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This paper develops a new class of functional depths. A generic member of this class is coined J th order kth
moment integrated depth. It is based on the distribution of the cross-sectional halfspace depth of a function in the
marginal evaluations (in time) of the random process. Asymptotic properties of the proposed depths are provided:
we show that they are uniformly consistent and satisfy an inequality related to the law of the iterated logarithm.
Moreover, limiting distributions are derived under mild regularity assumptions. The versatility displayed by the
new class of depths makes them particularly amenable for capturing important features of functional distribu-
tions. This is illustrated in supervised learning, where we show that the corresponding maximum depth classifiers
outperform classical competitors.

Keywords: asymptotics; data depth; functional data analysis; integrated depths; supervised classification

1. Introduction

In this paper, we introduce a flexible class of depths for functional data. Such data, for which the ob-
served units are random functions rather than random vectors, has become pervasive in many fields
of modern research. Examples of functional data include growth curves in medical research, temper-
ature, precipitation or water levels in meteorological studies, or electrode signals and fMRI data in
brain studies. Many methods, originally developed for analyzing multivariate data, have been adapted
to functional settings, see, for example, Ramsay and Silverman [43] and Ferraty and Vieu [15]. The
richness of functional data typically makes it difficult to develop parametric models that generically
and accurately capture the numerous features of the observations. This explains the large interest that
nonparametric functional data analysis has received in the past decade.

In many statistical problems, a classical task is to assess whether an observation is a good repre-
sentative of the population or not. In the multivariate setting, depth functions were introduced as a
way to nonparametrically measure the centrality of a point with respect to an underlying distribution.
Celebrated instances include the halfspace depth (Tukey [46]) and the simplicial depth (Liu [26]). An
axiomatic approach to depth was developed in Zuo and Serfling [48]. Interestingly, depth notions al-
low to capture information not only about location but also about spread or shape of distributions. As
a result, depth functions have been used in several inference problems including supervised classifi-
cation (Ghosh and Chaudhuri [17], Li, Cuesta-Albertos and Liu [25]), testing for location (and scale)
differences or diagnostics of non-normality (Liu, Parelius and Singh [27]). For these reasons, depth
functions have been and are still under active research. Another example is the recent contribution by
Chernozhukov et al. [6], which introduces a notion of Monge–Kantorovich depth. This depth general-
izes the classical halfspace depth for one-dimensional or spherical distributions to general settings by
using optimal transport.

The concept of data depth has been extended to functional settings. The first proposal in that direction
was defined in Fraiman and Muniz [16], where the authors integrate univariate halfspace depth over the
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functional values. Similar definitions, still of an integrated nature, include the modified band depth and
half-region depth (López-Pintado and Romo [29,30]). An infimal approach, that considers the infimum
of the marginal depth values, was adopted in Mosler [34], Mosler and Polyakova [35] and Narisetty
and Nair [41].

Contrary to the multivariate case, assessing the centrality of an observation is not the sole objective
in functional settings. Rather, recent proposals in this context aim at measuring typicality of an obser-
vation in a wider sense by, for example, taking the shape or roughness into account. Claeskens et al. [7]
integrate multivariate marginal halfspace depth values of the joint vector consisting of the functions,
their derivatives and/or warping functions. The objective of our paper is to introduce adaptive notions
of functional depth, coined the J th order kth moment integrated depths, which automatically capture
the relevant features of the functional distribution.

Studying theoretical properties of functional depths is known to be an ambitious task. Indeed, ob-
taining consistency already constitutes a challenge (Kuelbs and Zinn [23], Gijbels and Nagy [18]).
Interestingly, the depth functions introduced in this paper are proven to be uniformly consistent. More-
over, a version of the law of the iterated logarithm is shown to hold. The asymptotic distributions of
the sample versions are derived. This last result appears to be the first of its kind in the functional data
depth literature.

The paper is organized as follows: Section 2 presents a motivating example that illustrates the ben-
efits of using the adaptive functional depth. Section 3 provides a formal definition of the J th order
kth moment integrated depth and details its theoretical properties. Section 4 is devoted to exploring its
good finite sample properties and comparing its performance to other methods in classification. Finally,
Section 5 discusses possible extensions and future topics of research, while the Appendix collects all
the proofs from the paper.

2. Motivating example

Being able to assess the typicality of an observation is crucial in modern applications. For example,
scientists worldwide routinely try to detect unusual patterns in climate, geological or astronomical
data. Another example comes from finance, where rapidly detecting turbulence in the pattern of stock
valuations is of importance. A more mundane task, although as difficult, involves sorting spam emails
from regular correspondence. Note that, in this last case, the task does not amount to detecting outliers
but flagging observations that do not share the same behavior as the rest.

The following example illustrates the need for ad hoc methods able to rank functional observations
from the most typical to the most atypical. As discussed in the Introduction, depth methods provide
such rankings.

The Adelaide electricity demand dataset1 depicts the daily electricity demand in megawatts mea-
sured in Adelaide between July 1997 and March 2007. The dataset presented in Figure 1 contains 508
observations of Monday demand curves (in gray) to which 5 randomly chosen Sunday demand curves
(in black) were added. All 513 curves are based on half-hourly measurements. The dataset will be
further detailed in Section 4.

Detecting changes in the demand behavior is important for electricity producers and carriers as they
need to be able to predict the consumption and adapt their production accordingly. Figure 1 illustrates
the difficulty of the problem as, for example, the overall consumption on Sundays does not seem to
differ significantly from that of Mondays. The consumption peaks, however, happen at different time
points requiring the production to be adapted.

1Available at https://rdrr.io/cran/fds/man/Electricitydemand.html.

https://rdrr.io/cran/fds/man/Electricitydemand.html
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Figure 1. Monday electricity demands in Adelaide (gray) with 5 atypical curves measured on Sundays (black).

Figure 2 displays boxplots of depth values of the 513 observations. In each of them, the depths
of the Sunday curves are marked with asterisks. Each boxplot corresponds to a different functional
depth. The functional depths considered here are the integrated halfspace depth (ID) from Fraiman
and Muniz [16], the kernelized functional spatial depth (KFSD) from Sguera, Galeano and Lillo [44]
(an extension of the celebrated functional spatial depth from Chakraborty and Chaudhuri [5]), the
multivariate functional halfspace depth (MFHD) from Claeskens et al. [7] that computes the integrated
bivariate depth of the functions and their derivatives, the extremal depth (ED) from Narisetty and Nair

Figure 2. Boxplots of the depth values of the 513 curves described above for, from left to right, ID, KFSD,
MFHD, ED, and FD−10

2 . Sunday values are marked with asterisks.
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Figure 3. Histogram and kernel density estimate of marginal depth values for one randomly chosen Monday (left)
and Sunday (right) curve.

[41], as well as the J th order kth moment integrated depth FDk
J , proposed in this paper. The new depth

is based on cross-sectional study of the observations, that is computing halfspace depths with respect to
the marginal (in time) distributions. Depth FDk

J is then based on characteristics of the distributions of
these cross-sectional depths. We will later show that the parameter values used in this example (J = 2
and k = −10) allow to, in addition to location, take the shape of the functions into account.

The boxplots illustrate the good performance of FDk
J in flagging atypical days. Indeed, the Sunday

curves are assigned depth values that are comparatively lower than those of the main bulk of the data.
The only other depth able to capture, however only two of, the added curves is ED. Note that the
general location of the boxplots is not relevant in this context since the interest lies in the ranking that
the depths provide rather than their values themselves. The ability of FDk

J to detect unusual curves is
based on the fact that it considers the entire distribution of vectors of marginal (in time) depth values.

Studying vectors of marginals and other moments is more informative than comparing univariate
average measures. Figure 3 illustrates this by showing histograms and kernel density estimates of the
cross-sectional univariate depth values (taken at 200 equispaced time points) of one randomly chosen
Monday curve and one randomly chosen Sunday curve. The average depth values in Figure 3 are,
for the Monday and the Sunday curve, respectively, 0.202 and 0.211, so that it is very challenging to
distinguish them based only on the integrated depth (see the ID boxplot in Figure 2). Similarly, infimal
depth assigns value close to 0 to both curves. Both densities exhibit two peaks and the shapes of the
distributions are rather similar. This suggests to also consider joint distributions of the depth values at
different time points to include information about the shape of the curves.

This data example highlights the need to construct a depth that considers not only the univariate
depth distribution of cross-sectional values but also their joint marginal distribution as well as other
moments. The following section formally defines such depth, that is, the J th order kth moment inte-
grated depth FDk

J . Moreover, it provides its asymptotic properties.

3. Moment-based functional depths

Let (�,A,P) be the probability space on which every random quantity is defined. Throughout, let
P(A) denote the set of all Borel probability distributions on the measurable set A. In the sequel,
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D(·;P) denotes the celebrated halfspace depth function under distribution P (Tukey [46]). Depending
on the context, it either refers to the univariate version

D(x;P) = min
{
FP (x),1 − lim

y→x− FP (y)
}

for x ∈ R and P ∈P(R),

where FP (x) = P(X ≤ x) denotes the value of the (univariate) cumulative distribution function of
X ∼ P at x ∈ R, or it refers to the multivariate version

D(·;P) :RJ → [0,1] : x �→ D(x;P) = inf
u∈SJ−1

P
(
uTX ≥ uTx

)
, (3.1)

where X has distribution P ∈ P(RJ ) and SJ−1 = {u ∈ R
J : uTu = 1} denotes the hypersphere in R

J .
For continuous distributions P , the depth (3.1) attains values only in [0,1/2].

Turning now to the functional setting, let x ∈ L2([0,1]) and X ∼ P ∈ P(L2([0,1])), where the
latter means that X : [0,1] × � → R is jointly measurable and, for each ω ∈ �, X(·,ω) ≡ X(·) ∈
L2([0,1]). Throughout, Pt ∈ P(R) denotes the distribution of X(t), the value of X at point t . For
t = (t1, . . . , tJ )T, the distribution of X(t) ≡ (X(t1), . . . ,X(tJ ))T is denoted by Pt ∈ P(RJ ). In the
sequel x denotes a generic element of either R, RJ or L2([0,1]). The context will make clear to which
we are referring. Note that it is customary in functional data analysis to assume integrability of x. In this
context, however, instead of integrability, it would be sufficient to assume that x is Borel measurable
(Nagy [36]).

