
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Ovsiannikova, Polina; Buzhinsky, Igor; Pakonen, Antti; Vyatkin, Valeriy
Oeritte : User-Friendly Counterexample Explanation for Model Checking

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2021.3073459

Published: 15/04/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Ovsiannikova, P., Buzhinsky, I., Pakonen, A., & Vyatkin, V. (2021). Oeritte : User-Friendly Counterexample
Explanation for Model Checking. IEEE Access, 9, 61383-61397. Article 9405616.
https://doi.org/10.1109/ACCESS.2021.3073459

https://doi.org/10.1109/ACCESS.2021.3073459
https://doi.org/10.1109/ACCESS.2021.3073459

Received March 10, 2021, accepted April 6, 2021, date of publication April 15, 2021, date of current version April 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073459

Oeritte: User-Friendly Counterexample
Explanation for Model Checking
POLINA OVSIANNIKOVA 1,2, IGOR BUZHINSKY 1,2, ANTTI PAKONEN 3,
AND VALERIY VYATKIN 1,2,4, (Member, IEEE)
1Computer Technologies Laboratory, ITMO University, 197101 Saint Petersburg, Russia
2Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
3VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland
4Department of Computer Science, Computer and Space Engineering, Luleå Tekniska Universitet, 971 87 Luleå, Sweden

Corresponding author: Polina Ovsiannikova (polina.ovsiannikova@aalto.fi)

This work was supported in part by the Finnish Research Programme on Nuclear Power Plant Safety 2018–2022 (SAFIR 2022), and in part
by the Government of the Russian Federation under Grant 08-08.

ABSTRACT Thorough verification is a part of the design process of instrumentation and control systems if
they must comply with crucial safety requirements. Model checking can be applied to the formal model of
such a system to reason about its correctness based on the specification provided. When a violation occurs,
the model checking tool outputs the proof of the violation in the form of a failure trace, which represents a
state sequence of system model transitions where the requirement does not hold. This sequence, however,
even for modular systems, is a mere table of values. Due to the lack of any insights into the inner model
processes and structures that caused a problem, the debugging process of the formal model becomes time and
effort consuming. The tool presented in this paper, Oeritte, is aimed at assisting the analyst in this challenge.
It implements a method for automatic visual counterexample explanation which includes reasoning both over
the falsified LTL formula and over the NuSMV function block diagram of the formal model of the system.
The tool is applied to an industrial-sized safety control system of a nuclear power plant.

INDEX TERMS Counterexample explanation, counterexample visualization, function block diagram,
NuSMV, user-friendly model checking.

I. INTRODUCTION
One of the most reliable approaches to ensure the cor-
rectness of an instrumentation and control (I&C) system
is a formal verification technique called model check-
ing [1]. It is applied in avionics [2], [3], automotive driv-
ing industry [4]–[6] and for verification of I&C systems of
nuclear power plants [7]–[10]. Even though model checking
is able to scrutinize the whole state space of a systemmodel in
search for deviations, several disadvantages separate it from
being spread ubiquitously. The first challenge is related to
formal model inference. Verification results are valuable only
if the right formalism is chosen for the system domain and the
model’s behavior corresponds to the behavior of the original
system in time of model checking [11]. Then, exploring
all model’s behaviors may be computationally demanding.
This issue is considered in [12] and algorithms to reduce
the computational complexity are being developed [13]–[15].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mansoor Ahmed .

Another downside of the approach, which we tackle in this
paper, is the time and effort consuming process of errors
localization in the model being verified.

The overall model checking process consists of three
stages: (1) a formal model of a system is created, (2) the
formal model together with the temporal logic specification
is sent as an input to a verification tool, such as NuSMV [16]
or SPIN [17], (3) the tool informs the user whether the
specification is satisfied. If it is not, the tool produces a
counterexample, which is a sequence of the states of the
model where the specification does not hold. More precisely,
each element of this sequence comprises the values of the
model variables. However, counterexamples do not show the
structure of the system or the internal dependencies of its
variables. Therefore, especially for I&C systems, which tend
to be modular and complex, the analyst gets the daunting task
of determining the cause of the problem.

This article extends the work [18], where we presented
Oeritte, a tool for visual counterexample explanation. Oeritte
takes a modular formal model of a system in the NuSMV

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61383

https://orcid.org/0000-0003-3722-2603
https://orcid.org/0000-0003-3713-6051
https://orcid.org/0000-0002-6803-2303
https://orcid.org/0000-0002-9315-9920
https://orcid.org/0000-0003-2034-1403

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

format together with its violated requirements and provides a
graphical automatic counterexample explanation using both
the violated property and the formal model. Among all,
the current paper complements the previous work with dis-
cussion on causality, a formal proof of the fact that the algo-
rithm solves the formulated problem, and an industrial-sized
case study.

The rest of the paper is structured as follows. Preliminaries
are given in Section II. Section III provides the formula-
tion of the notion of a cause and the problem of coun-
terexample explanation. The algorithm that solves the latter
is given in Section IV. Section V overviews the tool that
implements the proposed approach, and Section VI evaluates
the approach experimentally using an industrial-sized formal
model. Then, the related research is reviewed in Section VII
and Section VIII discusses the results. Section IX concludes
the paper and overviews the future work directions.

II. PRELIMINARIES
A. FUNCTION BLOCK DIAGRAMS
In this paper, by a model, we mean a function block dia-
gram (FBD).1 Essentially, an FBD is a set of interconnected
function blocks, where each function block infers the values
of its output variables by performing a particular transforma-
tion on its input and internal variable values. Each function
block in an FBD is an instance of a function block type, which
can be viewed as a Mealy machine [20] that defines such a
transformation.

We consider our models to have discrete time, and on each
time instant the variables of all the included function blocks
are assigned new values. The current time step, which is an
integer, is not directly available in the model as a variable,
but will be useful to reason about execution sequences of the
model. The execution semantics is synchronous: the output
values of each block are functions of its input values from the
current or the previous time step (custom initialization may
be applied on the first time step, and input variables without
incoming connections are assigned the same default values
at all time steps) and the signals are propagated through
connections instantly. Delay function blocks help to prevent
infinitely fast information flow in FBDs with feedback loops.

To design an FBD one might use such graphical tools
as MODCHK [21] or Simulink Design Verifier [22], but
they can also be encoded textually, e.g., with languages of
model checkers, such as NuSMV [16]. Fig. 1 shows a simple
example of an FBD.

The basic concept of an assignment is required to start
a formal description of an FBD D with its set of variables
U = {u1, . . . , un}.
Definition 1 (Assignment): An assignment a is a tuple

(u, vu,j, j), where vu,j is the value of variable u at discrete time
step j. By v(a) we denote the value of this assignment and by

1FBDs are one of the graphical programming languages officially sup-
ported by IEC 61131-3 [19], but the contributions of this work are not limited
to FBDs as specified in this standard. We use them in a more general sense
as described in this subsection.

FIGURE 1. An example of an FBD implemented in MODCHK. Solid
squares on the left and right sides of the diagram stand for its input and
output variables.

s(a) its step. If u ∈ U is a variable of D then there exists an
index i ∈ [1, n] for u, and we denote the assignment of u = ui
at time step j as ai,j.
Information between two variables is transmitted through

a connection.
Definition 2 (Connection): A connection c is a tuple

(ui, uj,N), i, j ∈ [1, n], which is defined by two different
variables of the same type and an indicator of connection
inversion N . Connection c can be also represented with a set
of connection constraints Cc = {vi,s = vj,s | s ∈ [1, l]},
if N = 0, or {vi,s = ¬vj,s | s ∈ [1, l]}, if N = 1 and the
variables are Boolean, where s is a counterexample step.
The connections between the variables are directed, i.e., the

information can only flow from outputs of some blocks to
inputs of some other blocks. Multiple outgoing connections
are allowed but multiple incoming connections are not.

