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Abstract

Texts are the major information carrier for internet users, from which learning the latent representations
has important research and practical value. Neural topic models have been proposed and have great per-
formance in extracting interpretable latent topics and representations of texts. However, there remain two
major limitations: 1) these methods generally ignore the contextual information of texts and have lim-
ited feature representation ability due to the shallow feed-forward network architecture, 2) Sparsity of the
representations in topic semantic space is ignored. To address these issues, in this paper, we propose a
semantic reinforcement neural variational sparse topic model (SR-NSTM) towards explainable and sparse
latent text representation learning. Compared with existing neural topic models, SR-NSTM models the
generative process of texts with probabilistic distributions parameterized with neural networks and incor-
porates Bi-directional LSTM to embed contextual information at the document level. It achieves sparse
posterior representations over documents and words with zero-mean Laplace distribution and topics with
sparsemax. Moreover, we propose a supervised extension of SR-NSTM via adding the max-margin posterior
regularization to tackle the supervised tasks. The neural variational inference method is utilized to learn our
models efficiently. Experimental results on Web Snippets, 20Newsgroups, BBC, and Biomedical datasets
demonstrate that the contextual information and revisiting generative process can improve the performance,
leading to the competitive performance of our models in learning coherent topics and explainable sparse
representations for texts.

Keywords: Neural Sparse Topic Model, Neural Variational Inference, Explainable Text Representation

1. Introduction

On the internet, there are massive texts posted by active internet users, such as tweets, microblog texts,
and news headlines, which carry a variety of valuable information, such as public opinions, social hot spots,
and user interests. Learning the latent representations of texts has significant research and practical value.
Deep neural networks including as convolutional neural networks (CNNs) [1] and recurrent neural networks5

(RNNs) [2], graph neural networks [3], have shown strengths in learning text representations. However,
one well-known issue of them is that the learned representations of them are difficult to interpret [4]. On
the other hand, topic modeling has been one of the most effective text analysis tools and able to generate
interpretable topics. However, the application and extension of these methods are limited, since the subtle
variant of the model increases the complexity of the probabilistic generation architecture, and requires the10

re-deduction of the whole inference process. Therefore, it is intuitive to combine both neural networks and
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topic models to create advanced models that can be derived easily and be able to learn explainable neural
representations.

To address this issue, a series of studies have been carried out in this line of research. There are many
researches devoting to combine deep learning techniques with topic models. In these models [5, 4, 6, 7, 8, 9],15

the back propagation method is utilized to automatically update the parameters during the training, since
the probabilistic mixtures in the generative process of traditional topic models are replaced by deep neural
networks. Thus, they can be derived easily and extended flexibly with the neural network structures and the
back propagation. Moreover, they also adopt pre-trained word embeddings which are proved to be effective in
capturing the semantic information at the word level, achieving great performance on extracting meaningful20

latent topics and representation of texts. However, there are still major challenges for these neural topic
models: 1) they ignore contextual information at the document level, limiting the express ability of the
generated latent representations. With feed-forward neural networks, they are unable to model the sequence
structure of words in the document. 2) they don’t achieve sparsity of the representations in the topic semantic
space. Yielding sparsity in representations has been proved to be effective in improving the discrimination25

and explainability of learned representations [10, 11]. In reality, it is intuitive that each document focuses
on a few topics and each topic focuses on a few words.

To address these challenges, we propose a novel neural sparse topic model called semantic reinforcement
neural variational sparse topic model (SR-NSTM), aiming to learn interpretable and more efficient latent
representations of texts with sparse distribution prior. Different from previous approaches, SR-NSTM utilizes30

the neural networks to parameterize the prior distributions in the generative process of texts, rather than
directly replacing the mixtures with neural networks. Our method further incorporates Bi-directional Long
short-term memory (Bi-LSTM), to consider the sequential structure of words at the document level, which
enriches the semantic information provided by texts. To achieve the sparsity enhancement in SR-NSTM,
we utilize the parameterized zero-mean Laplace distribution to achieve sparse posterior representations over35

documents and words, and the sparsemax function to yield sparse representations over topics. We adopt
the neural variational inference method to approximate the posterior distribution and reparameterize the
sampling process with neural networks. Moreover, we further present a supervised extension of SR-NSTM to
learn predictive representations with the max-margin posterior constraints, which can be directly utilized in
supervised tasks. Our proposed method inherits the probabilistic characteristics of the sparse topic model,40

and inference in end-to-end style as the neural networks. Thus, it can be extended flexibly with additional
hypothesis or regularization in the new scenario, while achieving explainable latent semantic representations
of texts that humans can interpret.

1.1. Contribution

The main contributions of our paper can be summarized as follows:45

• We propose a semantic reinforcement neural topic model SR-NSTM for sparse and explainable text
representation. To learn more effective representations of texts, SR-NSTM revisits the generative
process of sparse topic models and incorporates the contextual information with Bi-LSTM.

• We extend our model to supervise learning tasks with the max-margin posterior constraints and infer-
ence our models with the neural variational inference method.50

• Experimental results on four text datasets demonstrate the superiority of our models in perplexity,
topic coherence and text classification accuracy.

2. Related Work

Previous researches related to our work can be divided into three parts: traditional sparse topic models,
neural topic models, and neural sparse topic models.55

Sparse Topic Models. The sparsity of the representations in the semantic space is critical in improving
the discriminating and explainability of representations [10, 12]. There were many sparsity-enhanced topic
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models, which aimed at extracting meaningful latent representations of texts and alleviating the issue of
the sparse word co-occurrence information. Eisenstein et al. [13] proposed an alternative generative model
called SAGE, in which each class label and the latent topic was endowed with a model of the deviation in60

log-frequency from a constant background distribution. Chen et al. [14] presented cFTM via leveraging
contextual information about the author and document venue, in which the hierarchical beta process was
employed to infer a focused set of topics associated with each author and venue. However, it can only control
the sparsity of topics and ignored the sparsity at the document level. To achieve sparse representations in
the document-topic and topic-term distributions, Williamson et al. [15] introduced a “Spike and Slab” prior65

to model the sparsity in finite and infinite latent topic structures of text. With the same purpose, Lin et
al. [11] proposed a dual-sparse topic model that addressed the sparsity in both the topic mixtures and the
word via applying the “Spike and Slab prior”. Different from the above methods, Zhu et al. [10] presented
sparse topical coding (STC) by utilizing the Laplacian prior to directly control the sparsity of inferred
representations. Based on STC, Peng et al. [16] proposed a Bayesian Sparse Topical Coding (BSTC) by70

introducing sparse Bayesian learning to improve the modeling of the sparse structure of texts. However,
the extension and application of these models are limited since their inference process is difficult due to the
complex hierarchical structure.

