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Abstract: Reactive oxygen species (ROS) are important in regulating normal cellular processes
whereas deregulated ROS leads to the development of a diseased state in humans including cancers.
Several studies have been found to be marked with increased ROS production which activates
pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and
genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic
signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism
where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify
them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS
manipulation can be a potential target for cancer therapies as cancer cells present an altered redox
balance in comparison to their normal counterparts. In this review, we aim to provide an overview
of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their
regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor
progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways
could be manipulated during the treatment of cancer.

Keywords: mitochondrial ROS; oxidative stress; cancer metabolism; warburg effect; tumor pro-
gression; apoptosis; autophagy; NFκB pathway; tumor adaptation; drug resistance; angiogenesis;
metastasis; tumor targeting

1. Introduction

Reactive oxygen species (ROS), the partially reduced metabolites of oxygen that
possess strong oxidizing capabilities, are deleterious to cells at high concentrations but
at low concentrations, they serve complex signaling functions. Reactive oxygen species
formed as byproducts of normal cell metabolism are needed for maintaining homeostasis
and cellular signaling. Apart from cellular metabolism they are generated by specific
plasma membrane oxidases in response to growth factors and cytokines and serve as
secondary messengers in specific signaling pathways and play a role in regulating gene
expression [1]. Cells have a defense system to maintain ROS at physiologically normal
levels, i.e., enzymes called antioxidants, responsible for transforming free radicals into
stable, less damaging molecules, the impairment of which may lead to a state of oxidative
stress [2]. These oxygen scavenging pathways include conversion of O2

− to H2O2 by
superoxide dismutase (SOD), the action of catalase on H2O2 to produce H2O and O2,
decomposition of H2O2 and LOOH by Glutathione peroxidase, and the reduction of H2O2
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by Thioredoxin reduction cycle to produce H2O and also the exogenous detoxification of
glutathione transferase [3]. Cancer cells are highly metabolically active and hypoxic cells,
and due to massive growth and insufficient vascular irrigation tend to produce increased
ROS, which damages DNA by diffusing through the mitochondrial membrane while also
acting as signal-transducing messengers in many redox-sensitive molecular pathways
involved in cell survival, therapeutic resistance, and progression [3]. Oxidative stress plays
a major role in cancer hallmarks like angiogenesis, invasiveness, stemness, and metastatic
ability, and hence, reducing oxidative stress with powerful antioxidants has been used as an
important strategy for cancer prevention. Additionally, cancer cells develop mechanisms
of keeping the increased oxidative stress in check. Therefore, some cancer therapeutic
strategies also work by disrupting this check and making the cancer cells susceptible to
apoptosis.

2. Source of Reactive Oxygen Species in Cancer Cells
2.1. Mitochondrial ROS

Mitochondria is one of the most prominent sources of reactive oxygen species within
a cell which contribute to oxidative stress [4]. The electron transport chain located on the
inner mitochondrial membrane generates the majority of mitochondrial ROS during the
process of oxidative phosphorylation (OXPHOS). Leakage of electrons at complex I and
complex III from ETC leads to a partial reduction of oxygen to form superoxide which
undergoes spontaneous dismutation to hydrogen peroxide, both of which are collectively
considered as mitochondrial ROS [5]. Endogenous modulators such as NO and Ca2+ have
been observed to regulate the production of mtROS by regulating the metabolic states
of mitochondria. The mitochondrial Ca2+ levels increase the rate of electron flow in the
ETC and thus decrease mtROS generation [6]. However mitochondrial Ca2+ overload
increases mtROS production [7]. STAT3, a transcription factor that regulates gene expres-
sion in response to cytokines interleukin (IL)-6 and IL-10, also modulates the activity of
the ETC [8,9]. Hence a decrease in expression of STAT3 may be correlated to increasing
mtROS at complex I [8]. TNF-α that causes the shedding of TNF-α receptor-1 reducing the
severity of microvascular inflammation, has been found to induce a calcium-dependent
increase in mt ROS [10]. Studies have shown that many ROS-producing enzymes, like
NADPH oxidase, xanthine oxidase, and uncoupled eNOS, can stimulate mtROS production
in a process called “ROS-induced ROS” [11–13]. Another transcription factor hypoxia-
inducible factor 1α (HIF-1α) also plays a prominent role in bringing about a reduction in
ROS by a number of mechanisms including induction of pyruvate dehydrogenase kinase
1 (PKD1), which shunts pyruvate away from the mitochondria; triggering mitochondrial
selective autophagy; and induction of microRNA-210 blocking OXPHOS [14]. Low levels
of mtROS regulate the stability of HIF-1α leading to hypoxia adaptation while moderate
levels of mtROS have been found to regulate the production of proinflammatory cytokines
by directly activating the inflammasome and mitogen-activated protein kinase (MAPK).
However, high levels of mtROS are capable of inducing apoptosis by oxidation of the mito-
chondrial pores and autophagy by the oxidation of autophagy-specific gene 4 (ATG4) [5].
Depending on the tumor cell microenvironment, the c-Myc gene controls apoptosis by
inducing aerobic glycolysis and/or OXPHOS which is required for the activation of certain
tumor suppressor proteins, such as Bax and Bak [15–17].

Mitochondria also play an important role in the loss of caveolin 1 (cav-1) in the
tumor-associated fibroblast compartment, which is related to the early tumor recurrence,
metastasis, tamoxifen-resistance, and aggravated increase in tumor growth [2]. Cav-1
loss induces autophagy and mitophagy, [18] driving the “Reverse Warburg Effect” by a
feed-forward mechanism. This onset of inflammation, autophagy, mitophagy, and aerobic
glycolysis in the tumor microenvironment is triggered by activation of the transcription
factors NFκB and HIF-1α [19,20]. Mitochondria-generated ROS plays an important role in
cell proliferation and quiescence. The pro- or anti-tumorigenic signaling is controlled by a
mitochondrial ROS switch of the antioxidant SOD2/MnSOD [21]. Cell proliferation is fa-
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vored by decreased SOD2/MnSOD activity resulting in increased O2
− production whereas

proliferating cells transit into quiescence when SOD/MnSOD activity increases resulting in
increased H2O2 activity [22]. Inactivation of mitochondrial antioxidant responses like the
Thioredoxin reductase (TrxR); which causes reduction of oxidized Trx to produce reduced
Trx that reacts with ROS, contributes to increased oxidative stress in cancer cells.

Studies have shown that the cellular redox status is impacted by the recruitment of
mitochondria by the expression of hTERT. This observation is supported by the presence
of hTERT in the mitochondria and since mitochondrial-dependent apoptosis in target cells
can be carried about by introducing hTERT inhibitors [23].

