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Abstract: We canpute the number of symmetriecolorings and the number of equivalence classes of symnretiatorings of the
dihedral grouDp, wherep is prime.
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1 Introduction number of equivalence classes ofcolorings of G is

equal to
1 %rwez@
Gl £

where (g) is the subgroup generated gy
A coloring x of G is symmetridf there existsg € G
such that

The ymmetries on a grouf® are the mapping& > X —

gx g € G, whereg € G. This is an old notion, which can

be found in the book]. It has also interesting relations to

Ramey theory and to enumerative combinatorizfs [7].
Let G bea finite group and let € N. An r-coloring of

G is any mappingy : G — {1,...,r}. The groupG

naturally acts on the colorings. For every colorixgnd x(9x 1) = x(X)

g € G, the coloringxg is defined by

for all x € G. That is, if it is invariant under some

symmetry. A coloring equivalent to a symmetric one is

also symmetric (sees[ Lemma 2.1]). LetS (G) dende

the set of all symmetric-colorings ofG.

X9(x) = x(xg h).

Let [x] and St(x) denote the orbit and the stabilizer of a
coloringx, that is,

[X] =1{x9:g€ G} andSt(x) =

As in the general case of an action, we have that

Theorem 1.[5, Theorem 1] Let G be a finite Abelian
group. Then

S@1=3.% “een

{9eG: xg=x}.

u(Y,X) |G/Y| |G/X|+[B(G/X)]
B(G/Y)| ’

|[X]] = |G : St(x)| andSt(xg) = g 'St(x)g.

Let ~ denote the equivalence on the colorings 'G/X'”B@/X”

corresponding to the partition into orbits, thatxs;- ¢ if
and only if there existg € G such thaty (xg™!) = ¢(x)
forallxe G.

Obviously, the number of ali-colorings ofG is r/Cl.
Applying Burnside’s Lemmal] I, §3] shows that the

O~ 1= 3 3 e

Herg X runs over subgroups @, Y over subgroups
of X, u(Y,X) is the Modbius function on the lattice of
subgroups o6, andB(G) = {xc G: x> =¢}.
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Given a finite partially ordered set, the Mobius
function is defined as follows:

1 ifa=b
p(ab) =9 —Yaczcpt(zb) ifa<b
0 otherwise
See [, IV] for more information about the Mobius

function.
In the case ofZ, these formulas can be reduced to
elementary ones.

Theorem 2.[5, Theorem 2] If n is odd then

n+l

S (Zn)/ ~ =172,

Zn|_§
dn p\a

If n=2'm, where I> 1 and m is odd, then

1
r5+1+rm+2_

S (Zn)/ ~ =

ISanI—‘Z

2

d+l
Pl2g
In the products p takes on values of prime divisors.

In this note by constructing the partially ordered set of
optimal partitions we compute explicitly the number
|S (Dp)| of symmetricr-colorings ofDp and the number
|S(Dp)/ ~ | of equivalence classes of symmetric
r-colorings of the dihedral groupp, wherep > 2 is
prime. This generalises the result fron8].[ Since
Dy = Z, & Zy, every coloring ofD; is symmetric, and so

1,
g el

S (D) =r* and|S(Dz)/ ~ | = 31+

2 Optimal partitionsof Dy

In [6], Theorem1 was generalized to an arbitrary finite
group G. The approach is based on constructing the
partially ordered set of so called optimal partitions3f

Given a partitionrr of G, the stabilizerand thecenter
of mare defined by

St(r) = {g € G: for everyx € G,x andxg*

belong to the same cell af},

Z(m) = {ge G: foreveryx € G,x andgx g

belongto the samecell of 17}.
S (1) is asubgroumf G andZ(m) is aunionof left cosets
of G modulo S (). Furthermorejf e € Z(m), thenZ(m)
is alsoa unionof right cosetsof G moduloS(rr) andfor
everya e Z(m), (ay C Z(m). We saythata partition 77 of
G is optimalif e € Z(m) andfor everypartition r’ of G
with (') = () andZ(rr') = Z(m), onehasmt < 17’
Thelattermeanshateverycell of 1 is containedn some
cell of i/, or equivalentlythe equivalenceorresponding

to T is contained in that off. The partially ordered set
of optimal partitions ofG can be naturally identified with
the partially ordered set of paif8, B) of subsets o6 such
thatA = St(r1) andB = Z () for some partitiort of G with

e Z(m). For every partitiorn, we write|71] to denote the
number of cells oft.

Theorem 3.[6, Theorem 2.11] Let P be the partially
ordered set of optimal partitions of G. Then

Z

y<x

AR i

The partially ordered set of optimal partitiomsof G
together with parameter$t(rm)|, |Z(m)| and || can be
constructed by starting with the finest optimal partition
{{x,x1} : x € G} and using the following fact:

Let rTbe an optimal partition & and letAC G. Let g,
be the finest partition d& such thatt < i andA C St(rg),
and letrs, be the finest partition a& such thatr < m and
A C Z(m). Then the partitiongr andrp, are also optimal.

In this section we construct the partially ordered set of
optimal partitions of the dihedral group,, wherep > 2
is prime, and compute explicitly the numb& (Dp)| of
symmetricr-colorings ofDp and the numbeS (Dp)/ ~ |
of equivalence classes of symmetricolorings.

