' Aalto University

Addad, Rami Akrem; Dutra, Diego Leonel Cadette; Taleb, Tarik; Flinck, Hannu
Al-based Network-aware Service Function Chain Migration in 5G and Beyond Networks

Published in:
IEEE Transactions on Network and Service Management

DOI:
10.1109/TNSM.2021.3074618

Published: 01/03/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Addad, R. A,, Dutra, D. L. C., Taleb, T., & Flinck, H. (2022). Al-based Network-aware Service Function Chain
Migration in 5G and Beyond Networks. IEEE Transactions on Network and Service Management, 19(1), 472-
484. https://doi.org/10.1109/TNSM.2021.3074618

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1109/TNSM.2021.3074618
https://doi.org/10.1109/TNSM.2021.3074618

© 2021 IEEE. This is the author’s version of an article that has been published by IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Al-based Network-aware Service Function Chain
Migration in 5G and Beyond Networks

Rami Akrem Addad!, Diego Leonel Cadette Dutra?, Tarik Taleb’*® and Hannu Flinck?®
1 Aalto University, Espoo, Finland, {firstname.surname } @aalto.fi
2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, diegodutra@lcp.coppe.uftj.br
3 Nokia Bell Labs, Espoo, Finland, hannu.flinck@nokia-bell-labs.com
4 Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
5 Computer and Information Security Department, Sejong University, Seoul, South Korea

Abstract—While the 5G network technology is maturing and
the number of commercial deployments is growing, the focus
of the networking community is shifting to services and service
delivery. 5G networks are designed to be a common platform
for very distinct services with different characteristics. Network
Slicing has been developed to offer service isolation between
the different network offerings. Cloud-native services that are
composed of a set of inter-dependent micro-services are assigned
into their respective slices that usually span multiple service
areas, network domains, and multiple data centers. Due to
mobility events caused by moving end-users, slices with their
assigned resources and services need to be re-scoped and re-
provisioned. This leads to slice mobility whereby a slice moves
between service areas and whereby the inter-dependent service
and resources must be migrated to reduce system overhead
and to ensure low-communication latency by following end-user
mobility patterns. Recent advances in computational hardware,
Artificial Intelligence, and Machine Learning have attracted
interest within the communication community to study and
experiment self-managed network slices. However, migrating a
service instance of a slice remains an open and challenging
process, given the needed co-ordination between inter-cloud
resources, the dynamics, and constraints of inter-data center
networks. For this purpose, we introduce a Deep Reinforcement
Learning based agent that is using two different algorithms to
optimize bandwidth allocations as well as to adjust the network
usage to minimize slice migration overhead. We show that this
approach results in significantly improved Quality of Experience.
To validate our approach, we evaluate the agent under different
configurations and in real-world settings and present the results.

Index Terms—5G and beyond, Service Function Chain, Arti-
ficial Intelligence, Machine Learning, Multi-access Edge Com-
puting, Deep Reinforcement Learning, and Management and
Orchestration.

I. INTRODUCTION

The latest 5G system architecture has been designed to
be compatible with cloud technology. Control plane net-
work functions follow a service-based approach that builds
on Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) resulting in a well-scalable control
plane [1]. The initial service offerings of the 5G network
are classified through three major service types, namely en-
hanced Mobile Broadband (eMBB), Ultra-Reliable and Low-
Latency Communications (URLLC), and massive Machine-
Type Communications (mMTC) [2]. The services are also
expected to be cloud-based, sharing the same computing

and network infrastructure. To ensure isolation between these
three different service types, the concept of Network Slicing
(NS) [3], which is one of the key features of 5G networks,
has been introduced. Furthermore, the use of Multi-Access
Edge Clouds (MEC) [4] enables to bring latency-sensitive
services closer to the end-users. Cloud-based services and net-
work functions are typically implemented as Service Function
Chains (SFC) [5] of dependent micro-services that collectively
provide an end-to-end service. For example, one micro-service
is in charge of authentication, one for data encoding, and
another for the application business logic. Such SFCs are then
associated with corresponding NSs that are consumed by the
end-users.

From a resource point of view, a NS instance contains the
end-to-end services and their respective computing, storage
resources, network resources such as radio resources, and the
resources connecting the computing and storage resources that
may be distributed between edges and central data centers.
The resource consumption demands depend on the service
type, the number of service users, end-user devices, and users’
locations. When the users of a service move from a place to
another, the resource consumption load changes based on the
length and the number of users sharing the communication
path to the servers providing the service. At some point, the
original resource allocation of an NS needs to be remapped to
match the actual consumption and latency situation, leading
to the notion of NS mobility where the network connectivity
and the servers are re-provisioned.

To support NS mobility to reduce system overhead and
allow low communication latency, we have proposed SFCs
migration approaches for 5G networks [6]. SFC migration,
through the usage of the SDN and NFV paradigms, steers the
network traffic and flows across multiple physical and logical
infrastructures while ensuring low-latency communication by
following end-users’ motion [5], [6]. Live service migration
processes, as underlying technologies and enablers of SFC
migration strategies, are known to be challenging in inter-
cloud settings. The use of chained micro-services is adding
its own challenges due to the dependency of the chained
micro-services. A prime example is the considerable amount
of network resource usage to enable the reshuffling of the
virtualized instances (live/cold migration) [7]. Moreover, in

5G and beyond networks, it is expected that the number of
URLLC type services that require strict delay constraints will
increase as 5G networks become more widely deployed [8].
This emphasizes the importance of careful management of the
end-to-end service delivery. To summarize, end-user mobility
events may trigger a large number of application migrations
concurrently, hence exhausting the network resources shared
between the distributed edge clouds and their servers.