We next define the J th order kth moment integrated depth. The parameter k relates to the moments
of the distribution of cross-sectional depth values that are under study. This allows to adaptively select
features of the distribution that best distinguish the observations. The parameter J defines the number
of time points that are considered simultaneously. This allows to use not only location to assess depth
but also to take the shape properties of the functional observations into account. This is similar in spirit
to the approach taken in Nagy, Gijbels and Hlubinka [38] and allows to consider changes in the slope
or convexity of the observations without requiring existence of derivatives.

Definition 1. Let J = 1,2, . . . and |k| ≥ 1. For P ∈ P(L2([0,1])), the J th order kth moment inte-
grated depth with respect to P is the function

FDk
J (·;P) : L2([0,1])→ [0,1]

: x �→ FDk
J (x;P) =

(∫
[0,1]J

(
D
(
x(t);Pt

)+ 1/2
)k dt

)1/k

− 1/2.

For x ∈ L2([0,1]) and k = ±∞, define

FD∞
J (x;P) = lim

k→∞ FDk
J (x;P) and FD−∞

J (x;P) = lim
k→−∞ FDk

J (x;P).

Note that the choice to use (a function of) the halfspace depth in the integrated depth definition
provided above is of a theoretical nature. Naturally, any choice of multivariate depth can be considered
and would provide a corresponding functional integrated version (for example, considering simplicial
depth and k = J = 1 would yield the particular case of a modified band depth from López-Pintado
and Romo [29]). We will, however, restrict to the halfspace case, which provides interesting theoretical
properties, that we now detail. See also the discussion at the end of Section 3.1.

The limits in the previous definition always exist due to the boundedness of the halfspace depth and
the monotonicity of the Lp norm. Note that the expression inside the integral involves D(x(t);Pt ) +
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1/2. The constant was added in order to guarantee the existence of the integral for k ≤ −1. The constant
is then subtracted to ensure that FDk

J (x;P) ∈ [0,1].
For k = 1 and J = 1, Definition 1 coincides with the usual integrated depth for functional data

(Fraiman and Muniz [16]), that is, the average cross-sectional depth of a functional value of x with
respect to the corresponding marginal distribution of X.

Writing ‖ · ‖k for the Lk([0,1]J )-norm of a function defined on [0,1]J , Definition 1 rewrites, for
1 ≤ k < ∞,

FDk
J (x;P) = ∥∥D(x(·);P·

)+ 1/2
∥∥

k
− 1/2.

Similarly, for −∞ < k ≤ −1 and l = −k = |k|,

FDk
J (x;P) = 1/

∥∥∥∥ 1

D(x(·);P·) + 1/2

∥∥∥∥
l

− 1

2
. (3.2)

For k = ∞, FDk
J (·;P) is the essential supremum of the cross-sectional depth function. Similarly,

FD−∞
J (x;P) = lim

k→−∞ FDk
J (x;P) = lim

l→∞ 1/

∥∥∥∥ 1

D(x(·);P·) + 1/2

∥∥∥∥
l

− 1

2

=
(

ess sup
t∈[0,1]J

1

D(x(t);Pt ) + 1/2

)−1

− 1

2

=
(

1

ess inft∈[0,1]J D(x(t);Pt ) + 1/2

)−1

− 1

2
= ess inf

t∈[0,1]J
D
(
x(t);Pt

)
.

Therefore, for k → −∞, the moment integrated depths approximate the (essential) infimum of the
marginal depths of functional values. This approach is closely related to the technique called the infimal
(or extremal) depth for functional data, considered by Mosler [34], Mosler and Polyakova [35] and
Narisetty and Nair [41].

Altogether, with the moment extensions of the integrated depth for random functions, we obtain
a versatile collection of depth functionals that encompasses both the original integrated and infimal
depths, and many other intermediate functionals. The idea of considering the whole integrand function
in the computation of the integrated depth (by taking its moments) can be seen to be related to the
approach pursued by Narisetty and Nair [41]. Contrary to their suggestion of using the minimal value,
or quantiles, of the depth distribution, we show in the sequel that there are several advantages in using
moments. Indeed, depths defined using moments are (i) always uniquely defined, (ii) universally (and
uniformly) consistent (which is not the case for infimal depths, see Gijbels and Nagy [18]), and (iii)
well defined also for discontinuous functional data. The choice of k and J in practice will be driven by
the application considered.

3.1. Sample depth consistency

The sample version FDk
J (x;Pn) is obtained by plugging in Pn ∈P(L2([0,1])) – the empirical measure

of a random sample from P of size n. Theorem 1 below shows that, remarkably, the sample depths
introduced above are, for all 1 ≤ |k| < ∞ and all J = 1,2, . . . , universally consistent over the whole
space L2([0,1]). Results of this type are not available for infimal depths, or other non-integrated ver-
sions of depths for infinite-dimensional data (López-Pintado and Romo [29], López-Pintado and Romo
[30], Chakraborty and Chaudhuri [5], Sguera, Galeano and Lillo [44]). It is important to mention that
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in the limit cases k = ±∞ the consistency may fail to hold true, as can be seen by modification of the
example using the infimal depth in L2([0,1]) of Nagy and Ferraty [37], p. 99.

Theorem 1. For all P ∈ P(L2([0,1])), J = 1,2, . . . , and 1 ≤ |k| < ∞,

sup
x∈L2([0,1])

∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣ a.s.−−−→

n→∞ 0

and

sup
x∈L2([0,1])

∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣= OP

(
n−1/2).

The next theorem states an upper bound for the functional depth FDk
J (·;P) in the spirit of the law

of the iterated logarithm. It is the first result of this type for any functional depth.

Theorem 2. For all P ∈P(L2([0,1])), J = 1,2, . . . , and 1 ≤ |k| < ∞, the following holds true almost
surely

lim sup
n→∞

sup
x∈L2([0,1])

∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣√ 2n

log logn
≤ Ck,

where Ck = 1 for 1 ≤ k < ∞ and Ck = 9 for −∞ < k ≤ −1.

Theorem 2 gives a uniform version of an asymptotic result that is intermediate between the uniform
consistency of Theorem 1, and the central limit theorem of Theorem 3 given in the next section.

Note that, in Theorems 1 and 2, it is not crucial that the finite-dimensional depth D used in the defi-
nition of FDk

J is the halfspace depth. In fact, Theorem 1 still applies (after obvious modifications) for
integrated depths based on any uniformly consistent finite-dimensional depth that satisfies appropriate
uniform rates of convergence. Similarly, for any depth D that follows a bound based on the law of the
iterated logarithm, an analogue to Theorem 2 holds true.

3.2. Distributional asymptotics

Next, we study the asymptotic distribution of FDk
J (·;P) and adapt a uniform weak convergence result

for the halfspace depth process given by Massé [33], Theorem 2.1, to the functional setting. To do so,
we introduce the following notations. For u ∈ SJ−1 (recall that SJ−1 denotes the hypersphere in R

J )
and x ∈ R

J , write

H [x,u] = {
y ∈R

J : uTy ≥ uTx
}

for the closed halfspace whose boundary passes through x with inner normal u and

H = {
H [x,u] : x ∈R

J , u ∈ SJ−1}
the set of all halfspaces in R

J . For Q ∈P(RJ ) and x ∈R
J , a halfspace H [x, v] ∈ H is called a minimal

halfspace at x ∈R
J if Q(H [x, v]) = D(x;Q). Let

V (x) = {
v ∈ SJ−1 : Q

(
H [x, v])= D(x;Q)

}
denote the set of all inner normals of minimal halfspaces of Q ∈P(RJ ) at x.
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Further, we need some terminology and results from the theory of empirical processes. All the facts
used hereafter about these processes can be found in van der Vaart and Wellner [47], or Dudley [12].
For H ∈ H, Q ∈P(RJ ) and Qn the empirical measure of a random sample of size n from Q, consider
the empirical process νn(H) = √

n(Qn(H) − Q(H)). Each realization of this process is an element
of the space �∞(H) of bounded maps from H to R equipped with the uniform norm. The process νn

is known to converge weakly (in the sense of Hoffmann-Jørgensen) to a Q-Brownian bridge νQ – a
centered Gaussian process indexed by H that is a tight, Borel-measurable map into �∞(H) and whose
covariance function is given by E(νQ(H)νQ(H ′)) = Q(H ∩ H ′) − Q(H)Q(H ′).

As shown by Massé [33], Theorem 2.1, under some technical assumptions, the halfspace depth
process

√
n(D(x;Qn)−D(x;Q)), indexed by a subset of some x ∈ R

J , converges weakly to a process
given by

J (νQ)(x) = inf
v∈V (x)

νQ

(
H [x, v]). (3.3)

In particular, if for x ∈ R
J the set V (x) is a singleton (i.e., there exists a single minimal halfspace at

x), the limit (3.3) is Gaussian. Otherwise the limit still exists, but may not be Gaussian. We extend this
result to FDk

J (·;P).

Theorem 3. Let P ∈P(L2([0,1])) be such that

Pt (∂H) = 0 for all H ∈H and all t ∈ [0,1]J . (S)

Then, for any x ∈ L2([0,1]),
√

n
(
FDk

J (x;Pn) − FDk
J (x;P)

)
D−−−→

n→∞
(
FDk

J (x;P) + 1/2
)1−k

∫
[0,1]J

(
D
(
x(t);Pt

)+ 1/2
)k−1J (νPt )

(
x(t)

)
dt,

where the process J (νPt )(x(t)) in the integrand on the right hand side is (3.3) for measure Pt , evalu-
ated at x(t).

The smoothness condition (S) is satisfied if each marginal distribution Pt has a density.
For the simplest case k = 1 and x ∈ L2([0,1]) with unique minimal halfspaces at each t ∈ [0,1]J ,

Theorem 3 reduces to an asymptotic normality result. Its proof follows from that of Theorem 3 in a
straightforward way.