2.2. Role of Warburg Effect in ROS

The increased metabolic requirements of the cancer cells are met by upregulation of
glucose transport and metabolism irrespective of oxygen supply [24]. There is also some
evidence that cancer cells decrease mitochondrial respiration in the presence of oxygen,
which suppresses apoptosis [25]. Under hypoxic conditions, the accelerated metabolism
produces ROS in cancer cells that is countered by the increased NADPH which is met by the
upregulated glycolysis [26,27]. NADPH is an essential cofactor for replenishing reduced
glutathione (GSH) which is a critical antioxidant. Therefore, not only are cancer cells’
multiple urgent requirements catered to but cancer cell oxidative stress is also controlled by
the Warburg effect [8]. Tumor cells have been reported to switch between the isoforms of
pyruvate kinase, used in the last steps of glycolysis [28]. PKM2 the isoform found in high
levels in tumor cells is slower and leads to the accumulation of PEP which in turn activates
PPP by feedback inhibition of the glycolytic enzyme triosephosphate isomerase (TPI). This
produces more NADPH which reduces ROS and further amplifies the inhibitory effect
of PKM2 [26,27], Therefore ROS and PKM2 form a negative feedback loop to maintain
ROS in a tolerable and functional range. The ROS-regulated gene, hypoxia-inducible
factors (HIF-1α) regulates hypoxia-associated genes, some of which are associated with
the Warburg effect and its accompanying pathways and hence, are a target of cancer ther-
apies. PKM2 has been found to be the prolyl hydroxylases (PHDs)-induced coactivator
for HIF-1α [8,29]. HIF-1α also regulates the MYC proto-oncogene which produces MYC
protein [30] that regulates genes participating in energy generation and cell growth and
proliferation. HIF-1α and MYC activate hexokinase 2 (HK-II) and pyruvate dehydrogenase
kinase 1 (PDK1), which inhibits TCA and increases conversion of glucose to lactate [31].
Glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) are also activated by
HIF1 and MYC independently, resulting in increased glucose influx and higher glycolytic
rates [13]. Warburg effect increases steady-state ROS condition in cancer cells by producing
lactate that is extruded through monocarboxylate transporters to the microenvironment of
cancer cells which has no antioxidant properties in contrast to pyruvate, citrate, malate, and
oxaloacetate together with the reducing equivalents (NADH.H+) which are antioxidant
intermediates. This increased oxidative stress in cancer cells is stopped from reaching cyto-
toxic levels by some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+

produced through HMP shunt. Latest studies show tumor cells have the capability to carry
about both glycolytic and oxidative phosphorylation (OXPHOS) metabolism which makes
them resistant to oxidative stress through enhanced antioxidant response and increased
detoxification capacity [32]. The changes related to energy metabolism may be correlated
to the expression of certain p53 downstream genes regulated by it, including SCO2, TIGAR,
and the p53 inducible gene 3 (PIG3) [33–35].

2.3. NADPH Oxidase, Cox, and Xanthine Oxidase Produce ROS

The NADPH oxidases NOX catalytic subunit carries about the transfer of electrons
from NADPH to the molecular oxygen producing ROS as their primary function [36]. The
other oxidases like the mitochondrial electron transport chain produce superoxide (O2

•–)
as a by-product of another oxidative reaction. Furthermore, xanthine dehydrogenase gets
converted to xanthine oxidase which is a dysfunctional variant of the parent enzyme which
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generates uncoupled eNOS. The kinetics of ROS formation and the nature of the ROS
produced are different in the four nonphagocytic NADPH oxidase isoforms. Electrons
transfer across the biological membranes through NOX and produce O2

− which gets
rapidly converted to H2O2 [17]. This H2O2 after diffusing across the membrane can affect
multiple cellular signaling events. Increased NOX-derived ROS in cancer cells affects two
major characteristics of cancer progression, i.e., stimulation of cell survival and genomic
instability. H2O2 activates MAPK signaling, neutrophil phagocytosis, apoptosis, cellular
senescence, and cell growth. It also plays a significant role in oxygen sensing and under
hypoxic conditions, it stimulates the release of hypoxia-inducible factor (HIF-1α) and then
vascular endothelial growth factor (VEGF) thus promoting angiogenesis [37].

2.4. ER Stress Leads to ROS

In the endoplasmic reticulum, the catalytic processes of oxidoreductase Ero1 and
NADPH oxidase (NOX) produce ROS. The major source of cellular ROS is the oxidative
protein folding carried about by Ero1 which uses the oxidative power of molecular oxygen
to initiate redox relays which ultimately leads to disulfide bond formation in the newly
folded proteins. The luminal H2O2 arising from Ero1 and NOX are scavenged by ER perox-
idases, such as peroxiredoxin 4 (Prx4), as well as the glutathione peroxidases GPx7 and
GPx8 and thereby prevent H2O2 leakage from the ER [38]. The accumulation of unfolded
proteins, i.e., persistent ER stress leads to redox-amplified imbalances in the Ero1/PDI
electron flow increasing production of ROS at the ER which can be counteracted by an
influx of reduced glutathione (GSH) [39]. The production of ROS activates the unfolded
protein response (UPR) inactivating the sulfhydration of protein tyrosine phosphatase 1B
(PTP1B). This results in increased phosphorylation of PKR-like endoplasmic reticulum
kinase (PERK) thereby activating it. PERK plays an important role in restoring cellular
homeostasis by regulating a switching mechanism between autophagy and apoptosis [40].
ROS-mediated ER stress also signals activation of Nrf2 antioxidant response, thereby in-
creasing stress resistance and lifespan [41,42]. ROS can leak through the ER through the
aquaporin 8, the ER ROS pore. Similarly, Peroxisomal ROS production can leak into the
cytosol, and lead to oxidation of important signaling molecules like the NF-kB and PTEN
(Figure 1).
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3. Mechanism of Oxidative Stress-Related Carcinogenesis

ROS provokes programmed cell death in normal cells. ROS levels may also activate
redox-sensitive transcription factors that enhance tumor formation like the Forkhead box
class O (FoxO) transcription factors which are activated in response to increased ROS
levels and translocated into the nucleus through the cJun N-terminal kinase-dependent
signaling pathway. FoxO activation leads to the expression of cellular proteins that serve
as ROS scavengers and also regulate a wide variety of additional cellular functions, such as
proliferation, apoptosis, and differentiation, that may promote tumorigenesis and cancer
progression [43]. It is also possible that through FoxO3, increased ROS levels, induced
during chronic inflammation, promote aberrant self-renewal in tumor cells. Tumor cells ex-
press catalase in surplus and produce huge concentrations of H2O2. In this way, the tumor
clone itself escapes the toxic action of H2O2 and destroys neighboring healthy cells [44].
We have discussed below, how ROS increases tumorigenesis by a variety of mechanisms:
inducing DNA damage, inflammation, evading immune response, regulating signaling
pathways controlling autophagy and apoptosis, angiogenesis, and drug resistance.

3.1. Role of ROS in Tumor Cell Proliferation, Survival and Tumor Progression

Increased ROS is responsible for the oxidation of negative feedback loop controllers
and hence control the actions of other signaling pathways in tumor growth and pro-
grammed cell death by the phosphoinositide 3-kinase/protein kinase B (PI3K/PKB) and
mitogen-activated protein kinase (MAPK) signaling pathways [45,46] (Figure 2). Reactive
oxygen species generation in cancer cells leads to the inactivation of PTEN that leads to an
increase in PI3K/Akt signaling that promotes proliferation. Moreover, the cancer cell cycle
progression is promoted when ROS inhibits phosphatase Cdc14B resulting in the activa-
tion of cyclin-dependent kinase 1 (Cdk1). As mentioned earlier, the major ROS-regulated
gene HIF activates PDK1 that further activates Akt which inhibits the tuberous sclerosis
complex (TSC). This downregulates mTOR which is a major regulator of cell growth by
controlling mRNA translation, ribosome biogenesis, autophagy, and metabolism [44,47].
MAPK/ERK1/2 are activated by growth factors and K-Ras stimulated pathways, lead to
increased cellular proliferation in cancer cells [48]. H2O2 has also been found to be respon-
sible for the activation of ERK1/2 and pro-survival PI3K/Akt signaling pathway, resulting
in increased proliferation [49,50]. Studies on breast, leukemia, melanoma, and ovarian can-
cer have shown ERK1/2 plays additional roles like cell survival, anchorage-independent
growth, and motility [51]. The Akt pathway inactivates pro-apoptotic Bad, Bax, Bim, and
Foxo transcription factors by phosphorylation thereby promoting cell survival [52,53]. Akt
is activated by the Epithelial growth factor (EGF)-derived H2O2 production, observed in
ovarian cancers [54]. Cell survival is promoted by the oxidation and inactivation of the
negative regulators of PI3K/Akt signaling, i.e., the phosphatases PTEN and PTP1B. The
tumor suppressor PTEN has been found to be reversibly inactivated by H2O2 in a variety
of cancers [55,56].