Recently, both academia and industry have increased their
interest in Machine Learning (ML) methods, a subarea of
Artificial Intelligence (AI) [9]. The use of ML in mobile
networking has been also evaluated [10]. Furthermore, ML
will automatically perform corrective re-configurations to the
infrastructure, ensuring the availability of the network [11].
ML techniques will also apply efficient policies leading to the
optimization of the system resources; hence, enabling efficient
use of critical network and service resources, e.g., latency and
bandwidth, and system resources, e.g., RAM, CPU, DISK, and
I/O, [12]. ML techniques will be part of the networking and
communication area as different research projects, proposals,
and white papers have indicated [13], [14]. However, the in-
tegration of ML methods into telecommunication’s standards
and edge computing architecture is still embryonic [15]. To
address this concern, more research on applying ML methods
in 5G and beyond networks is necessary. AI/ML will act as a
support for enabling smarter and more responsive generation
of networks while maintaining the currently proposed archi-
tectures by the standards community, e.g., ETSI and 3GPP [1],
[16].

Motivated by the limitations triggered by unpredictable
end-users mobility patterns, the complexity that the current
5G service delivery faces fulfilling inter-cloud bandwidth
constraints, the stochastic, i.e., non-deterministic, use of net-
working resources during mobility events, and by the recent
advances that ML techniques bring to edge computing and
next-generation networking, we propose a Deep Reinforce-
ment Learning (DRL)-based framework that enables efficient
resource allocation mechanisms. DRL methods allow complex
decision-making without explicit knowledge of all underlying
network elements and internal architectures, as it considers
them as black boxes [17]. Moreover, an appropriate algorithm
selection, hyper-parameters tuning, and well-defined neural
network architecture are required for obtaining credible map-
ping from system states to control actions. Following the
above observations and network constraints, in this work, we
intend to:

o Introduce our envisioned architecture hosting the pro-

posed network-aware agent and its constituent elements;

e Model and design a DRL-based agent capable of han-
dling bandwidth allocation as well as refining the net-
work usage to reduce the overhead and allow better users’
QoE;

o Present the internal operational mechanisms of our net-
work agent, neural network architectures used by the two
different DRL-based algorithms constituting our network
agent, and their hyper-parameters values;

o Evaluate the proposed agent under different configu-
rations and in real-world deployments while trying to

determine the most suitable DRL algorithm/approach to
enable an optimized SFC migration pattern within the
5G network.

The remaining of this paper is organized as follows. Sec-
tion II outlines the related work. In Section III, we present
a background overview of RL and the various algorithms
proposed in the preceding research. We also detail the system
model and the design of our envisaged architecture used for
bandwidth allocation. Section IV presents a detailed overview
concerning the design of our agent as well as the different
neural networks’ parameters and architectures followed in
both proposed algorithms. In Section V, we present and
discuss the results of our experimental evaluation. Finally, we
conclude the paper and introduce future research challenges
in Section VI

II. RELATED WORK

The authors of [18] proposed a solution to overcome
limitations, i.e., service disruptions and inadequate users’
QoE, faced when performing live migration over Wide Area
Networks (WANSs). They proposed a system named “ReSeT”
that predicts migration time and downtime utilizing a Linear
Regression (LR) technique, thus reducing them drastically.
During this work, the authors tested various metrics’ combi-
nations, e.g., CPU & number of client, CPU & network speed,
and network speed & number of clients. They finally adopted
the combination of network speed & number of client metrics
as the ideal pair of parameters for predicting best downtime
and total migration time through a series of evaluation tests.
Knowing the dynamic aspect of 5G and beyond networks,
considering only network speed in the prediction model while
ignoring the bandwidth usage, will guarantee neither short
service disruptions nor users’ satisfaction.

Vita et al. [19] proposed a solution for the data migration
problem to improve users’ QoS in a MEC environment.
The authors leveraged DRL to build a self-adaptive algo-
rithm capable of understanding the MEC nodes’ status and
accordingly migrating users’ application data. To select the
optimal policy for determining the migration time, the authors
used users’ positions and the current state of the network
architecture. The authors validated their proposed model us-
ing OMNeT++/SimuLTE [20] integrated with the Keras ML
framework to simulate the MEC environment [21]. However,
they disregarded the network resources in their modeling,
which introduces uncertainty on their solution in scenarios
with a large number of mobile users.

The authors of [22] designed and implemented a network-
aware Virtual Machine (VM) migration scheme in cloud data-
center environments. Their proposal dynamically relocates
VMs across nodes while minimizing the generated traffic
flow. The proposed approach was integrated into Xen-based
virtualization systems and evaluated on a practical testbed
with a 78% communication cost reduction. Stage and Set-
zer [23] provided a comprehensive approach for scheduling
VM migrations while considering both bandwidth and net-
work topology requirements. The practical implementation is
integrated with a commercial data center provider. Aiming to

reduce completion time and reduce network overhead in mul-
tiple VM migrations scenarios, the authors of [24] introduced
a scheduling method. Their approach starts by analyzing
migration outputs, then discovers suitable shared bandwidth
resources for parallel migration operations. Evaluation results
showed the efficiency of the proposed scheduling scheme.
Despite the efficiency of the previously cited works, 5G and
beyond networks will rely on dynamic and adaptive solutions
to handle networking limitations.

Addad et al. [6] introduced a method to handle all Virtual-
ized Network Functions (VNFs) chain migrations, i.e., under
the name of SFC migrations. The proposed approach considers
both the synchronization of the VNF chain’s instances and
network resources consumption. The authors proposed to re-
fine the network usage by controlling the network’s bandwidth
while executing SFC migrations. Although their approach
offers a downtime transfer similar to when having the full
utilization of the bandwidth, it was based on a brute force
method. With the high dynamic workloads of 5G applications,
this approach becomes rapidly inefficient.

Duggan et al. [25] elaborated a method to diminish network
resources’ consumption generated by the VM migrations.
They used an RL agent to develop an autonomous network-
aware VM migration strategy. The authors monitored the
network’s demands and let their proposed agent accordingly
schedule the optimal VMs migrations’ decisions. They evalu-
ated their proposal with a simulated cloud environment. The
proposed approach based on RL also has practical limits as in
complex and large-scale networks, the state and action spaces
are usually large. Therefore, RL may neither find the optimal
policy in a reasonable time, i.e., scalability issues, nor be
capable of representing the colossal number of states in a
computer’s memory.