Corollary 4. Under the assumptions of Theorem 3, suppose further that X ∼ P , and let Ht =
H [x(t), v(t)] ∈ H be the unique minimal halfspace of Pt at x(t), for all t ∈ [0,1]J . Denote for
t1, t2 ∈ [0,1]J

α(t1) = P
(
X(t1) ∈ Ht1

)= D
(
x(t1);Pt1

)
,

β(t1, t2) = P
([

X(t1) ∈ Ht1

]∩ [X(t2) ∈ Ht2

])
.

Then the sequence
√

n(FDk
J (x;Pn)−FDk

J (x;P)) is distributed asymptotically as a centered Gaussian
random variable with variance

c

∫
[0,1]J

∫
[0,1]J

((
α(t1) + 1/2

)(
α(t2) + 1/2

))k−1(
β(t1, t2) − α(t1)α(t2)

)
dt1 dt2,

where c = (FDk
J (x;P) + 1/2)2(1−k).
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Corollary 4 holds, for instance, for P a non-degenerate Gaussian process on [0,1], and x different
from the mean of P except on a finite subset of [0,1].

Note that the distributional asymptotics shown in the results above are the first of their kind in the
literature. The only comparable result is Cuevas and Fraiman [9], Theorem 4. There, the asymptotic
distribution such as that in Corollary 4 is obtained for an integrated depth similar to our moment
integrated depth with k = 1 and J = 1. However, Cuevas and Fraiman [9] use a univariate version
of the simplicial depth in the definition of the integrated depth, instead of the halfspace depth. The
simplicial depth is known not to satisfy some desirable properties that are expected from a depth, such
as quasi-concavity (Zuo and Serfling [48]). Additionally, the derivation of Cuevas and Fraiman [9],
Theorem 4, is based on the representation of the univariate simplicial depth with respect to Q ∈ P(R)

in terms of the distribution function of Q. That result cannot be extended to J > 1.

4. Depth based classification of real data

Supervised learning is a statistical problem that arises in several application areas. Depth methods
have proved useful in such contexts. In this section we consider supervised classification of functional
data and provide several data examples which allow to assess the flexibility of the depth functions
defined in Section 3. In particular, we illustrate the ability of FDk

J to capture features of the functional
observations that are relevant to conduct classification.

There is an extensive literature related to supervised functional classification. References include
Hall, Poskitt and Presnell [20] or Ferraty and Vieu [14]. More recently, Biau, Bunea and Wegkamp
[1] and Cérou and Guyader [4] studied k-nearest neighbors methods and their properties in infinite
dimensional spaces. Also, Delaigle and Hall [10] considered classifiers based on dimension reduction
through either partial least squares or functional principal components projections.

Depth based methods have also been considered for functional classification. Ghosh and Chaudhuri
[17] introduced the celebrated maximal depth approach for depth-based classification which allocates
a new observation to the population in which it has the highest depth. This allows to, generically, turn
any depth function into a classifier. Extensions of the max-depth classifier include Cuevas, Febrero and
Fraiman [8] (to the functional context) and Li, Cuesta-Albertos and Liu [25] (for adaptive depth-depth
plot classification). It has now become a common practice to compare depth functions based on their
empirical classification properties.

We next consider a supervised functional classification exercise, in which we compare the following
classifiers:

1. the k-nearest neighbors procedure (kNN) from Biau, Bunea and Wegkamp [1] using leave-one-
out cross-validation on k.

2. the Delaigle and Hall [10] classifiers based on principal components (PC) or partial least squares
(PLS).

3. the max-depth classifiers based on (i) Claeskens et al. [7] multivariate functional halfspace depth
(MFHD) applied to the functions and their derivatives, (ii) Sguera, Galeano and Lillo [44] kernelized
functional spatial depth (KFSD) with a Gaussian kernel and automatic bandwidth selection provided
by the authors, and (iii) the J th order kth moment integrated depth FDk

J . For this last depth, different
values of J ∈ {1,2,3} were considered together with a leave-one-out cross-validation on the parameter
k ∈ {k′ ∈ Z : 1 ≤ |k′| ≤ 20} ∪ {±∞}.
Note that max-depth classifiers based on the modified band depth (López-Pintado and Romo [29]) or
the integrated depth from Fraiman and Muniz [16] are not considered here as these depths are only
special cases of FDk

J . The max-depth classifier in 3.(iii) therefore readily improves on classification
conducted with these depths.
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Computation of FDk
J was performed as follows. Functions in each dataset were measured on a

corresponding time index set. For J = 1 the cross-sectional depths were computed over the entire
index set. For J = 2 and J = 3 the depths were computed over 5000 uniformly sampled J -variate
vectors of time indices. As the halfspace depth is invariant to permutations of the chosen J time points,
only permutationally distinct vectors were considered in the computation. The integrals appearing in
the definition of FDk

J were approximated using averages over the selected (J -variate) index set. For
k = +∞ (resp. k = −∞), FDk

J was approximated as the maximum depth (resp. minimum depth) over
the index set.

For each dataset, leave-one-out misclassification rates of the presented classifiers are reported. Note
that the multivariate maximum depth classifier traditionally breaks ties at random, according to weights
depending on group sizes. We will adopt the same convention for the functional data considered here.
While ties are considerably less frequent in this case (due to integration), they still may appear. This
will be the case, for example, if the function has depth 0 with respect to all groups.

Additionally, an X-fold out-of-sample classification scheme was conducted for FDk
J in each dataset.

In the out-of-sample classification scheme, each dataset was split at random into X parts of equal
sizes. One at a time, each subsample was treated as the training set, and the remaining X − 1 parts as
the testing set. In the training set, a range of different values of k were tested. The k that minimized
the leave-one-out misclassification rate on the training set was then used to evaluate the leave-one-
out misclassificaton rates on the testing set. The choice of X was guided by the total sample size of
each dataset, resulting in X = 10 for the Adelaide electricity consumption dataset and X = 5 for the
Tecator and the Australian weather datasets. Notably, there were no significant differences in neither
the chosen values of k nor the resulting misclassification rates of FDk

J between the leave-one-out
and the out-of-sample classification schemes. Therefore, in the following, we focus on the leave-one-
out misclassification rates as the performance criterion of the methods in supervised classification.
Additional results of the simulation study can be found in the on-line supplemental document (Nagy
et al. [40]).

4.1. Description of the datasets considered

4.1.0.1. Australian weather dataset. The Australian rainfall dataset2 (see Delaigle and Hall [10] and
Li et al. [24] for details on data preprocessing) depicts the average daily precipitation at 190 weather
stations in Australia between 1840 and 1990.

Two classification problems are considered for this dataset. The North–South grouping divides the
data into two distinct rainfall patterns. The observations in the Northern population exhibit a “tropical”
pattern with most of the precipitation during summer months, whereas the Southern population has
most of its rainfall during cooler winter months. The West–East grouping is associated with changes in
the amplitude of the precipitation: larger changes in the West and more stable precipitation in the East
due to the presence of the Great Dividing Range. Both partitions are described in Li et al. [24]. The
latter problem is often considered more difficult as the relevant features for classification are related
to the shape of the observations rather than their location. The geographical groupings of the weather
stations and the data are presented in Figure 4.

4.1.0.2. Tecator spectrometric dataset. The Tecator spectrometric dataset3 (described in Borggaard
and Thodberg [3]) depicts the light wavelength absorbance of 215 finely chopped pieces of meat an-
alyzed by the Tecator Infratec spectrometer. The absorbance of each meat sample was measured at

2Available at https://rda.ucar.edu/datasets/ds482.1/.
3Available at http://lib.stat.cmu.edu/datasets/tecator.

https://rda.ucar.edu/datasets/ds482.1/
http://lib.stat.cmu.edu/datasets/tecator
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Figure 4. Geographical locations of the Australian weather stations with the North–South (upper left) and West-
–East (upper right) groupings highlighted in gray and black. Bottom row: corresponding yearly rainfall data in
matching colors.

100 uniformly spaced discretization points over the near-infrared wavelength range of 850–1050 nm.
The classification problem for this dataset has been considered regularly in the functional data analysis
literature (see, for example, Ferraty and Vieu [15]). Meat samples have been separated into two groups
based on the fat content of the sample.

The spectrometric data is presented in Figure 5. The classical grouping – 138 observations with low
fat content (≤ 20%) vs 77 observations with high fat content (> 20%) – is represented by using gray
and black lines, respectively.

Classification of the spectrometric curves is difficult as the two groups overlap, exhibiting very
similar smoothness properties and spread of the vertical location shift. However, the observations differ
in curvature.

4.1.0.3. Adelaide electricity consumption dataset. The Adelaide electricity demand dataset4 (see
Magnano, Boland and Hyndman [31] and references therein) contains the daily electricity demand
in megawatts measured in Adelaide between 1997 and 2007. For each week day, there are 508 curves,

4Available at https://rdrr.io/cran/fds/man/Electricitydemand.html.

https://rdrr.io/cran/fds/man/Electricitydemand.html
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Figure 5. Tecator light wavelength absorbance data of 215 samples of meat. Observations with less (resp. more)
than 20% of fat content are in gray (resp. black).

based on half-hourly measurements. As for the Australian dataset, the Adelaide data was smoothed
using B-splines. For the purpose of this analysis, two business days, Monday and Tuesday, and the two
weekend days, Saturday and Sunday, were chosen, and four leave-one-out classification schemes were
conducted pairing both business days with both weekend days. Figure 6 displays the datasets. Some
observations are highlighted in black.

The electricity demand curves are quite overlapping, but there are some notable differences in shape
that distinguish the business day observations from the weekend ones. Typically, the business days have
a much shorter daily low demand and a sharper rise in the level of demand towards the office hours
compared to the two weekend days. The latter have a lower daily mean, that is also typically reached
one to two hours later.

4.2. Classification results

We first illustrate the benefits of using different values of k in FDk
J . To do so, maximum depth classi-

fication was conducted on the Australian weather dataset, for both groupings and for J = 1,2,3 and
k ∈ {k′ ∈ Z : 1 ≤ |k′| ≤ 20}∪{±∞}. Figure 7 provides plots of the leave-one-out misclassification rates
as a function of k, for each value of J .