Neural Topic Models. Deep learning techniques have shown great performance on various tasks, such
as image classification, machine translation, and so on. The models based on deep neural networks can75

automatically update parameters during training via the back propagation method, thus can be trained in
end-to-end style. They require no manual deriving and have high flexibility. To address the aforementioned
issues, there were researches incorporating deep neural networks with topic models to improve the inference
process. Larochelle et al. [5] proposed a neural network topic model inspired by the Replicated Softmax. Cao
et al. [4] proposed a neural topic model (NTM) and presented a uniform framework where the representation80

of words and documents are efficiently and naturally combined. However, it didn’t take the word order in
texts into consideration. To deal with the problem, Tian et al. [17] proposed Sentence Level Recurrent Topic
Model (SLRTM) to capture the sequence structure based on Recurrent Neural Networks (RNN).

Besides, there were attempts applying neural variational inference which can approximate the posterior
distribution of a generative model with a variational parameterized by a neural network. Srivastava et al. [18]85

presented auto-encoding variational Bayes (AEVB) for topic models to improve the inference process. Miao et
al. [19] provided an alternative neural approach in topic modeling based on parameterized distributions over
topics. Inspired by [18], Card et al. [6] combined several variations of topic models with neural variational
inference, including the supervise information and the sparse distribution. Cong et al. [20] presented
TLASGR MCMC to learn simplex-constrained global parameters of all layers and topics simultaneously.90

Zhang et al. [21] developed Weibull hybrid autoencoding inference (WHAI) for topic models, with a hierarchy
of gamma distributions in the generative network and a hierarchy of Weibull distributions in the inference
network.

There were also previous researches focusing on incorporating word embeddings into topic models, which
have been proved to be effective in capturing the contextual semantics of words via representation learning.95

Das et al. [22] modeled the document as a collection of word embeddings and topics as multivariate Gaussian
distributions in the embedding space. However, the assumption that topics are unimodal in the embedding
space is not appropriate, since topically related words can occur distantly from each other in the embedding
space. Therefore, Hu et al. [23] proposed a latent concept topic model which introduced the concept as the
distribution of word embeddings and modeled the topic as the distribution of concepts. Nguyen et al. [24]100

proposed to extend the LDA with word embeddings as latent features. Li et al. [25] combined the local
information of word embeddings with the global information provided by LDA. Xun et al. [26] modeled each
short document as a Gaussian topic over word embeddings in the vector space. Based on the same hypothesis,
Xun et al. [27] further learned topic correlations among the continuous Gaussian topics. Batmanghelich et
al. [28] adopted the von Mises-Fisher distribution to model the word embeddings in topic models. Bunk105

et al. [29] exchanged selected topic words via Gibbs sampling while estimated the topic distribution in the
word embedding space. Xu et al. [30] adopted the Wasserstein distances with a distillation mechanism,
to learn topics and word embeddings jointly. Dieng et al. [31] utilized the inner product between a word
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embedding and an embedding of the assigned topic to parameterize a categorical distribution as the word in
topic models.110

Nevertheless, most of the aforementioned works focused on the application of topic models in learning
dense representations without considering the sparsity in the semantic space.

Neural Sparse Topic Models. There were also researches incorporating deep learning techniques
with sparse topic models to improve the flexibility of these complex models and improve representation
learning in texts when compared with neural topic models. Card et al. [6] produced a neural framework115

based on sparse additive generative models, to flexible incorporate the metadata of documents. It achieved
strong performance on several metrics. Base on STC [10], Peng et al.[9] proposed neural sparse topical
coding (NSTC) and its extensions to derive sparse representations of words and documents. It significantly
improved the flexibility and efficiency of the original sparse topic model. Most recently, Lin et al. [7] proposed
Neural SparseMax Document and Topic Models, which utilized sparsemax to directly control the sparsity120

of the topics. It outperformed previous neural sparse topic methods such as [6] in quality and stability.
However, previous neural sparse topic models can not model the generative process of texts accurately
based on only feed-forward networks. Compared with previous approaches, our models explicitly model the
generative process of texts with sparse priors: the zero-mean Laplace prior distribution parameterized with
neural networks, and also incorporates the context semantic information of documents to further improve125

the learning of document topic distribution.

3. Method

Before introducing our method, we make some definitions. We define that D = {1, ...,M} is a document
set with size M , T = {1, ...,K} is a topic collection with K topics, V = {1, .., N} is the vocabulary of the
whole data set, and wd = {wd,1, .., wd,|I|} is a vector of terms representing a document d, where I is the index130

of words in document d, and wd,n(n ∈ I) is the frequency of word n in document d. We denote β ∈ RN×K as
a global topic dictionary with K bases learned from the whole document set. Each column of it is a unigram
distribution over V . ϑd ∈ RK is the latent representation of a document d in topic space, referred to the
document code of d. sd,n ∈ RK is the latent representation of a word n in topic space, referred to the word
code of n in d. To yield interpretable patterns, (ϑ, s, β) are constrained to be non-negative.135

We start by illustrating the explainability of text representation. One well-known limitation of existing
deep neural networks is the lack of interpretability. Interpretability of models is critical since it helps users
to understand the overall strengths and weaknesses of the models. Generally, the text representation is
deemed as interpretable, if each dimension of the representation corresponds to a fine-grained sense or a
semantically coherent cluster [32]. In our model, the explainability of learned text representations, is offered140

by the topic structure and sparse mechanism. A topic model is a probabilistic generative model which
represents a document as the mixtures of latent topics, while each topic is a probabilistic distribution over
words. Based on the meaningful topics, the derived text representation by our topic model in the sparse
topic semantic space makes more sense to humans compared to neural networks (embedding), in which each
dimension of text representations is denoted as a coherent semantic concept namely: topic [33, 34, 35, 36].145