The authors in [26] designed, modeled, and evaluated two
DRL-based algorithms for allowing a fine-grained selection
of system-based triggers regarding network slice mobility
patterns. The work constituted an effort towards making their
defined triggers intelligent while maintaining system resources
stable. Nevertheless, the proposed solution does not ensure
reduced network resource overhead. Clearly, the proposed
approach requires complementary proposals guaranteeing net-
work resource stability, as aimed for in this paper.

In comparison to the literature, this present work aims to
develop a network-aware agent capable of selecting accurate
bandwidth values while ensuring fast and reliable service
migration to address a large number of emerging use-cases
requiring strict requirements.

III. PROPOSED ARCHITECTURE & SYSTEM MODEL
A. Envisioned Architecture

The emergence of new vertical industries such as automo-
tive, e-health, and public safety on top of 5G infrastructure
expects low-latency communication. Besides, it is expected
that mMTC applications change the network requirements in
terms of the number of endpoints and the number of connec-
tions per device/user. Indeed, these stringent requirements and
standards make the availability of network resources critical
since all 5G services assume a reliable networking system.

Hence, there is an urgent need for an ML-based agent able
to refine network usage by allowing a fine-grained bandwidth
allocation process for SFC or massive inter-correlated service
migration workflows.

To achieve this goal, we adopt a conventional three-layer
architecture widely used for representing 5G and beyond
network systems. The proposed system, depicted in Fig. 1,
complies with ETSI-NFV standards. In the defined system,
the MEC layer is controlled through the interaction between
the components of the Orchestration layer and the elements
constituting the NFV architecture [27]. We explicitly omit
several components of the Orchestration layer to focus on
the Smart Network-Aware (SN-A) agent that is supposed to
fine-tune the bandwidth allocation process.

The Request Handler (RH) module offers to the SN-A
agent a technology-agnostic abstraction to access MEC-layer
entities, i.e., public or private cloud platforms. Therefore, the
SN-A agent retrieves states, accordingly outputs decisions of
bandwidth values, and receives rewards for each decision.
The SN-A agent also receives administrative instructions
from the Operation/Business Support Systems (OSS/BSS) as
defined in the ETSI-NFV model. The RH module must ensure
reliable communication and synchronization between the SN-
A agent and the MEC layer. It can achieve this through a
message broker functionality, e.g., RabbitMQ, or a standard-
ized Application Programming Interface (API). In the NFV
model, the MEC layer components are hosted on distributed
NFV Infrastructure (NFVI) and would be controlled by one
or more Virtualized Infrastructure Managers (VIMs). The
Orchestration layer is hosted separately and communicates
with the NFV domain through NFV Orchestrator (NFVO)
to emit corrective decisions and actions. VNF Managers
(VNFMs) manage life-cycles of the SFC services carried out
on VNFs over multiple administrative domains. Furthermore,
users in the users’ layer benefit from the distributed aspect of
computations in the MEC layer, which reduces latency while
following end-users’ mobility patterns.

We design our agent SN-A assuming that any process using
file transfer and synchronization tools, e.g., rsync, exploits
all the available bandwidth. Once other system processes
start their network transfer operations, either migrations or
application data traffic transfers, the bandwidth is shared
among them using the best-effort policy [28]. Thus, we note
that as we increase the number of concurrent migrations, the
time to complete any individual migration will increase due
to resource contention. Indeed, if the number of concurrent
transfers is big enough, the migration times will become too
large since none of them can be completed within a reasonable
time.

Following these assumptions and knowing that the disk
and memory pages’ transfers are the main steps of any live
migration process [7], [29], [30], we can derive that searching
for an acceptable network bandwidth limit has to take into
account:

« The heterogeneity of applications size;
o The content of the virtualized instances, i.e., containers
and VMs;

o The types of migration selected, i.e., SFC or simple live
migrations (not inter-correlated). Note that the authors
have already proven that SFC migration data differs from
single or simple live migration data [6], [30] .

It is therefore resulting in colossal action space. These
conditions make the action selection a non-trivial, non-
deterministic, and exhaustive procedure. Consequently, we
consider employing DRL techniques to bypass the brute force
search method or an uncontrolled migration process, both
cases causing a detrimental impact on the QoS.

DRL techniques have gained significant attention as an
enabler of RL for previously intractable problems. Indeed,
DRL represents a step toward building autonomous systems
with a higher-level understanding of the visual world [31].
Nevertheless, both DRL and RL techniques are based on trial
and error processes and hence are unfeasible to directly inte-
grate them with production environments as some tried actions
may worsen already achieved performance. We address this
issue by integrating a Training and Exploration (TE) module
responsible for creating identical digital twin environments
used for the training phase into the SN-A agent.

Initially, the TE module, through the RH module, gathers
all the bandwidth capacity and latency information between
each pair of MEC nodes to obtain a global knowledge of
the distributed infrastructure. We use a client/server-based
IPerf test integrated with the TE module in this scouting
stage. This step is a reconnaissance phase that generates most
of the network information we use as an upper-bound for
selecting bandwidth actions [32]. Then, after each migration
decision in the test environment, the TE module reserves the
network resources to successfully complete the SFC migration
operations while improving the global bandwidth utilization.
Finally, we release the used resources whenever migrations are
completed. Note that we use a practical implementation of the
SFC migration schemes presented in [6], which, in addition
to ensuring service migration, guarantees predetermined order
of SFC components and their respective network and system
dependencies. The presented process allows the SN-A agent to
learn how to attribute optimal/near-optimal bandwidth values
over time through the TE module. It should be also noted that
we can replicate these offline trial and error achievements
in other environments, e.g., 5G networks, as the training
and testing phases share the same input features and output
decisions.

Once obtaining preliminary results, the TE module shares
its learned model with the Bandwidth Allocator and Exploita-
tion (BAE) module to minimize network resource utilization.
Therefore, we can validate the results’ usability by comparing
them to their handcrafted counterpart, defined in [6]. The SN-
A agent compares the learned policies against the handcrafted
values; if both downtime and total migration time of the SFC
migration increase, the TE module will continue the learning
process without reporting its current findings to the BAE
module. Reversely, if the TE finished learning a fully working
model, the SN-A agent will use BAE to forward the accurate
decisions to the MEC layer. Finally, both TE and BAE use the
“DRL Algorithms Trainer (DAT)” module, which trains DRL
algorithms based on the received inputs and delivers adequate

bandwidth values. Furthermore, in Sections IV-A and V, we
detail and analyze the proposed comparison method of the
SN-A agent.