As can be seen, for the North–South problem, FDk
J performs consistently well with each J on low

values of k, and maintains good performance until k ≈ 0 for both J = 2 and J = 3. In the West–
East context, there is a clear local minimum in the misclassification rate with a different value of k

for each J . Contrarily to the North–South case, the values of k that minimize the misclassification
rate are associated with low moments. Therefore, depending on the case, a depth emphasizing either
centrality or extremality should be utilized. This highlights the fact that FDk

J allows to adaptively
select an appropriate depth for classification through the cross-validation on k. A similar exercise was
conducted for the Adelaide dataset and guided the choices J = 2 and k = −10 in the motivating
example in Section 2.
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Figure 6. Adelaide electricity demand curves over Mondays (top left), Tuesdays (top right), Saturdays (bottom
left) and Sundays (bottom right) between years 1997 and 2007, with randomly chosen observations highlighted in
black.

Table 1 gives the leave-one-out misclassification rates for all supervised classification problems and
all classification procedures described above. As explained above, all parameters k were chosen using
leave-one-out cross-validation. Remarkably, FDk

J performs consistently well for all problems.

Table 1. Leave-one-out misclassification rates for the classification problems described above, based on maxi-
mum depth classification with FDk

J
, MFHD, and KFSD, and based on the PC, PLS and kNN classifiers

FDk
1 FDk

2 FDk
3 MFHD KFSD PC PLS kNN

North–South 0.100 0.084 0.068 0.258 0.316 0.084 0.136 0.047
West–East 0.074 0.100 0.084 0.100 0.121 0.084 0.168 0.037

Tecator 0.316 0.112 0.093 0.216 0.326 0.093 0.037 0.191

Monday–Saturday 0.211 0.123 0.093 0.201 0.221 0.096 0.245 0.069
Monday–Sunday 0.176 0.103 0.098 0.156 0.158 0.055 0.172 0.060
Tuesday–Saturday 0.189 0.103 0.077 0.173 0.188 0.080 0.222 0.052
Tuesday–Sunday 0.122 0.058 0.044 0.130 0.121 0.012 0.136 0.023
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Figure 7. Leave-one-out misclassification rates of FDk
J

as a function of k for the North–South (left) and West-
–East (right) groupings of the Australian dataset, for J = 1,2,3.

First, FDk
2 and FDk

3 surpass other depth-based methods in all the cases considered. These two classi-
fiers also outperform FDk

1 except for the West–East grouping of the Australian dataset. In most cases,
except for electricity consumption classification on Monday–Sunday and Tuesday–Sunday, the PC
classifier is slightly surpassed by FDk

J for at least one value of J . This is all the more so interesting
as PC is an optimal classifier under certain assumptions on the generating process (Delaigle and Hall
[10]). PLS is the best classifier for the Tecator dataset, but it is consistently poor in all other examples.
Finally, kNN has good misclassification rates in most cases, but it is outperformed by a large margin in
the Tecator dataset.

Computationally, the complexity of FDk
J is comparable to that of the J -dimensional halfspace depth,

which in turn has a high computational complexity as a function of J and n. As such, efficient com-
putation of halfspace depth has been a topic of rigorous research in the literature. There have been
many contributions of both approximate and exact algorithms for fast computation of halfspace depth.
See, for example, Hallin, Paindaveine and Šiman [21], Liu, Mosler and Mozharovskyi [28], Pokotylo,
Mozharovskyi and Dyckerhoff [42] and Shao and Zuo [45] for further details. Out of the considered
classifiers, kNN was clearly the fastest, followed by FDk

1 and KFSD. The PC and PLS classifiers, as
well as the depth methods MFHD and FDk

2 had similar computing times but were significantly slower
than the previous methods. Out of the tested methods, FDk

3 was the slowest. A table with approximate
average computation times of all the considered procedures can be found in the on-line supplemental
document (Nagy et al. [40]).

5. Discussion and future prospects

In this paper, we introduced an adaptive class of functional depths. Their asymptotic properties were
amply detailed and their good finite-sample performances were illustrated on several data examples.
In this final section, we discuss two extra topics that relate to the proposed depths. First, we discuss
modifications that can improve the classification procedures described in Section 4. Finally, we develop
a bootstrap test for functional (halfspace) symmetry center.
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Table 2. Leave-one-out misclassification rates for the classification problems described in Section 4, based on
maximum depth classification with wFDk

J

North–South West–East Tec Mon–Sat Mon–Sun Tue–Sat Tue–Sun

wFDk
2 0.063 0.058 0.065 0.094 0.084 0.055 0.031

wFDk
3 0.058 0.063 0.037 0.077 0.068 0.035 0.025

5.0.0.4. Improving on the classification procedure. Section 4 illustrates the good classification per-
formances of procedures built on the adaptive depth proposed in this paper. While we did not explore
the theoretical consistency of the associated classifiers (this is topic for further research), we now dis-
cuss two practical modifications one could implement in order to improve classification.

First, one could consider alternatives to maximum depth classification by using best separation rules
in the depth-depth plot, as was done in Li, Cuesta-Albertos and Liu [25]. We conducted an exploratory
simulation study which showed that the small gain in misclassification rates was negligible compared
to the increase in computational burden required from the second layer of cross-validation on the best
separating line.

A more significant gain was obtained through a weighted approach, that is, by using the weighted
depth (in the sequel, w : [0,1]J → [0,∞) denotes a weight function)

wFDk
J (x;w,P ) =

(∫
[0,1]J

w(t)
(
D
(
x(t);Pt

)+ 1/2
)k dt

)1/k

− 1/2

in the maximum depth classification procedure. Since the values of the halfspace depths in each
group might differ very little on some regions of [0,1]J , it is natural to select a weight function
that discards such regions. Table 2 displays the misclassification rates obtained by assigning zero
weight to the region with small halfspace differences. To be more precise, let EP [D(X(t);Q)] de-
note the expectation under X ∼ P ∈ P(L2([0,1])) of the halfspace depth of X(t) under Q ∈ P(RJ )

and, for distributions P0 and P1, set S0(λ) = {t : EP0 [D(X(t);P0,t ) − D(X(t);P1,t )] > λ}, S1(λ) =
{t : EP1 [D(X(t);P1,t ) − D(X(t);P0,t )] > λ}, and w(t) = I[t ∈ S0(λ) ∪ S1(λ)]. In practice, λ was
chosen so that S0(λ) ∪ S1(λ) spans 25% of the area of [0,1]J . The misclassification rates show an
improvement on the rates presented in Table 1. Interestingly, the procedure does not require an extra
cross-validation step as the sets S0(λ) and S1(λ) can be constructed during the leave-one-out scheme
on the sample elements.

In addition to the leave-one-out classification, the X-fold out-of-sample classification scheme de-
scribed in Section 4 was performed for each dataset. In the training set, the weight function was first
determined as described above, and the parameter k was tuned to minimize the leave-one-out mis-
classification rate with the chosen weight function. Then, the weight function and the corresponding k

were used in leave-one-out classification of the testing set. The average out-of-sample misclassification
rates and standard deviations (in brackets) are presented in Table 3. Aside from a few exceptions, the
misclassification rates are similar to the rates presented in Table 2.

Figure 8 displays a heatplot of the mean differences for the low fat content observations of the
Tecator dataset for J = 2. This plot confirms (see Figure 5) that the region with starkest discrimination
is obtained for t1, t2 ∈ [900,950].

5.0.0.5. Testing for symmetry. The distributional asymptotics devised in Theorem 3 open up possibil-
ities for inference. As an example, we propose to test whether a given function x ∈ L2([0,1]) is a center
of J -symmetry of P ∈ P(L2([0,1])). By that, we mean that each marginal distribution Pt ∈ P(RJ )
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Table 3. Average (over all test samples) out-of-sample misclassification rates (their standard deviations are pro-
vided in brackets) for the classification problems described in Section 4, based on maximum depth classification
with wFDk

J

North–South West–East Tecator Mon–Sat Mon–Sun Tue–Sat Tue–Sun

wFDk
2 0.072 0.089 0.063 0.141 0.091 0.065 0.029

(0.016) (0.016) (0.014) (0.020) (0.0003) (0.014) (0.0002)
wFDk

3 0.066 0.086 0.061 0.099 0.085 0.047 0.024
(0.007) (0.021) (0.026) (0.023) (0.0009) (0.008) (0.0003)

of x satisfies Pt ({x(t)}) = 0 and is (halfspace) symmetric about x(t), that is, D(x(t);Pt ) = 1/2 for
all t ∈ [0,1]J (Zuo and Serfling [48]). Since x is then a maximizer of FDk

J for any |k| > 1, with
FDk

J (x;P) = 1/2, this suggests to use the statistic T k
n = √

n(1/2 − FDk
J (x;Pn)) to test the null hy-

pothesis H0 that x is a center of J -symmetry of P , against general alternatives. Theorem 3 asserts
that the random quantity T k

n converges in distribution to a non-degenerate positive random variable.
Its distribution can be expressed as an integral of a properly weighted infimum of Gaussian processes.
The asymptotic distribution of T k

n under H0 depends on P and on k. We propose to use nonparametric
bootstrap to approximate it.

For J = 1, the procedure reduces to a test about the cross-sectional median, the deepest curve with
respect to FDk

1(·;P). In this situation, the bootstrap replicates are straightforward to generate under
H0. Denote by xm the cross-sectional median of Pn (or a representative if the median is not unique).
By definition, FDk

1(xm;Pn) = 1/2, and xm plays the role of the true center of symmetry for Pn and

for the bootstrap replicates. For b = 1, . . . ,B with B a large integer, we propose to generate T
k,∗
n,b =√

n(1/2 − FDk
1(xm;P ∗

n,b)), where for each b we write P ∗
n,b for the empirical measure that corresponds

Figure 8. Average values of D(x(t);Plow,t ) − D(x(t);Phigh,t ), for t = (t1, t2)T, over all observations x with
low fat content in the Tecator dataset. Here, Plow (resp. Phigh) refers to the empirical distribution associated with
the low (resp. high) fat content group.
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Figure 9. Simulated power functions for symmetry center testing based on T k
n with k ∈ {−∞,−10,1,10} under

location shifts (left) and peak modifications (right) of the true center of symmetry. The size of the tests is set to
0.05 (horizontal line). Bootstrap distributions were simulated with B = 100 and powers were approximated using
1000 independent runs. On the left panel, the curves for k �= −∞ overlap.

to an independent random selection of n functions from the original sample Pn with replacement. The
p-value of our test is given by the usual expression (1 +∑B

b=1 I[T k,∗
n,b > T k

n ])/(1 + B).
We performed a short simulation study to assess the performance of the proposed tests. We gen-

erated random samples of size n = 100 from a centered Gaussian process with covariance function
E[X(t1)X(t2)] = exp(−|t1 − t2|/3), t1, t2 ∈ [0,1], and tested whether its center of 1-symmetry is a
constant function c (location shift scenario) or a function c(1 − |4t − 2|)+ for (x)+ the positive part
of x (peak scenario), c ∈ [0,1/2]. Case c = 0 corresponds to a situation under H0, while for c > 0, the
alternative is true. The power functions presented in Figure 9 show that the tests perform quite well,
in agreement with the results from Section 4. Parameter k allows to fine tune the testing procedure
to emphasize different traits of the functional data – choice k = 1 rewards the average cross-sectional
depth and performs well against alternatives of vertical shifts, while low values of k increase sensitivity
against peaked alternatives. For J > 1, it is not obvious how to generate bootstrap resamples under H0.
Theoretical validation of the proposed bootstrap procedure is out of the scope of the current paper, and
will be subject of future research.

