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a b s t r a c t

Selective Laser Melting (SLM) technology has undergone significant development in the past years pro-
viding unique flexibility for the fabrication of complex metamaterials such as octet-truss lattices.
However, the microstructure can exhibit significant variations due to the high complexity of the manu-
facturing process. Consequently, the mechanical behavior, in particular, linear elastic response, of these
lattices is strongly dependent on the process-induced defects, raising the importance on the incorpora-
tion of as-manufactured geometries into the computational structural analysis. This, in turn, challenges
the traditional mesh-conforming methods making the computational costs prohibitively large. In the pre-
sent work, an immersed image-to-analysis framework is applied to efficiently evaluate the bending
behavior of AM lattices. To this end, we employ the Finite Cell Method (FCM) to perform a three-
dimensional numerical analysis of the three-point bending test of a lattice structure and compare the
as-designed to as-manufactured effective properties. Furthermore, we undertake a comprehensive study
on the applicability of dimensionally reduced beam models to the prediction of the bending behavior of
lattice beams and validate classical and strain gradient beam theories applied in combination with the
FCM. The numerical findings suggest that the octet-truss lattices exhibit size effects, thus, requiring a
flexible framework to incorporate high-order continuum theories.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mechanical metamaterials have received much attention in the
past decades [32,34]. One of the most common examples are octet-
truss lattices. These regular, periodic structures are attractive for
many industries due to the possibility of largely decoupling the
effective stiffness and strength from relative density [5,29,35,47].
One further advantage of the octet-truss lattices is the possibility
to relate their mechanical properties to the truss topology and
geometry (see e.g. [5,21,29,37]). Although this relation facilitates
their design for specific applications, some geometrical constraints
push traditional manufacturing techniques of octet-truss lattices to
their boundaries.

Recent developments in additive manufacturing have provided
a unique possibility to produce such metamaterials at very small
scales. Yet, the design freedom comes at the cost of process com-

plexity. The process-induced features, even defects, often occur
in the produced structures, especially metal lattices, thus altering
the mechanical behavior of final parts [8,11,24,25,6]. Therefore,
to achieve a reliable prediction of the effective properties of these
imperfect structures, as-manufactured geometries should be incor-
porated into computer-aided engineering (CAE). One of the com-
mon ways to acquire the as-manufactured AM geometry is to
perform a Computed Tomography (CT) scan [6,8,43]. The scanned
images provide extensive information about the microstructure
of 3D printed components up to a scan resolution in the order of
fewmicrons. Thus, the CT-based analysis could lead to a better pre-
diction of the mechanical behavior of 3D printed structures.

In the present work, we focus on the effective linear elastic
bending behavior of octet-truss lattices. The most common numer-
ical approaches for its prediction are three-dimensional (3D) Finite
Element Analyses (FEA) and the application of one-dimensional
(1D) beam theories. These techniques represent the two engineer-
ing extremes: one provides the most realistic solution, while the
other delivers a fast and quick approximation. 3D and 1D numeri-
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cal analyses are commonly used in different areas of engineering.
Each of them faces major challenges when applied to additively
manufactured metamaterials.

To make CT images suitable for a traditional mesh-
conforming three-dimensional analysis, geometry reconstruc-
tion and mesh generation are required [23,25,42]. These steps
tend to become especially laborious when metamaterials are
considered. Consequently, the numerical studies are often con-
ducted only on some specific regions of the lattices, for example
on the periodic representative volumes, or by modifying the
idealized CAD models [4,22–24]. To overcome these long and
tedious steps, a class of immersed domain methods has been
developed. Immersed domain methods separate the geometri-
cal representation from the applied discretization, thus, elimi-
nating the necessity of geometry reconstruction and
simplifying the mesh generation process. In the present work,
the Finite Cell Method (FCM) is employed to perform numerical
analysis directly on CT scan images of as-manufactured octet-
truss lattices [7,31].