B. Reinforcement Learning Background

We start by presenting a brief introduction to RL and DRL,
given their importance to this research work. RL is one of
the most important research directions of ML, which has
significant impact on the development of AI/ML over the last
twenty years [33]. RL is a learning process wherein an agent
can periodically interact with an environment E, where the
period, by convention, is considered discrete. Particularly, the
agent observes a current state s;, then executes an action ay,
and observes a new state s;;; along with receiving results
in the form of a reward r,y;, i.e., sometimes referred to
as punishment, to automatically adjust the strategy/policy
7(s¢, ar) for carrying out an optimal behavior [34]. The policy
7 is the process of mapping states to actions, i.e., 7 : S — A,
while maximizing the discounted reward over the discrete-
time steps. The discounted reward G is defined by:

Gt = Z YT pma (1)
m=0
where ~ is the discounting factor defined between [0-1].
The discount factor helps determine the importance of future
rewards.

Notwithstanding their proof of convergence, RL methods
have limited application in practice [35]. Admittedly, in
complex and large-scale networks, state-action spaces became
usually large, and RL struggles to represent them in current
memory architectures. Hence, it may fail to find an optimal
policy in a reasonable time. However, the emergence of the
Deep Learning (DL) paradigm has caused a breakthrough
in the ML area [36]. Therefore, DRL approaches combine
basic RL methods with Deep Neural Networks (DNNs) to
effectively handle scalability issues [37].

RL/DRL is composed of value-based and policy-based
methods, each of which has its advantages and inconveniences
regarding the applicability, feasibility, and computation re-
quirements. Among them, Q-learning, which is part of the
value-based family, is one of the most prominent RL algo-
rithms [38]. Q-learning uses a simple structure represented by
a table dubbed Q-table, however, this algorithm is, in prac-
tice, limited and inefficient. Consequently, Deep Q-Network
(DQN) replaces the static Q-table with a DNN. The DNN
computes values of Q(s¢,a;) or Q-values, i.e., the quality
of the selected action a; in the state s;, and realizes an
acceptable mapping from states to actions. Albeit showing
good scalability with regards to the number of states, DQN
was often unstable and divergent. Hence, there is a need
to add experience replay memory to break the correlation
between subsequent time-steps and allowing a stable learning
curve [39].

Policy-based methods directly learn the policy function that
maps states to actions instead of computing value functions
to each approximated state. Policy Gradients (PG) algorithms,
such as REINFORCE and its variants [40], in addition to

Operation/business J
support systems

(0ss/BSS) !

S i

i
i
i
i i
I NFY Orchestrator [
: (NFVO) :
1 * i
i

| |
1= Virtualized !
1 Infrastructure 1
H Manger (VIM) H

Integrated
ETSINFV.
Mod

e

Message Broker / APIs

Training &
Exploration
H module

H
|
Bandwidth
Allocator &
Exploitation
module
(BAE)

Clan() Oan()
ok

Fig. 1: Framework architecture for ML-based orchestration and allocation of bandwidth resources.

Asynchronous Actor-Critic (A2C) [41] and Asynchronous
Advantage Actor-Critic (A3C) [42], i.e., A2C and A3C are
hybrid but are often classified as policy-based algorithms.
They are efficient in high dimensional action spaces as well as
continuous spaces compared to value-based algorithms [43].
Besides, policy-based methods can also learn from stochastic
policies by outputting probabilities for each action. There-
fore, handling the exploration/exploitation trade-off as well
as getting rid of the problem of perceptual aliasing state
where identical states require different actions [44]. Although
policy-based methods can solve problems that value-based
methods cannot, they usually converge on a local maximum
rather than on the global optimum [45]. Consequently, the
selection of RL/DRL algorithms heavily depends on the type
of the problem, the desired accuracy, and the computational

time/resource trade-off.
C. System Model

Before going deep into the implementation of the SN-A
agent, we first define the used state, i.e., problem’s inputs, and
action, i.e., problem’s outputs, spaces as well as the reward
function guiding the agent’s decisions.

1) State Space: As the bandwidth selection problem al-
ways occurs between two MEC nodes, only the source and
destination nodes will be considered when defining state space
or the problem inputs. We can model this problem using, as a
state or problem inputs, the size of the last iteration of a given
SFC migration process together with the number of memory
pages written in that iteration. The dump size is the memory
size of the last iteration in an iterative live migration process.
The memory pages are the number of written pages by a live
migration process. Those two input parameters are crucial as
the number of memory pages, the dump size, and the available
bandwidth are directly correlated with the instance’s downtime
duration, which is the key factor determining users’ QoE and
satisfaction [6], [29].

S= (d87p7”) (2)

where ds denotes the dump size and p, denotes the number
of memory pages.

2) Action Space: The action space, also known as problem
outputs, is represented as allowed bandwidth allocations for

migrations. The DRL agent selects a given bandwidth value
at each time-step, offering by the same time the possibility to
test actions as much as possible.

A = {bw, bwy, bws, ..., bw, } 3)

where A represents the set of all possible bandwidth values in
case of discretized values. However, most of the time, A tends
to infinity. Therefore, we must consider both the continuous
and discrete action spaces in our problem.

3) Reward Function: By using a reward function that
covers the required metrics, an agent maximizes profits,
thereby optimally performing and selecting the right actions
from within all defined states. As the live migration process
uses both system and network resources, the adequate reward
function must cover those resources. Moreover, our modeling
assumes a direct relation between the bandwidth used and the
transmission delay, as well as the propagation delay, thus cov-
ering the network resources part. Regarding the system part,
the processing delay can be considered as the synchronization
time. By measuring the required time for copying memory
pages/file system, i.e., rootfs, in all live migration’s actions,
the coverage of those three-time delays is guaranteed. Besides,
by inverting the obtained time, we ensure that the longer the
migration time is, the lower the reward R will be.