Appendix

This appendix collects all proofs of the theoretical results from the paper.

A.1. Proof of Theorem 1

We start by noting that by the boundedness of the domain [0,1]J and measurability of every function
involved (Nagy [36]), all integrals are well defined and finite.
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Recall that for x : [0,1] → R and t = (t1, . . . , tJ )T ∈ [0,1]J we denote x(t) = (x(t1), . . . , x(tJ ))T ∈
R

J , and Pt ≡ P(t1,...,tJ )T ∈ P(RJ ) stands for the marginal distribution of X(t) ≡ (X(t1), . . . ,X(tJ ))T

with X ∼ P . Similarly, let Pn,t ∈ P(RJ ) stand for the marginal distribution of the empirical measure
Pn ∈ P(L2([0,1])) at t . With this notation, define functions

d : [0,1]J → [1/2,3/2] : t �→ D
(
x(t);Pt

)+ 1/2,

dn : [0,1]J → [1/2,3/2] : t �→ D
(
x(t);Pn,t

)+ 1/2.

Universal almost sure consistency

Let us start with k ≥ 1. In this case, one can write for any x ∈ L2([0,1])∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣= ∣∣‖dn‖k − ‖d‖k

∣∣≤ ‖dn − d‖k

=
(∫

[0,1]J
∣∣dn(t) − d(t)

∣∣k dt

)1/k

, (A.1)

where we used that ‖ · ‖k is a norm. From this it follows that

sup
x∈L2([0,1])

∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣≤ (∫

[0,1]J
sup

x∈L2([0,1])

∣∣dn(t) − d(t)
∣∣k dt

)1/k

,

and the last expression vanishes almost surely with n → ∞ using the same technique as in the proof
of Nagy et al. [39], Theorem 5.3, see also Nagy and Ferraty [37], Theorem 2, for its extension to the
L2([0,1])-space.

Now, let k = −l ≤ −1. Because for a, b > λ > 0 we have∣∣∣∣1a − 1

b

∣∣∣∣≤ 1

λ2
|a − b|,

by (3.2) we can write∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣= ∣∣∣∣ 1

‖1/dn‖l

− 1

‖1/d‖l

∣∣∣∣≤ 9

4

∣∣‖1/dn‖l − ‖1/d‖l

∣∣
≤ 9

4
‖1/dn − 1/d‖l = 9

4

(∫
[0,1]J

∣∣∣∣ 1

dn(t)
− 1

d(t)

∣∣∣∣l dt

)1/l

≤ 9

(∫
[0,1]J

∣∣dn(t) − d(t)
∣∣l dt

)1/l

. (A.2)

Since we bounded the expression for any x ∈ L2([0,1]) in the same way as in (A.1), we can continue as
in the proof for positive k, and conclude that also in this setting the universal almost sure convergence
holds true as desired.

√
n-universal consistency

Starting from (A.1) and (A.2) for cases k ≥ 1 and k ≤ −1, respectively, it is enough to show that for all
k ≥ 1 ∫

[0,1]J
sup

x∈L2([0,1])

∣∣dn(t) − d(t)
∣∣k dt = OP

(
n−k/2),
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or, equivalently, that

∫
[0,1]J

sup
x∈L2([0,1])

(√
n
∣∣dn(t) − d(t)

∣∣)k dt =OP (1).

Let H be the collection of all halfspaces in R
J . Since (Donoho and Gasko [11], formula (6.6))

sup
x∈L2([0,1])

∣∣dn(t) − d(t)
∣∣≤ sup

H∈H

∣∣Pn,t (H) − Pt (H)
∣∣, (A.3)

it is enough to show that for all k ≥ 1

∫
[0,1]J

(√
n sup

H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)k

dt =OP (1), (A.4)

which can be read as the uniform tightness of the sequence of measures on the left-hand side of (A.4).

By the Vapnik-Červonenkis property of H, an extension of the Dvoretzky–Kiefer–Wolfowitz in-

equality (Massart [32]) that can be found in Dudley [12], Section 6.5, gives that, for any ε > 0, there

exists K = K(ε) such that for all v > 0

sup
t∈[0,1]J

P
(√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣> v

)
≤ K exp

(−(2 − ε)v2). (A.5)

This inequality provides a bound on the moments of the supremum of the empirical halfspace process

E
(√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)2k =

∫ ∞

0
P
(√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣> v1/(2k)

)
dv

≤
∫ ∞

0
K exp

(−(2 − ε)v1/k
)

dv,

where the right-hand side is finite, and does not depend on either n or t . We obtain that

sup
t∈[0,1]J

sup
n=1,2,...

E
((√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)k)2 = M < ∞.
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Finally, with the help of Markov’s inequality and Fubini’s theorem we get that for all L > 0

sup
n=1,2,...

P

(∣∣∣∣∫[0,1]J

(√
n sup

H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)k

dt

∣∣∣∣> L

)

≤ sup
n=1,2,...

E | ∫[0,1]J (
√

n supH∈H |Pn,t (H) − Pt (H)|)k dt |
L

≤ sup
n=1,2,...

E
∫
[0,1]J |√n supH∈H |Pn,t (H) − Pt (H)||k dt

L

= sup
n=1,2,...

∫
[0,1]J E |√n supH∈H |Pn,t (H) − Pt (H)||k dt

L

≤ supt∈[0,1]J supn=1,2,... E(
√

n supH∈H |Pn,t (H) − Pt (H)|)k
L

≤
√

M

L
,

and the desired (A.4) is verified. This completes the proof.

A.2. Proof of Theorem 2

Recall first the uniform law of the iterated logarithm for halfspaces in Euclidean spaces (Kuelbs and
Dudley [22], Corollary 2.4). By that law it holds true that for any Q ∈P(RJ ),

lim sup
n→∞

sup
H∈H

∣∣Qn(H) − Q(H)
∣∣√ 2n

log logn
= 1 a.s.,

with Qn the empirical measure of a random sample of size n from Q. The rates of convergence (2) for
all values of |k| ≥ 1 then follow from this formula, and

lim sup
n→∞

sup
x∈L2([0,1])

∣∣FDk
J (x;Pn) − FDk

J (x;P)
∣∣

≤ Ck lim sup
n→∞

(∫
[0,1]J

sup
x∈L2([0,1])

∣∣dn(t) − d(t)
∣∣|k| dt

)1/|k|

≤ Ck lim sup
n→∞

(∫
[0,1]J

sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣|k| dt

)1/|k|

= Ck

(
lim sup
n→∞

∫
[0,1]J

sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣|k| dt

)1/|k|

≤ Ck

(∫
[0,1]J

(
lim sup
n→∞

sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)|k|

dt

)1/|k|
.

The chain of three inequalities above holds true with Ck = 1 for k ≥ 1 and Ck = 9 for k ≤ −1, and
follows from bounds (A.1) and (A.2), respectively, (A.3), and the reverse Fatou lemma (Dudley [13],
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Lemma 4.3.3), in this order. The final almost sure result for the integral is obtained in the same spirit
as the strong consistency in Nagy et al. [39], Theorem 5.3.

A.3. Proof of Theorem 3

In the first part of the proof we establish the result for k = 1. We use a result of Grinblat [19], Theo-
rem 3, stated for p = 1.

Theorem 5 (Grinblat [19]). Let ξn be a sequence of random processes with the following properties:

(G0) ξn : [0,1]J ×� →R is jointly measurable with respect to the product of the Lebesgue measure
on [0,1]J , and P;

(G1) for any t1, . . . , td ∈ [0,1]J the sequence {(ξn(t1), . . . , ξn(td))T}∞n=1 converges in distribution
to (ξ(t1), . . . , ξ(td))T;

(G2) supt∈[0,1]J supn=1,2,... E |ξn(t)| < ∞;
(G3) E |ξn(t)| −−−→

n→∞ E |ξ(t)| for all t ∈ [0,1]J .

Then for any continuous functional f on L1([0,1]J ) the weak convergence f (ξn)
D−−−→

n→∞ f (ξ) holds
true.

We apply Theorem 5 to the mapping

f : L1([0,1]J )→R : ϕ �→
∫

[0,1]J
ϕ(t)dt

and the process defined for t ∈ [0,1]J and ω ∈ � as

ξn(t) = ξn(t,ω) = √
n
(
D
(
x(t);Pn,t (ω)

)− D
(
x(t);Pt

))
.

The dependence of the process ξn on the random element ω will be suppressed in notation. We shall
verify conditions (G0)–(G3) from Theorem 5.

Condition (G0) is a corollary of Nagy [36], Theorem 1. Already for k = 1, the proof of (G1) is
rather long and technical. Therefore, the rest of the proof is split into six parts. The first four of them
are devoted to (G1). In part V below we establish

(G4) supt∈[0,1]J supn=1,2,... E |ξn(t)|2 < ∞,

and show that this condition together with (G1) is sufficient for (G2) and (G3). In the final part VI of
this proof, the result of Theorem 3 for general k is obtained.

