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The Number of Symmetric Colorings of the Dihedral
Group Dp
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Abstract: We compute the number of symmetricr-colorings and the number of equivalence classes of symmetricr-colorings of the
dihedral groupDp, wherep is prime.
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1 Introduction

The symmetries on a groupG are the mappingsG∋ x 7→
gx−1g∈ G, whereg∈ G. This is an old notion, which can
be found in the book [4]. It has also interesting relations to
Ramsey theory and to enumerative combinatorics [2], [7].

Let G bea finite group and letr ∈ N. An r-coloring of
G is any mappingχ : G → {1, . . . , r}. The groupG
naturally acts on the colorings. For every coloringχ and
g∈ G, the coloringχg is defined by

χg(x) = χ(xg−1).

Let [χ ] andSt(χ) denote the orbit and the stabilizer of a
coloringχ , that is,

[χ ] = {χg : g∈ G} andSt(χ) = {g∈ G : χg= χ}.

As in the general case of an action, we have that

|[χ ]|= |G : St(χ)| andSt(χg) = g−1St(χ)g.

Let ∼ denote the equivalence on the colorings
corresponding to the partition into orbits, that is,χ ∼ ϕ if
and only if there existsg ∈ G such thatχ(xg−1) = ϕ(x)
for all x∈ G.

Obviously, the number of allr-colorings ofG is r |G|.
Applying Burnside’s Lemma [1, I, §3] shows that the

number of equivalence classes ofr-colorings of G is
equal to

1
|G| ∑

g∈G

r |G:〈g〉|,

where 〈g〉 is the subgroup generated byg.
A coloring χ of G is symmetricif there existsg ∈ G

such that
χ(gx−1g) = χ(x)

for all x ∈ G. That is, if it is invariant under some
symmetry. A coloring equivalent to a symmetric one is
also symmetric (see [6, Lemma 2.1]). LetSr(G) denote
the set of all symmetricr-colorings ofG.

Theorem 1.[5, Theorem 1] Let G be a finite Abelian
group. Then

|Sr(G)|= ∑
X≤G

∑
Y≤X

µ(Y,X)|G/Y|
|B(G/Y)|

r
|G/X|+|B(G/X)|

2 ,

|Sr(G)/ ∼ |= ∑
X≤G

∑
Y≤X

µ(Y,X)

|B(G/Y)|
r
|G/X|+|B(G/X)|

2 .

Here, X runs over subgroups ofG, Y over subgroups
of X, µ(Y,X) is the Möbius function on the lattice of
subgroups ofG, andB(G) = {x∈ G : x2 = e}.
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Given a finite partially ordered set, the Möbius
function is defined as follows:

µ(a,b) =











1 if a= b
−∑a<z≤b µ(z,b) if a< b
0 otherwise.

See [1, IV] for more information about the Möbius
function.

In the case ofZn these formulas can be reduced to
elementary ones.

Theorem 2.[5, Theorem 2] If n is odd then

|Sr(Zn)/ ∼ |= r
n+1

2 ,

|Sr(Zn)|= ∑
d|n

d∏
p| n

d

(1− p)r
d+1

2 .

If n= 2l m, where l≥ 1 and m is odd, then

|Sr(Zn)/∼ |=
r

n
2+1+ r

m+1
2

2
,

|Sr(Zn)|= ∑
d| n

2

d∏
p| n

2d

(1− p)rd+1.

In the products p takes on values of prime divisors.

In this note by constructing the partially ordered set of
optimal partitions we compute explicitly the number
|Sr(Dp)| of symmetricr-colorings ofDp and the number
|Sr(Dp)/ ∼ | of equivalence classes of symmetric
r-colorings of the dihedral groupDp, where p > 2 is
prime. This generalises the result from [3]. Since
D2 = Z2⊕Z2, every coloring ofD2 is symmetric, and so

|Sr(D2)|= r4 and|Sr(D2)/∼ |=
1
4

r4+
3
4

r2.

2 Optimal partitions of Dp

In [6], Theorem1 was generalized to an arbitrary finite
group G. The approach is based on constructing the
partially ordered set of so called optimal partitions ofG.