R=1/T)

where T = ﬁransmission + %ropagation + %rocessing + AT
AT represents a constant related to the queuing delay as well
as to the Kernel/Userspace transitions.

However, as we have several possible bandwidth values,
this reward function becomes inefficient. For instance, if we
consider a bandwidth equal to 3 GBps and a second one equal
to 2 GBps, both provide similar times for the SFC migration
metrics, which prevents the agent from determining the best
action to select. Thus, to increase the accuracy of our reward
function, the addition of the numerical value of the selected
bandwidth is mandatory. The new reward function R is then
expressed as:

R=1/T)+ (1/bws))

where bw; denotes the current selected bandwidth value,
bw; € A.

To demonstrate the importance of introducing the selected
bandwidth’s value into the reward function, we present a
detailed example in Fig. 1. Let us assume that a group of
users is moving to a different location, e.g., connected cars in
Fig. 1 moving from the service area of MEC 1 to the service
area of MEC2. Moreover, those connected cars are consuming
a video streaming service hosted initially in MEC1. Therefore,
intuitively, we must ensure a minimum bandwidth allocation
to support the virtualized instances’ migration, i.e., SFC,
composing the video application, and serving the connected
cars while ensuring users’ QoE. We represent the globally
available bandwidth between the two MEC nodes in Fig. 1
using a cylinder to indicate the capacity.

Meanwhile, we assume that the SN-A agent is in the train-
ing phase, where the TE module measures the total available
bandwidth bw, in the reconnaissance phase presented earlier.
The maximum bandwidth value measured is equal to 3 GBps,
i.e., in blue color in the cylinder between MEC1 and MEC2.
The TE module will be constituting the state “s;”, (ds =
1.2 MB, p, = 596 memory pages), based on the information
gathered from the MEC source via the periodical sampling of
the RH module.

The TE module then selects an action, i.e., bandwidth value,
based on a given policy, either learned (e.g., PG) or followed
(e.g., e-Greedy). In the presented example, the first selected
bandwidth value is equal to 2.5 GBps, i.e., illustrated in red
inside the cylinder representing the available bandwidth, while
the downtime was equal to 1 ~ 1.2 (s). Once done, the SN-A
agent sends the selected action to the environment, i.e., the
MEC layer, for execution. Then, the environment returns a
reward and a new state to the SN-A agent. After that, the SN-A
agent evaluates its choices and similarly selects another action
equal to 2 MBps, i.e., illustrated in green inside the cylinder
representing the available bandwidth, in which the downtime
was equal to 1 ~ 1.2 (s). We must highlight that this is only a
simplified example of two stages that differ from the training
used by the SN-A agent, which keeps repeating this process
until its convergence. This allows us to conclude that defining
a reward function only based on time is not helpful in this
situation. In other words, selecting action bw; = 2.5 GBps and
action bwy = 2 MBps is identical for the SN-A agent since R;
=~ 0.83 and Rs =~ 0.83. In contrast, adding the inverse of the
chosen action will undoubtedly make our SN-A agent select
lower bandwidth values, i.e., B =~ 0.834 and R, =~ 1.33;
hence, selecting the second, i.e., 2 MBps, bandwidth value
in the example and ensuring optimal bandwidth allocation. It
is worth noticing that the performances are not affected as
the first term of the reward function, i.e., 1/7, prevents this
through time.

Finally, we added coefficients to both the time and band-
width values to make one parameter more influential than
the other depending on the network provider’s considered
objective.

R=0x%(1/T)+Vx*(1/bw;) (6)

where 6 > 1 as we emphasize the importance of the
downtime.

IV. DESIGN OF THE DRL ALGORITHMS TRAINER

A. Operational Mechanisms

We have separately introduced the DAT module in Fig. 2
to highlight the different components of the algorithms, i.e.,
Deep Deterministic Policy Gradient (DDPG) and DQN, con-
stituting it and their working mechanisms. The DAT module
aims to train two distinctive and divergent objectives through
two particular types of DRL algorithms, namely DQN and
DDPG. The DQN algorithm focuses on accelerating the
delivery of decisions and the learning process along with the
loss of precision, while DDPG is more constrained by the
learning time, but outputs effective decisions [46].

Our objective is to develop a hybrid approach capable
of coping with the stringent demands of 5G and beyond
networks. Leveraging the OSS/BSS components of the NFV
architecture, the SN-A agent can obtain information about the
type of service, i.e., URLLC, mMTC, and eMBB. Besides,
we know via MEC APIs [47], [48] the number of MEC
services and applications susceptible to request an SFC mi-
gration pattern. We note a trade-off between how quickly and
how accurate decisions can be made, which depends on the
underlying DRL algorithm. In case of a large number of users
requiring low-latency communications, a massive number of
mMTC services, or enhanced mobile broadband resources,
the DAT module will deliver actions, i.e., bandwidth values,
based on the DDPG algorithm to either the BAE module in
case of exploitation or to the TE module during training.
Contrarily, if the resource requirements and the number of
end-users applications are reasonable, the DAT module will
deliver results following the DQN algorithm as those services
do not consume or require strict bandwidth values.

Before describing both the DQN and DDPG algorithms and
their hyper-parameters, we provide the pseudo-code detailing
the SN-A agent’s functionalities in Algorithm 1. The proposed
agent is divided into two distinctive steps:

o The training phase: It begins by neural network initializa-
tion. It then allows our agent, through the TE and DAT
modules, to learn optimal policy by selecting appropriate
actions, i.e., bandwidth values;

o The exploitation phase: By following the optimal pol-
icy, the agent delivers actions and optimized bandwidth
values leveraging the BAE and the DAT modules.

Algorithm 1, called Kernel SN-A (KSN-A), serves to
describe in detail the two steps constituting the SN-
A agent. Initially, KSN-A initializes both “base_bw”
and “base_downtime” variables with “baseline_bw” and
“baseline_downtime” values, respectively. The variable
“baseline_bw” is the baseline bandwidth value and the vari-
able baseline_downtime is the optimal downtime achieved
using the “baseline_bw” value, i.e., both defined in [6]. The
variable “trained” is set to “False” to allow KSN-A to start
the training phase. The initialization procedure is shown in
lines 1 to 3 in KSN-A, i.e., algorithm 1.