PKD signaling plays an important role in the detoxification from elevated ROS produc-
tion and stimulation of anti-apoptotic genes [57–59]. PKD1 signaling leads to upregulation
of NFκB which also plays an important role in the proliferation and survival of the cell.
PKD1 also promotes cell survival through activation of ERK1/2 and down-regulation
of the pro-apoptotic c-Jun N terminal protein kinase (JNK) pathway [60]. An increase in
antioxidants SOD2 and Nrf2 has been observed, however, catalase levels appear to decrease
providing a role for PKD1 in cell survival [61]. Other members of the PKD family, PKD2
and PKD3 are implicated to play a role in various other cancers [60]. The tumor suppressor
genes produce proteins that play important roles as antioxidants. For instance, p53 could
regulate the expression of various antioxidant enzymes including catalase, SOD2, and
GPX1 thereby decreasing ROS accumulation [62]. However, since p53 is lost or mutated in
most cancers, ROS accumulation and pro-tumorigenic signaling is found.
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Figure 2. ROS Drive Mitogenic Signaling Cascades. Increased ROS levels contribute to sustained cell
survival and proliferation through many pathways including PI3K/AKT, MAPK/ERK1/2, and PKD.
ROS also inactivate their downstream targets including Bad, Bax, Bim, Foxo, and PTEN and the JNK
pathway.

3.2. Role of ROS in Apoptosis-Tumor Suppressive Role

Though ROS activates mitogenic signaling pathways, high levels of ROS have the
ability to induce cell cycle arrest, senescence, and cancer cell death either by the initiation
of intrinsic apoptotic signaling in the mitochondria or by extrinsic apoptotic signaling by
the death receptor pathways [63]. ROS induces apoptosis by activating ASK1/JNK and
ASK1/p38 signaling pathways in human cancer cells [64,65]. These pathways are activated
when TRX1 is oxidized by H2O2 which subsequently dissociates from ASK1, thereby acti-
vating the downstream MAP kinase kinase (MKK)4/MKK7/JNK and MKK3/MKK6/p38
pathways leading to suppression of anti-apoptotic factors [17,66–68]. It has also been
shown that ROS mediate the downregulation of FLICE inhibitory proteins (FLIP proteins)
by ubiquitination and subsequent degradation by the proteasome and thereby induce
apoptosis by Fas ligand activation [69]. Collectively, these observations support a tumor-
suppressive role of ROS [70]. Recent studies have shown that p53 plays an important role
in oxidative stress-related cell death. A regulatory signaling protein of phosphatidyl-3-OH
kinase (PI (3) K), p85, participates in the cell death induced by oxidative stress independent
of PI (3) K [71]. This protein p85 is upregulated by p53. Sir2α has been found to interact
with p53 and attenuate p53-mediated functions and hence is a potential cancer therapeutic
target [72].

JNK pathway activation by elevated ROS production results in apoptosis initiated
by intrinsic apoptotic signaling through mitochondria or extrinsic apoptotic signaling
mediated by death receptor pathways [73–75]. JNK pathway mutations have been found
to be inactivated in various cancers suggesting that these pathways may be implicated
in apoptotic signaling [76]. The activity of apoptotic effectors including the Bcl-2 family
of proteins and cytochrome c are affected by the overproduction of ROS leading to the
activation of the caspases, a prominent hallmark of apoptosis, resulting in the cleavage of
poly ADP ribose polymerase (PARP), DNA fragmentation, and cell death [77].

As mentioned in Figure 3, elevated ROS can also result in apoptosis by binding
of ligands to death receptors which trigger caspase activation of the initiator caspase 8
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leading to cleavage of downstream caspase 3 and Bcl-2 protein Bid to tBid which then
translocate into the mitochondria causing the release and translocation of cytochrome
c [78,79]. Cytochrome c forms a complex with apoptotic protein-activating factor 1 (Apaf-1)
and pro-caspase 9 inducing the cleavage of downstream caspase-3 and -7. Members of the
Bcl-2 family, anti-apoptotic (Bcl-2, Bcl-w, and Bcl-xL) are inhibited, and pro-apoptotic (Bad,
Bak, Bax, Bid, and Bim) are activated in apoptotic signaling [80]. The loss of cytochrome
c from the mitochondria will disrupt and damage the mitochondrial ETC and further
cause elevated production of ROS [81]. ROS-induced apoptosis can be attributed mainly to
decreased GSH levels and the loss of redox homeostasis [82].
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Figure 3. Role of ROS in apoptosis. Toxic ROS levels damage the mitochondrial membrane releasing cytochrome c to the
cytoplasm which forms a complex with Apaf-1 and pro-caspase 9. This induces the cleavage of caspase-3 and -7 resulting in
apoptosis. Additionally, binding of TNFα ligand to TNFR1 death receptor triggers the activation of caspase 8 leading to
cleavage of caspase 3. Caspase 8 activation also cleaves Bcl-1 protein Bid to form tBid which further leads to the release of
cytochrome c in the intrinsic apoptotic pathway.

3.3. Role of ROS in Autophagy-Both Tumor Suppressive and Tumor Promoting Roles

Autophagy is the controlled lysosomal pathway that regulates cellular homeostasis
by degradation and recycling of proteins and organelles within a cell [83]. ROS regulates
autophagy in both direct and indirect ways. Direct regulation involves modification of
key proteins like Atg4, Atg5, and Beclin which are involved in the autophagy process.
Indirect regulation by ROS involves alteration of signaling pathways that can induce
autophagy such as the JNK, p38. ROS have also been found to inhibit Akt signaling
and downstream mTOR and thereby induce autophagy [84]. Autophagy is one of the
first defenses against oxidative stress damage and is upregulated in response to elevated
ROS levels [85]. Autophagy has been found to be regulated by the mammalian target of
rapamycin complex1 (mTORC1) and its upstream activators PI3K and AKT that suppress
autophagy whereas negative regulator of PI3K and AKT pathways PTEN has been found
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to induce autophagy [86]. DNA damage caused by the ROS produced by mitochondria
leads to activation of p53 that has been documented to regulate autophagy [87] (Figure 4).
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Figure 4. ROS levels regulate autophagy levels by different pathways: firstly, oxidation of ATG4
leads to accumulation of autophagosomes, secondly, the AMPK signaling cascade induces autophagy
through the ULK1 complex. Thirdly, the disruption of BCl-2-BECLIN interactions also initiates
autophagy. Lastly, the alteration of mitochondria homeostasis leads to mitophagy activation which
checks ROS accumulation by elimination of damaged mitochondria. The degradation of KEAP1 by
selective autophagy mediated by p62 leads to the expression of Nrf2-regulated antioxidant genes
thereby reducing ROS.