Concerning 1D analyses, the conventional continuum beam
theories are not necessarily applicable to the evaluation of the
metamaterial or effective bending behavior. They strongly rely
on the assumption of the separation of scales, i.e., the
microstructural characteristic length should be much smaller
than the size of the representative volume element. Neverthe-
less, it has been determined experimentally and numerically
that these components cannot be described by conventional
continuum models, such as e.g. Euler-Bernoulli or Timoshenko
beam theories, when the size of the periodic cell approaches
the typical wavelength of the variation of the macroscopic
mechanical fields. Such deviations are normally referred to as
size effects. These effects can arise at different scales. When lat-
tice or foam-like structures are considered, size effects can
occur at the scale of millimeters [30]. If this scale is comparable
to the component dimension, size effects are crucial for the
evaluation of the part behavior. In metamaterials, size effects
become especially pronounced when the corresponding struc-
tures are loaded in shear or bending [46]. As an example, when
lattice beams are considered, the relative bending rigidity
increases significantly when the size of the representative cell
of the lattice approaches the thickness of the beam structure.
This occurs if the beam structure is composed of very few layers
of lattice cells in the thickness direction [16,17]. In such scenar-
ios, the strain gradient extensions of the classical continuum
models have received significant attention, not only for beam
and plate structures [38,16,17] but also for three-dimensional
solids [39–41]. They are proven to be accurate in predicting
the mechanical behavior of size-dependent lattice structures.
These beam theories are especially relevant when additively
manufactured lattices are analyzed as the produced scales are
rather small. However, as they require the effective Young’s
and shear moduli as input parameters, to the knowledge of
the authors of this paper they have not been validated for the
as-manufactured octet-truss lattices.

With this in mind, we aim to demonstrate and experimen-
tally validate the proposed CT-based numerical framework
which allows us to accurately evaluate the bending behavior
of as-manufactured octet-truss lattice structures. To this
end, the framework provides an efficient tool to compare the
as-designed to as-manufactured properties under loading.
Additionally, we investigate and validate the accuracy of the
classical and the strain gradient beam theories by comparing
their bending properties to the direct 3D numerical analysis
of the as-manufactured and as-designed octet-truss lattice
beams.

2. The Finite Cell Method for numerical analysis of CT scans

The as-manufactured shapes considered in this article are
acquired via computed tomography. Such geometrical models
challenge the meshing procedure of the conventional FEM
approach. In particular, to prepare these structures for numerical
analysis, a suiTable 3D model must be reconstructed. Then, a
boundary conforming mesh must be generated. However, these
two steps involve a lot of manual labor and necessary computa-
tional power. When the lattice structures are analyzed, the high
level of microstructural details occurring in the manufactured
geometries renders the preparation for the numerical analysis
highly costly. Thus, to overcome these challenges, we introduce
the Finite Cell method, an immersed boundary method. This
approach allows for circumventing the challenge of preparing the
CT-based geometrical models for numerical analysis by simplifying
the mesh generation procedure and providing a natural way to
incorporate these geometries into the numerical analysis directly.
The main idea beneath the Finite Cell Method is illustrated in Fig. 1.

First, an arbitrary complex shape defined on a physical domain
X is immersed in a simplified box-like domain Xe. Due to its sim-
plicity, Xe can be trivially discretized with a structured grid of
cuboids, further referred to as finite cells. These elements provide
the support for shape functions which are chosen to be integrated
Legendre polynomials of order p.

Second, the original boundary value problemmust be recovered
on the actual, physical domain. To achieve such a result, an indica-
tor function aðxÞ is introduced into the problem formulation. It is
defined to be equal to one on all points of the physical domain X
and to a small positive value in the domain Xe nX. Then, the mod-
ified linear elastic weak form of the problem can be written as
follows:

Find uiðxjÞ 2 H1
ûðXeÞ satisfyingR

Xe
aðxiÞCijkl

@uk
@xl

@dv i
@xj

dXe þ bD

R
CD
uidv i dCD ¼

¼ R
Xe
aðxiÞbidv idXe þ

R
CN
t̂idv i dCN þ bD

R
CD
ûidv i dCD

ð1Þ

with H1
ûðXeÞ being the first-order Sobolev space, û indicating a pre-

scribed displacement on the domain boundary CD, and t̂ is pre-
scribed traction on boundary CN . In the present work, Dirichlet
boundary conditions are enforced using the penalty method with
the penalty parameter bD.