To allow a user to better understand the topic structure, topics can be visually represented by word clusters
(e.g. the top 10 or 20 most probable words), which can help the user understand the meaning of each topic
and interpret each dimension of learned topics. Generally, the more topics are coherent, the more they are
interpretable. Therefore, the interpretability of representations can be evaluated by the topic coherence,
which is approximately calculated by the pointwise mutual information (PMI).150

3.1. Neural Sparse Topical Coding

We then start by reviewing the traditional sparse topic model STC [10] and the latest neural sparse
topic model NSTC[9]. STC is a non-probabilistic topic model, which aims to induce sparsity in generated
representations with sparse regularization. In STC, word counts are assumed to be independent and can
be reconstructed from the linear combination of a set of topic bases and the latent word code. To achieve155

sparsity, STC defines the prior distribution of word code as a super-Gaussian distribution with an isotropic
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Figure 1: The graphical model of NSTM

Gaussian distribution and a Laplace distribution. However, the inference process is complex despite that
there are closed-form coordinate descent equations for model parameters. Based on Sparse Topical Coding
(STC)[10], [9] proposed an easily expandable neural spare topic model NSTC, by rebuilding STC with a
neural network to simplify the inference process of the model and introduce word embeddings to benefit160

the learning of the topic dictionary. It combines the advantages of neural topic models and STC, with a
flexible model structure that can learn sparse latent representation over the document and word level, and
meaningful topic bases. After generating the topic dictionary from the neural network, NSTC follows the
generative story below for each document d:

1. For each word n in document d:165

(a) Sample a latent variable word code sd,n ∼ fg(d, n).
(b) Sample the observed word count wd,n from p(wd,n|sd,n, βn) ∼ Poisson(sd,n ∗ βn)

fg is a feed-forward neural network to generate word code based on the word n in the document d and
p(wd,n|sd,n, βn) is the Poisson distribution for sampling observed word count. It collapses the document
code from the generative process, and replaces the composite super-Gaussian prior of the word codes and170

the uniform distribution of the topic dictionary with the neural network. Despite the improvement in model
flexibility, it cannot explicitly model the relations between random variables and the generative process as
a non-probabilistic model. Moreover, it ignores the contextual information of words in the document with
feed-forward neural networks.

3.2. Neural Variational Sparse Topic Model175

To explicitly model the probabilistic distributions of latent variables in topic models, we devote to propose
a novel neural sparse topic model NSTM. We revisit the generative process of NSTC with parameterized
distributions. We consider NSTM as a deep generative model for observed data w that depends on a hierarchy
of latent variables {ϑ, s}, and follows the generative story below for each document d:

1. Sample the topic dictionary: β = fβ(e)180

2. Sample a document code ϑd ∼ pφ(ϑd)

3. For each word n in document d:

(a) Sample a latent variable word code sd,n ∼ pφ(sd,n|ϑd)
(b) Sample the observed word count wd,n ∼ pφd,n(wd,n|sd,n, βn)

φ refers to the parameter of prior distributions, and fβ is a neural network that deriving the topic dictionary185

from the representations e of all words mentioned in the corpus. The graphical representation of NSTM is
depicted in Figure 1. In our model, we have several assumptions: 1) The document code is the document
latent representation in topic space as the document topic distribution in LDA. Different from NSTC, we
sample it from the zero-mean Laplacian distribution. Similarly, the word code is the word latent representa-
tion in topic space and sampled from the Gaussian distribution given the document code. 2) We hypothesis190

that each observed word count can be reconstructed from a linear combination between a set of topic bases
and the word code as the coefficient vector. It is sampled from the Poisson distribution with mean param-
eter sd,nβn. 3) We consider the topic dictionary as a global variable. Rather than uniform distribution, we
sample the topic dictionary from a topic dictionary neural network. Thus, we can introduce the external
word embeddings into our model without increasing model complexity. Similar to NSTC, we can take the195

word embeddings as the input of the topic dictionary neural network rather than extra latent variables. The
contextual information captured in word embeddings can help semantically similar words distributing in the
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same topic basis, resulting in better learning of word and document codes, without increasing the complexity
of the model.

The topic dictionary neural network is comprised of the following layers:200

Input layer (e ∈ RN×300): Supposing the word number of the vocabulary is N , each word is converted
into a continuous representation with an embedding matrix e in this layer. Here, we adopt the pre-trained
embeddings by GloVe based on a large Wikipedia dataset. 1.
Topic dictionary layer (β ∈ RN×K): This is a fully connected layer that converts the word embeddings
of all terms e to a topic dictionary with K topics: β = e ∗W + b, where W ∈ R300×K is a weight matrix
and b is the bias. Here, we adopt the sparsemax transformation [37] on each topic basis for sparse and
meaningful topic bases, in which the related words are focused while the unimportant ones are ignored
with zero probability. Sparsemax can yield the Euclidean projection of the input vector via the probability
simplex. For the closed-form expression of its Jacobian and a smooth convex loss function, Sparsemax can
be directly incorporated in neural networks and trained with back-propagation algorithm. Therefore, we
normalize each topic basis of the dictionary via Sparsemax as follow:

Sparsemax(β.k) : argminp∈∆N−1 ||p− β.k||2,∀k (1)

where p is a N − 1 simplex.
The major difference between NSTM and our previous approach NSTC is the modeling of the document205

code θd and the latent word codesd,n. As shown in the generative story, NSTM sample the document code
and word code from prior distributions respectively, while NSTC collapses the document code and directly
generates the word code from a feed-forward neural network. Therefore, NSTM can directly control the
sparsity of document code and explicitly model the relations between latent variables to generate sparse and
meaningful document and word representations. In general, NSTM inherits the probabilistic characteristics of210

traditional sparse topic models. It can effectively capture the correlation information in the texts with limited
length and generate interpretable meaningful representations for words and documents when compared with
neural topic models. However, the inference is more complicated than NSTC since the sampling of the
mixtures is considered in the model. Thus, we adopt the neural variational inference to approximate the
posterior distribution and automatically update the parameters with back-propagation method, which will215

be further introduced in the following section.