Deregulated autophagy has been found to have a role both in tumor progression and
tumor suppression. During the early steps of cancer development, autophagy inhibits
tumorigenesis by preventing ROS-induced damages on DNA and protein. However,
during the later stages of cancer development (promotion, progression, and metastasis),
autophagy plays a pro-tumoral role by eliminating ROS-induced metabolic stress and
producing nutrients required for cancer cell survival. The cancer cells under hypoxia
induce the formation of ROS which can activate autophagy in neighboring stroma cells
which then provide high-energic nutrients, such as lactate or ketones, necessary for cancer
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cell survival and proliferation in accordance with what we have seen earlier, also termed
as “tumor-stromal co-evolution”.

Increased ROS production induces autophagy of damaged mitochondria called mi-
tophagy restoring the physiological ROS levels. [88] This selective autophagy is medi-
ated by two different molecular pathways: NIX/BNIP3L and PARKIN (PARK2)/PTEN
induced putative kinase 1 (PINK1) [89–92]. Nix/BNIP3L targets mitochondria for degra-
dation after interacting with GABARAP and GABARAPL1 at the autophagosome [93,94].
Whereas selective degradation of damaged dysfunctional mitochondria occurs through
PARKIN/PINK1 after ROS induces mitochondrial membrane depolarization [92]. More-
over, Nrf2/Keap1 and SQSTMI/p62 pathways also regulate mitophagy by decreasing
ROS [95]. SQSTM1/p62 interacts with Nrf2/Keap1, forming a complex with Keap1, pre-
venting Nrf2 degradation resulting in the release and translocation of Nrf2 to the nucleus
where it activates antioxidants [96,97].

Studies have proven that elevated ROS levels can also lead to defective autophagy.
Deletion of autophagy genes ATG5 or ATG7 leads to autophagy inhibition and accumula-
tion of damaged mitochondria which results in chronic oxidative stress, tissue damage, and
inflammation which all favor tumor initiation [97–99]. BECLIN1 (ATG6/BECN1) which
is an essential gene in autophagy as well as a tumor suppressor has been found deleted
in various cancers, resulting in damage to mitochondria, oxidative stress, and disease
progression [100–102]. Furthermore, during later stages of tumor initiation, autophagy is
required for cell transformation by the RAS oncogene in order to promote cell tolerance to
stress, therefore for Ras-induced tumorigenesis, active autophagy is necessary to maintain
cellular homeostasis [83].

3.4. ROS and Inflammation

The dynamic role of chronic inflammation in cancer has long been established. The
presence of inflammatory cells in the cancer cell’s environment enhances their proliferation
potential as it is abundant in ROS and RNS promoting DNA damage, upregulation of
growth factors and cytokines, and growth-supporting genes along with inactivation of
apoptosis [103]. Inflammatory cells further produce more ROS/RNS by inducing oxidant-
generating enzymes such as NADPH oxidase, iNOS, xanthine oxidase (XO), and myeloper-
oxidase (MPO) which further add to the mutation load by damage to DNA, RNA, Lipids,
and nitration and oxidation of proteins [1,104]. Inflammatory tissues also release cytokines
that activate NFκB, which stimulates COX2, lipoxygenase (LOX), and iNOS, resulting in
overproduction of ROS and RNS [104]. These in turn stimulate oncogenes such as c-Jun
and c-Fos, the overexpression of which is associated with many cancers. Inflammation
promotes cancer initiation and progression via vascularization and remodeling of TME,
which is an essential step in tumor cell survival.

As seen earlier, an increase in mitochondrial ROS leads to apoptosis by the TNF-
initiated death signal after activating JNK and induction of mitochondrial outer-membrane
permeabilization [105,106]. It has been found that O2

•− generates H2O2 after reacting with
manganese SOD (MnSOD) in the mitochondrial matrix, which activates redox-sensitive
transcription factors such as HIF-1α and NFκB and pro-inflammatory cytokines, as well
as inflammasomes [107]. These complexes work by activating inflammatory caspases
(caspase-1 and -12) and cytokines (IL-1β and IL-18) in macrophages [108]. An increase in
ROS inside the cell by NADPH oxidase or mitochondrial ETC causes the redox-sensitive
protein thioredoxin (Trx)-binding protein-2 (TBP-2) or TXINP (thioredoxin Interacting
protein) to dissociate from Trx enabling the binding of TXINP and NLRP3. NLRP3, a
redox-sensitive inflammasome gets activated on interacting with another due to increased
intracellular ROS generation [109]. This NLRP3 Inflammasome then leads to activation of
caspase-1 and IL-1β and IL-18. MtROS activate TNF-α-converting enzymes which cleave
receptor–1 (TNFR1) which is important for inflammatory progression [110]. NADPH
oxidase NOX4 also enables ROS generation in response to Inflammatory stimuli LPS, TNF
α, hyperoxia, TGF-β, and hypoxia [111]. ASK1 and ASK2 have been found to play a role in
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ROS-mediated carcinogenesis via MAPK signaling cascades by induction of inflammation
and apoptosis [112].

Oxidative stress and inflammatory response always reinforce each other in the tumor
progression. One of the important promoters of tumor development is chronic inflam-
mation which is majorly caused by Nuclear factor-κB (NFκB) activation [113]. The tran-
scription factor, NFκB, plays important role in proliferation, cell survival, regulation of the
cell cycle, and the development of resistance to drug therapies [114,115]. It is a sensitive
sensor of oxidative stress and detects H2O2 at a low level. ROS-mediated activation of
mitogen-activated protein kinases (MAPKs) contributes to the production of inflammatory
mediators including pro-inflammatory factors like Tumor-necrosis factor (TNF-α) and
interleukin-6, interleukin (IL)-1β, and transforming growth factor (TGF)-β which act as
mediators leading to activation of NFκB and thereby suppression of cell death and stimu-
lation of cell proliferation. NF-κB expresses proinflammatory cytokines and chemokines
and is responsible for the expression and activity of cyclooxygenase 2 (COX2) [116]. Ox-
idative stress, the NFκB pathway, and the JAK-STAT pathway work together in cancer
progression. Oxidative stress stimulating the NFκB pathway generates more ROS which
in turn increases oxidative stress. However, inflammatory mediators block the inflam-
matory process by stimulating the suppressors of cytokine signaling (SOCS), linked to
JAKs, interrupting the JAK-STAT pathway [26,117]. NF-kB, a collection of the Rel family of
transcription factors, inhibits apoptosis by upregulating several antiapoptotic genes. Nrf2,
a transcription factor, is activated in tumor cells to increase the production of antioxidant
proteins to maintain the redox balances in the body. Kelch-like ECH-associated protein 1
(Keap1) negatively regulates Nrf2. It has been shown in studies that the activation of Nrf2
can reduce oxidative stress and inflammatory response as Nrf2 dissociates from Keap-1
after its degradation through the ubiquitin-proteasome pathways and travels to the nu-
cleus to activate the antioxidant response elements (AREs) leading to increased activity of
antioxidants including catalase, GPXs, PRXs, and glutathione synthesis [118]. Deregulation
of the Nrf2 pathway and mutations in Keap1 has been associated with various cancer.