Given a partitionπ of G, thestabilizerand thecenter
of π are defined by

St(π) = {g∈ G : for everyx∈ G,x andxg−1

belong to the same cell ofπ},
Z(π) = {g∈ G : for everyx∈ G,x andgx−1g

to π is contained in that ofπ ′. The partially ordered set
of optimal partitions ofG can be naturally identified with
the partially ordered set of pairs(A,B) of subsets ofGsuch
thatA=St(π) andB=Z(π) for some partitionπ of Gwith
e∈ Z(π). For every partitionπ , we write|π | to denote the
number of cells ofπ .

Theorem 3.[6, Theorem 2.11] Let P be the partially
ordered set of optimal partitions of G. Then

|Sr(G)|= |G| ∑
x∈P

∑
y≤x

µ(y,x)
|Z(y)|

r |x|,

|Sr(G)/∼ |= ∑
x∈P

∑
y≤x

µ(y,x)|St(y)|
|Z(y)|

r |x|.

The partially ordered set of optimal partitionsπ of G
together with parameters|St(π)|, |Z(π)| and |π | can be
constructed by starting with the finest optimal partition
{{x,x−1} : x∈ G} and using the following fact:

Let π be an optimal partition ofG and letA⊆G. Letπ1
be the finest partition ofGsuch thatπ ≤π1 andA⊆St(π1),
and letπ2 be the finest partition ofG such thatπ ≤ π2 and
A⊆ Z(π2). Then the partitionsπ1 andπ2 are also optimal.

In this section we construct the partially ordered set of
optimal partitions of the dihedral groupDp, wherep> 2
is prime, and compute explicitly the number|Sr(Dp)| of
symmetricr-colorings ofDp and the number|Sr(Dp)/∼ |
of equivalence classes of symmetricr-colorings.

The dihedral groupDp has the following lattice of
subgroups:

p-1 p-1{e, a, ..., a , s, sa, ..., sa }

{e, s}

p-1{e, a, ..., a }

p-1{e, sa }

{e}

Now we list all optimal partitionsπ of Dp, p > 2
together with parameters|St(π)|, |Z(π)| and|π |.

The finest partition

π : {e},{s},{sa}, ...,{sap−1},{a,ap−1}, ...

St(π) = {e},Z(π) = {e},

|St(π)|= 1, |Z(π)|= 1, |π |= p+1+
p−1

2
=

3p+1
2

.

belong to the same cell of π }.
St(π ) is a subgroup of G and Z(π ) is a union of left cosets 
of G modulo St(π ). Furthermore, if e ∈ Z(π ), then Z(π ) 
is also a union of right cosets of G modulo St(π ) and for 
every a ∈ Z(π ), 〈a〉 ⊆ Z(π ). We say that a partition π of 
G is optimal if e ∈ Z(π ) and for every partition π ′ of G 
with St(π ′) = St(π ) and Z(π ′) = Z(π ), one has π ≤ π ′. 
The latter means that every cell of π is contained in some 
cell of π ′, or equivalently, the equivalence corresponding
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p partitions of the form

π : {e},{a,ap−1}, ...,{s},{sa,sap−1}, ...

St(π) = {e},Z(π) = {e,s},

|St(π)|= 1, |Z(π)|= 2, |π |=
p−1

2
·2+2= p+1.

Onepartition

π : {e,a, ...,ap−1},{s},{sa}, ...,{sap−1}

St(π) = {e},Z(π) = {e,a, ...,ap−1},

|St(π)|= 1, |Z(π)|= p, |π |= p+1.

One partition

π : {e},{a,ap−1}, ...,{s,sa, ...,sap−1}

St(π) = {e},Z(π) = {e,s,sa, ...,sap−1},

|St(π)|= 1, |Z(π)|= p+1, |π |=
p−1

2
+2=

p+3
2

.

p partitions of the form

π : {e,a, ...,ap−1},{s},{sa,sap−1}, ...

St(π) = {e},Z(π) = {e,a, ...,ap−1,s},

|St(π)|= 1, |Z(π)|= p+1, |π |=
p−1

2
+2=

p+3
2

.

p partitions of the form

π : {e,s},{a,ap−1,sa,sap−1}, ...

St(π) = {e,s},Z(π) = {e,s},

|St(π)|= 2, |Z(π)|= 2, |π |=
p−1

2
+1=

p+1
2

.