Training &
Exploration
module
(TE)

e(Sy Ay Ry Sp) (4)

6)
BN Gradient . |
ey RS Ra.':;;y |[Deep Q-Learning

|
|
| e i Target DQN LG
|
|

Network

Bandwidth
Allocator &
Exploitation

module
(BAE)

radient/Loss CScHiN

i
(
]

updates &

Deep Deterministic
Policy Gradient
(DDPG)

Replay

Fig. 2: Design and principles of the DRL Algorithms Trainer (DAT) module.

As long as the variable “trained” is equal to “False”
and the variable “iteration” is smaller than “M”, KSN-A will
continue learning, and states will be fed into the training
phase directly, i.e., lines 4 to 18 in KSN-A. It is noticed that
“M” was introduced for reducing complexity and efficiency
purposes. KSN-A gather states, i.e., “S”, through a blocking
function, i.e., get_state(), using the RH module that interacts
with the MEC layer, i.e., KSN-A line 7. Each state “S” is
routed to the TE module through the RH module, i.e., KSN-A
line 8. Meanwhile, we obtain the type of service requesting
an SFC migration operation from the ETSI-integrated NFV
domain, i.e., line 9. The TE module will then input the state
“S” for either the DQN algorithm or the DDPG algorithm in
the DAT module, depending on the criticality of the service
requesting service migration, i.e., KSN-A, line 10 to 15. Note
that the criticality of the service was deeply explained in the
introduction of Section IV. Also, the initialization of both
algorithms, i.e., DQN and DDPG, is omitted in KSN-A for
the sake of simplicity. After that, in line 10 of KSN-A, the
DAT module trains the selected algorithm, and the variable
“iteration” is incremented by one for each new state, i.e.,
lines 16 and 17. Whenever the variable “iteration” is bigger
than “M”, we compare the learned bandwidth values and
downtime to the “base_bw” and “base_downtime” of the
baseline solution. This step ensures that the learned values
are optimal compared to the current baseline values. If the
learned values are less than the baseline values, KSN-A sets
new baseline values and updates the variable “trained” to
“T'rue”, i.e., lines 19 to 23; thus, switching to the exploitation
phase starting from the next input states.

Once the variable “trained” is equal to “T'rue”, the SN-A
agent, through its RH module and the ETSI-NFV integrated
domain, gathers new states and routes the requests to the
BAE module with the state “S” and the adequate algorithm
depending on the type of service. Finally, the BAE mod-
ule contacts the DAT module, which will deliver accurate
bandwidth values in the context of SFC migration operations,
i.e., lines 28 and 34 in KSN-A. Note that we precede each
function/method with the module’s name that executes it to
improve the understanding of the proposed SN-A agent’s core
features.

Algorithm 1: Kernel-Smart Network-Aware (KSN-A).

1 base_bw < baseline_bw;

2 base_downtime < baseline_downtime;
3 trained < False;

4 while trained == False do

5 iteration < 0;

6 while iteration < M do

7 S < RH.get_state();

8 RH.route(TE);

9 type_of _service = NFV.service_type();
10 if type_of _service == Critical then
11 ‘ TE.input(S, DDPG);

12 end

13 else

14 | TE.input(S, DQN);

15 end

16 bw_value < DAT.train();

17 iteration <— iteration + 1;

18 end

19 if bw_value < base_bw and RH.downtime() <
base_downtime then

20 base_bw <+ bw_value;

21 base_downtime < RH.downtime();
2 trained < True;

23 end

24 end

25 S < RH.get_state();
26 RH.route(BAE);
27 type_of_service = NFV.service_type();

28 if rype_of _service == Critical then
29 | BAE.input(S, DDPG);

30 end

31 else

32 ‘ BAE.input(S, DQN);

33 end

34 bw_value < DAT.deliver();

To enhance the understanding of the role of each used
algorithm, we will provide a brief introduction to both of them
while specifying the necessity and the complementary usage
in different situations.

1) Deep Q-Network:

Mnih et al. [36] designed and introduced DQN, a value-
based algorithm where the deep network takes a state s; as
an input while following policy 7 and produces a Q-value
for every action in the action space. As shown in Fig. 2,
DQN uses experience replay to break the correlation between
subsequent time-steps, allowing a stable learning curve [39].
At each batch size, DQN computes the Temporal Difference
(TD) error by taking the difference between target Q-values,
i.e., the maximum possible value from next states s;1, shown
in Equation 7 as “ryy; + ymaza,,, Q(Si41,a¢+1)”, and the
predicted Q-values, i.e., Q™ (s, a;) in Equation 7, [49]. This
process results in a well-known regression problem in which
we have to minimize the total error of the training data. Hence,
allowing the function approximator, e.g., neural network, to
learn a useful behavior by adjusting its parameters through
forwarding/back propagation [50]. In short, the update of
each Q-value, represented as in Equation 7, i.e., in case of
Q-Learning, will be replaced by the update of weights in
Equation 8. In both Equations 7 and 8, « is the learning rate
used for setting errors’ acceptance in which a higher value
tolerates more error by adjusting aggressively while a smaller
one adjusts conservatively. Whereas, in the same equations, ~y
is the discount rate that promotes or reduces the next action’s
impact according to the defined value.

Q" (st at) = Q7 (s, ar) + a(re41 + ymaza, , Q(St41, ar+1)
— Q" (st,ar))
@)

Aw = a[(re41 +ymaza,, Q(Si41, a1, w) — Q7 (54, ar,w))]
VQW(Stvatvw)
(8)

Although DQN has its advantages when solving prob-
lems with a small discrete action space, it fails to compute
Mmazq, +1Q(stﬂ, ai+1,w) of the target Q-value term in Equa-
tion 8 in case of continuous or pseudo-continuous action
space. We can solve this issue by discretizing the action
space, e.g., if our maximum available bandwidth is 3 GBps,
we can use all values starting from 1 MBps to 3000 MBps,
i.e., 3 GBps, generating 3000 actions. This will reduce the
number of actions, but it will also neglect some bandwidth
values, reducing bandwidth allocation precision. However,
due to computational limitations when using ML frameworks
such as Pytorch or Tensorflow, the discretization has to be
more refined and smaller, i.e., 3000 actions will generate
a huge computation for simple tasks [51]. Meanwhile, by
leveraging a handcrafted bandwidth value equal to 2 MBps,
the author of [6] achieved a downtime equivalent to when
using the whole available bandwidth for both video streaming

applications and blank containers. Consequently, we discretize
our action space via the Discretization Module (DM in Fig. 2)
to twenty different actions while centralizing the range around
2 MBps, which will give us twenty actions between 1 MBps
and 3 MBps with a step of 0.1 MBps. The proposed algorithm
is fast and ensures convergence to the near-optimal value
while lacking precision in bandwidth value selection, albeit
at the cost of less precise bandwidth reservations.