As seen earlier, the hypoxic microenvironment of cancer cells induces autophagy
via increased ROS production and subsequent JNK activation. NF-kB downregulates
JNK activation by suppression of TNF-α-induced ROS accumulation [119]. The apoptosis
in cancer cells is prevented by NFκB activation by upregulating the expression of anti-
apoptotic genes, such as those encoding Bcl-XL (B-cell lymphoma XL), BFL1 (a Bcl-2-related
protein), and GADD45β (growth arrest and DNA-damage-inducible 45β). ROS have
therefore been shown to act as immunosuppressive agents in cancer microenvironments
facilitating tumor invasion and metastasis acting not only as oxidative stress mediators but
also immune regulators in cancer development.

3.5. ROS and DNA Damage

Significant studies have shown that ROS interacts with cellular macromolecules such
as DNA, proteins, and lipids interfering with vital cellular functions. ROS causes oxidative
modifications such as DNA base alterations, strand breaks, damage to tumor suppres-
sor genes, and expression of proto-oncogenes resulting in the transformation of normal
cells into malignant cells. One of the most abundant oxidative DNA lesions produced is
8-hydroxydeoxy guanosine (8-OHdG), which is mutagenic [120] and is found elevated in
various human cancers. The transcription factor Nrf2 controls the expression of antioxidant
enzyme genes and also genes that control immune and inflammatory responses, carcino-
genesis, and metastasis. It combats oxidative stress by induction of cytoprotective enzymes,
such as GST, GPx, and oxidoreductases. Cancer patients exhibit disrupted Nrf2-Keap1
interaction through somatic mutations [121,122]. BRCA1 a tumor suppressor gene found
mutated in many cancers, is a caretaker gene, responsible for repairing DNA ultimately
helping the cells to cope with oxidative stress [123,124]. It controls the activity of the tran-
scription factors Nrf2 and NFκB and hence can upregulate several genes involved in the
antioxidant response. The redox factor 1/AP endonuclease 1 (Ref1/APE1) has also been
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found to reduce the generation of ROS in breast cancer cells [125]. Ras activation in tumors
has been associated with point mutations and has been observed in 30% of the tumors [126].
The Ras gene family includes G proteins, Ha-ras, N-ras, and Ki-ras, which participate in cell
signaling and mutations in this oncogene render the proteins constitutively active [127,128].
Mutant Ras has been found to increase mitochondrial mass and ROS levels leading to
DNA damage contributing to transformation [129]. Mutant Ras produces H2O2 by up-
regulating the Nox4-p22phox, making Nox4 a critical mediator of oncogenic Ras-induced
DNA damage [130]. DNA strand breakage and levels of peroxides have been found to
increase significantly with the activation of mutant K-ras in non-transformed epithelial
cells. Of the three mitochondrial sirtuins, Sirt3 which belongs to a class of proteins that
possess histone deacetylase has been linked to longevity in humans, acting as a tumor
suppressor protein [131]. The expression of an oncogene, Myc or Ras, in Sirt3 enhances
ROS production by increasing glycolysis and decreasing oxidative phosphorylation. Under
hypoxic conditions loss of Sirt3 increases tumorigenesis in cancer cells in a ROS-dependent
manner by the activation of by HIF-1α [132]. Oxidative stress and antioxidative stress
genes that are considerably altered in tumor cells include-GPX8, ATOX1, PRDX2, PRDX6,
PTGS1, SEPP1, and DEFB122 that are upregulated, while there was a decrease in expression
of SIRT2, TTN, CYBA, UCP2, and AKR1B1 [133]. TNF-α may also play an important role
in tumor initiation by stimulating the production of intracellular ROS that may damage
DNA and lead to genomic mutations [134]. A study exogenously applied ROS-induced
G1 arrest in proliferating fibroblasts showing that oxidative stress could play a role in the
accumulation of p53 and the activation of cdc2 [135]. Increased ROS levels are associated
with the inactivation of certain genes like FoxO3, TP53, and ATM [136]. The tumor suppres-
sor p53 gene TP53 has been found to be significantly and progressively downregulated in
cancer cells caused by the excessive oxidation of DNA. The TP53 gene plays an important
role in protecting the genome from oxidation by ROS similarly the ataxia telangiectasia
mutated (ATM) gene mediates the cellular response to DNA and oxidative damage. The
FoxO3 gene decreases ROS levels by influencing the regulation of ATM [24]. Research is
being carried out to relate polymorphisms in antioxidant genes to cancer progression as
it can lead to altered enzyme activity. Damage to DNA repair enzymes is also associated
with an increase in the level of oxidative DNA damage.

3.6. ROS-Mediated Alterations in Protein Stability and Lipid Peroxidation

ROS-mediated cell signaling has been implicated to cause certain protein modifications
for instance the sulfhydryl (-SH) group of cysteine residues in proteins are modified to
their oxidized derivatives, as well as causing changes to occur in the conformation by the
formation of intramolecular disulfide bridges which alters the protein activity. However,
the impact of protein redox modifications depends on the proteins’ biochemical properties
and three-dimensional arrangement, as well as on the abundance and kind of reactive
oxygen species (ROS) [137].

The reduced state of critical cysteines in some transcription factors appears to pro-
mote DNA binding and transactivation mediated by disulfide-reducing systems (such
as thioredoxin) and redox factor-1 (Ref-1) [138]. Intermolecular disulfide linkages can
mediate protein dimerization for instance protein kinase (PK) dimerization may lead to
its dissociation from an inactive complex. Protein crosslinking can be induced by H2O2
or peroxidase-catalyzed di tyrosine formation [1,134]. A potential mechanism for ROS-
mediated alterations in protein stability is by targeting the transitional metal-containing
proteins by mixed-function oxidases which target them for ubiquitination and degradation
by proteases. ROS attack proteins producing carbonyls and other modifications in several
amino acids. These changes on receptors, signal transduction proteins, enzymes, and
transporters impair the function of these proteins [139]. Some damage to proteins can be
repaired while proteins with irreversible damage are destroyed and replaced with new
ones. Lipids are also oxidized by ROS, and this is known as ‘lipid peroxidation’, which
results in a reduction in membrane fluidity, an increase in membrane permeability, and
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damage to membrane proteins. At low lipid peroxidation, the cells stimulate antioxidants
defense systems promoting tumor survival, whereas, under medium or high lipid peroxi-
dation conditions, the cells induce apoptosis or necrosis programmed cell death; both of
which cause molecular cell damage facilitating the development of various pathological
states [140].

Therefore, lipid peroxidation plays a role in carcinogenesis but its end products such
as malondialdehyde, 4-hydroxy-2-nonenal, and isoprostanes, could be used as biomarkers
and act as a potential therapeutic strategy in case of colorectal cancer [141]. Oxidized lipids
also lead to changes in the physical characteristics of biomembranes at large including
bilayer thickness, polarity, and thermal phase behavior. These changes result in augmented
permeability, loss of lipid symmetry, and fast lipid trans bilayer diffusion (flip-flop); which
further interfere with lipid-protein interactions, leading to changes in metabolic pathways,
inflammation, and apoptosis [142].