3.3. Neural Variational Inference for NSTM

3.3.1. The Variational Bound

In our model, the posterior inference over parameters is intractable. The general solution is the variational
inference via introducing the variational approximation optimized to the true posterior distribution. We aim
to maximize the probability of word count w in document under the generative process:

logpφ(w) = log

∫
pφ(w|s, β)pφ(s|ϑ)pφ(ϑ)

=
∫
qθ(s, ϑ|w)log

pφ(w|s, β)pφ(s|ϑ)pφ(ϑ)

qθ(s, ϑ|w)

= −DKL[qθ(s, ϑ|w)||pφ(s, ϑ)] + Eqθ(s,ϑ|w)(log

∫
pφ(w|s, β))

(2)

The above equation deduces a lower bound to the marginal log likelihood, named evidence lower bound
(ELBO). The first term of ELBO is a regularizer that constraints the Kullback-Leibler divergence between220

the variational posterior distribution and the prior distribution of the latent variables. The second term of
ELBO is the reconstruction loss.

1http://nlp.stanford.edu/projects/glove/
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The variational distribution qθ(s, ϑ) is introduced to approximate the true posterior distribution pφ(s, ϑ),
where

pφ(s, ϑ) = pφ(s|ϑ)pφ(ϑ)

pφ(sd,n|ϑd) = N(sd,n;ϑd, σ
2
sd,n

(ϑd;φ))

pφ(ϑd) = L(ϑd; 0, I)

qθ(s, ϑ) = qθ(s)qθ(ϑ|s)
qθ(ϑd|s̃d) = L(ϑd; s̃d, σϑd(s̃d; θ))

qθ(sd,n|wd,n) = N(sd,n; 0, σ2
sd,n

(wd,n; θ))

To carry out the neural variational inference, we focus on parametrizing the above various distributions in
ELBO with neural network, which allows the ELBO to be optimized by the back propagation method.

3.3.2. The Neural Parameterizing225

For the document codes, we construct the inference network to parametrize the approximate posterior
qθ(ϑ|s), which takes input the average word codes s̃d = 1

|Id|
∑
n∈Id sd,n of the document d to output the

latent variable ϑ with the variational parameters θ. We adopt the variational posterior L(ϑd; s̃d, σd(s̃d)) to
approximate the prior L(ϑd; 0, I) for the sparse document codes. A zero-mean Laplace prior has the same
effect as L1 regularization. In the variational posterior, the location parameter µd is equal to the average
word code s̃d, which aims to make the document code be close to the averaging aggregation of its individual
word codes. It is worth noting that although the variational posterior qθ(ϑ|s) is not zero-mean Laplace,
most of terms in the location parameter s̃d will tend to zero for enough sparse word codes. Then, the sparse
document codes ϑd will encourage the sparsity of word codes in turn, because we consider each word codes
is generated by the Gaussian distribution with mean ϑd in generative process. The scale parameter σd is
parametrized as follow:

πϑ = f(s̃d; θ), σϑd = Softplus(Wσπϑ + bσ) (3)

where f(s̃d) is a multilayer perceptron acting on the average word code of document d. As in [38], the
Softplus is used to ensure positive scale parameters.

For the word codes, in the generative process, we consider each of them is generated by the Gaussian
distribution with mean ϑd. We aim to make each word code sd,n in document d be close to the aggregation
center ϑd. As for the variance in pφ(sd,n), it is parameterized with the generative network as follow:

πs = f(ϑd;φ), σ2
sd,n

= Softplus(Wσπs + bσ) (4)

In the inference process, we consider the distribution qθ(sd,n|wd,n) is Gaussian with zero mean and the
variance are parametrized with the inference networks:

πs = f(wd,n; θ), σ2
sd,n

= Softplus(Wσπs + bσ) (5)

As in [39], the zero-mean Laplace distribution L(s; 0, σ) is equivalent to a two-level hierarchical-Bayes model:
zero-mean Gaussian priors with independent N(s; 0, τ), exponentially distributed variances e(τ ;σ). When τ
approaches zero, we can induce corresponding sparse s. To achieve sparse word codes, we apply the sparse230

mechanism which is similar to the hierarchical Laplace prior. In our inference process, based on the zero
mean Gaussian distribution, the word code sd,n is also zero when the variance σ2

sd,n
is zero.

3.3.3. The Reparameterization Trick

We devote to differentiate and optimize the lower bound above with stochastic gradient decent (SGD).
To reduce the variance of the stochastic gradients, we make a differentiable transformation, called reparam-
eterization trick according to [40]. We can reparameterize the variational distribution q(s) and q(ϑ) from
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Figure 2: Generative model and inference model of NSTM with two stochastic layers.

simple samples ε and ε as follows:

sd,n ∼ N(0, σ2
sd,n

)→ sd,n = σsd,n � ε, ε ∼ N(0, I)

ϑd ∼ L(s̃d, σϑd)→ ϑd = s̃d + σϑd � ε, ε ∼ L(0, I)
(6)

Through reparameterization, we can deem sd,n and ϑd as a function with the parameter µsd,n , σsd,n , and σϑd
deriving from the inference networks. It allows the reconstruction error to flow through the whole network.
Figure 2 presents the complete VAE generative and inference process for NSTM. Moreover, in order to
achieve more interpretable document and word codes [10], we constrain s and ϑ to be non-negative, and
apply the ReLU activation function after the transformation. After applying the reparameterization trick to
the variational lower bound and obtain the topic dictionary β with topic dictionary neural network, we can
yield:

−DKL[qθ(s)||pφ(s)] =

D∑
d=1

N∑
n=1

K∑
k=1

(
1

2
−
σ2
sd,nk

(φ) + ϑ2
d,k

2σ2
sd,nk(θ)

−

σsd,nk(θ)

σsd,nk(φ)
)

−DKL[qθ(ϑ)||pφ(ϑ)] =

D∑
d=1

K∑
k=1

(−lnσϑd,k(θ)− s̃d
σϑd,k(θ)

− 1)

(7)