The fundamental notion for FBD is a block that is defined
by its type that determines its set of constraints over the
variables of the block and its interface. Formally:
Definition 3 (Counterexample): A counterexample X of

length l is a set of assignments of the variables from U for
each time step j: X = {(ui, vi,j, j) | i ∈ [1, n], j ∈ [1, l]}.
Essentially, a counterexample is a sequence of model

states. As we said earlier, an FBD has discrete time and
updates all its variables (its state) exactly once during each
time step. Therefore, we can say that each state of the coun-
terexample represents the values of all the model’s variables
at a particular time step.
Definition 4 (Constraint): A constraint over variable ui ∈

U and a set of variables {u′1, . . . , u
′
k} ⊆ U defined on a time

step s of X is a Boolean expression vi,s = f (v1,s, . . . , vk,s),
where f is a function.
Definition 5 (Block type): A block type is a tuple

(I ,O,CB), where I and O are the sets of input and output
variables that form a block interface, and CB is a set of
constraints over the values of the variables in O with regard
to the values of the variables in I , defined for a range of
counterexample steps [1, l].
Definition 6 (Block instance): A block instance (or block)

of type T with name N is a tuple (T ,N).
Block type determines CB together with two sets I and O,

while names, given to the blocks, differentiate their instances
of the same types. We say that two blocks are connected if

61384 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

an output variable of one of them is connected to an input
variable of the other. There are two kinds of blocks, atomic
and modular, which differ in their set of constraints. Table 1
overviews the set of atomic block types that are used in the
current work.

TABLE 1. Atomic blocks used in the current paper for the construction of
an FBD.

Definition 7 (Atomic block constraints): Every atomic
block B from Table 1 except for DELAYwith k input variables
and one output variable is uniquely defined by its set of
constraints CB = {v1,s = fB(v2,s, . . . , vk,s) | s ∈ [1, l]},
where fB is determined by the type of each atomic block, and
u2, . . . , uk and u1 are k − 1 input and one output variables
of a particular instance of B. DELAY corresponds to the
following set of constraints: CB = {v1,1 = v2,1} ∪ {v1,s =
v3,s−1 | s ∈ [2, l]}, where v2,1 is a default value for the
first counterexample step, and u1, .., u3 are variables of a
particular instance of DELAY.
Thus, intuitively, every atomic block corresponds to an

atomic operator or a simple function. For example, the set
of constraints for the AND block is C∧ = {v1,s = v2,s ∧
v3,s | s ∈ [1, l]}. Each constraint in such a set encodes a
rule of how the block functions at a particular counterexample
step and, therefore, the number of elements in the set equals
the length of a counterexample. Available logical operators
together with connections inversion allow the formulation of
any Boolean function.

Below we describe simple functions from the group
‘‘other’’ from Table 1.
• DELAY allows the implementation of feedback loops.
At the first execution cycle, some default value is
assigned to the output of this block, then, every sub-
sequent execution makes the output take the value of
the input variable from the previous step. Therefore,
DELAY has two input variables (one for a predefined
default value and one for the current input signal) and
one output.

• With CHOICE it is possible to implement a cascade ‘‘if’’
assignment for a variable. It has one output variable,
an input variable for every clause and another input for
every value that should be assigned to the output if the
corresponding clause is satisfied.

• COUNT takes several Boolean signals and outputs a total
number of ones that are TRUE at the current step.

• The ASSIGN block implements the identity function:
the output is the same as the input.

FBD D consists of interconnected modular blocks, which
are decomposed into nets of blocks of both kinds, thus allow-
ing implementation of more sophisticated calculations.
Definition 8 (Modular block constraints): Let B be a

modular block with its set of internal blocks M and set of

internal connections 6. Then, a set of constraints for B is
CB = {Cm | m ∈ M} ∪ {Cσ | σ ∈ 6}.
In I&C systems design, one may use libraries with basic

blocks that are not decomposable, e.g., flip-flops, logical
operators with more than two arguments, etc. Such basic
blocks in our case are represented as modular blocks with
atomic blocks constituting their internal net. An FBDD itself
is a special modular block of the highest level of the hierarchy,
that may contain both modular and atomic blocks, therefore,
the set of constraints CD is defined for D as well.

FIGURE 2. A modular block with name M_BLOCK, input interface
I = {u1, u2, u3, u4} and output interface O = {u5} that encodes function
u5 = (u1 ∨ u2) ∧ (u3 ∨ u4). It includes three interconnected atomic blocks
with names OR1, OR2, AND1.

Definitions 6 and 5 are shown in Fig. 2. Fig. 3 illustrates
how a set of constraints can be defined for a block from Fig. 2
for a counterexample of length 1.

FIGURE 3. Modular block B from Fig. 2 with the constrains of its internal
blocks for the first counterexample step defined. The full set of
constraints for B for the first counterexample step is represented by the
union of constraints for the depicted atomic blocks and the set of
connection constraints Cc = {v6,1 = v1,1, v7,1 = v2,1, v8,1 = v3,1,

v9,1 = v4,1, v12,1 = v10,1, v13,1 = v11,1, v5,1 = v14,1}, where vi,j is a
value of variable ui at counterexample step j , i ∈ [1, |U |], j ∈ [1, l], where
l is the length of a counterexample.

B. LINEAR TEMPORAL LOGIC
Boolean logic provides a set of operators sufficient to for-
mulate propositions about the single model state, or variable
values of the model at a particular time step. While this is
enough for Boolean circuits, dynamic systems tend to evolve
through time and their variable valuations may depend on
the previous model state(s). Temporal logics allow such time
specifications over state sequences of a model (or model
traces). Here, we consider the requirements formulated with
linear temporal logic (LTL), which extends Boolean logic
with a set of temporal operators. Below, we list the examples
of the most used ones, supposing ϕ1 and ϕ2 to be the LTL
formulas:

VOLUME 9, 2021 61385

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

• Gϕ1 (‘‘globally’’): ϕ1 must be true on the entire trace of
the model;

• Fϕ1 (‘‘finally’’): ϕ1 must hold eventually;
• ϕ1 Uϕ2 (‘‘until’’): ϕ1 must be true until ϕ2 is true, and
the latter is required to eventually happen;

• Xϕ1 (‘‘next’’): ϕ1 must be true for the next state.
A valid state sequence of a model starts in one of the model

initial states and its every pair of adjacent states belongs to the
transition relation of the model. An LTL formula is satisfied
for the model if it is satisfied for all its valid state sequences.
Model checking of an LTL formula constitutes finding

whether the formula is satisfied for the model and, if it is
not, finding a counterexample (or a failure trace) that demon-
strates its violation.

We consider linear counterexamples, represented by valid
state sequences of the model, which most of the model check-
ers produce as an output. Such counterexamples may take
finite or lasso-shaped form, where, in the latter, a failure trace
consists of a finite prefix and a loop.

Models of industrial systems contain dozens of variables,
nested modules and complex dependencies [23]. In this case,
being a mere table of values, counterexamples offer a limited
help in localizing the issues, consuming time and resources
for their decoding. Having an FBD as a model, visualization
techniques especially avail dealing with such an issue, there-
fore, the current work focuses on providing a tool for visual
counterexample explanation on an FBD of a system.

III. COUNTEREXAMPLE EXPLANATION
Informally, we aim to explain the false outcome of an LTL
formula ϕ on counterexample X of length l to a given FBD
D with its set of variables U = {u1, . . . , un} using both
the values of state variables of the counterexample and the
blocks in D.
Due to the possibility of explaining the outcome of ϕ

through the assignments of its variables that is present in
it [23], [24], we can decompose the process of explaining the
outcome of ϕ to the one of explaining a number of individ-
ual assignments in the counterexample. Below, we focus on
explaining a single assignment, called an explanation target.
The explanation target can be represented by an input or
output assignment of any block structure: an FBD, a modular
block, or an atomic block. Initially, explanation targets come
from applying the approach in [23], but we also allow the
situation where the user selects a custom explanation target to
focus on a particular part of D, thus allowing more flexibility
in explanation.
Definition 9 (Cause): A set of assignments C ⊆ X is a

cause of a target t if there exists such sequence of sets of
assignments from X , Y0, . . . ,Ym : C = Y0, t ∈ Ym, where
each Yk+1, k ∈ [0,m−1] extends Yk with a single assignment
a′i,j ∈ X , there exists constraint c

∗
∈ CD such that the formula

c∗ ∧

 ∧
ai,j∈Yk

(vi,j = v(ai,j))

→ (
va′i,j = v(a′i,j)

)
(1)

is valid, and a′i,j refers to the output variable of the atomic
block or connection to which c∗ corresponds.
Intuitively, in every set Yk from the definition above there

exists a cause of the new assignment that is added to Yk to
obtain Yk+1 and at some extension step q < m, t should be
added to get Yq+1.