3.7. Adaptation of Cancer Cells to ROS

Mesenchymal stromal cell (MSC) metabolism has the ability to modify cancer cell
metabolism and alter malignancy by transferring mitochondria and/or mitochondrial
DNA (mt DNA) to cancer cells thereby increasing mitochondrial content and enhance
oxidative phosphorylation (OXPHOS) to favor proliferation and invasion [143]. The stromal
metabolism by the cancer-associated fibroblasts produces high-energy nutrients (such as
lactate and ketones) that act as fuels for mitochondrial biogenesis [6]. In this way cancer
cells maintain a pool of functional mitochondria by coupling mitophagy to mitochondrial
biogenesis and also from nonmalignant cells in the tumor microenvironment by forming
intercellular tunneling nanotubes (TNTs). Cancer cells follow “tumor-stroma co-evolution”
by secreting hydrogen peroxide in adjacent fibroblasts and other stromal cells, which
mimics the effects of hypoxia, under aerobic conditions, resulting in excess production of
reactive oxygen species (ROS) [6,144]. Therefore, oxidative stress initiated in tumor cells is
transferred to cancer-associated fibroblasts laterally and vectorially via Hydrogen peroxide.
Excess stromal production of ROS drives the onset of antioxidant defense in adjacent cancer
cells, protecting them from apoptosis.

Cancer cells also have mechanisms of immune evasion of ROS through the antioxidant
defense. During hypoxia when there is a high production of ROS and NO•, glutathione
maintains intracellular redox homeostasis. Glutathione reductase enzyme (GRd) transforms
and recycles ROS, by converting the oxidized state of glutathione GSSG to the reduced state
GSH, taking electrons from NADPH mainly derived from the pentose phosphate pathway.
A decrease in the ratio of GSH to GSSG values is indicative of oxidative stress [145].

Another master regulator of the antioxidant pathway is the transcription factor, Nu-
clear factor erythroid 2-related factor 2 (Nrf2) which in normal conditions remains bound
to its inhibitor Kelch-like ECH-associated protein 1 (Keap1). ROS reacts with redox re-
active cysteines in Keap1, releasing Nrf2 into the nucleus where it binds to ARE leading
to the expression of genes involved in the cellular antioxidant defense. Inhibition of
pro-inflammatory responses of Cox-2 and iNOS expression has been observed with the
activation of Nrf2. Nrf2 is inhibited by modifications of cysteine residues of Keap1and pro-
vides cytoprotective effects against Fas-mediated apoptotic pathways [146]. Karyopherin-6
(KPNA6) facilitates nuclear import and attenuates Nrf2 signaling and restores Nrf2 pro-
tein to basal levels [147]. Nrf2 impairment leads to oxidative stress, inflammation, and
mitochondrial dysfunction [148]. Nrf2 is a tumor suppressor however hyperactivation of
Nrf2 creates an environment that favors the survival of both normal and malignant cells,
protecting them against oxidative stress [149]. Carbonyl reductase 1 is another important
enzyme that regulates the expression of Nrf2 during oxidative stress and helps to detoxify
ROS [26].
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3.8. Role of ROS in Drug Resistance

The increased ROS production through induction of pro-tumorigenic signaling, en-
hanced cell proliferation and survival, increased genetic instability and DNA damage,
and metabolic adaptations, contribute to drug resistance and hence further progression of
cancer. Accumulation of multiple mutations caused by the overproduction of ROS results
in an increased risk of tumor cells developing resistance to therapies used. Drug resistance
is observed in both AML and CML which is associated with mutations in receptor tyrosine
kinases, namely FLT3-ITD and Bcr-Abl. Resistance to the frequently used protein tyrosine
kinase inhibitors, midostaurin, and imatinib can be attributed to the DNA oxidation caused
by NOX4-generated H2O2 downstream of the pro-survival PI3K/Akt pathway [150,151].
When tumor cells adapt to mitochondrial malfunction it has been found to be linked to
drug resistance. To resist chemotherapy, tumor cells adapt to hypoxia and respiratory injury
through the activation of glucose metabolism and therefore become less sensitive to it [152].
Radiation therapy resistance can be attributed to the Hypoxia-induced accumulation of
HIF-1α [153–155].

3.9. Role of ROS in Angiogenesis

High levels of reactive oxygen species (ROS) such as superoxide and H2O2 have been
found to function as signaling molecules to mediate various growth-related responses
including angiogenesis and mutagenesis. Endogenous antioxidant enzymes such as SOD
and thioredoxin regulate ROS-dependent angiogenesis. An important angiogenesis growth
factor is VEGF that stimulates permeability, proliferation, migration, and tube formation of
ECs primarily through the VEGF receptor type2 (VEGR2, KDR/Flk1) [156,157]. Oxidative
stress can increase VEGF expression in tumor cells, which is seen to increase microvessel
counts and poor prognosis in cancers [158]. Hypoxia in the tumor microenvironment
stimulates the induction of VEGF which stimulates NADPH oxidase. Nox produces ROS
which further induces oxidative inactivation of protein tyrosine phosphatases (PTPs) and
PTEN to promote VEGFR2 auto phosphorylation activating redox signaling events like
c-src, Akt, eNOS, p38MAPK, ERK1/2 [158]. A considerable amount of ROS is generated
by NADPH oxidase which includes Nox1, Nox2, Nox4, Nox5, p22phox, p47phox, and
the small G-protein Rac1. This oxidase produces ROS which is involved in diverse redox
signaling pathways inducing transcription factors and angiogenesis genes. Nox isozymes
have been shown to increase in association with ROS production out of which Nox1 is
highly overexpressed in human colon cancers and prostate cancers [159]. Nox1-induced
H2O2 increases VEGF and VEGFR expression and MMP activity, markers of the angiogenic
switch, thereby promoting vascularization and rapid expansion of the tumors [160]. Studies
have shown increased expression of Nox4 and Nox5 in melanoma cells and prostate
cancer cells respectively [161,162]. Nox1 redox signaling has been found to be controlled
by mitochondria and the loss of control of this signaling contributes to tumorigenesis.
The redox-sensitive transcription factors HIF-1α, p53, Ref1, NFkB, and Ets activate the
expression of redox-sensitive genes such as VEGF, MMP, uPA, PAI-1. Trx-1 is a validated
cancer drug target that is involved in many of the hallmarks of cancer including increased
proliferation, resistance to cell death, and increased angiogenesis [163]. Recent studies
have shown that overexpression of a gene SIRT6, through regulating HIF-1α, promoted
invasion, migration, proliferation, and angiogenesis [164].

3.10. Role of ROS in Metastasis

The effects of ROS are not specific to cancer cells and may result in the destruction of
normal cells and tissues as well. These changes in the surroundings of cancer cells bring
about invasion and adhesion processes. ROS also serve as second messengers in gene
regulatory and signal transduction pathways leading to upregulation of the expression of
various genes, including those closely involved in the metastasis and proliferation of cancer
cells. Various stages of tumor metastasis need upregulation of matrix metalloproteinases
(MMPs), adhesion molecules, EGF, EGF receptor (EGFR), and vascular endothelial growth
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factor. ROS have been found to increase the expression and/or activate these proteins,
leading to aggravation of tumor metastasis [165]. EGFR, which plays an important role
in tumor metastasis is found to be highly expressed in a variety of tumors, such as breast,
colon, gastric, pancreatic, ovarian, and prostate cancers, gliomas, and melanomas [166].

The cell’s defense against ROS includes antioxidant enzymes that detoxify ROS and
prevent them from accumulating at high concentrations [167]. Cell detachment during
metastasis upregulates PDK4 which inhibits PDH and decreases the flux of glucose car-
bon into the TCA cycle [168]. Cell detachment also upregulates NFkB which increases
the expression of MnSOD, the principal mitochondrial antioxidant enzyme, to detoxify
mitochondrial ROS resulting from detachment [169]. Moreover, it has been found that cells
depleted of MnSOD are hypersensitive to matrix detachment.