As the geometries under consideration stem from CT images,
the spatial scalar function aðxÞ can be conveniently related to the
acquired Hounsfield scale. Since the analyzed parts are metallic
lattices, the contrast between material and void in the scan is com-
monly very high.

Therefore, the threshold value of Hounsfield units HUthres used
to identify the metal and void regions in the CT scan images can
directly be used to define the indicator function as follows:

aðxÞ ¼ 1 if HU P HUthres

e; e � 1 if HU < HUthres

�
ð2Þ

Finally, as the indicator function makes the domain integrands
in Eq. (1) discontinuous over the boundaries of the physical
domain, a special integration rule should be applied. For this pur-
pose, multiple techniques have been proposed (see, e.g., [1,20]).
However, the most efficient integration rule for CT-based geomet-
rical models is a voxel-based pre-integration introduced in [45]. In
this case, the shape of an object is fully described by a grid of vox-
els with a constant Hounsfield scale. Such an underlying structure
allows to further decompose every finite cell into a number of vox-
els mx �my �mz. Then, the standard ðpþ 1Þ3 quadrature rule can
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be applied to every voxel resulting in
mxðpþ 1Þ �myðpþ 1Þ �mzðpþ 1Þ integration points for one finite
cell. Using these integration points, the integrands in Eq. (1) can
be efficiently pre-computed for every voxel in an offline phase.
Then, the resulting matrices are scaled in an online stage with
the indicator function aðxÞ as in Eq. (2). Thus, this integration
method provides an accurate and efficient technique to accurately
compute the discontinuous integrands for CT-based geometries.

Although the Finite Cell Method in combination with a voxel-
based pre-integration technique provides a powerful tool to per-
form numerical analysis directly on CT images, the size of the com-
puted systems remains large. Large linear systems occur because
as-manufactured structures include a considerable number of
small-scale features, which are significant for the overall behavior
of the parts. As an example, the largest CT scan considered further
in this paper has a resolution of 2096� 272� 128 voxels, while the
smallest significant geometrical variations have a size of 3� 7 vox-
els. To capture this behavior a relatively fine FCM mesh must be
employed, thus, leading to a large number of degrees of freedom.
An appropriate way to handle these large scale computational sys-
tems is to use a hybrid parallelization technique as the one intro-
duced by Jomo et al. in [14,15].

3. Classical and strain gradient beam theories for uniaxial
bending

Although one can expect that 3D numerical simulations on the
as-manufactured AM lattices provide an accurate and realistic
solution of the complex mechanical behavior, often a fast predic-
tion is important for an early analysis stage. One of the approaches
to obtain a quick solution is to use beam theories.

When slender beams with a small thickness-to-length ratio are
considered, an Euler-Bernoulli model can be used to evaluate
bending rigidity, while the Timoshenko beam theory is more
appropriate when shear effects are not negligible. Both Euler-
Bernoulli and Timoshenko beam models rely on the determination
of the effective Young’s modulus E�, the moment of inertia I, and
the effective shear modulus G� for the latter model. These three
quantities are not straightforward to obtain when lattice structures
are considered. The two most common ways to determine them
are to perform experiments or to use a first-order numerical
homogenization. The octet-truss lattice forms an effectively
three-dimensional orthotropic metamaterial from the material
parameters of which one could obtain the effective material
parameters (E� and G�) for beam models. Experimental measure-
ments will be considered in this paper for the determination of
the as-manufactured effective Young’s modulus via a tensile test,
while the numerical homogenization is used for the determination
of as-designed effective quantities and as-manufactured effective
shear modulus G�. For a detailed description of the first-order CT-
based homogenization employed in this article, interested readers

are referred to [19]. However, when the size effects in the material
characterization of lattice structures under bending play an impor-
tant role in the macroscopic response, the classical beam theories
might deliver incorrect results and must be further enhanced,
e.g., by means of high-order models such as the strain gradient
beam theory described in the following.