This definition can also be explained in terms of logical
inference. Suppose that each statement is an assignment.
Then the definition says that it is possible to infer t given a
set of statements C if the allowed rules are limited to using
input-output dependencies of each individual atomic block or
connection in the direction of the information flow.
Definition 10 (Inclusion-minimal cause): C ⊆ X is an

inclusion-minimal cause (IMC) of t if C is a cause of t and
there is no C ′ ⊂ C that is a cause of t .
Having these definitions, we say that to explain the tar-

get (or to find a cause of the target) means to find the union of
its IMCs. This is due to the following points: (1) sometimes,
in the context of the current counterexample, outputs of some
blocks have several different IMCs, that should be displayed,
i.e., the result of disjunction of two true variables has two
IMCs, (2) the IMCs may be composed not only of input
assignments of D but also of its internal assignments and we
claim that showing such internal IMCs provides additional
assistance to the user.

As an example, consider the atomic block AND from Fig. 3
and a counterexample of length 1. Assume that the explana-
tion target is t = (u14, 0, 1), and v12,1 = 1, v13,1 = 0 (we
denote logical values TRUE and FALSE as 1 and 0 respec-
tively). To find out if any of input variables U = {u12, u13}
of AND are included in a cause of t , we, first, substitute c∗

in (1) with v14,1 = v12,1 ∧ v13,1. Then, as soon as U and t
belong to the same atomic block without delay, the only one
constraint is required to infer the cause, hence, the length of
the sequence of sets from Definition 9 is two, where the first
one is a cause. Now, we rewrite (1) as

(
v14,1 = v12,1 ∧ v13,1

)
∧

 ∧
ai,1∈C

(vi,1 = v(ai,1))

→ (v14,1 = 0), (2)

where i in the middle part is an index of the variable from U .
Having (2), the next step is to pick such assignments for C

so that the relation (2) is valid and C is inclusion-minimal.
In this example, there exists one such set of assignments
C = {(u13, 0, 1)}.
With the set of assignments U that can be potentially

but not necessarily added to Y0 from Definition 9 in (1),
it is possible to set an explanation scope. In the previous
example, the scope was defined by the input assignments
of AND at step 1. Alternatively, if we explain t using input
assignments of both OR blocks at the same step, constraints
for all atomic blocks shown in Fig. 3 and two constraints
for the connections {v10,1 = v12,1, v11,1 = v13,1} will
be used in the extension procedure. Assume v8,1 = 0 and

61386 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 4. Illustration of the assignment explanation process. Digits above the connections show values of the transmitted signals. The
explanation process results in a subset of variables of the system which are ‘‘responsible’’ for the value being explained.

v9,1 = 0. Then the chosen scope produces the following IMC:
C = {(u8, 0, 1), (u9, 0, 1)}.

IV. ASSIGNMENT EXPLANATION ALGORITHM
The problem, stated in Section III, assumes that among all
system assignments a union of IMCs of an explanation target
should be found. To do this, first, we define a global explana-
tion scope as the union of all input assignments of the FBD
that the explanation target belongs to and assignments inside
the FBD that have names of the variables which do not have
incoming connections. Next, for any modular block, it is a
dubious help to see how, e.g., its output depends on its inputs,
the analyst usually wants to knowwhy such dependency takes
place. Hence, in the explanation result, we also include IMCs
for every nested explanation scope if they exist for such a
scope. Thirdly, sometimes (for modular blocks) there can be
more than one IMC and it is the user who chooses the one of
their interest, thus, we need to discover the union of all such
causes.

A. RECURSIVE EXPLANATION
The algorithm is provided in Alg. 1 and is illustrated in Fig. 4,
where the problem is to explain why output variable u5 of the
modular block is FALSE at counterexample step s.

TABLE 2. Atomic block explanation rules of finding local IMCs. Assume
that the request is the explanation target represented by the tuple
(u, v, s), where v is the value of u at step s, and a set of assignments
representing a cause is returned.

Recalling that an FBD itself is a modular block of modular
blocks, to explain its output assignment, we need to find
the output variable connected to the variable of the output
of interest in the nested modular or atomic block (Fig. 4,
iteration 1). Then, if the found variable belongs to a modular
block, the output assignment of such a block is explained
through the underlying net of blocks, whereas to explain
an output of an atomic block, the rules from Table 2 are

Algorithm 1: Assignment Explanation Algorithm
explain.
Data: FBD D, counterexample X , explanation target

t ∈ X
Result: set C – the union of all IMCs of t in D

1 if t corresponds to an input variable of D or a constant
block input then

2 return {t} /* this is a terminating
cause */

3 else if t is an input variable of an atomic block in D then
/* follow the connection and add it

to the tree */
4 t ′← the assignment of the output variable at the

opposite end of the connection where t is located
5 return explain(D,X , t ′) ∪ {t}
6 else

/* t is an output variable of some
atomic block */

7 t1, . . . , tm← causes found for the current atomic
block type according to Table 2

8 C ← {t}
/* recursively explain the

assignments of the local cause

*/
9 for i = 1 to m do
10 C ← C ∪ explain(D,X , ti)

11 return C

utilized. As a result, we have a set of input assignments that
are sufficient to make explained atomic block output have its
particular assignment – an IMC (Fig. 4, iteration 2). If the
obtained inputs have incoming connections, we continue the
explanation procedure recursively in the same way; interme-
diate results from each step are added to the overall result
set. After the algorithm terminates, the result composed of
all IMCs in global and all the nested explanation scopes
is obtained (Fig. 4, iteration N), its graphical visualization
described in Section V.
The time and memory complexity of the algorithm is O(n ·

s(t)), where n is the number of variables in the FBD (including
ones that belong to internal atomic blocks). These estimates
can be achieved if the result of each call of explain is
memorized and not recomputed.

VOLUME 9, 2021 61387

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

Theorem 1: Alg. 1 finds the union of all IMCs of t .
The algorithm performs a backward (in terms of the infor-

mation flow in the FBD) cone-of-influence analysis, seeking
for all assignments that could be the cause of t according
to Definition 9. Note that this definition requires that any
cause must be sufficient to reach the target by inferring new
assignments only in the direction of the information flow,
which means that a search against this flow could reach all
these causes. Moreover, the rules in Table 2 were specifically
chosen to return the union of IMCs for an output of an FBD
composed of an isolated atomic block. The formal proof is
provided in Appendix A.

V. IMPLEMENTATION
The implementation of the algorithm described in Section IV
was incorporated into the tool Oeritte2 with the user interface
developed to aid the analyst in the debugging process.

A. INPUT DATA
The tool accepts a NuSMV model, an LTL formula and a
counterexample for the provided formula on the provided
model as input. A restricted, but, nonetheless, already usable
according to our practical experience, subset of NuSMV and
LTL is supported. Below are the main limitations:
• The main module of the NuSMV model is restricted to
declarations of input variables and nested modules.

• In othermodules, each internal variablemust be declared
with init and next operators. These assignments
must be deterministic (set notation {. . .} is disallowed).
INIT and TRANS declarations are not allowed.

• DEFINE declarations are not allowed to use the next
operator.

• Only Boolean and integer scalar types are supported.
• Inputs of the NuSMVmodules should be annotated with
their types in the form ‘‘varName : type’’, where
type is boolean for Boolean and any integer interval
in the form start..end for integer, e.g., 0..100.

• In LTL formulas, bounded operators (e.g., G[0,3]) and
past time operators (e.g., H) are not supported.