Cancer cells follow “tumor-stroma co-evolution” by secreting hydrogen peroxide in
adjacent fibroblasts and other stromal cells, which mimics the effects of hypoxia, under
aerobic conditions, resulting in excess production of reactive oxygen species (ROS) [6,136].
Therefore, oxidative stress initiated in tumor cells is transferred to cancer-associated fi-
broblasts laterally and vectorially via Hydrogen peroxide. Excess stromal production of
ROS drives the onset of antioxidant defense in adjacent cancer cells, protecting them from
apoptosis. When cancer cells metastasize, they detach from the extracellular matrix which
activates pro-apoptotic proteins (e.g., BMF, BIM, and BID) and pro-apoptotic members
of the Bcl-2 family of proteins (BAK and BAX), eventually resulting in anoikis, a type
of apoptotic cell [170]. Cancer cells increase their metastatic potential by elevating their
threshold for anoikis. Cancer cells also purposefully restrain pyruvate from entry into
mitochondrial oxidative metabolism as the ROS produced as byproducts of mitochondrial
respiration exhibit anti-metastasis activity [171]. Thus, cancer cells gain increased anoikis
resistance and survival advantage for metastasis.

4. Targeting ROS

ROS has both pro-tumorigenic and anti-tumorigenic signaling which can be manipu-
lated in the treatment of cancer to prevent ROS production or to induce tumor cell death
(Table 1).

4.1. Targeting Tumor Death by Upregulation of ROS

By increasing the production of ROS levels to toxic levels and exhaustion of the
antioxidant system capacity causing programmed cell death, the anti-tumorigenic signaling
of ROS can be targeted as a therapy in cancer. Chemotherapy drugs such as anthracyclines,
cisplatin, bleomycin, arsenic trioxide increase ROS production resulting in irreparable
damage and cell death, and have been used in the treatment of AML, acute lymphoblastic
leukemia (ALL), and acute promyelocytic leukemia (APL) [172]. Daunorubicin is an
anthracycline that leads to increased activation of sphingomyelinase and ceramide resulting
in activation of the JNK pathway leading to apoptosis [173,174]. This is achieved when it
reacts with cytochrome p450 reductase [175–177] to form semiquinone radical intermediates
in the presence of reduced NADPH which further reduces O2 to form O2

− [178–182].
Another widely used anthracycline in the treatment in a broad spectrum of cancers like
breast, esophageal carcinomas, endometrial carcinomas, bile duct, pancreatic, gastric, liver,
Hodgins and non-Hodgins lymphoma, osteosarcoma, Kaposi’s sarcoma, and soft tissue
sarcomas is Doxorubicin [183,184] which works by increasing production of ROS resulting
in the activation of the tumor suppressor p53 and ultimately tumor cell death [185–187].
Another drug called Sulindac, an NSAID, which works by elevating ROS production has
been used to treat colon and lung cancer. It damages the mitochondrial membrane and
hence the tumor cells become more sensitive to H2O2-induced cell death [188].

As mentioned previously, tumor cells adapt to oxidative stress through increased
glucose metabolism thereby inhibiting apoptosis through the redox inactivation of cy-
tochrome c [189]. Another approach used in pancreatic and prostate cancer is to use 2
deoxy glucose (2DG) that inhibits glucose causing elevated ROS production leading to cell
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death [190–192]. Studies have shown that 7-formyl-10-methylisoellipticine, an isoellipticine
derivative, increases mitochondrial ROS production and induces apoptosis in AML cells
with no cytotoxic effects to any organs [193]. A number of chemotherapeutic drugs are
currently in use that induces autophagy regulated by ROS.

Table 1. List of chemotherapeutic drugs that induce autophagy and/or apoptosis by regulation of ROS [85].

Drug Target Cancer Type Primary Action Secondary Action Reference

Arsenic trioxide Ovarian cancer

Induces
beclin-1-independent
autophagic pathway,

modulating SnoN/SkiL
expression

Alters TGFβ signaling via
ROS generation [194]

Artemisinin Cancer cells

Weakens the levels of
glutathione,

Supply extra ferrous ion to
elevate ROS levels

Self-amplification of
oxidative stress [195]

Buthionine-
sulfoximine Cancer cells Deplete intracellular GSH,

may affect STAT3 pathway Induce oxidative stress [195,196]

Chloroquine MCF-7, HT29, U373
cancer cells

Sensitizes cells to hypoxia,
due to increased ROS,
incapacity to reduce

mitochondrial content

Inhibition of autophagy,
increases cell death [197]

Cisplatin Head and neck cancer Enhances ROS levels Induce DNA damage [198,199]

Curcumin Colon cancer cells
Induces ROS production,
activation of ERK1/2 and

p38 MAPK
Autophagic cell death [200]

Daunorubicin Breast cancer Induce ROS,
activates the JNK pathway Lead to apoptosis [114,201]

Doxorubicin

Breast, esophageal
carcinomas,
endometrial

carcinomas, bile duct,
pancreatic, gastric, liver

cancer

NO synthase inhibition,
Generates ROS, activates p53 Induces tumor cell death [126–128,202]

Diphenylene
iodonium pancreatic cancer

Jak/STAT pathway inhibited,
dephosphorylation of
AKT/ASK1 pathway

Decrease ROS, lead to
apoptosis [203,204]

Fullerene C60
(Nano-C60)

Normal and
drug-resistant cancer

cells
Activation of Atg5 Causes autophagy in a

ROS-dependent fashion [205]

Gemcitabine Head and neck cancer,
pancreatic cancer

Activate antioxidant agents,
suppress Nox4, block
ROS-related signaling
pathways, inactivate

stromal cells

scavenge ROS [198,206]

Idarubicin (IDR) Breast cancer Induce oxidative DNA
damage [207]

Itraconazole Liver cancer Increase ROS

Upregulate expression of
death receptor protein FAS,
pro-apoptotic protein Bax,

decreased expression of
anti-apoptotic protein

Bcl-2, activating apoptosis

[208]
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Table 1. Cont.

Drug Target Cancer Type Primary Action Secondary Action Reference

Medroxyprogesterone Head and neck cancer Induction of 15d-PGJ2-ligand
of PPARγ, increased ROS Induce apoptosis [198,209]

Metformin Pancreatic cancer

Increase MnSOD/SOD2
expression,

decrease NOX2 and NOX4
protein expression

Pro-apoptotic effects [210]

OSU-03012 Hepatocellular
carcinoma

Inhibit PDK/AKT signaling
pathway inducing apoptotic

cell death

ROS accumulation and
subsequent autophagic cell

death
[211]

Panitumumab
(EGFR antibody)

EGFR-expressing
metastatic colorectal

carcinoma

Increase in GSH levels,
reduced stability of proteins

Redox imbalance induced
autophagy [212–214]

Proton pump
inhibitor,

Esomeprazole
Melanoma

Mitochondrial dysfunctions,
involvement of NADPH

oxidase

Accumulation of reactive
oxygen species (ROS) [215]

Proscillaridin A
(PSD-A)

Breast cancer
colorectal cancer

ROS generation, Ca2+

oscillation

inhibits STAT3 activation,
induces apoptosis and

autophagy
[216]

Recombinant human
HMGB1 Glioblastoma cells

Bind to TLR2 and TLR4,
induce NADPH oxidase to

produce ROS

activate MAPK and NFκB,
release Cytokines [217]

Resveratrol Colon cancer cells Induce ROS and subsequent
cytotoxic autophagy

Caspase-8/Caspase-3-
dependent
apoptosis

[218]