The dihedral grouD, has the following lattice of
subgroups:

\X\
3

IS (G |—||

|a

By X)[SUY)| |

{e,a,..d" s sa,..sad'}

{e, s}

{e}

Now we list all optimal partitionsrt of Dp,p > 2
together with paramete{St(rm)|, |Z(m)| and|m].
The finest partition

m:{e},{s},{sal, ..., {sa 1} {a,aP "}, ...
St(m) = {e}, Z(m) = {e},

ISt = 1,12(m)| = 1, |71 = !

p=2_

3p+1
==

p+1+ 5




p partitions of the form
m: {e},{aa’ 1}, ... {s},{sasd},..
St(m) = {e},Z(m) = {e;s},
-1
SKm| = 1.[2(m] =2,|m = 2= 24 2= p+1.

Onepartition

m:{ea,..,a"1},{s} {sa},.., {saP1}
St(m) = {e},Z(m) = {e.a,...,aP" 1},
|St(m)| = 1,{Z(m)| = p,|m| = p+ 1.

One partition

m:{e},{a,a” 1}, ... {ssa..sa 1}
St(rm) = {e},Z(m) = {e,s sa....,s8P 1},
-1 p+3

St = 1,12(m)| = p+ 1, |m = = 2= P25

p patitions of the form

m:{ea,..a" 1} {s},{sasa1},...
St(m) = {e},Z(m) = {e,a,...,a" 1 s},

ISt(m)| =1,|2(m)| = p+ 1|7 = _p;1+2: E;?
p patitions of the form
m:{es}, {aaP ! saseP ), ..
St(m) = {e;s},Z(m) = {e,s},
ISt(mm)| = 2,|Z(m)| = 2,|n| = p;1+1: p—;l.
Onepartition

m:{ea,..,a" 1} {ssa..sa1}
St(n) = {e.a,...,aP 1}, Z(m) = Dy,
ISt(m)| = p.[Z(m)| = 2p, | = 2.

And the coarsest partition

m: {Dp}
St(r1) = Dp, Z(1) = Dp,
|St(m)| = 2p,[Z(m)| = 2p, |m = 1.

Next, we draw the partially ordered set of optimal
partitionst together with parametetSt(r)|, |Z()| and
|rl. The picture below shows also the values of the
Mbbius function of the formu(a, 1).

2.2,0+1)/2
-1 o

1,p+1,(p+3)/2
0

1,2,p+1
1

1,0+1,(0+3)/2
0

l’p‘n+1
0

1,1,3p+1/2
0

Finally, by Theoren8, we obtain that

S©aI=10d 3 > Tz((yy;) (¥

3p+1

=2p(r/z + prp+1(% -1)+ r“’“(—:J - 1)+

(- —Z-Z41
T (p+1 2 p )+
p3 1 p 1101
T(—p+1—§+p—1)+pf7(§—§)+
1 1 p p,p-1
2
Sl R LT e Y |
+r(2'O o1 p+1+2+ 5 p+1)+
1 1 p p,
iy 2p 272"
:Zp(rs_p;_1 Prpra_P 1rp*1+(p Hrz +
_p? _
p+2p 1r2):
2p
_n2_
:Zp(rspTJrl P 2p+2rp+l+(p_1)rp7_
2p
Y
_(p 1) r2):
2p

= 2pr% 4 (—p?—2p+ 2P 2p(p— 1)rT -

- (p_ 1)2r27




Ky, X)[SHY)| 1
S(Dp)/ ~ | = By
| ( p)/ | X;ygx |Z(y)|
:r3p7+1+prp+1(%—1)+rp“(%)—l)+
pr3 1 1 1
'z (—— - - =41
P (p+1 2 p+ )+
p+3 p pr1 2 1
2 (— — = — 2 (= — —
+r (p+1 5P 1)+ pr (2 2)+
1 p ,p, p-1
rzﬁ_—_— = - _ 1
* (Zp p+1 p+1+2+ p pr1)+
2p p 2p p,
+r(2—p—2—p—7+§)—
5t P p_1r'°+l+(p Hrz +
2 p
p et —pP+3p-2, 1-p
+orT + 7 5
2
:rs_p2ﬂ+7_p ;§p+2rp+1+(p—1)rﬂz+_3+
p o1 —pP+3p-2, 1-p
+2I’ + 2p r<+ > r.

Thus, we have showed that
Theorem 4. For every re N and prime p> 2,

IS (Dp)| = 2pr™% + (—p2—2p+ 2)rP+Ly
+2p(p—1)r'E — (p—1)%r2,

3p+1
IS(Dp)/ ~|=r"2"+
+1 _n2 o
+ore P32
Notice that the number of atl-colorings ofDy, is 2P
and the number of equivalence classes of-alblorings of

Dy is

=S EBe2epil g (p-1)rE +

2, 1p
r<4+=-r.

1 1
— Po/(@) — = (r2p p _1r2
r rP 4+ prP+(p—1)ro).

|DP| ge%p 2p

3 Conclusion

We concludewith thefollowing openquestion

Question 1. Whatis the numberof equivalenceclasses
of symmetricr-colorings ofthe dihedralgroupD,,, where
rneN?
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