B. ENCODING NuSMV MODULES AS MODULAR BLOCKS
The aforementioned determinism assumption is required to
represent NuSMV modules as modular blocks since our
atomic blocks are purely deterministic. The input variables
of the modular block correspond to input variables of the
module, and the output variables correspond to its internal
variables and DEFINE declarations (the absence of next
operators inside them allows treating these declarations as if
they were internal variables). Logical and arithmetic NuSMV
operations are directly transformed into atomic blocks listed
in Table 1. To handle delays introduced with the next oper-
ator, we create a delayed version of each input variable by
passing it through a DELAY block. Each output variable is
then wired to a CHOICE, which, depending on whether this

2https://github.com/ShakeAnApple/cxbacktracker/

is the first cycle, outputs the init or the next expression
for this variable: init expressions always use undelayed
variables, while next expressions may use both undelayed
and delayed ones.

C. FBD PREPROCESSING
Modular blocks in an FBD parsed from NuSMV code are
decomposed into nets of interconnected atomic blocks that do
not appear in the original model and, therefore, a counterex-
ample lacks values of such atomic blocks variables. Neverthe-
less, these values are required for the explanation procedure.
To obtain an extended counterexample, before running the
algorithm for target t on FBD, the full set of constraints for
each of the mentioned modular blocks is added to the full
constraint set of the FBD and the values of new variables are
calculated for each counterexample step s ∈ [1, s(t)].

This stage also provides a way to ensure that the modular
block is parsed correctly, as otherwise, after execution, its
output variable values may differ from the ones stated in the
counterexample.

D. MAIN WINDOW OVERVIEW
Graphical user interface of Oeritte is presented in Fig. 5.
Two tabs Project andWorkspace (Fig. 5a) separate the overall
project settings from the working environment. Fig. 5 shows
the contents of Workspace tab. Here, two interactive areas
represent a counterexample as a table of values (Fig. 5b)
and as a list of steps (Fig. 5c). A click on the item of the
latter list evaluates the FBD in diagram (Fig. 5d) (hereinafter,
the diagram) and LTL formula tree view (Fig. 5i) according
to the step chosen. For it, all system variables are assigned
with values defined by the counterexample step, hence, all
the nodes in the LTL formula tree are calculated and all the
system modules are executed.

Both atomic and modular blocks in the diagram have the
same appearance (Fig. 6). Each block has a name and a
type (Fig. 6a). Two sets of pins on the left (Fig. 6b) and
right (Fig. 6c) sides are the block’s inputs and outputs that
together form its interface (a round pin (Fig. 6d) means
input negation). A tooltip with the variable name appears
when the cursor hovers over any of the pins. Blocks with
the single input or output pin on the left and right sides of
the diagram represent an interface of the current diagram.
Lines connecting module inputs and outputs correspond to
connections between the variables. Input and output variable
values of the block for the chosen step are placed near the
corresponding connecting points of these lines. If the diagram
contains modular blocks, it is possible to open their internal
nets in separate tabs (Fig. 5e). Names of the tabs show paths of
such modular blocks in the original model and each diagram
may be scaled with buttons (Fig. 5f).
The area to the left of the diagram provides information

about the LTL formula being analyzed. Its string form resides
in combobox (Fig. 5g) (and the type of the user interface con-
trol tells us that it is possible to dynamically switch between
several formulas), tabs (Fig. 5h) show its evaluation for the

61388 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 5. Main view of the tool in the explanation mode. Blue lines correspond to the connections between the variables whose assignments are
included into the union of IMCs of the explanation target.

FIGURE 6. Visual representation of a modular block in the explanation
mode. Connections between the variables (pins) and pins themselves,
which assignments are included in a cause are highlighted with blue.
Tooltip (e) shows that the value of variable BI3 at step 1, which is false,
is a part of the explanation.

provided counterexample in the parse tree view (Fig. 5i) and
step-wise (Fig. 7a). Depending on the calculation result of the
branch, the nodes of the tree are colored in red, white and grey
for true, false and an arithmetic result respectively.
Oeritte incorporates two kinds of explanation techniques:

the cause identification algorithm from [23] for LTL for-
mulae failures and individual assignment explanation from
Section IV for the diagram. The LTL formula explanation
process may be initialized with button (Fig. 5j) for the
step chosen in list (Fig. 5c) and it result would appear in
panel (Fig. 5k), table (Fig. 5b) and LTL steps view (Fig. 7a).
By default, the formula is explained for the first step (step 0 in
the tool) with the first diagram evaluation. For the individual
assignment explanation, panel (Fig. 5l) shows the union of
minimal causes of a target in the scope of input variables
of the diagram in the current tab. The result, which includes
all the minimal causes for the target, is depicted in the dia-
gram in the form of highlighted variables and connections in
between.

E. TYPICAL WORKFLOW
Assume the analyst has several LTL formulas failed for some
modular NuSMV model and both, the formulae and the
model, meet the requirements on input data (Section V-A).
The first step now is to open Oeritte and provide it with the
counterexamples, the formulae (standard NuSMV counterex-
ample output is acceptable) and the model of the system.
After input data is loaded and the analyst selected the formula
to work with in the combobox (Fig. 5g), a click on any of the
steps triggers (1) the explanation of the LTL formula for the
first step (step 0 in the tool), and (2) a diagram of the provided
system and LTL formula tree evaluation. An explanation of
the LTL formula failure, or its cause, which is, essentially,
a set of assignments, is highlighted in blue in table Fig. 5b,
in steps view of LTL formula (Fig. 7a) and is textually repre-
sented in panel (Fig. 5k) in the form ‘‘< step_number >
< var_name > < var_value >’’.
If LTL explanation is not enough to grasp the idea behind

the failure, a click on any of the highlighted or provided
textually assignments triggers the backward explanation pro-
cess in the block diagram that results in a union of IMCs,
which, in the end, is a set of assignments. To display such
a set in the diagram view, we hide the time dimension and
highlight edges that connect output and input pins from
the common set of causes with blue. At the same time,
if some variable is a cause at several time steps, the pin
representing this variable obtains a tooltip where all its
values included in the causes are displayed in the form
‘‘< step_number >:< value >’’ (Fig. 6e). Together
with graphical visualization, list (Fig. 5l) shows terminating
assignments, i.e., assignments, whose variables do not have
incoming connections and belong to the input interface of the
model. They are displayed in the form ‘‘< step_number >

VOLUME 9, 2021 61389

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 7. Visual LTL formula explanation in Oeritte and with timing diagram. In the text, MAN_RESET_1 is replaced with MAN_RESET and
PS_ALU001.RODS_DOWN with RODS_DOWN.

< var_name > < block_name > < value >’’. This is
the output of our interest, which includes evaluation paths in
the model that influenced the chosen assignment to have its
value. We argue that showing such paths and not only the
assignments of an IMC provides useful visual information
to the analyst. In case, the assignment belongs to the nested
block that is not visible, a tab for its parent block will be
opened automatically.

It is also possible to get the explanation on the diagram
for an assignment that is not included in the LTL formula
explanation result. For it, one should simply choose the step
in Fig. 5c and define an explanation target by clicking on the
pin with the desired variable name in Fig. 5d.

VI. CASE STUDY
As in [25], we demonstrate our method and the tool using
a fictitious FBD implementation [25] of the U.S. EPR pro-
tection system [26], [27] encoded in NuSMV. On the top
layer of hierarchy, it consists of acquisition and processing
units (APUs) and actuation logic units (ALUs), combina-
tions of which form two fault-tolerant subsystems: protection
system (PS) and safety automation system (SAS). Based
on signals from PS and SAS, priority and actuator control
system (PACS) drives the control rods. Fig. 8 in [25] shows
the full structure of the case study, with a note that process
automation system (PAS) was replaced with external inputs.

The NuSMV file encoding such a system contains
approximately 650 lines of code describing 20 different
function block types and 32 function block instances.
We see that the model of the system violates the
LTL property G (¬MAN_RESET ∧ X(MAN_RESET ∧
ϕ) → X¬(PS_ALU001.RODS_DOWN)), where ϕ =

¬PS_ALU001.AND2001.BO1 stands for the safety crite-
rion. This property tells that the rods down command shall
be deactivated when the safety criterion is satisfied, and the
operator issues a manual reset. For the simplicity of reading,
further, we will denote variable PS_ALU001.RODS_DOWN
as RODS_DOWN. The counterexample for such a case consists
of 3 steps including the values of all 375 model variables.
The situation gets even harder when we notice that the safety
criterion is not a mere function of inputs and outputs of the
whole diagram, but the output of the block nested in one of
the modular blocks inside the model.