Ruthenium (II)
complexes Cancer cells DNA damage, Induce ROS

subsequent protective
autophagy along with

apoptosis
[219]

Suberoylanilide
hydroxamic acid

(Zolinza, Vorinostat)

Cutaneous T-cell
lymphoma, leukemia

Regulate gene expression,
Induce ROS autophagy, prosurvival [220,221]

Sulforaphane
Therapy-resistant

pancreatic
carcinoma cell

Promote
mitochondria-derived ROS

initiate protective
autophagy [222,223]

Sulindac colon and lung cancer mitochondrial damage elevate ROS production [129]

Tamoxifen MCF-7 breast cancer
cells

Induced ROS,
increased expression of

Beclin-1
protective autophagy [224]

Temozolomide Malignant gliomas
Suppress

ROS/ERK-mediated
autophagy

Induce apoptosis [225]

Valproic acid Glioma cells Mitochondrial ROS activates
the ERK1/2 pathway Autophagic cell death [226]

Vitamin A Testis tumor Leydig
cell lines

Modulate antioxidant
enzyme activities

Induce protective
autophagy or apoptosis at

different doses
[227]

2 deoxy glucose
(2DG)

pancreatic and prostate
cancer

Disrupt hydroperoxide
metabolism,

increased glutathione
disulfide accumulation,

NADP (+)/NADPH ratios

Elevated ROS production
leading to cell death [132,133]

7-formyl-10-
methyisoellipticine AML Increase mitochondrial ROS

production Induces apoptosis [134,228]
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4.2. Targeting Tumor Proliferation by Downregulation of ROS

ROS production in tumor cells can be inhibited in order to suppress pro-tumorigenic
signaling, as reduced ROS levels would mean fewer metabolic adaptations and lower
levels of DNA damage and genetic instability and therefore decreased cell survival and
proliferation. Metformin given to type 2 diabetes patients, is an inhibitor of complex
I of the mitochondrial ETC and has also been found to reduce cancer incidence and
mortality [229,230]. Metformin shows pro-apoptotic effects by increasing the protein
expression of MnSOD/SOD2 and decreased NOX2 and NOX4 protein expression [231].
NOX4 generated ROS production is a potential target in decreasing pro-tumorigenic
effects in various cancers which can be suppressed by flavoprotein inhibitor diphenylene
iodonium (DPI) resulting in apoptosis via the AKT/apoptosis signal-regulating kinase 1
(ASK1) pathway [232]. Moreover, studies have shown inhibition of the protein tyrosine
kinases FLT3-ITD as well as inhibition of p22phox and NOX4 activity in AML cells results in
decreased cell survival along with a decrease in DNA damage and genomic instability [233].
Antioxidants have also been thought to reduce ROS production however it is controversial.
Few studies on breast cancer have shown that the overexpression of antioxidant SOD3
reduced breast cancer metastasis implicating the use of antioxidants to reduce ROS in
cancer therapy [234]. On the other hand, it has also been found that Vitamin A and E and
also beta carotene increased the risk of cancer [235,236].

5. Conclusions

It has become increasingly apparent that ROS plays an inevitable role in cancer biology.
Increased ROS production has become a well-recognized hallmark of various cancers, and
an understanding of the pro-tumorigenic and anti-tumorigenic actions of ROS can help
analyze at what levels they can be used in tumor-suppressive roles. We have not only
been able to positively correlate reactive oxygen species (ROS), to carcinogenesis and to
malignant progression of tumor cells; but have also found ROS to promote cell motility and
shape the tumor microenvironment by inducing inflammation/repair and angiogenesis.
This is because ROS can transduce, as signaling intermediates, contributing to genomic
damage and genetic instability. ROS are essential to numerous cellular processes including
apoptosis and cell growth as well as regulation of autophagy. A better understanding of
how ROS regulates autophagy, as well as apoptosis, opens up opportunities to develop
cancer treatment strategies by either induction or inhibition of ROS depending on individ-
ual cancer’s molecular context and its microenvironment. It is now possible to develop
selective and effective therapies to target cancer cells by studying the role of elevated
ROS production in cancer, ROS-regulated signaling pathways, and identifying specific
antioxidants as targets. With more research on the subject, we can hope to devise ways
where ROS can function as a weapon to target cancer cells specifically without damaging
normal cells. Newer methods could be used to evaluate ROS spatial specificities in order
to better infer their regulatory mechanisms and downstream influences on different sub-
cellular organelles. Work can be done to elucidate each oxidative modification on tumor
growth, survival, and migration in or der to identify cancer-specific redox vulnerabilities
which can be exploited to develop cancer therapies. Overall, a better understanding of
cancer-specific redox signaling events holds promise in terms of developing tumor-specific
cancer therapies without destroying normal cells.
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Abbreviations

2DG 2-deoxyglucose
8-OHdG 8-hydroxydeoxy guanosine
ALL acute lymphoblastic leukemia
APL acute promyelocytic leukemia
Apaf-1 apoptotic protein-activating factor 1
Ask1 apoptosis signal-regulating kinase-1
AREs antioxidant response elements (AREs)
ATM ataxia telangiectasia mutated
Cdk1 cyclin-dependent kinase 1
COX2 cyclooxygenase 2
CSC cancer stem cells
DR death receptor
EGF epidermal growth factor
EGF-R epidermal growth factor-receptor
Erk1/2 extracellular-regulated kinases 1/2
FAD flavin adenine dinucleotide
FLIP FLICE inhibitory protein
FOXO forkhead homeobox type O
GF growth factor
GF-R growth factor receptor
GSH glutathione
GSSG glutathione disulphide
GPX glutathione peroxidase
GST Glutathione S-transferase
GLUT1 Glucose transporter 1
H2O2 hydrogen peroxide
HIF-1 hypoxia-inducible factor-1
HK2 hexokinase 2
JNK c-Jun N-terminal Kinase
KPNA6 Karyopherin-6
Keap1 Kelch-like ECH-associated protein 1
LDHA lactate dehydrogenase A
MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase
MOMP mitochondrial outer-membrane permeabilization
mTORC1 mammalian target of rapamycin complex1
mROS mitochondrial ROS
Nox NADPH oxidases
Nrf2 Nuclear factor erythroid 2–related factor 2
NFκB nuclear factor κ-B
NOX NADPH oxidase
OXPHOS Oxidative Phosphorylation
PARP poly ADP ribose polymerase
PDK1 phosphoinositide-dependent kinase 1
PDGF platelet-derived growth factor
PDGF-R platelet-derived growth factor-receptor
PEP Phospho enol pyruvate
PERK PKR-like endoplasmic reticulum kinase
PKM2 Pyruvate kinase isozyme M2
PTPs protein tyrosine phosphatases
PTP1B protein tyrosine phosphatase 1B
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PINK1 putative kinase 1
PI3-K phosphatidylinositol 3-kinase
PKC protein kinase C
PKD protein kinase D
PPP Pentose phosphate pathways
Prdx peroxiredoxin
PTEN phosphatase and tensin homolog
ROS reactive oxygen species
SOD superoxide dismutase
SOCS suppressors of cytokine signaling
TGFβ transforming growth factor β
TIMP tissue inhibitor of metalloproteinases
TNFα tumor necrosis factor α
TP1 triosephosphate isomerase
TNTs intercellular tunneling nanotubes
TrxR Thioredoxin reductase
VEGF vascular epithelial growth factor
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