Let H∗ =H ∪R
J stand for the collection of generalized halfspaces – all halfspaces in R

J , and R
J .

For d = 1,2, . . . denote by

Hd∗ = {H = H1 × · · · × Hd : Hj ∈H∗ for all j = 1, . . . , d}
the collection of all Cartesian products of d generalized halfspaces. Note that formally Hd∗ must be
distinguished from the collection of all d-tuples of generalized halfspaces denoted by (H∗)d . Never-
theless, the canonical bijection (H∗)d → Hd∗ : (H1, . . . ,Hd) �→ H1 × · · · × Hd makes the two spaces
equivalent.



694 S. Nagy et al.

Part I: Joint empirical process

We begin with some auxiliary derivations. Fix d = 1,2, . . . and t1, . . . , td ∈ [0,1]J , and for X ∼ P ∈
P(L2([0,1])) denote by P(t1,...,td ) ∈ P(RJd) the joint distribution of the (Jd)-dimensional random
vector (X(t1)

T, . . . ,X(td)T)T ∈ R
Jd . Its marginal distributions are Pt1, . . . ,Ptd ∈ P(RJ ). Similarly,

write Pn,(t1,...,td ) ∈ P(RJd) for the corresponding empirical distribution based on a random sample of
size n from P .

Consider the sequence of processes
√

n
(
Pn,(t1,...,td )(H ) − P(t1,...,td )(H )

)
(A.6)

indexed by H ∈ Hd∗ . Since the collection of halfspaces H in R
J has the Vapnik-Červonenkis prop-

erty, also collections H∗ and Hd∗ are Vapnik-Červonenkis classes of sets in R
J and R

Jd , respectively
(van der Vaart and Wellner [47], Lemma 2.6.17). Therefore, the process (A.6) is Donsker (van der Vaart
and Wellner [47], Sections 2.5 and 2.6.1), and weakly convergent in �∞(Hd∗) (to a P(t1,...,td )-Brownian
bridge) as desired.

Part II: Marginal empirical processes

The following lemma enables to transfer the weak convergence result from a joint univariate empirical
process to a vector of its marginals.

Lemma 1. For a set T such that s ∈ T and d = 1,2, . . . , let Xn converge weakly to X in �∞(T d).
Define

πj : T → T d : tj �→ ( s, . . . , s︸ ︷︷ ︸
(j−1)-times

, tj , s, . . . , s︸ ︷︷ ︸
(d−j)-times

)T.

Then {(Xn ◦ π1, . . . ,Xn ◦ πd)T}∞n=1 converges weakly to (X ◦ π1, . . . ,X ◦ πd)T in the space �∞(T )d .

Proof. For x, y ∈ �∞(T d) and h : �∞(T d) → (�∞(T ))d : x �→ (x ◦ π1, . . . , x ◦ πd)T we have

∥∥h(x) − h(y)
∥∥=

d∑
j=1

‖x ◦ πj − y ◦ πj‖ ≤ d‖x − y‖,

which means that h is Lipschitz continuous. The result follows by the continuous mapping theorem
(Dudley [13], Theorem 9.3.7). �

By Lemma 1 with T =H∗, Xn the process in (A.6), s =R
J , and tj = Hj ∈H, we obtain that with

Xn ◦ πj (Hj ) = √
n
(
Pn,(t1,...,td )

(
R

J × · · · ×R
J × Hj ×R

J × · · · ×R
J
)

− P(t1,...,td )

(
R

J × · · · ×R
J × Hj ×R

J × · · · ×R
J
))

= √
n
(
Pn,tj (Hj ) − Ptj (Hj )

)
,

the sequence of processes

√
n
(
Pn,t1(H1) − Pt1(H1), . . . ,Pn,td (Hd) − Ptd (Hd)

)T
,

indexed by (H1, . . . ,Hd)T ∈ (H∗)d , converges weakly in �∞(H∗)d to the d-dimensional image of the
P(t1,...,td )-Brownian bridge given by the transformation used in Lemma 1.
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Part III: Approximation of the depth process

To verify (G1), we now combine the technical result from part II with the method used in the proof of
Massé [33], Theorem 2.1. Following the notation from that paper, for t ∈ [0,1]J , let V (t) ⊂ SJ−1

denote the collection of all inner normals of minimal halfspaces of measure Pt ∈ P(RJ ) at x(t)
(recall that, throughout the proof, x ∈ L2([0,1]) is fixed). For each t ∈ [0,1]J , we assumed that
Pt ∈ P(RJ ) satisfies (S). Under this condition, Massé [33], Proposition 4.5, argues that the mapping
SJ−1 → [0,1] : u �→ Pt (H [x(t), u]) is continuous, in particular the set of its arguments of minima
V (t) is closed in SJ−1. Similarly as in the first paragraph of Massé [33], Section 5.2, for any t we
cover the set V (t) by isolating sets. By isolating sets we mean a system of closed subsets {Ut (v)}v∈V (t)

of vectors in SJ−1, such that for each v ∈ V (t)

Ut (v) ∩ V (t) = {v} and SJ−1 =
⋃

v∈V (t)

Ut (v).

In contrast to Massé [33] who bases his proof on an arbitrary covering of SJ−1 by isolating sets, in our
proof it will be useful to introduce a specific covering given by

Ut (v) =
{
u ∈ SJ−1 : ‖u − v‖ ≤ inf

v′∈V (t)

∥∥u − v′∥∥}. (A.7)

Because distance to a set V (t) is a continuous function, each set Ut (v) is closed. At the same time,
the collection {Ut (v) : v ∈ V (t)} covers SJ−1 because for each u ∈ SJ−1 there exists an element of the
closed set V (t) that minimizes the distance from u to points of V (t). Finally, for v, ṽ ∈ V (t) such that
ṽ ∈ Ut (v) but ṽ �= v we necessarily have

0 ≤ ‖̃v − v‖ ≤ inf
v′∈V (t)

∥∥ṽ − v′∥∥= ‖̃v − ṽ‖ = 0,

which gives a contradiction, meaning that the sets (A.7) are indeed isolating.
For j = 1, . . . , d , let

Hmin(tj ) =
⋃

vj ∈V (tj )

H
[
x(tj ), vj

]⊂H∗

be the collection of all minimal halfspaces at point x(tj ).
For j = 1, . . . , d and H [x(tj ), vj ] ∈ Hmin(tj ) let λn,j be a random process indexed by Hmin(tj )

given by

λn,j

(
H
[
x(tj ), vj

])
=
⎧⎨⎩

√
n
(

inf
uj ∈Utj

(vj )
Pn,tj

(
H
[
x(tj ), uj

])− Ptj

(
H
[
x(tj ), vj

]))
if D

(
x(tj );Ptj

)
> 0,

0 if D
(
x(tj );Ptj

)= 0.

In what follows, we shall use also ũj ∈ SJ−1 as a shorthand for any direction that satisfies

inf
uj ∈Utj

(vj )
Pn,tj

(
H
[
x(tj ), uj

])= Pn,tj

(
H
[
x(tj ), ũj

])
.

Note that ũj depends on tj , vj , n, and ω ∈ �. For each j , let

νn,j

(
H
[
x(tj ), vj

])= √
n
(
Pn,tj

(
H
[
x(tj ), vj

])− Ptj

(
H
[
x(tj ), vj

]))
.
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By the same argument as in the proof of Massé [33], Lemma 5.4, we have

νn,j

(
H
[
x(tj ), ũj

])≤ λn,j

(
H
[
x(tj ), vj

])≤ νn,j

(
H
[
x(tj ), vj

])
.

For the vectors of processes λn = (λn,1, . . . , λn,d)T and νn = (νn,1, . . . , νn,d)T in the Cartesian prod-
uct of �∞ spaces

∏d
j=1 �∞(Hmin(tj )) equipped with the norm given by the sum of the norms in its

components, the above inequalities mean that

‖λn − νn‖ =
d∑

j=1

‖λn,j − νn,j‖

=
d∑

j=1

sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− λn,j

(
H
[
x(tj ), vj

]))

≤
d∑

j=1

sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
. (A.8)

Now we show that the bound on the right hand side of the previous display vanishes in outer proba-
bility uniformly in vj ∈ V (tj ) for all j = 1, . . . , d . To see this, write for ε > 0

P∗
(

d∑
j=1

sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
> ε

)

≤ P∗
(

d⋃
j=1

[
sup

H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
> ε/d

])

≤
d∑

j=1

P∗( sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
> ε/d

)
,

where P∗ stands for the outer probability on �. By Fatou’s lemma,

lim sup
n→∞

P∗
(

d∑
j=1

sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
> ε

)

≤
d∑

j=1

lim supn→∞P∗( sup
H [x(tj ),vj ]∈Hmin(tj )

(
νn,j

(
H
[
x(tj ), vj

])− νn,j

(
H
[
x(tj ), ũj

]))
> ε/d

)
.

Now, we use the derivations provided in the proof of Massé [33], Lemma 5.4, and apply them to each
of the terms of the sum on the right-hand side above. From the final paragraph of the proof of Massé
[33], Lemma 5.4, it then follows that the expression above vanishes if for each t ∈ [0,1]J , a sequence
{vn}∞n=1 ⊂ V (t) such that vn → v0 ∈ V (t), and a sequence {un}∞n=1 such that un ∈ Ut (vn) for each n

and un → u0 ∈ V (t), it necessarily holds true that v0 = u0. We demonstrate this by using the special
form of the covering (A.7). Suppose for contradiction that � = ‖u0 − v0‖ > 0. By convergence, for
n large enough we know that ‖un − u0‖ ≤ �/4 and at the same time ‖vn − v0‖ ≤ �/4. Because
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u0 ∈ V (t) but also un ∈ Ut (vn), the construction of the covering (A.7) gives that necessarily ‖un −
vn‖ ≤ ‖un − u0‖ ≤ �/4. This however means that

0 < � = ‖u0 − v0‖ ≤ ‖u0 − un‖ + ‖un − vn‖ + ‖vn − v0‖ ≤ 3�/4,

a contradiction giving that u0 = v0. This slight modification to the proof of Massé [33], Lemma 5.4,
ensures that the vector process on the right-hand side of (A.8) vanishes in outer probability as n → ∞,

that is ‖λn − νn‖ P∗−−−→
n→∞ 0. By van der Vaart and Wellner [47], Lemma 1.10.2, this implies that the two

sequences of processes λn and νn have the same limit process; in particular, λn converges weakly in∏d
j=1 �∞(Hmin(tj )). Weak convergence of νn and its limit were established in part II of this proof.