3.1. Three-point bending problem of lattice beams

In the present work, three-point bending of the AM lattice
beams is investigated. The structure deforms in the xz-plane (see
the 2D sketch of the problem in Fig. 2).

When utilizing the symmetry of the test set up in the axial
direction and, accordingly, modelling the left half of the structure
as a uniaxial beam bending problem, the boundary conditions of
the resulting beam problem read as follows:

wðx¼0Þ¼0; Mðx¼0Þ¼0;

w0 x¼ L
2

� �
¼0; Q x¼ L

2

� �
¼ F
2

ð3Þ

where the x-coordinate runs along the central (neutral) axis of
the beam and x ¼ 0 is the coordinate of a fixed left support, w
is the deflection of a central axis of the beam, F is the applied
force at the symmetry point x ¼ L=2, whereas M and Q, respec-
tively, are the standard bending moment and shear force of the
beam.

3.2. Classical beam theories

Given the previously defined bending problem, the classical
Euler-Bernoulli solution delivers the maximum deflection at
x ¼ L=2:

wEB ¼ FL3

48E�I
ð4Þ

where L is the length of the beam, E� is the effective Young’s mod-
ulus. In the present work, we perform the homogenization such that
the beam becomes a solid block made of homogeneous material

with E�. Hence, I ¼ ðbh3Þ=12 is defined as an effective moment of
inertia of a rectangluar cross section having the outer dimensions
of the original structure.

To account for shear deformations for higher thickness-to-
length ratios, the solution of classical Timoshenko beam theory
for three-point bending can be formulated as follows:

wT ¼ FL3

4E�I
þ FL
4G�A

ð5Þ

where G� is the effective shear modulus and A is the cross-sectional
effective area. Then, the main characteristic of the bending behavior
is the bending stiffness or bending rigidity. It defines the resistance
of the specimens to bending deformations and is determined as
follows:

Fig. 1. The idea of the Finite Cell Method.
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D ¼ F
w

ð6Þ

where F is the applied load and w the determined displacement.
With the help of the classical beam theories solutions, this

quantity can be determined analytically when all other parameters
are known. The classical Euler-Bernoulli bending rigidity for the
considered problem can be written as follows:

DEB ¼ F
wEB

¼ 48E�I

L3
¼ 4E�bh3

L3
ð7Þ

where b is the depth and h is the thickness of the homogenized rect-
angular cross section.

Analogously, the classical bending rigidity using the
Timoshenko beam theory is defined as:

DT ¼ F
wT

¼ DEB

1þ 12E� I
G�AL2

¼ DEB

1þ E�
G� h

L

� �2 ð8Þ

Eq. (8) shows that for a fixed length L the bending rigidity DT

approaches DEB when thickness approaches zero, whereas for con-
stant thickness-to-length ratios the Timoshenko and Euler-
Bernoulli rigidities stay apart.

3.3. Strain gradient beam theory

In the scope of the present work, we also consider strain gradi-
ent beam theories elaborated in [16,27].

In the following, the derivation for the Euler-Bernoulli beam is
described in greater detail. The strain energy density for a 3D body
following Mindlin’s strain gradient elasticity theory of form II is
formulated as follows [26]:

WII ¼ 1
2
Cijkleijekl þ 1

2
Amijnkl@meij@nekl ð9Þ

where Cijkl and Amijnkl stand for the linear and high-order elasticity
tensors, eij is the engineering strain tensor, and @meij and @nekl
denote the partial strain gradient.