The first step of our analysis is to see why the LTL formula
itself has failed. The steps view of the LTL formula (Fig. 7a)
reveals the situation where the rising edge of MAN_RESET
had no influence on the commands to the rods despite that the
safety criterion allowed it (Fig. 7b visualizes the counterex-
ample with timing diagram). The causes of the failure here
are shown with blue boxes around the names of the variables.
At steps 1 and 2, MAN_RESET has values false and true
correspondingly. In these circumstances, if the criterion is sat-
isfied, then the formula requires RODS_DOWN to be false
at step 2. However, it is not the case and boxes around
PS_ALU001.AND_2001.BO1 and RODS_DOWN draw out
attention to this fact. This fact is a clue, but, unfortunately,
tells little about the processes taking place in the system,
so we switch to the diagram by clicking on RODS_DOWN
in Fig. 7a at step 2.

FIGURE 8. The connection between the criterion variable AND_2001.BO1
and an input of the block MEM_S001, whose output is connected to
RODS_DOWN. Bold lines here and further are not related to the explanation
mode and mean that the corresponding connections were selected by a
mouse click.

Many connections get highlighted and we double click
PS_ALU001 to learn if the problem lies in its internal
composition. Now we can click on the criterion in Fig. 7a
at step 2 and clearly see that the criterion variable trans-
mits its value to block MEM_S001 that, in turn, commu-
nicates its output variable value to PS_ALU001 output,
RODS_DOWN (Fig. 8)
The brief check of what influences the criterion shows that

at all the counterexample steps it is set based on variable
values from the current step (Fig. 9). The MAN_RESET signal
is set externally, hence, we move to the inference analysis of

61390 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 9. Explanations of AND_2001.BO1 at steps 0, 1, 2 show that the
criterion depends only on the assignments at the current step. To save
space, three screenshots of the explanation results are shown in one
picture.

RODS_DOWN and see that it has a range of causes at different
time steps.

The first thing we learn here is that for some reason, this
signal at step 2 does not depend on MAN_RESET at the
same step, while the property tells the opposite (Fig. 10).
The following move is to decode the reason. At step 0 we
see a straightforward dependence between the unsatisfied
criterion, and the rods sent down, despite active MAN_RESET
(Fig. 11a shows that MEM_S001.BO1 here depends only
on its input BI1). At the next step criterion allowed lifting
the rods, however, we see the result of the block OR_2001
from step 0, which is set to true by MAN_RESET, influ-
encing RODS_DOWN to be active (Fig. 11b). We do not pay
attention to other highlighted signals as they correspond to
fault propagation and are always set to false. At step 2
MEM_S001.BO1 again depends on inputs at the previous
step, moreover, the chain origins in the satisfying criterion
that now prevents resetting the rods down command despite
the external command (Fig. 11c).

This reasoning brings us to the conclusion that, in our
scenario, the satisfied criterion or active MAN_RESET signal
cause MEM_S001.BO1 being active. Moreover, the unsatis-
fied criterion at the current step sends the rods down imme-
diately. In our counterexample, first, both the criterion was
unsatisfied and MAN_RESET was set to true, and then the
criterion was satisfied all the time, thus MEM_S001.BO1was
locked in its active state.

VII. RELATED RESEARCH
To the best of our knowledge, counterexample visualization
was proposed in [28] in the tools VEDA and ViVe, and is
one of the features of MODCHK [21] and Simulink Design
Verifier [22]. While MODCHK is a graphical front-end for
NuSMV and animates an FBD directly according to a given
failure trace, Simulink Design Verifier generates a test case
out of a counterexample obtained. Timing diagrams are used
in [8]. Arguably, the most utilizable format for displaying a
counterexample ‘‘model view’’ utilized in [29] and in [30]
for simulation of IEC 61499 models. Counterexample visu-

FIGURE 10. The part of the explanation of RODS_DOWN at step 2 shows its
independence of MANUAL_RESET at step 2.

alization is the first step to user-friendly model checking,
however, the mentioned works do not assist in discovering
model deviations.

We can explain a counterexample from the verified prop-
erty point of view, in an FBD or use a synergy of both.
Only a few [23], [24], [31] deal with the property alone.
Work [31] formulates both systems and specifications using
predicate logic and considers only one-step counterexam-
ples, [24] presents the approach explaining LTL formulae,
which [23] complements with past-time LTL operators expla-
nation and provides an open-source tool with a graphical
user interface that highlights global causes of the main for-
mula and local ones of sub-formulas. Giving an idea of
what might go wrong in a property valuation, the core rea-
son for the failure typically stays hidden inside the sys-
tem and refers to the values of the variables missing in the
formula.

A verified model of a system is used in counterexam-
ple analysis in [32]–[35]. These approaches require multi-
ple runs of a model checker to obtain more failure traces
or additional good ones. [36] requires a single counterex-
ample, although, here, the counterexample is a sequence
of executed program statements, which contradicts our def-
inition of a counterexample. Our method stands out by
requiring a single failure trace and providing a visual expla-
nation, crucial for I&C systems developed in the form of
FBD.

Perhaps the most outstanding approach that inspired the
current work is [37]. It requires a single counterexample
and explains the failure in an FBD. The explanation here
is inferred based both on the model structure and a prop-
erty verified. However, only STANCE models are supported
and the safety specification is formulated with the use of
STANCE constructs. A so-called observer then monitors its
satisfaction and outputs the variable value at a particular
step to be explained. For this to happen, all the execution
paths starting in model initial states must obtain activation
condition formulae.

In our work we combine the ideas from [37] and [23]
as follows. We directly implement [23] that allows us to
obtain both safety and liveness property explanations with
respect to the formula. Then, we let the user choose the vari-
ables and the time steps to be visually explained in an FBD
and navigate such an explanation. Therefore, despite steps
towards more user-friendly counterexample visualization and
explanation have already been made, Oeritte is the only
tool that combines explanation techniques into a consistent
infrastructure.

VOLUME 9, 2021 61391

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 11. Counterexample explanation for the property failure of the EPR protection system. For more clarity, we replaced original black tooltips
with white boxes with exactly the same content and put starting letters of the names of the variables into the pins. Red curved arrows show the
direction of the analyst’s attention. All the screenshots are taken from the diagram under the System.PS_ALU001 tab.

61392 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

FIGURE 12. Visual comparison of the explanation result from [37] (on the left) and ours (on the right). Here, according to [37], two
activation paths, p1 and p2 form a cause of the value of u5 and this cause constitutes the explanation. In our case, the explanation is
comprised of the assignments included into IMCs of u5, starting from local explanation scope (the output of AND1) and finishing with
the ones belonging to the input interface of the modular block (u3, u4).

A. THE CLOSEST RELATED APPROACH
Compared to [37], we outline the differences in the theoretical
approach to the definition of a cause, in the algorithm and in
its implementation.

Our theoretical problem statement suggests that we aim
to find a union of IMCs for the explanation target. In an
FBD, we consider a set of assignments as an IMC if such
a set is obtained in a finite number of refinements of a set,
first comprising only of the explanation target, where each
refinement replaces one of the assignments from the set with
its local IMC. By contrast, [37] considers a set of active
propagation paths as a cause and a set of disjoint causes as an
explanation. Following this definition, the same assignment
might be included in the explanation more than once in case
the paths constituting a cause converge (e.g., a cause of false
outcome of ∨). Also, unlike [37] our approach to defining a
cause does not require an additional formulation of activation
paths. Our approaches are compared in Fig. 12

When it comes to the algorithm, the main difference
between the one from [37] and ours lies in their outcome.
While a set of the paths consists of independent entities that
can be shown separately, our outcome is essentially an influ-
ence tree, where every included node is explained through its
children.

This is clearly shown in our implementation, Oeritte. In the
diagram explanation mode, tooltips attached to highlighted
pins show the assignments constituting IMCs. Also, we high-
light the connections between intermediate targets and their
local causes. Another advantage of our implementation is the
integration of LTL formula explanation into the tool, which
helps to pinpoint the assignments to explain, no matter if it
was liveness or safety property verified.