L(θ, φ) = Eε∼N(0,I),ε∼L(0,I)

D∑
d=1

N∑
n=1

(

K∑
k=1

sd,nkβnk

− wd,nln(

K∑
k=1

sd,nkβnk))−DKL[qθ(s)||pφ(s)]

−DKL[qθ(ϑ)||pφ(ϑ)]

(8)

3.4. Semantic Reinforcement Neural Variational Sparse Topic Model235

In the previous section, we introduce our proposed model NSTM which inherits the probabilistic charac-
teristics of the sparse topic models in neural topic model to generate more sparse and meaningful represen-
tations for documents and words. However, the method still ignores the semantic structure of words in the
documents and only leverages the global co-occurrence information of words in the corpus. It is clear that the
shallow structure in topic models is unable to model the sequential and contextual information of words in240
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Algorithm 1 Training Algorithm for NSTM

Require: initialize θ, φ;W
1: repeat
2: wM ← Random mini-batch of M word counts from full datasets
3: ε← Random samples from noise distribution p(ε)
4: ε← Random samples from noise distribution p(ε)
5: g ←5θ,φ,WL(θ, φ;wM , ε, ε)
6: θ, φ,W ← Update parameters using SGD
7: until convergence

Bi-

LSTM

Figure 3: The graphical model of SR-NSTM

the document. Recently, Long Short Term Memory (LSTM) is effective to capture long-range dependencies
between words and has been widely used in the document-level semantic encoding. Therefore, we propose
Semantic Reinforcement Neural Variational Sparse Topic Model (SR-NSTM), in which the Bi-directional
LSTM is incorporated to enrich the semantic feature space of texts via modeling the sequence of the words
in the documents. Similar to NSTM, it follows the generative story bellow for each document:245

1. Sample the topic dictionary: β = fβ(e)

2. Sample a document code ϑd =Bi-LSTM(ed)

3. For each word n in document d:

(a) Sample a latent variable word code sd,n ∼ pφ(sd,n|ϑd)
(b) Sample the observed word count wd,n ∼ pφd,n(wd,n|sd,n, βn)250

The major difference between SR-NSTM and NSTM is that the document code is generated from a
Bi-LSTM rather than a prior distribution which takes the sequence of the words in the document as the
input. The detailed structure of Bi-LSTM encoder is below:
Word embedding layer (ed ∈ Rnd×300): Supposing the word number of word sequence xseqd in the docu-
ment d is nd, each word in the word sequence of document d is converted into a continuous representation255

with a pre-trained word embedding in this layer. Here we adopt GloVe word embeddings based on Wikipedia
dataset whose dimension is 300.
Bi-LSTM hidden layer : Given the input word embedding in current t word edt, the output of the forward
and backward LSTM hidden layer unit at the last t− 1 time hft−1, and at last t+ 1 time hbt+1, we have the
output of the forward and backward hidden layer units at the current word:

hft = H(edt, h
f
t−1, ct−1, bt−1)

hbt = H(edt, h
b
t+11, ct−1, bt−1)

Bi-LSTM output layer (g ∈ R1×K): It aims to connect forward and backward two LSTM hidden layer

units at current time: gt = σ(W f
h h

f
t +W b

hh
b
t + bg).

Average pooling layer: For the document-level semantic is relate to every word in it, we apply an average260

pooling on outputs of all time: pool(g) =
∑n′d
t=1

gt
nd

.

Document code layer (ϑ ∈ R1×K): Given the output of pooling layer, we aim to output the desired sparse
document code with sparsemax: ϑd = sparsemax(pool(g)).

To induce the sparsity in the document code, we introduce the sparsemax as the transformation of the
output of the Bi-LSTM. Sparsemax can help the model to generate sparse and more interpretable document265

codes which only focus on several relevant topics and filters out other irrelevant topics.
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3.4.1. Neural Variational Inference for SR-NSTM

Similar to NSTM, we aim to maximize the probability of word count w in document under the generative
process:

log

∫
pφ(w) = −DKL[qθ(s|w)||pφ(s|ϑ)] + Eqθ(s|w)(log

∫
pφ(w|s, β)) (9)

The variational distribution qθ(s|w) is introduced to approximate the true posterior distribution pφ(s|ϑ),
where

pφ(sd,n|ϑd) = N(sd,n;ϑd, σ
2
sd,n

(ϑd;φ))

qθ(sd,n|wd,n) = N(sd,n; 0, σ2
sd,n

(wd,n; θ))

With the same neural parameterizing method and reparameterization trick as in NSTM, after obtaining the
document code ϑ with Bi-LSTM encoder and topic dictionary β with topic dictionary neural network, we
can yield

−DKL[qθ(s)||pφ(s)] =

D∑
d=1

N∑
n=1

K∑
k=1

(
1

2
−
σ2
sd,nk

(φ) + ϑ2
d,k

2σ2
sd,nk(θ)

−
σsd,nk(θ)

σsd,nk(φ)
)

(10)

L(θ, φ) = Eε∼N(0,I)

D∑
d=1

N∑
n=1

(

K∑
k=1

sd,nkβnk

− wd,nln(

K∑
k=1

sd,nkβnk))−DKL[qθ(s)||pφ(s)]

(11)

3.5. Supervised Extension of NSTM

To further demonstrate the flexibility of our model provided by the neural variational inference, we
present a supervised extension of the proposed NSTM model called sNSTM, which incorporates the label
information to guide the generation of the topic dictionary and representations. sNSTM model has the
same neural model structure as NSTM, and the label information is introduced with the max-margin based
discriminant regularization. Compared with traditional topic models, the proposed NSTM model inherits
the high flexibility offered by the neural network structure. Therefore, we can derive the supervised extension
of the proposed model without changing the model structure and re-deduced mathematical inference. With
the training data pairs D = {(wd, yd)}Dd=1, we consider the multi-class classification problem, where yd
takes value from the set C = {1, ...,M}. To include the supervision information, we define a deep neural
max-margin classifier on the latent document code. Given the latent document code, we define the linear
discriminant function:

F (y, ϑ, η;w) = η>y ϑ (12)

where ηy ∈ RK is a class-specific K-dimensional parameter vector associated with class y. To connect
the classifier with previous Bayesian inference, we also treat η as a latent variable. Thus, to consider the
uncertainty of latent variable η, ϑ, we take a expectation over q(η, ϑ) and define the corresponding expected
multi-class hinge loss:

Rh({ϑd}, η; {wd}) =

D∑
d=1

max
y∈C

(∆l(yd, y)− Eq(η,ϑ)[η
>
y ∆fd(y)]) (13)
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where ∆l(yd, y) is a non-negative cost function that measures how different the prediction y is from the
true class label yd, ∆fd(y) = F (y, ϑd) − F (yd, ϑd) is the difference of the feature vectors. Therefore, the
supervised NSTM solves the following Reg-Bayes problem:

min
θ,φ,q(η)

Eq(η)(L(θ, φ;w)) +KL(q(η)||p(η)) + chRh (14)

where L(θ, φ;w) is the original variational objective of NSTM as in Eq.8, and ch is the positive regularization
parameter.270

We make a structured mean-field assumption that q(ϑ, η) = q(ϑ)q(η). According to [41], we con-
sider the normal distribution for η: given p(η) = N(0, σ2I), we have q(η) = N(λ, σ2I), where λ =
σ2

∑
d,y$

yEq[∆fd(y)], $y is the the Lagrange multiplier. In this case, ,the objective function can be
rewritten as:

min
θ,φ,λ
L(θ, φ;w) +

D∑
d=1

λd
2σ2

d

+

D∑
d=1

max
y∈C

(∆l(yd, y)− λ>d Eq(ϑd)[∆fd(y)]) (15)

Thus, λ is only related to the last two terms, and the whole objective function can be optimized with SGD.
Rather than the conditions of the deep generative model to describe the inputs, we deem the labels as side
information to guide the generation of topic models. Therefore we can introduce the supervision in the
training process with label information without coupling with the label information and introducing extra
latent variables, when compared with conditional deep generative models. This fully proves the effectiveness275

of our method in variation and extension.

4. Experiments

4.1. Data and Setting

To evaluate the performance of our models, we present a series of experiments below. The objectives of
the experiments include: perplexity, topic coherence, classification accuracy, the quality and interpretabil-280

ity of extracted topics and document representations. Our evaluation is based on the four datasets: 1)
20Newsgroups: The classic 20 newsgroups dataset, which is comprised of 18775 newsgroup articles with
20 categories, and contains 60698 unique words.2. 2) Web Snippet: The web snippet dataset, which in-
cludes 12340 Web search snippets in 8 categories.3. 3) BBC: It consists of 2225 BBC news articles from
2004-2005 with 5 classes. We only use the title and headline of each article.4. 4) Biomedical: It consists of285

20000 paper titles from 20 different MeSH in BioASQ’s official website.5. For all four datasets, we remove
the stop words, words with fewer than 3 characters, and words which are mentioned less than 3 times in the
corpus. Statistics on the four datasets after preprocessing is reported in Table 1.

Table 1: Statistics on the four datasets.

Dataset Label Docs Words Vocab
20NG 20 18775 135 60698

Snippet 8 12265 10.72 5581
BBC 5 2225 11.97 2453
Bio 20 19989 7.95 6887

We compare our model with follow models: 1) LDA [42]. A classical probabilistic topic model 6. .We
set the iteration number n = 2000, the Dirichlet parameter for distribution over topics α = 0.1 and the290

2http://www.qwone.com/ jason/20Newsgroups/
3http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4http://mlg.ucd.ie/datasets/bbc.html
5http://participants-area.bioasq.org/
6https://pypi.python.org/pypi/lda
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Dirichlet parameter for distribution over words η = 0.01. 2) STC [10]. A sparsity-enhanced topic model
7. .We set the regularization constants as λ = 0.2, ρ = 0.001 and the maximum number of iterations of
hierarchical sparse coding, dictionary learning as 100. 3) DocNADE [5]. An unsupervised neural network
topic model of documents 8 . We choose the sigmoid activate function, the hidden size is 50, the learning
rate is 0.01 , the bath size is 64 and the max training number is 1000. 4) GaussianLDA [22]. A topic295

model introducing word embedding 9 . We use default values for the parameters. 5) NVDM [43]. A neural
variational document model 10 . We use default values for the parameters. 6) AVITM [18]. An autoencoder
variational inference model for LDA 11 . We set the learning rate is 0.02, the hidden size is 100, the bath size
is 200 and the max training number is 100. 7) NSTC [9]. A neural extension of STC model. 8) NFTM
[6]. A neural sparse topic model 12 . We use default values for the parameters.300

Our model is implemented in Python via TensorFlow. For four datasets, we utilize the pre-trained
300-dimensional word embeddings from Wikipedia by GloVe, which is fixed during training. For each out-of-
vocabulary word, we sample a random vector from a normal distribution in the interval [0, 1]. We adopted
AdaM optimizer for weight updating with an initial learning rate of 4e − 4 for four datasets. All weight
matrices are initialized with the Xavier initialization. The generative, inference, and classifier networks in305

supervised NSTM (sNSTM) are all implemented with three fully connected layers. We set the size of the
output layer to the number of topics in generative and inference network, and to the classes number in
classifier network, the size of the other two hidden layers to 250, the size of Bi-LSTM hidden layer to 250,
and the regularization weight ch in sNSTM is 10. We also perform cross-validation in training data for four
datasets respectively to determine hyperparameters in our methods and baselines.310

4.2. PMI and Perplexity

Point-wise Mutual Information(PMI)[44] is the most commonly used automatic evaluation index for topic
semantic coherence. A higher PMI value indicates a stronger topic semantic coherence and interpretability.

For a topic proportion ψk, it is calculated as : PMI(ψk) = 2
V (V−1)

∑
1<i,j<V

p(wi,wj)
p(wi)p(wj)

,where V is the

vocabulary size, p(wi, wj) is the joint is the joint probability of words wi and wj co-occurring in the test315

document, and p(wi) is the marginal probability of word wi appearing in a test document. We select top-10
words to calculate the average relatedness of each pair as the PMI score of each topic. Another widely used
index to evaluate the generalization ability of the topic model is perplexity [42]. It is the geometric mean of

word likelihood in the test documents and defined as: perplexity = exp(−
∑
i log p(wtesti )∑

iN
test
i

), where wtesti is the

word in test document i, N test
i is the total word counts in document i. We show the test document PMI320

and perplexity on the 20NewsGroups with 50 and 200 topic numbers in Table 2.