Onepartition

π : {e,a, ...,ap−1},{s,sa, ...,sap−1}

St(π) = {e,a, ...,ap−1},Z(π) = Dp,

|St(π)|= p, |Z(π)|= 2p, |π |= 2.

And the coarsest partition

π : {Dp}

St(π) = Dp,Z(π) = Dp,

|St(π)|= 2p, |Z(π)|= 2p, |π |= 1.

Next, we draw the partially ordered set of optimal
partitionsπ together with parameters|St(π)|, |Z(π)| and
|π |. The picture below shows also the values of the
Möbius function of the formµ(a,1).

2p,2p,1
1

2,2,(p+1)/2

-1
p,2p,2

-1

1,2,p+1
1

1,p,p+1
0

1,p+1,(p+3)/2

0

1,p+1,(p+3)/2

0

1,1,(3p+1)/2
0

Finally, by Theorem3, we obtain that

|Sr(Dp)|= |Dp| ∑
x∈P

∑
y≤x

µ(y,x)
|Z(y)|

r |x|

= 2p(r
3p+1

2 + prp+1(
1
2
−1)+ r p+1(

1
p
−1)+

+ pr
p+3

2 (
1

p+1
−

1
2
−

1
p
+1)+

+ r
p+3

2 (
1

p+1
−

p
2
+ p−1)+ pr

p+1
2 (

1
2
−

1
2
)+

+ r2(
1

2p
−

1
p+1

−
p

p+1
+

p
2
+

p−1
p

− p+1)+

+ r(
1
2p

−
1

2p
−

p
2
+

p
2
)) =

= 2p(r
3p+1

2 −
p
2

r p+1−
p−1

p
r p+1+(p−1)r

p+3
2 +

+
−p2+2p−1

2p
r2) =

= 2p(r
3p+1

2 +
−p2−2p+2

2p
r p+1+(p−1)r

p+3
2 −

−
(p−1)2

2p
r2) =

= 2pr
3p+1

2 +(−p2−2p+2)r p+1+2p(p−1)r
p+3
2 −

− (p−1)2r2,
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|Sr(Dp)/∼ |= ∑
x∈P

∑
y≤x

µ(y,x)|St(y)|
|Z(y)|

r |x|

= r
3p+1

2 + prp+1(
1
2
−1)+ r p+1(

1
p
−1)+

+ pr
p+3

2 (
1

p+1
−

1
2
−

1
p
+1)+

+ r
p+3

2 (
1

p+1
−

p
2
+ p−1)+ pr

p+1
2 (

2
2
−

1
2
)+

+ r2(
p

2p
−

1
p+1

−
p

p+1
+

p
2
+

p−1
p

− p+1)+

+ r(
2p
2p

−
p

2p
−

2p
2

+
p
2
) =

= r
3p+1

2 −
p
2

r p+1−
p−1

p
r p+1+(p−1)r

p+3
2 +

+
p
2

r
p+1

2 +
−p2+3p−2

2p
r2+

1− p
2

r =

= r
3p+1

2 +
−p2−2p+2

2p
r p+1+(p−1)r

p+3
2 +

+
p
2

r
p+1

2 +
−p2+3p−2

2p
r2+

1− p
2

r.

Thus, we have showed that

Theorem 4. For every r∈ N and prime p> 2,

|Sr(Dp)|= 2pr
3p+1

2 +(−p2−2p+2)r p+1+

+2p(p−1)r
p+3
2 − (p−1)2r2,

|Sr(Dp)/∼ |= r
3p+1

2 + −p2−2p+2
2p r p+1+(p−1)r

p+3
2 +

+ p
2 r

p+1
2 + −p2+3p−2

2p r2+ 1−p
2 r.

Notice that the number of allr-colorings ofDp is r2p

and the number of equivalence classes of allr-colorings of
Dp is

1
|Dp|

∑
g∈Dp

r |Dp/〈g〉| =
1

2p
(r2p+ prp+(p−1)r2).
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3 Conclusion

We conclude with the following open question

Question 1. What is the number of equivalence classes 
of symmetric r-colorings of the dihedral group Dn, where 
r,n ∈ N?

Acknowledgement

The third author acknowledges the support by the NRF 
grant IFR1202220164, and the John Knopfmacher Centre 
for Applicable Analysis and Number Theory.

4