VIII. DISCUSSION
A. APPLICABILITY SCOPE
Any issue detected using Oeritte (or NuSMV) holds for the
formal model of the system. The model is an abstraction,
and does not necessarily include all relevant aspects of the
real-world system and its actual environment. The model can
also be simply incorrect. In order to verify that the issue is
also relevant for the actual system, the analyst can try to
reproduce the scenario using the hardware implementation,

a simulation model, or by manually reviewing the available
design documentation.

The algorithm provided in Section IV is defined for
discrete-time models, whose state evolves through time and
may be dependent on previous executions. In general, it is
utilizable for the explanation of finite computation results,
obtained within a finite number of algorithmic steps, even
if these results are not produced by an FBD. For example,
instead of an FBD, a computation graph of an algorithm writ-
ten in an imperative programming language may be passed
as an input to an accordingly adjusted version of Alg. 1.
In this case, the main task is to create such a graphical
representation of the explanation that will benefit the analyst.
If the implementation supports manual identification of the
explanation scope, then all the assignments bounded by this
scope should be known before running the algorithm.

B. CAUSALITY
The idea of causality is discussed in a variety of philosophical
treatises of past and present. One of the earliest definitions
was given by Aristotle [38], who distinguished four forms
of causality, i.e., material, formal, efficient and final. For
us, the biggest interest lies in the first three, which refer
to (1) the whole characterized by its constituents, (2) the
reversed relation, where the choice of the details is explained
by the principles of the system obtained, and (3) an outcome
being the result of the preceding sequence of changes.

In modern science, one of the most commonly accepted
approaches to discover event dependencies is counterfactual
causation. The idea had been evolving since the 70s [39] and,
fundamentally, means that the cause is a difference that makes
the current world have the effects observed. In other words,
event A is a cause of event B if unless A happened, B would
not have happened. However, due to a horde of examples
where the theory application resulted in non-intuitive outputs
(for instance, the rock-throwing example from [40]), Lewis
reworked his theory in 2000 [41], adjusting it to be able to deal
with transitivity, preemption and other issues. Nevertheless,
we will not go deeper into this approach as our definition
is not based on counterfactual causality. For example, con-
sider atomic block AND with two inputs (u1, u2) and one
output (u3). If its output is true, then, from a counterfactual
point of view, it happens because both inputs are true.

VOLUME 9, 2021 61393

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

In case of false output with two false inputs, however,
none of the inputs is individually a cause, because, following
the definition, changing only one input from false to true
would not influence the result. But this may appear counter-
intuitive, since even a single false input leads to false output,
hence, according to our definition, there are two IMCs of
u3 = 0:C = {(u1, 0, t)} andC = {(u2, 0, t)}. Fundamentally,
while counterfactual definitions seek to find the knowledge
(preferably, minimal in some sense) of the state of the system
such that the negation of this knowledge is sufficient to
make the explanation target false, our approach seeks the
knowledge that is sufficient to conclude that the explanation
target is true.
Another work [40] defines actual but-for causes of ϕ under

some contingency in the model represented by structural
equations [42]. It also suggests amendments to the commonly
discussed problems in causal relations but it is based on the
counterfactual theory, while, as mentioned above, our causes
are not necessarily counterfactual.

In other words, we see our causality connected closer to
the first three types of causes formulated by Aristotle and
call it general. We deduce the minimal set of assignments
sufficient to infer t in the context of a given FBD, with respect
to the process taken place in the system and shown by a
counterexample. However, our definition does not consider
the system as a whole at every extension step, meanwhile,
there may exist such combinations of constraints that gen-
erally restrict the ranges of output assignments of atomic
blocks. For instance, consider Fig. 13, where signals merge
in a common ancestor if traversing backwards from a2,s,
hence eliminating any scenario where the output of block
AND is true. By our definition, {a1,s} is always an IMC of
a2,s, which may sound counter-intuitive as, in this FBD, a2,s
can always be concluded regardless of any other knowledge
of a2,s. The following version of the definition of a cause is
based on the whole set of constraints of a system model.

FIGURE 13. Illustration of a non-intuitive algorithm result at step s due to
variables u3 and u4 having a common ancestor u1. The path of an
explanation process for a2,s is highlighted with bold blue. Here block NOT
inverts the signal from variable u1, thus, block AND computes the
expression v (a2,s) = v (a1,s) ∧ ¬v (a1,s), which is always false. The
algorithm will result in the path in bold blue and {(u1, 1, s)} will be the
inclusion-minimal cause of u2.

Definition 11 (Flow-independent cause): Consider FBD
D, its set of constraints CD, a counterexample X , a set of
assignments C ⊆ X from this counterexample, and an
explanation target t ∈ X . Then C is a flow-independent cause
of t iff the formula∧

r∈CD

r

 ∧
 ∧
ai,j∈C

(vi,j = v(ai,j))

→ (vt,tj = v(t))

is valid.

Definition 12 (Minimal flow-independent cause): C is a
minimal flow-independent cause (MFIC), if there is no
C ′ ⊂ C that satisfies the relation above.
Essentially, Definition 12 means that a set of assignments

C is anMFIC if it corresponds to aminimal set of assignments
that should be fixed in an FBD to keep the value of the
target unchanged even in case other variables values vary.
Still, Fig. 14 shows that the new definition brings up another
issue. The set of constraints of an FBDs does not encode
the direction of the information flow. This fact allows the
assignments that the value of the target does not depend on
to be included in MFIC.

FIGURE 14. Causes that are intuitively redundant but allowed by
Definition 12. The subset of constraints for this block is
CD = {v4,1 = v2,1, v5,1 = v3,1, v1,1 = v2,1, v1,1 = v3,1}, which means
that the values of all the variables u1, .., u5 are equal at the current
counterexample step. Following Definition 12, the minimal MFIC of any of
the assignments of these variables is a singleton that includes any of
them, i.e., {a1,1}, {a2,1}, {a3,1}, {a4,1}, {a5,1} (highlighted with bold blue).

Recalling that our Definition 9 filters away assignments
not required for the calculation of the target, we can combine
it with Definition 12 that considers the diagram as a whole
and, as a result, get the definition of a combined cause that
gets rid of both problems mentioned.
Definition 13 (Combined cause): Assume C ′ and C ′′ are

the unions of all MFICs and IMCs correspondingly. Then,
a set of assignments C is a combined cause if C = C ′ ∩ C ′′.
The algorithm that finds combined causes and its imple-

mentation in the graphical user interface is a part of the
ongoing and future work.

IX. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel counterexam-
ple explanation algorithm and an open-source tool, Oeritte,
which implements it together with a known LTL formula
explanation algorithm [23] and offers graphical backward
counterexample analysis.

Inspired by works [24], [37], the tool provides methods
and visual elements supporting explanations in terms of both
the LTL formula and the model (FBD) in the form of paths
from causes to the target values that they explain. The new
part of a user interface – LTL formula steps view, originally
implemented in [23] – increases the comprehensibility of
a cause of the LTL formula failure. The counterexample
explanation functionality of the tool might be scaled for FBDs
encoded with any language by implementing a parser from

61394 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

the source language into the program and counterexample
representations, whose implementations are provided in the
tool’s repository.

The elements of the user interface of Oeritte and their
functionality address the challenges of counterexample visu-
alization, as well as LTL formulae and a counterexample
explanation. The variables of the diagram (Fig. 6b, Fig. 6c)
and the LTL formula tree (Fig. 5a) are evaluated according
to a chosen counterexample step, which addresses the first
challenge. The second challenge is covered by the possibil-
ity to retrieve causes of the failure using only the formula
structure, where the LTL formula tree (Fig. 5a), the button
‘‘explain formula’’ and highlighted values (Fig. 5c) help with
visualization. Finally, the diagram (Fig. 5b) combined with
the presented method of individual assignment explanation
assists in the analysis of the system model as a whole.

An industrial-sized case study proves that Oeritte assists in
counterexample explanation for models of complex systems,
saving time and efforts of analysts.