2) Deep Deterministic Policy Gradient: DQN ensures fast
training and delivery of predictions [46]. However, in 5G and
beyond networks, it is expected to have numerous services
with different characteristics and types [4]. Consequently, a
lack of precision in bandwidth action selection may increase
bandwidth capacity usage without being fully exploited. This
poor action selection may result in an implicit reduction of
available network resources, thus impacting sensitive services
such as URLLC and eMBB ones. To cope with the previously
cited constraint and the continuous/pseudo-continuous action
space limitation, we propose using the DDPG algorithm,
which is considered a policy-based RL algorithm [52]. As
illustrated in Fig. 2, DDPG is quite similar to A2C and A3C
principles with a difference in the Actor’s operations [42].
Note that A3C is an A2C variant that implements parallel
training where multiple workers in parallel environments inde-
pendently update a global value function, hence the addition of
“asynchronous”. The DDPG Actor maps the states to actions
instead of outputting the probability distribution across action
space like in A3C and A2C. The Actor will start by observing
the state s; of the environment E. It will then select a given
action with the current weights of the approximator network,
i.e., steps 1 and 2 in the DDPG part of Fig. 2. Besides, the
DDPG Actor adds noise A/ while selecting a given action a;
to encourage exploration. Upon performing the action a; + /N,
the environment returns a reward r; and the next state s;41
and considering that we are using experience replay principals
in all our proposals, a tuple containing (s, a¢, ¢, S¢41) Will be
collected and stored in the experience pool, i.e., step 4, DDPG,
Fig. 2. Once reaching the defined batch size, the DDPG Actor
will start retrieving the next states and predicting the actions
to be selected. Meanwhile, the Critic network uses the same
selected batch of next states and the predicted actions from the
Actor network to compute and evaluate the target Q-values,
i.e., step 5, DDPG, Fig. 2. Finally, a loss function will be
updated to learn how to evaluate more accurately in case of a
Critic network and to increase the probability of choosing the
right actions in case of an Actor network, i.e., steps 7 and 8,
DDPG, Fig. 2. It should be noted that both Actor and Critic
networks use target networks to prevent the optimization, i.e.,
prediction of next states’ actions and their evaluations, from
encountering tight correlation problems.

B. Design of Neural Networks

To realize an accurate mapping from states to actions, we
build our neural networks following a pseudo-grid-searching
mechanism, in which we take the hyper-parameters values uti-
lized in original papers. We then vary those hyper-parameters
to obtain optimal configurations and parameters related to

selecting bandwidth value in SFC migration schemes. This
method is similar to grid searching developed in [53]. We
selected the following specifications.

1) DON hyper-parameters: Regarding the DQN approach,
we use two neural networks, the main Q-Network and a target
Q-Network as a replica of the main network. While the main
Q-Network is used to predict the current state’s Q-value, the
target Q-Network is employed to predict next-state Q-values.
We utilize an “e-Greedy” based on the “e” decay policy to al-
low a trade-off between exploration/exploitation dilemma. For
both Q-Networks, we adopt Adam optimizer, i.e., an adaptive
learning rate optimization algorithm for improving stochastic
gradient descent, for adjusting the network’s parameters [54].
The learning rates, i.e., o, and the discount factors, i.e., 7,
parameters were equal to 5 - 1072 and 0.95, respectively, for
both Q-Networks. Target Q-Network’s parameters are updated
every four episodes. The batch size used for updating the
main Q-Network weights is 32. We also consider two fully-
connected hidden layers in which the number of units, i.e.,
activation functions, is the mean between input and output
features. For both hidden layers and the output layer, we select
the Rectified Linear Unit (ReLU) as activation functions. The
ReLU activation function, denoted by Equation 9, is linear for
all positive values and zero for all negative values. Therefore,
it offers computational simplicity and better convergence
features compared to other activation functions. The number
of output decisions is obtained via the DM, i.e., introduced
earlier in IV-Al, showed in step 1, DQN part, Fig. 2.

z ifz>0

Retv(:) = {; we-e ©)

2) DDPG hyper-parameters: DDPG uses four neural net-
works. A Q-network and a target Q-network as Critic networks
for evaluation of selected actions. In addition to a determin-
istic policy network and a target policy network as Actor
networks for action prediction. For both Critic and Actor net-
works, we adopt the Adam optimizer for adjusting networks’
parameters. The learning rates of Actor and Critic networks
were 25-107° and 25-107%, respectively. The discount factor
v was 0.99. The parameter of the target Actor and Critic
networks are updated with a coefficient 7 equal to 1-1072,
The batch size used for updating the deterministic policy
network weights is 8. We employ a similar representation of
hidden layers for all Actor/Critic networks; mainly, we use
two fully-connected hidden layers in which the number of
units, i.e., activation functions, is 400 and 300, respectively.
Each activation function uses the ReLU function for weights
computation, introduced in Equation 9. For the output layers
of Actor networks, we utilize a Tanh activation function, i.e.,
Equation 10. It is worth noticing that Critic networks have a
unique output used to compute the value of taking a given
action at a given state. By using Tanh as an output activation
function for Actor networks, the selected bandwidth values
are confined between the range of [-1, 1], see Equation 10.