Part IV: Continuous mapping theorem

By an argument similar to that in the proof of Massé [33], Lemma 5.5, the mapping

J :
d∏

j=1

�∞(Hmin(tj )
)→ R

d

: φ �→
(

inf
v1∈V (t1)

φ1
(
H
[
x(t1), v1

])
, . . . , inf

vd∈V (td )
φd

(
H
[
x(td), vd

]))T

for φ = (φ1, . . . , φd)T is continuous. To see this, let φ1,φ2 ∈ ∏d
j=1 �∞(Hmin(tj )) with φi =

(φi,1, . . . , φi,d )T for φi,j ∈ �∞(Hmin(tj )) and i = 1,2, j = 1, . . . , d . Then we can write

∥∥J (φ1) −J (φ2)
∥∥=

(
d∑

j=1

∣∣∣ inf
vj ∈V (tj )

φ1,j

(
H
[
x(tj ), vj

])− inf
vj ∈V (tj )

φ2,j

(
H
[
x(tj ), vj

])∣∣∣2)1/2

≤
(

d∑
j=1

(
sup

vj ∈V (tj )

∣∣φ1,j

(
H
[
x(tj ), vj

])− φ2,j

(
H
[
x(tj ), vj

])∣∣)2
)1/2

≤
d∑

j=1

sup
vj ∈V (tj )

∣∣φ1,j

(
H
[
x(tj ), vj

])− φ2,j

(
H
[
x(tj ), vj

])∣∣
= ‖φ1 − φ2‖.

Therefore, we may apply J to the vector process νn, and by the continuous mapping theorem
(Dudley [12], Theorem 3.6.7) and part III of this proof we obtain that both J (νn), and J (λn) =
(ξn(t1), . . . , ξn(td))T, converge weakly to (ξ(t1), . . . , ξ(td))T, and Condition (G1) is verified.

Part V: Condition (G4)

Condition (G4) is satisfied thanks to (G1), (A.3) and (A.5) from the proof of Theorem 1. Indeed,

sup
t∈[0,1]J

sup
n=1,2,...

E
∣∣ξn(t)

∣∣2 ≤ sup
t∈[0,1]J

sup
n=1,2,...

E
(√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣)2

=
∫ ∞

0
P
(√

n sup
H∈H

∣∣Pn,t (H) − Pt (H)
∣∣> v1/2

)
dv
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≤
∫ ∞

0
K exp

(−(2 − ε)v
)

dv,

where the last expression is finite, and independent of n and t .
Now, condition (G2) follows from (G4) by direct application of Jensen’s inequality (Dudley [13],

Theorem 10.2.6). Further, for L > 0 we have

sup
n=1,2,...

E
(∣∣ξn(t)

∣∣I[∣∣ξn(t)
∣∣> L

])≤ sup
n=1,2,...

E
(∣∣ξn(t)

∣∣2/L),
where the last expression vanishes as L → ∞ by (G4). Thus, {|ξn(t)|}∞n=1 is uniformly integrable
(Dudley [13], Section 10.3), and its convergence in distribution from (G1) implies the convergence of
its expectation (Billingsley [2], Theorem 25.12). That gives (G3).

Part VI: General result

In the case of general k, we start from Conditions (G0)–(G4) for k = 1, and verify their versions for
the process

ξn(t) = √
n
((

D
(
x(t);Pn,t

)+ 1/2
)k − (

D
(
x(t);Pt

)+ 1/2
)k)

.

Condition (G0) follows immediately. (G1) can be recovered from the base case k = 1 and the delta-
method (van der Vaart and Wellner [47], Section 3.9) applied to the function

g : Rd → R
d : (s1, . . . , sd)T �→ (

(s1 + 1/2)k, . . . , (sd + 1/2)k
)T

.

The Jacobian of g at (D(x(t1);Pt1), . . . ,D(x(td);Ptd ))
T is a diagonal matrix with k(D(x(tj );Ptj ) +

1/2)k−1 as its j -th diagonal element.
To show (G4) note that for any a, b ∈ [0,1] and k ∈R we have

∣∣(a + 1/2)k − (b + 1/2)k
∣∣≤ |k|max

{
1

2k−1
,

(
3

2

)k−1}
|a − b|.

Thus,

∣∣ξn(t)
∣∣≤ √

n|k|max

{
1

2k−1
,

(
3

2

)k−1}∣∣D(x(t);Pn,t

)− D
(
x(t);Pt

)∣∣
and the moment bound from part V is enough to get (G4) also for general k.

By Theorem 5 again, we obtain the weak convergence of the process

√
n

(∫
[0,1]J

(
D
(
x(t);Pn,t

)+ 1/2
)k dt −

∫
[0,1]J

(
D
(
x(t);Pt

)+ 1/2
)k dt

)
.

Now it is enough to apply the delta-method again, this time with the function

g : R→ R : s �→ s1/k − 1/2,

and the weak convergence of the moment integrated depths holds true as desired.



Flexible integrated functional depths 699

Acknowledgements

The authors greatly appreciate the insightful comments of an Associate Editor and a referee, which
led to distinct improvements in the paper. The authors would also like to acknowledge the com-
putational resources provided by the Aalto University School of Science “Science-IT” project. S.
Nagy wishes to thank the Czech Science Foundation (grant 19-16097Y) and Charles University (grant
PRIMUS/17/SCI/3). G. Van Bever would like to thank the Belgian FNRS (grant Crédit de recherche C
60/5–CDR/OL). P. Ilmonen and L. Viitasaari wish to thank the Väisälä foundation for its support.

Supplementary Material

R source codes and a supplemental document (DOI: 10.3150/20-BEJ1254SUPP; .zip). Complete
R source codes that enable replication of the analyses performed in the paper, and a supplemental
document (.pdf) containing (i) the omitted X-fold out-of-sample classification performance of FDk

J ,
and (ii) a table of approximate computation times of the considered methods for the leave-one-out
classification of the Tecator dataset.

References

[1] Biau, G., Bunea, F. and Wegkamp, M.H. (2005). Functional classification in Hilbert spaces. IEEE Trans. Inf.
Theory 51 2163–2172. MR2235289 https://doi.org/10.1109/TIT.2005.847705

[2] Billingsley, P. (1995). Probability and Measure, 3rd ed. Wiley Series in Probability and Mathematical Statis-
tics. New York: Wiley. MR1324786

[3] Borggaard, C. and Thodberg, H.H. (1992). Optimal minimal neural interpretation of spectra. Anal. Chem. 64
545–551.

[4] Cérou, F. and Guyader, A. (2006). Nearest neighbor classification in infinite dimension. ESAIM Probab. Stat.
10 340–355. MR2247925 https://doi.org/10.1051/ps:2006014

[5] Chakraborty, A. and Chaudhuri, P. (2014). The spatial distribution in infinite dimensional spaces and related
quantiles and depths. Ann. Statist. 42 1203–1231. MR3224286 https://doi.org/10.1214/14-AOS1226

[6] Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017). Monge–Kantorovich depth, quantiles,
ranks and signs. Ann. Statist. 45 223–256. MR3611491 https://doi.org/10.1214/16-AOS1450

[7] Claeskens, G., Hubert, M., Slaets, L. and Vakili, K. (2014). Multivariate functional halfspace depth. J. Amer.
Statist. Assoc. 109 411–423. MR3180573 https://doi.org/10.1080/01621459.2013.856795

[8] Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data
via projection-based depth notions. Comput. Statist. 22 481–496. MR2336349 https://doi.org/10.1007/
s00180-007-0053-0

[9] Cuevas, A. and Fraiman, R. (2009). On depth measures and dual statistics. A methodology for dealing with
general data. J. Multivariate Anal. 100 753–766. MR2478196 https://doi.org/10.1016/j.jmva.2008.08.002

[10] Delaigle, A. and Hall, P. (2012). Achieving near perfect classification for functional data. J. R. Stat. Soc. Ser.
B. Stat. Methodol. 74 267–286. MR2899863 https://doi.org/10.1111/j.1467-9868.2011.01003.x

[11] Donoho, D.L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace
depth and projected outlyingness. Ann. Statist. 20 1803–1827. MR1193313 https://doi.org/10.1214/aos/
1176348890

[12] Dudley, R.M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63.
Cambridge: Cambridge Univ. Press. MR1720712 https://doi.org/10.1017/CBO9780511665622

[13] Dudley, R.M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74. Cam-
bridge: Cambridge Univ. Press. MR1932358 https://doi.org/10.1017/CBO9780511755347

[14] Ferraty, F. and Vieu, P. (2003). Curves discrimination: A nonparametric functional approach 44 161–173.
MR2020144 https://doi.org/10.1016/S0167-9473(03)00032-X

https://doi.org/10.3150/20-BEJ1254SUPP
http://www.ams.org/mathscinet-getitem?mr=2235289
https://doi.org/10.1109/TIT.2005.847705
http://www.ams.org/mathscinet-getitem?mr=1324786
http://www.ams.org/mathscinet-getitem?mr=2247925
https://doi.org/10.1051/ps:2006014
http://www.ams.org/mathscinet-getitem?mr=3224286
https://doi.org/10.1214/14-AOS1226
http://www.ams.org/mathscinet-getitem?mr=3611491
https://doi.org/10.1214/16-AOS1450
http://www.ams.org/mathscinet-getitem?mr=3180573
https://doi.org/10.1080/01621459.2013.856795
http://www.ams.org/mathscinet-getitem?mr=2336349
https://doi.org/10.1007/s00180-007-0053-0
http://www.ams.org/mathscinet-getitem?mr=2478196
https://doi.org/10.1016/j.jmva.2008.08.002
http://www.ams.org/mathscinet-getitem?mr=2899863
https://doi.org/10.1111/j.1467-9868.2011.01003.x
http://www.ams.org/mathscinet-getitem?mr=1193313
https://doi.org/10.1214/aos/1176348890
http://www.ams.org/mathscinet-getitem?mr=1720712
https://doi.org/10.1017/CBO9780511665622
http://www.ams.org/mathscinet-getitem?mr=1932358
https://doi.org/10.1017/CBO9780511755347
http://www.ams.org/mathscinet-getitem?mr=2020144
https://doi.org/10.1016/S0167-9473(03)00032-X
https://doi.org/10.1007/s00180-007-0053-0
https://doi.org/10.1214/aos/1176348890