Intuitively, our algorithm builds a tree of logical inference
with the root in the explanation target and the leaves in input
assignments of the opened diagram. This bounds the search
area and, as shown in the case study, sufficiently reduces the
time spent on understanding the issue. On the other hand,
there is still room for making the results more precise. For
instance, consider a counterexample where the formula might
have been true unless the last state triggered its failure. Here,
the way inference paths were modified since the previous step
and why this change took place might play a key role in the
explanation process. In another scenario especially applicable
to models of complex systems, numerous assignments from
different steps in scattered diagram areas influence the target.
Having a single counterexample, we could calculate a set
of changes (minimal or not) in variable values that may
indirectly indicate the cause of the problem. Adding to this
method a possibility for the user to fix the assignments, so that
the changes for them are not suggested, will contribute to
narrowing down the search.

One of the branches of our future work includes the the-
oretical formulation of the aforementioned diagram search
space reduction ideas, development and implementation of
supporting graphical user interface concepts. Another point
of enhancement is the tool itself. We will continue improving
the user interface (especially its diagram area) and eliminat-
ing the input data restrictions. One of the most challeng-
ing milestones in explanation enhancement is to show the
complex inference paths clearly, visually separating minimal
causes and adding the time dimension.

APPENDIX A
PROOF OF THEOREM 1
Definition 14 (Computation graph): A computation graph

of an FBD is a directed graph whose vertices correspond to
assignments. Due to the determinism assumption of atomic
blocks, these assignments can be expressed as functions of
some other assignments. These dependencies correspond to

the arcs of the computation graph. The graph is also acyclic
as feedback loops constituting of assignments from a single
time step are forbidden in considered FBDs.
Definition 15 (Causal path): In the computation graph of

FBDD for counterexample X , a causal path p = a1 a2 . . . am,
represented by a sequence of assignments ai, where i ∈ [1,m]
and am = t , is a directed path from an assignment a1 to the
explanation target such that each vertex aj, j ∈ [1,m − 1],
belongs to the local IMC of aj+1.

Proof: Suppose that Ct is the union of IMCs of t . As
Alg. 1 explores exactly all causal paths (this is due to line 7),
it remains to prove that assignment a belongs to some IMC
iff a belongs to some causal path. For it, we need to prove the
following two statements:

1) If there exists a causal path p from a to t , then a belongs
to some C ⊆ Ct .

2) If a ∈ C , where C ⊆ Ct , then there exists a causal path
from a to t .

By C∗a we denote a local IMC of a. To prove the first state-
ment, we take C =

⋃
a′∈p,a′ 6=a

C∗a′ , i.e., the union of local IMCs

of the assignments constituting p. Suppose that C 6⊆ Ct .
Then it is possible to remove some assignment from C and
it would remain a cause of t . But removing some assignment
will make it impossible to deduce its parent according to
Definition 9 (since all the children form a local IMC).Without
this parent, it becomes impossible to deduce the parent of this
parent. Applying this consideration a finite number of times
will make us conclude that it is impossible to deduce t . Thus,
C ⊆ Ct . Contradiction.
To prove the second statement, we will find how to con-

struct such a path for each computation graph. We can select
C to be an IMC of t . For C , there is a sequence of expand-
ing sets that eventually reaches t . Some of these extensions
introduce some assignments a11, . . . , a

1
k , to which there is an

arc from a (there is at least one such assignment, otherwise
removing a would retain C a cause of t and C would not be
IMC). If for all a11, . . . , a

1
k there are no arcs to assignments

used in the deduction for C , then, as before, we could have
removed a from C . Thus, there is at least one assignment a1i1
for which such an arc exists. Repeating the same considera-
tion for the parents of a1i1 , we get that there is some assignment
a2i2 to which there is an arc from a1i1 . There exists k such that
by repeating the same consideration k times, we will always
end up finding an arc leading to t . Thus, we have found a
causal path p = a a1i1 . . . a

k
ik t . �

REFERENCES
[1] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,

MA, USA: MIT Press, 1999.
[2] G. E. Gelman, K. M. Feigh, and J. Rushby, ‘‘Example of a complementary

use of model checking and agent-based simulation,’’ in Proc. IEEE Int.
Conf. Syst., Man, Cybern., Oct. 2013, pp. 900–905.

[3] H. Wang, D. Zhong, and T. Zhao, ‘‘Avionics system failure analysis and
verification based on model checking,’’ Eng. Failure Anal., vol. 105,
pp. 373–385, Nov. 2019.

[4] V. Todorov, F. Boulanger, and S. Taha, ‘‘Formal verification of automotive
embedded software,’’ inProc. 6th Conf. FormalMethods Softw. Eng., 2018,
pp. 84–87.

VOLUME 9, 2021 61395

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

[5] J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen, ‘‘For-
mal analysis and testing of real-time automotive systems using UPPAAL
tools,’’ in Proc. Int. Workshop Formal Methods Ind. Crit. Syst. Cham,
Switzerland: Springer, 2015, pp. 47–61.

[6] P. Filipovikj, N. Mahmud, R. Marinescu, C. Seceleanu, O. Ljungkrantz,
and H. Lönn, ‘‘Simulink to UPPAAL statistical model checker: Analyz-
ing automotive industrial systems,’’ in Proc. Int. Symp. Formal Methods.
Cham, Switzerland: Springer, 2016, pp. 748–756.

[7] A. Pakonen, I. Buzhinsky, and K. Björkman, ‘‘Model checking reveals
design issues leading to spurious actuation of nuclear instrumentation and
control systems,’’ Rel. Eng. Syst. Saf., vol. 205, Jan. 2021, Art. no. 107237.

[8] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, and P. Seong, ‘‘FBD-
Verifier: Interactive and visual analysis of counter-example in formal
verification of function block diagram,’’ J. Res. Pract. Inf. Technol., vol. 42,
no. 3, p. 171, 2010.

[9] E. Németh and T. Bartha, ‘‘Formal verification of safety functions by
reinterpretation of functional block based specifications,’’ in Proc. Int.
Workshop Formal Methods Ind. Crit. Syst. (FMICS). Berlin, Germany:
Springer, 2008, pp. 199–214.

[10] B. F. Adiego, D. Darvas, E. B. Viñuela, J.-C. Tournier, S. Bliudze,
J. O. Blech, and V. M. G. Suárez, ‘‘Applying model checking to industrial-
sized PLC programs,’’ IEEE Trans. Ind. Informat., vol. 11, no. 6,
pp. 1400–1410, Dec. 2015.

[11] L. C. Cordeiro, E. B. de Lima Filho, and I. V. Bessa, ‘‘Survey on automated
symbolic verification and its application for synthesising cyber-physical
systems,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 5, no. 1, pp. 1–24,
Mar. 2020.

[12] I. Buzhinsky and A. Pakonen, ‘‘Symmetry breaking in model checking of
fault-tolerant nuclear instrumentation and control systems,’’ IEEE Access,
vol. 8, pp. 197684–197694, Oct. 2020.

[13] A. Cimatti and A. Griggio, ‘‘Software model checking via IC3,’’ in Proc.
Int. Conf. Comput. Aided Verification. Berlin, Germany: Springer, 2012,
pp. 277–293.

[14] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, ‘‘Bounded
model checking,’’ Adv. Comput., vol. 58, pp. 121–125, 2003.

[15] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
‘‘Symbolicmodel checking: 1020 states and beyond,’’ Inf. Comput., vol. 98,
no. 2, pp. 142–170, 1992.

[16] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, ‘‘NuSMV 2: An OpenSource
tool for symbolic model checking,’’ in Proc. Int. Conf. Comput. Aided
Verification (CAV). Berlin, Germany: Springer, 2002, pp. 359–364.

[17] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[18] P. Ovsiannikova, I. Buzhinskyt, A. Pakonen, and V. Vyatkin, ‘‘Visual
counterexample explanation for model checking with OERITTE,’’ in Proc.
25th Int. Conf. Eng. Complex Comput. Syst. (ICECCS), 2020, pp. 1–10.

[19] Programmable Controllers. Part 3: Programming Languages,
International Standard IEC 61131-3:2013, International Electrotechnical
Commission, 2013.

[20] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. Cambridge, MA, USA: MIT Press, 2016.