1 —exp(—22)

tanh(z) = 1T eap(=22)

(10)

However, having bandwidth values limited between this
small range is not conceivable. Hence, leveraging the Action
Refinement (AR) module, illustrated in Fig. 2, i.e., step 3 in
the DDPG section, and Equation 11, we multiply the obtained
values by a given number dubbed “X”. Then, we add “X” to
the obtained number; this has the main objective to centralize
the output around “X”. For instance, our Actor network output
0.5, the AR module will output 750 KBps if the “X” = 500
KBps.

bwydpg (X, z) = X x (1 + tanh(z)) (11)

Note that “X is also considered a critical hyper-parameter;
thus, we vary it to obtain optimal configurations and param-
eters related to selecting bandwidth value in SFC migration
schemes. Initially, we exploit the results in [6], where the
authors achieved the best results using a handcrafted band-
width value equal to 2 MBps. Having this initial indicator,
knowing that the Tanh function varies from -1 to +1, and
using the proposed formula developed in Equation 11, we
initially set “X” equal to 1 MBps. This value is half of the
handcrafted value and allows us to visit the range from 0
MBps to 2MBps. Then, we vary the hyper-parameter “X”
while observing the different learning curves. This method
is similar to grid searching developed in [53]. Note that we
selected the value 800 for the hyper-parameter “X”. Finally,
we add the Ornstein-Uhlenbeck Noise to obtained action for
encouraging exploration [55].

V. EXPERIMENTAL EVALUATION

This section presents our preliminary training and assess-
ments of the two DRL-based algorithms for enabling a fine-
grained selection of network bandwidth values for service
migration. Our focus on the networking part of migration
processes arises from our perceived need to support multiple
simultaneous migrations, i.e., SFC migrations, caused by user
mobility across domains or resource shortages.

Intel FRD 3
rchestrator

ligrs
,,

Intel FRD 1

Intel FRD 2
Host Destination

mi:ig. 3: Training Testbed setup.

Fig. 3 describes the testbed environment used for the train-
ing phase, thus allowing our SN-A agent to refine bandwidth
values selection. The testbed consists of three edge servers,

Intel Fog Reference Design (FRD) !, as depicted in Fig. 3.
It is worth noticing that we adopted FRDs servers to match
MECs’ computations standards. Each FRD has 8 cores, i.e.,
Intel(R) Xeon(R) CPU E3-1275 v5 @ 3.60GHz, with VT-X
support enabled, 32 GB of memory, and Ubuntu 16.04 LTS
with the 4.4.0-77-generic kernel installed. FRD1 and FRD2
are acting as the host source and destination, respectively.
Both of them are using LXC 2.8 as a container engine to
enable container-level virtualization and CRIU 3.11 to allow
service migration. We use the Synchronized Wait-For-Me SFC
migration pattern developed in our previous work. This SFC
migration pattern allows us to run all migration steps for
each instance of the SFC in parallel except the final memory
blocking action, i.e., dump, where all instances should wait
for each other [6]. This approach in a basic handcrafted con-
trolled network aims to efficiently control each step separately,
thus allowing a fine-grained control and reducing the overall
system and network resource consumption. Besides, we use
ONOS as an SDN controller to configure OVS switches
and steer network traffic between the SFC constituents. We
consider an SFC for a video streaming application with three
virtualized instances, i.e., length three. Each SFC contains
a client, a video streaming server, and a turnaround node
that analyzes and route the integrality of the traffic in both
directions. FRD3 serves as a global orchestrator used for
handling the life-cycle of containers and agent’s training and
exploitation phases. Note that FRD3 consists of the SN-
A agent, the life-cycle orchestrator, i.e., managing network
function creation/deletion/migration/scaling operations, and
the message broker server, i.e., RabbitMQ in our case.

We start evaluating our proposed agent by showing the
training phases for both DQN and DDPG while considering
different input features to highlight features selection, training
speed, and stability, i.e., Fig. 4 and Fig. 5. Afterward, we
present a detailed comparison, in Fig. 6, regarding action
selection, i.e., bandwidth values, for DDPG against DQN and
handcrafted values, i.e., baseline solution. Finally, we show
the efficiency and the capacity of the proposed agent, i.e., SN-
A, to reduce the network consumption compared to the basic
solution via a downtime comparison, i.e., Fig. 7. Note that
we consider an SN-A variant that only uses DQN and another
SN-A variant that only uses DDPG to properly and separately
evaluate each algorithm in our current experiments. Note also
that we overcome the issues of migration failures in the
training of both DDPG and DQN based algorithms, i.e., Fig. 4
and Fig. 5, through the use of the retry module developed
in our previous work [7]. This module was developed due
to the need for high efficiency of the live migration. We
designed a mechanism able to detect the failure of the last
step and trigger an automatic retry to ensure a highly efficient
migration that meets the 5G networks’ requirements. Thus,
the correlation between migration requests is respected. In the
case of unknown issues or errors, the whole scenario is deleted
or not used for the training to keep the results concrete.

The initial experiment is related to the SN-A agent based on
the DQN algorithm. We run 800 migration operations while
randomly modifying the virtualization instances’ resources,
i.e., CPU, RAM. Fig. 4 shows the training comparison while
considering the agent based on SN-A DQN for respectively
two, i.e., dump size and memory pages, and a single, i.e.,
dump size, input features. In Fig. 4(a), the Y-axis represents
the rewards collected over time-steps while the X-axis shows
the number of iterations in the training process. Still, in
Fig. 4(a), rewards for two input features are represented with
the orange color while the single input is illustrated using
the blue color. Fig. 4(b) conserves an identical representation,
except for the Y-axis, in which we show the average rewards
for every 32 iterations. As an initial reflection, we can state
that DQN using both the dump size and the memory pages
features outperforms DQN using one input feature, i.e., dump
size.

Next, we evaluate the SN-A agent based on a DDPG
algorithm approach in our second experimental scenario. We
trained the model for thousands of migrations while randomly
selecting application types and modifying the resources, i.e.,
CPU, RAM, of the virtualization instances. Fig. 5 features the
comparison between the dump size, i.e., blue, as a unique in-
put feature and both the dump size and the memory pages, i.e.,
orange, features when considering the DDPG-based algorithm.
In Fig. 5(a), the Y-axis represents the obtained rewards over all
iterations, w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>