Table 2: PMI and Perplexity on test dataset of 20NG.

Measure K LDA STC DocNADE NVDM AVITM NFTM NSTC NSTM SR-NSTM

PPL
50 1091 611 896 836 665 641 517 515 493
200 1058 587 862 852 711 639 523 528 486

PMI
50 0.17 0.21 0.12 0.08 0.24 0.17 0.18 0.19 0.21
200 0.14 0.24 0.14 0.06 0.19 0.19 0.19 0.21 0.23

We notice that topic models with sparse enhancement such as STC, NFTM, NSTC, NSTM and SR-
NSTM are better than other models. It proves that the sparse enhancement can improve the quality of
topics. Our proposed methods NSTM and SR-NSTM yield competitive results compared with other neural

7http://bigml.cs.tsinghua.edu.cn/ jun/stc.shtml/
8https://github.com/AYLIEN/docnade
9https://github.com/rajarshd/Gaussian LDA

10https://github.com/ysmiao/nvdm
11https://github.com/akashgit/autoencoding vi for topic models
12https://github.com/dallascard/neural topic models
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Table 3: Classification accuracy of different models on Web snippet and 20NG.

Dataset Snippet 20NG
k 50 75 100 125 150 50 100 150 200 250

LDA 0.682 0.615 0.592 0.583 0.573 0.545 0.615 0.607 0.613 0.623
STC 0.678 0.686 0.699 0.724 0.701 0.602 0.631 0.647 0.652 0.654

DocNADE 0.656 0.656 0.645 0.646 0.647 0.682 0.670 0.646 0.583 0.573
GLDA 0.669 0.689 0.675 0.670 0.623 0.367 0.438 0.465 0.496 0.526
NVDM 0.614 0.628 0.640 0.654 0.669 0.578 0.593 0.601 0.613 0.621
NSTC 0.734 0.756 0.791 0.793 0.789 0.634 0.671 0.682 0.690 0.72

NSTMR 0.653 0.658 0.661 0.665 0.663 0.567 0.578 0.589 0.601 0.603
NSTM 0.792 0.808 0.822 0.805 0.818 0.654 0.671 0.692 0.720 0.740

SR-NSTM 0.723 0.815 0.795 0.841 0.846 0.667 0.691 0.711 0.723 0.734

Table 4: Classification accuracy of different models on BBC and Biomedical.

Dataset BBC Biomedical
k 20 30 40 50 60 50 100 150 200 250

LDA 0.784 0.774 0.796 0.762 0.758 0.536 0.534 0.547 0.534 0.541
STC 0.602 0.593 0.599 0.634 0.604 0.351 0.405 0.439 0.464 0.494

DocNADE 0.793 0.839 0.832 0.834 0.819 0.597 0.588 0.588 0.583 0.582
GLDA 0.609 0.566 0.573 0.564 0.567 0.482 0.515 0.497 0.483 0.513
NVDM 0.707 0.711 0.723 0.719 0.713 0.504 0.516 0.527 0.521 0.534
NSTC 0.648 0.646 0.691 0.712 0.715 0.531 0.533 0.547 0.519 0.546

NSTMR 0.597 0.601 0.603 0.611 0.607 0.473 0.497 0.511 0.519 0.523
NSTM 0.783 0.835 0.833 0.836 0.813 0.567 0.623 0.645 0.671 0.664

SR-NSTM 0.785 0.831 0.835 0.836 0.816 0.579 0.629 0.651 0.699 0.671

sparse topic methods such as NFTM and NSTC, it demonstrates that the sparse mechanism based on explic-325

itly sparse prior parameterized by neural networks is helpful to generate more coherent topics compared with
pure feed-forward neural networks. SR-NSTM with semantic reinforcement shows a significant improvement
compared with NSTM. It demonstrates that our proposed method can extract meaningful topics with im-
proved flexibility in extension and variation, and improve the learning of topics with semantic reinforcement
for enriching the feature space of semantic information.330

4.3. Classification Accuracy

To evaluate the effectiveness of the representation of documents learned by NSTM and SR-NSTM, we
further perform text classification tasks on web snippet, 20NG, BBC and Biomedical using the document
codes learned by topic models as the feature representation in a multi-class SVM. We make the partition of
training and testing as previous methods [10, 25]. On web snippet, we utilize 80% of documents for training335

and 20% for testing. On 20NG, BBC and Biomedical, we keep 60% of documents for training and 40% for
testing. Same as previous methods, we use all the data to learn the parameters of unsupervised methods,
and perform cross-validation in the training documents to select hyper-parameters for regularization and
classifier. Table 3 and Table 4 report the classification accuracy under different methods with different
settings on the number of topics among four datasets.340

It clearly denotes that: 1) Our model generally yields the best performance overall datasets, especially
in short text datasets. This is because our model can generate sparse and distinct document codes with the
sparse prior. Additionally, the introduced word embeddings and deep semantic structure can improve the
overall performance further, thus making a better performance of NSTM and SR-NSTM. 2) For NSTM and
NSTMR, in which the topic dictionary is randomly initialized without introducing word embeddings, we can345

see that NSTM outperforms NSTMR in all datasets. It further proves the efficiency of word embeddings
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Figure 4: Classification accuracy on supervised models.
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Figure 5: t-SNE projection of the estimated document codes.
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Table 5: The ablation study on Web snippet and 20NG.