[21] A. Pakonen, T. Mätäsniemi, J. Lahtinen, and T. Karhela, ‘‘A toolset for
model checking of PLC software,’’ in Proc. IEEE 18th Conf. Emerg.
Technol. Factory Automat. (ETFA), Sep. 2013, pp. 1–6.

[22] Simulink Design Verifier. Accessed: Nov. 26, 2019. [Online]. Available:
https://www.mathworks.com/products/simulink-design-verifier.html

[23] A. Pakonen, I. Buzhinsky, and V. Vyatkin, ‘‘Counterexample visualization
and explanation for function block diagrams,’’ in Proc. IEEE 16th Int.
Conf. Ind. Informat. (INDIN), Jul. 2018, pp. 747–753.

[24] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler, ‘‘Explaining
counterexamples using causality,’’ Formal Methods Syst. Des., vol. 40,
no. 1, pp. 20–40, Feb. 2012.

[25] I. Buzhinsky and A. Pakonen, ‘‘Model-checking detailed fault-
tolerant nuclear power plant safety functions,’’ IEEE Access, vol. 7,
pp. 162139–162156, 2019.

[26] ‘‘U.S. EPR protection system,’’ AREVA NP, Paris, France,
Tech. Rep. ANP-10309NP, Revision 4, 2012. [Online]. Available: https://
www.nrc.gov/docs/ML1216/ML121660317.html

[27] (2013). U.S. EPR Final Safety Analysis Report. [Online]. Available:
https://www.nrc.gov/reactors/new-reactors/design-cert/epr/reports.html

[28] V. Vyatkin andH.-M. Hanisch, ‘‘Verification of distributed control systems
in intelligent manufacturing,’’ J. Intell. Manuf., vol. 14, no. 1, pp. 123–136,
2003.

[29] K. Loer and M. D. Harrison, ‘‘An integrated framework for the analysis of
dependable interactive systems (IFADIS): Its tool support and evaluation,’’
Autom. Softw. Eng., vol. 13, no. 4, pp. 469–496, Oct. 2006.

[30] S. Patil, V. Vyatkin, and C. Pang, ‘‘Counterexample-guided simula-
tion framework for formal verification of flexible automation systems,’’
in Proc. IEEE 13th Int. Conf. Ind. Informat. (INDIN), Jul. 2015,
pp. 1192–1197.

[31] A. Ek, ‘‘Explanation of counterexamples in the context of formal verifica-
tion,’’ M.S. thesis, Dept. Inf. Technol., Uppsala Univ., Uppsala, Sweden,
2016.

[32] A. Groce and W. Visser, ‘‘What went wrong: Explaining counterexam-
ples,’’ in Proc. Int. SPIN Workshop Model Checking Software. Berlin,
Germany: Springer, 2003, pp. 121–136.

[33] A. Groce, D. Kroening, and F. Lerda, ‘‘Understanding counterexamples
with explain,’’ in Proc. Int. Conf. Comput. Aided Verification. Berlin,
Germany: Springer, 2004, pp. 453–456.

[34] S. Leue and M. T. Befrouei, ‘‘Counterexample explanation by anomaly
detection,’’ in Proc. Int. SPIN Workshop Model Checking Softw. Berlin,
Germany: Springer, 2012, pp. 24–42.

[35] F. Leitner-Fischer and S. Leue, ‘‘Causality checking for complex system
models,’’ in Proc. Int. Workshop Verification, Model Checking, Abstract
Interpretation. Berlin, Germany: Springer, 2013, pp. 248–267.

[36] C. Wang, Z. Yang, F. Ivančić, and A. Gupta, ‘‘Whodunit? Causal analysis
for counterexamples,’’ in Proc. Int. Symp. Autom. Technol. Verification
Anal. Berlin, Germany: Springer, 2006, pp. 82–95.

[37] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels, ‘‘Paths to property
violation: A structural approach for analyzing counter-examples,’’ in Proc.
IEEE 12th Int. Symp. High Assurance Syst. Eng., Nov. 2010, pp. 74–83.

[38] A. Falcon, ‘‘Aristotle on causality,’’ in The Stanford Encyclopedia of
Philosophy, E. N. Zalta, Ed. Stanford, CA, USA: Stanford Univ., 2019.

[39] D. Lewis, ‘‘Counterfactuals and comparative possibility,’’ J. Phil. Log.,
vol. 2, no. 4, pp. 418–446, 1973.

[40] J. Y. Halpern, ‘‘A modification of the Halpern–Pearl definition of causal-
ity,’’ in Proc. 24th Int. Conf. Artif. Intell. (IJCAI). Palo Alto, CA, USA:
AAAI Press, 2015, pp. 3022–3033.

[41] D. Lewis, ‘‘Causation as influence,’’ J. Philos., vol. 97, no. 4, pp. 182–197,
2000.

[42] J. Pearl, Models, Reasoning and Inference. Cambridge, U.K.: Cambridge
Univ. Press, 2000.

POLINA OVSIANNIKOVA was born in 1994. She
received the B.Sc. degree in software engineering
and the M.Sc. degree in applied mathematics and
computer science from ITMO University, Saint
Petersburg, Russia. She is currently pursuing the
double Ph.D. degree with Aalto University, Espoo,
Finland, and ITMO University.

Her research interests include formal verifica-
tion and its industrial applicability, user-friendly
model checking, methods for identification of

causes of failures in I&C systems, and automation technologies for vertical
farming.

IGOR BUZHINSKY was born in 1992. He rece-
ived the B.Sc. and M.Sc. degrees in applied
mathematics and computer science from ITMO
University, Saint Petersburg, Russia, in 2013 and
2015, respectively, the second M.Sc. degree in
software engineering and service design from
the University of Jyväskylä, Jyväskylä, Finland,
in 2015, and the D.Sc. (Tech.) degree from Aalto
University, Espoo, Finland, in 2019.

He is a former Research Fellow with ITMO
University and a former Postdoctoral Researcher with Aalto University.
His research interests include formal verification, synthesis of finite-state
models, and reliability of deep learning.

61396 VOLUME 9, 2021

P. Ovsiannikova et al.: Oeritte: User-Friendly Counterexample Explanation for Model Checking

ANTTI PAKONEN was born in 1979. He received
the M.Sc. (Tech.) degree in I&C systems from
the Helsinki University of Technology, Espoo,
Finland, in 2004.

He is currently a Senior Scientist and a Project
Manager with the VTT Technical Research Cen-
tre of Finland Ltd., Espoo, where he has been
employed, since 2002. His research interests
include I&C software engineering, I&C archi-
tecture evaluation, practical application of model

checking in industrial applications, and knowledge management.

VALERIY VYATKIN (Member, IEEE) received the
Ph.D. and Dr.Sc. degrees in applied computer sci-
ence from Taganrog Radio Engineering Institute,
Taganrog, Russia, in 1992 and 1999, respectively,
the Dr.Eng. degree from the Nagoya Institute
of Technology, Nagoya, Japan, in 1999, and the
Habilitation degree from the Ministry of Science
and Technology of Sachsen-Anhalt, in 2002.

He was a Visiting Scholar with Cambridge
University, Cambridge, U.K., and had permanent

appointments with The University of Auckland, New Zealand,Martin Luther
University, Germany, and in Japan and Russia. He is currently on joint
appointment as the Chair of Dependable Computations and Communica-
tions, Luleå University of Technology, Luleå, Sweden, and a Professor of
Information Technology in Automation, Aalto University, Finland. He is also
the Co-Director of the International Research Laboratory Computer Tech-
nologies, ITMO University, Saint-Petersburg, Russia. His research interests
include dependable distributed automation and industrial informatics, soft-
ware engineering for industrial automation systems, artificial intelligence,
distributed architectures, andmulti-agent systems in various industries: smart
grid, material handling, building management systems, data centers, and
reconfigurable manufacturing.

Dr. Vyatkin was a recipient of the Andrew P. SageAward for the Best IEEE
TRANSACTIONS Paper in 2012. He is the Chair of IEEE Industrial Electronics
Society (IES) Technical Committee on Industrial Informatics.

VOLUME 9, 2021 61397

