \cdot V_{abc}(0) + \sum_{\tau=0}^{T-1} (T - \tau) \cdot \Delta V_{abc}(\tau)
\]

(A10)

In (A10), the first term of the right-hand side is constant, and the others are the sum of positively weighted \((1, 2, \ldots, T)\) terms. Minimizing each term by the descending order of weight coefficients \((T+1, T, \ldots)\) will minimize the overall \(V_{abc} \). The condition to minimize \(U \) is as follows:

\[
\Delta V_{abc}(0) < \Delta V_{abc}(1) < \Delta V_{abc}(T - 1) < 0
\]

(A11)

This condition is equivalent to the following minimization at each time \(t \):

\[
\min \Delta V_{abc}(t) \quad t = 0, 1, 2, \ldots
\]

(A12)

Minimization of tap operations (A5)

Assuming the initial tap position \(n(0) = n^0 \) and equilibrium point position \(m(T) = n^* \), the number of tap changes required to the equilibrium point is

\[
K^0 = R^{-1}(n^0 - n^*)
\]

(A13)

In this equation, \(K^0 \) is a vector whose components are integers \(K_i^0 \). In other words, \(K_i^0 \) corresponds to the minimum number of necessary tap changes of each tap \(i \) to reach the equilibrium point. Therefore, the minimum of tap changes \(T \) is given by

\[
T \geq \|K^0\| = \sum_{i=1}^{N} |K_i^0|
\]

(A14)

The minimum step \(\|K^0\| \) can be determined if \(n^0 \) and \(n^* \) are given. To reach the equilibrium within the above minimum steps, the norm of (A15) must be reduced by one step at each time \(t \) to satisfy (A16).

\[
K(t) = R^{-1}(n(t) - n^*)
\]

(A15)

\[
\|\Delta K(t)\| = \|K(t + 1)\| - \|K(t)\| \leq 1 < 0
\]

(A16)

(A16) implies that \(n(t) \) reaches \(n^* \) with the minimum step if it is controlled step by step toward \(n^* \). Therefore, the control to minimize (A1) also satisfies (A16) and (A5). Note that the conditions for oscillatory action have been analyzed in [44], where (A5) and (A16) are violated.

Control rule

Now, substituting (A6) into (A1), we obtain

\[
\Delta V_{abc}(u(t)) = V_{abc}(u(t + 1)) - V_{abc}(u(t))
\]

\[
= S_{abc}(u(t)) \cdot Z(t) + Z(t)^T \cdot C \cdot Z(t)
\]

\[
= \sum_{i} (S_{abc}(u(t)) \cdot Z_i + Z_i \cdot |C_i| \cdot Z_i)
\]

\[
= \sum_i S_{abc}(u(t)) \cdot Z_i
\]

(A17)

where

\[
S_{abc}(u(t)) = u(t)^T \cdot M \cdot \tilde{A}(t),
\]

\[
C = \tilde{A}(t)^T \cdot M \cdot \tilde{A}(t)
\]

(A18)

In this equation, since \(C_0 \approx 0 \) has been numerically confirmed, (A17) holds. Then, the optimal control rule of (9) is obtained. Thus, (A12) is minimized as follows:

Optimal Control Rule

When there is voltage violation at time \(t \), a controller that minimizes \(\Delta V_{abc}(t) \) is selected. In other words, at each time \(t \), we select at most one controller \(k \) that satisfies (A19).

\[
s_k(u) = \max |s_k(u)| > \alpha
\]

(A19)

with \(\alpha \): threshold value.

This control rule provides the order of controller actions to minimize the objective function.

Suboptimal Control Rule

A simple autonomous control rule is given as follows:

At each time \(t \), the controller that satisfies (A20) is activated.

\[
u_k(t) > \varepsilon_0 \text{ AND } s_k(u_k(t)) > \alpha_0 \text{ [Up]}
\]

\[
u_k(t) < -\varepsilon_0 \text{ AND } s_k(u_k(t)) < -\alpha_0 \text{ [Down]}
\]

(A20)

According to this rule, each controller can act independently based on its own index \(S \) and threshold value \(\varepsilon_0 \). The suboptimal control does not provide strict optimality, since in rare cases, it simultaneously allows multiple controls, which may change the optimal sequence of controls given by (A19).

References

Ahmed Bedawy (S’14) received the B.S. and M.Sc. degrees in Electrical Engineering from Aswan University, Aswan, Egypt, in 2007 and 2013, respectively. He is currently pursuing the Ph.D. degree at the Electric Power and Energy System Laboratory (EPESL), Graduate School of Engineering, Hiroshima University, Hiroshima, Japan. Since 2013, he has been an Assistant Lecturer with the Faculty of Engineering, South Valley University, Qena, Egypt. His research interests include Power Systems, Renewable Energy Sources, voltage control, Distributed Generation.

Naoto Yorino (M’91, SM’17) received B.S., M.S. and Ph.D degrees in Electrical Engineering from Waseda University, Japan, in 1981, 1983, and 1987, respectively. He joined R&D section Fuji Electric Co. Japan 1983-1984. Since 1987, he has been at Hiroshima University, where he is a Professor from 2005, Vice Dean from 2009 to 2017. He was a Visiting Professor at McGill University, Canada 1991-1992, also a Visiting Professor at Hohai University, China 2014-2017. His activity includes Vice President, Power and Energy Society, IEE of Japan 2009-2011, Neutral member of the Rulemaking Committee, ESCJ 2007-2015, Steering Committee Member of Japan Power Academy 2012-2014, 2018-2019, Board of Director in iREP from 2007, Board of Director in IEIE of Japan from 2013-2019, and so on. He has authored/co-authored over 130 transaction papers in power and energy area.

Karar Mahmoud received the B.S. and M.Sc. degrees in electrical engineering from Aswan University, Aswan, Egypt, in 2008 and 2012, respectively. In 2016, he received the Ph.D. degree from the Electric Power and Energy System Laboratory (EPESL), Graduate School of Engineering, Hiroshima University, Hiroshima, Japan. Since 2010, he has been with Aswan University where he is presently Assistant Professor. Currently, he is a Postdoctoral Researcher at the School of Electrical Engineering, Aalto University, Finland. His research interests include Power Systems, Renewable Energy Sources, Smart Grids, Distributed Generation, and Optimization.

Yoshifumi Zoka (M’99) received B.S. degree in Electrical Engineering, M.S. and Ph.D. degrees in Systems Engineering from Hiroshima University, Japan. He is currently an Associate Professor in Graduate School of Engineering, Hiroshima University. He was a Research Associate at University of Washington, Seattle, WA, USA from 2002 to 2003. His research interest lies in power system planning, stability and control problems.

Yutaka Sasaki (M’08) received B.S., M.S. and Ph.D degree in Electrical Engineering from Hokkaido University, Japan in 2004, 2006, and 2008, respectively. He is an Assistant Professor at Hiroshima University. He was a Visiting Scholar at Washington State University, Pullman, WA, USA from 2012 to 2013. His research interests include optimal planning and operation of power system including renewable energy resources.