Dataset Snippet 20NG
k 50 75 100 125 150 50 100 150 200 250

W/O NN 0.677 0.687 0.700 0.723 0.702 0.601 0.633 0.649 0.651 0.655
W/O Sparse 0.708 0.711 0.724 0.720 0.712 0.506 0.518 0.530 0.551 0.543

W/O Bi-LSTM 0.792 0.808 0.822 0.805 0.818 0.654 0.671 0.692 0.720 0.740
Full Model 0.723 0.815 0.795 0.841 0.846 0.667 0.691 0.711 0.723 0.734

Table 6: The topics discovered by NSTM

.
Category Topic

Business
T67: investing ratneshwar investments investment investors invest equity niddk income 0.14999
T133: products source product quality premium csail content manufacture socialsciences 0.13412
T144: development serv ecommerce develope innovation developers business market projects 0.12130

Computers
T112: firefox mozilla netscape macintosh linux windows adobe verizon zdnet 0.13780
T118: systems system control security controls remote automatic monitoring automation 0.13361
T121: msn yahoo firefox aol gmail java algorithm algorithms signonsandiego 0.12191

Engineering
T90: factory inc steel searchsmb chrome ford socialsciences wieeless ltd 0.12512
T100: device cancertopics devices modem cable died wireless semiconductor connection 0.11989
T114: gasoline diesel fuel petrol engines engine emissions gas combustion 0.11213

Health
T86: hospital webobjects home nutritionsource clinic homes nursing emedicinehealth center 0.18371
T124: disease cancer lung flu cancers infection influenza arthritis infections 0.17572
T142: vitamins foods herbal diet alcohol supplements vitamin oils nutritional 0.16215

in improving document representations. 3) For GLDA which introduces word embeddings as well, it yields
much poor performance in 20NG and Bio whose category numbers are large. It turns out that the document
topic proportions learned by it are almost uniform and non-discriminative. Similarly, it happened for models
without considering the sparsity such as LDA and DocNADE. The accuracy decays when the topic number350

increasing. On the contrary, our model along with STC can learn sparse and semantic enriched represen-
tations for addressing the sparseness issue. 4) As for sparse enhanced model STC, it performs considerably
inferior to all other methods in BBC and biomedical. To learn interpretable document codes, STC tends
to remain high frequency words and ignore the low frequency ones in the whole dataset during learning.
However, in these two datasets, we notice that the word frequency distribution is nearly uniform, resulting355

in poor learning of STC. In our model, the introduced word embeddings can improve the word frequency
distribution, thus benefit the performance. 5) Compared with NSTC which only uses the feed-forward neural
networks to model the generative process, our model NSTCM and SR-NSTCM have better performance due
to model the generative process with sparse prior distribution explicitly and capture the context information
with Bi-LSTM.360

We also perform an ablation study on our method to verify the effectiveness of each module. We compare
our model with its variants by removing one of the components neural network parameterization, sparse
distribution and Bi-LSTM encoder respectively, as shown in Table 5. From which we can see that each
component makes a certain contribution to the overall performance. In the case of removing the neural
network parameterization (W/O NN) module, our model consists of the Bi-LSTM encoder and feed forward365

neural networks, in which it degenerates into the context information enhanced NSTC model. As in the
case of removing the spare distribution (W/O Sparse), our model degenerates into the context information
enhanced NVDM model. In the case of removing Bi-LSTM encoder (W/O Bi-LSTM), the model declines into
the NSTM model. We can see that missing the sparse distribution has a more significant negative influence
than missing the Bi-LSTM based encoder module, illustrating the relative effectiveness of the sparse prior370

in improving the discrimination of latent representations.
In Figure 4, we present the results of supervised topic models on 20Newsgroups. We compare our
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Table 7: The word codes of representative words for different categories discovered by NSTM and LDA.
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methods with the following supervised methods: 1) sLDA [45]. Supervised extension of LDA which models
the class labels. 2) MedLDA [41]. Integrating max-margin regularization with LDA. 3) MedSTC [10].
Integrating max-margin regularization with STC. Generally, sNSTM and MedSTC outperform MedLDA375

and sLDA for their sparse property. sNSTM, MedSTC, MedLDA have better results than sLDA for the
discriminative ability provided by max-margin posterior regularization. As for sNSTM and MedSTC, the
feature representation ability provided by deep structural and extra word semantic information makes its
better performance.

4.4. Characteristics of Code Representation380

In this part, we quantitatively investigate the word codes and documents codes learned by our model
NSTM.

Word code: We compute the average word code as [10]. Table 7 shows the average word codes of some
representative words learned by NSTM and LDA in 4 categories of web snippet. For each category, we also
present the topics learned by NSTM in Table 6. We list top-9 words according to their probabilities under385

each topic, and top-4 topics according to their PMI score in top-15 words. In Table 7, the results illustrate
that the codes discovered by NSTM are apparently much sparser than those discovered by LDA. It tends
to focus on a narrow spectrum of topics and obtains discriminative and sparse representations of words. In
contrast, LDA generates word codes with many non-zeros, leading to a confusing topic distribution. Besides,
in NSTM, it is clear that each non-zero element in the word codes represents the topical meaning of words390

in the corresponding position. The weights of these elements express their relationship with the topics.
Noticed that there are words (e.g. candidates) having only a small range of topical meanings, indicating a
narrow usage of those terms. While other words (e.g. marketing) tend to have a broad spectrum of topical
meanings, denoting a general usage of those terms.

Document code: To demonstrate the quality of the learned representations by our model, we produce395

a t-SNE projection with for the document codes of two datasets learned by our model in Figure 5. For
20newsgroups and Biomedical, we sample 30% of the whole document codes. As for BBC, we present the
whole document codes. It is obvious to see that all documents are clustered into distinct categories, which
is equal to the ground truth number of categories in the four datasets. It proves the semantic effect of the
document codes learned by our model. We can also notice that the data sets with fewer categories (web400

snippet, BBC) have better results of clustering than the other two datasets with more classes.

5. Conclusion

In this paper, we propose novel neural sparse topic modeling approaches, which explicitly model the
probabilistic mixtures in sparse topic models with neural sparse prior, focusing on generating meaningful,
sparse and explainable representations for texts. The Bi-LSTM is further adopted in our method to capture405

the sequential structure of words in the documents and enrich the semantic feature space. Moreover, we
incorporate the max-margin posterior in our methods to utilize the label information in supervised tasks
without extra latent variables, which shows the flexibility of our proposed methods. The evaluation results
demonstrate the effectiveness of our models. Future work can include introducing other available information
such as common knowledge to further improve the performance, since we only consider the contextual410

information and label information in this paper.
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