700 S. Nagy et al.

[15] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer
Series in Statistics. New York: Springer. MR2229687

[16] Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST 10 419–440. MR1881149
https://doi.org/10.1007/BF02595706

[17] Ghosh, A.K. and Chaudhuri, P. (2005). On maximum depth and related classifiers. Scand. J. Stat. 32 327–
350. MR2188677 https://doi.org/10.1111/j.1467-9469.2005.00423.x

[18] Gijbels, I. and Nagy, S. (2015). Consistency of non-integrated depths for functional data. J. Multivariate
Anal. 140 259–282. MR3372567 https://doi.org/10.1016/j.jmva.2015.05.012

[19] Grinblat, L.Š. (1976). A limit theorem for measurable random processes and its applications. Proc. Amer.
Math. Soc. 61 371–376. MR0423450 https://doi.org/10.2307/2041344

[20] Hall, P., Poskitt, D.S. and Presnell, B. (2001). A functional data-analytic approach to signal discrimination.
Technometrics 43 1–9. MR1847775 https://doi.org/10.1198/00401700152404273

[21] Hallin, M., Paindaveine, D. and Šiman, M. (2010). Multivariate quantiles and multiple-output re-
gression quantiles: From L1 optimization to halfspace depth. Ann. Statist. 38 635–669. MR2604670
https://doi.org/10.1214/09-AOS723

[22] Kuelbs, J. and Dudley, R.M. (1980). Log log laws for empirical measures. Ann. Probab. 8 405–418.
MR0573282

[23] Kuelbs, J. and Zinn, J. (2013). Concerns with functional depth. ALEA Lat. Am. J. Probab. Math. Stat. 10
831–855. MR3125749

[24] Li, B., Van Bever, G., Oja, H., Sabolova, R. and Critchley, F. (2019). Functional independent component
analysis: An extension of fourth order blind identification. Technical Report, Univ. Namur.

[25] Li, J., Cuesta-Albertos, J.A. and Liu, R.Y. (2012). DD-classifier: Nonparametric classification procedure
based on DD-plot. J. Amer. Statist. Assoc. 107 737–753. MR2980081 https://doi.org/10.1080/01621459.
2012.688462

[26] Liu, R.Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. 18 405–414.
MR1041400 https://doi.org/10.1214/aos/1176347507

[27] Liu, R.Y., Parelius, J.M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics,
graphics and inference. Ann. Statist. 27 783–858. MR1724033 https://doi.org/10.1214/aos/1018031260

[28] Liu, X., Mosler, K. and Mozharovskyi, P. (2019). Fast computation of Tukey trimmed regions and median
in dimension p > 2. J. Comput. Graph. Statist. 28 682–697. MR4007750 https://doi.org/10.1080/10618600.
2018.1546595

[29] López-Pintado, S. and Romo, J. (2009). On the concept of depth for functional data. J. Amer. Statist. Assoc.
104 718–734. MR2541590 https://doi.org/10.1198/jasa.2009.0108

[30] López-Pintado, S. and Romo, J. (2011). A half-region depth for functional data. Comput. Statist. Data Anal.
55 1679–1695. MR2748671 https://doi.org/10.1016/j.csda.2010.10.024

[31] Magnano, L., Boland, J.W. and Hyndman, R.J. (2008). Generation of synthetic sequences of half-hourly
temperature. Environmetrics 19 818–835. MR2654607 https://doi.org/10.1002/env.905

[32] Massart, P. (1986). Rates of convergence in the central limit theorem for empirical processes. Ann. Inst.
Henri Poincaré Probab. Stat. 22 381–423. MR0871904

[33] Massé, J.-C. (2004). Asymptotics for the Tukey depth process, with an application to a multivariate trimmed
mean. Bernoulli 10 397–419. MR2061438 https://doi.org/10.3150/bj/1089206404

[34] Mosler, K. (2013). Depth statistics. In Robustness and Complex Data Structures (C. Becker, R. Fried and
S. Kuhnt, eds.) 17–34. Heidelberg: Springer. MR3135871 https://doi.org/10.1007/978-3-642-35494-6_2

[35] Mosler, K. and Polyakova, Y. (2016). General notions of depth for functional data. Preprint. Available at
arXiv:1208.1981.

[36] Nagy, S. (2017). Integrated depth for measurable functions and sets. Statist. Probab. Lett. 123 165–170.
MR3598634 https://doi.org/10.1016/j.spl.2016.12.012

[37] Nagy, S. and Ferraty, F. (2019). Data depth for measurable noisy random functions. J. Multivariate Anal. 170
95–114. MR3913030 https://doi.org/10.1016/j.jmva.2018.11.003

[38] Nagy, S., Gijbels, I. and Hlubinka, D. (2017). Depth-based recognition of shape outlying functions. J. Com-
put. Graph. Statist. 26 883–893. MR3765352 https://doi.org/10.1080/10618600.2017.1336445

http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=1881149
https://doi.org/10.1007/BF02595706
http://www.ams.org/mathscinet-getitem?mr=2188677
https://doi.org/10.1111/j.1467-9469.2005.00423.x
http://www.ams.org/mathscinet-getitem?mr=3372567
https://doi.org/10.1016/j.jmva.2015.05.012
http://www.ams.org/mathscinet-getitem?mr=0423450
https://doi.org/10.2307/2041344
http://www.ams.org/mathscinet-getitem?mr=1847775
https://doi.org/10.1198/00401700152404273
http://www.ams.org/mathscinet-getitem?mr=2604670
https://doi.org/10.1214/09-AOS723
http://www.ams.org/mathscinet-getitem?mr=0573282
http://www.ams.org/mathscinet-getitem?mr=3125749
http://www.ams.org/mathscinet-getitem?mr=2980081
https://doi.org/10.1080/01621459.2012.688462
http://www.ams.org/mathscinet-getitem?mr=1041400
https://doi.org/10.1214/aos/1176347507
http://www.ams.org/mathscinet-getitem?mr=1724033
https://doi.org/10.1214/aos/1018031260
http://www.ams.org/mathscinet-getitem?mr=4007750
https://doi.org/10.1080/10618600.2018.1546595
http://www.ams.org/mathscinet-getitem?mr=2541590
https://doi.org/10.1198/jasa.2009.0108
http://www.ams.org/mathscinet-getitem?mr=2748671
https://doi.org/10.1016/j.csda.2010.10.024
http://www.ams.org/mathscinet-getitem?mr=2654607
https://doi.org/10.1002/env.905
http://www.ams.org/mathscinet-getitem?mr=0871904
http://www.ams.org/mathscinet-getitem?mr=2061438
https://doi.org/10.3150/bj/1089206404
http://www.ams.org/mathscinet-getitem?mr=3135871
https://doi.org/10.1007/978-3-642-35494-6_2
http://arxiv.org/abs/arXiv:1208.1981
http://www.ams.org/mathscinet-getitem?mr=3598634
https://doi.org/10.1016/j.spl.2016.12.012
http://www.ams.org/mathscinet-getitem?mr=3913030
https://doi.org/10.1016/j.jmva.2018.11.003
http://www.ams.org/mathscinet-getitem?mr=3765352
https://doi.org/10.1080/10618600.2017.1336445
https://doi.org/10.1080/01621459.2012.688462
https://doi.org/10.1080/10618600.2018.1546595


Flexible integrated functional depths 701

[39] Nagy, S., Gijbels, I., Omelka, M. and Hlubinka, D. (2016). Integrated depth for functional data: Statis-
tical properties and consistency. ESAIM Probab. Stat. 20 95–130. MR3528619 https://doi.org/10.1051/ps/
2016005

[40] Nagy, S., Helander, S., Van Bever, G., Viitasaari, L. and Ilmonen, P. (2020). Supplement to “Flexible inte-
grated functional depths.” https://doi.org/10.3150/20-BEJ1254SUPP

[41] Narisetty, N.N. and Nair, V.N. (2016). Extremal depth for functional data and applications. J. Amer. Statist.
Assoc. 111 1705–1714. MR3601729 https://doi.org/10.1080/01621459.2015.1110033

[42] Pokotylo, O., Mozharovskyi, P. and Dyckerhoff, R. (2019). Depth and depth-based classification with R
package ddalpha. J. Stat. Softw. 91 1–46.

[43] Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd ed. Springer Series in Statistics.
New York: Springer. MR2168993

[44] Sguera, C., Galeano, P. and Lillo, R. (2014). Spatial depth-based classification for functional data. TEST 23
725–750. MR3274472 https://doi.org/10.1007/s11749-014-0379-1

[45] Shao, W. and Zuo, Y. (2020). Computing the halfspace depth with multiple try algorithm and simulated
annealing algorithm. Comput. Statist. 35 203–226.

[46] Tukey, J.W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of
Mathematicians (Vancouver, B. C., 1974), Vol. 2 523–531. MR0426989

[47] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. Springer Series
in Statistics. New York: Springer. MR1385671 https://doi.org/10.1007/978-1-4757-2545-2

[48] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist. 28 461–482.
MR1790005 https://doi.org/10.1214/aos/1016218226

Received November 2019 and revised March 2020

http://www.ams.org/mathscinet-getitem?mr=3528619
https://doi.org/10.1051/ps/2016005
https://doi.org/10.3150/20-BEJ1254SUPP
http://www.ams.org/mathscinet-getitem?mr=3601729
https://doi.org/10.1080/01621459.2015.1110033
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=3274472
https://doi.org/10.1007/s11749-014-0379-1
http://www.ams.org/mathscinet-getitem?mr=0426989
http://www.ams.org/mathscinet-getitem?mr=1385671
https://doi.org/10.1007/978-1-4757-2545-2
http://www.ams.org/mathscinet-getitem?mr=1790005
https://doi.org/10.1214/aos/1016218226
https://doi.org/10.1051/ps/2016005