Then, the dimensional reduction to the strain gradient Euler-
Bernoulli beam theory is performed. The displacement compo-
nents u ¼ ux;uy;uz

� �
obey the same relationships as for the classi-

cal beam theory:

ux ¼ �z
@wðxÞ
@x

; uy ¼ 0; uz ¼ wðxÞ ð10Þ

where x is the coordinate along the main axis of the beam, z is the
direction perpendicular to it, and y is the out-of-plane coordinate, as
depicted in Fig. 2. This leaves the transverse deflectionw as the only
unknown. The stretching and bending states are decoupled since
small deflections allow geometrically linear analysis. Furthermore,
the octet-truss lattice forms a three-dimensional orthotropic meta-
material. Thus, when the beam structures are formed by aligning

the central axis along one of the material directions, the material
symmetry with respect to this axis is preserved (see, e.g., Fig. 2
and later explanation in Section 4).

Furthermore, the only non-zeros strain and stress components
are exx and rxx ¼ Cxexx with Cx ¼ Cxxxx. Accordingly, the model
incorporates strain gradients exx;x and exx;z only, with the corre-
sponding two high-order elasticity constants Ax ¼ Axxxxxx and
Az ¼ Axxzxxz [36]. Then, the variation of the strain energy corre-
sponding to Eq. (9) simplifies to:

d
Z
X
WIIdX ¼

Z
X
Cxexxdexx þ Axexx;xdexx;x þ Azexx;zdexx;zð ÞdX ð11Þ

and further to a 1D energy expression over the main axis of the
beam:

d
Z
X
WIIdX ¼

Z L

0
M þ g2

z R
� � @2ðdwÞ

@x2
dxþ

Z L

0
g2
x
@M
@x

@3ðdwÞ
@x3

ð12Þ

with a generalized moment RðxÞ written out as follows:

RðxÞ ¼
Z
A

@rxxðx; y; zÞ
@z

dA ¼ CxA
d2w

dx2
ð13Þ

where A ¼ AðxÞ is the cross-sectional area of the beam.
Applying the Hamilton’s principle the strong formulation of the

two-parameter strain gradient Euler-Bernoulli elasticity model can
be finally formulated. The differential equation reads in terms of
moments, or in terms of deflection with constant material param-
eters, respectively, as follows:

ðMþg2
z R�ðg2

xM
0Þ0Þ00 ¼ f or ðE�Iþg2

z E
�AÞw0000 þg2

xE
�Iw000000

¼ f 8x2 ð0;LÞ ð14Þ
where f is the externally applied transversal loading and E�I stands
for the classical bending rigidity with E� ¼ Cx, whereas the two
length scale parameters gx and gz are defined by relations
Ax ¼ g2

xE
� and Az ¼ g2

z E
�, respectively. As the higher-order term

ððg2
xM0Þ0Þ00; or g2

xE
�Iw000000� �

can be related to boundary layer effects
specific for certain boundary conditions and the crucial stiffening
effect can be traced back essentially to the additional lower-order
term g2

z R; or g2
z E

�Aw0000� �
(see [27]), the governing equation can be

written in a simple lower-order form [16,17]:

ðE�I þ E�Ag2Þw0000 ¼ f 8x 2 ð0; LÞ ð15Þ
where only one length scale parameter g ¼ gz is present.

The analytical solution of Eq. (15) under the absence of body
load with the boundary conditions described in Eq. (3) takes the
form:

wEB
gr ¼ FL3

48 E�I þ E�Ag2
� � ð16Þ

Fig. 2. A 2D sketch of a three-point bending setup.
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Eq. (16) compared to the solution of the classical Euler-Bernoulli
theory in Eq. (4) introduces the intrinsic length scale parameter g
which acts as a high-order material parameter depending on the
microstructure of the unit cell. This parameter characterizes the
size-dependent beam behavior when the thinnest beams show a
stiffening effect.

The solution of the strain gradient Timoshenko beam theory can
be derived in a similar manner taking into account the respective
assumptions [16,17]:

wT
gr ¼

FL3

48 E�I þ E�Ag2
� �þ FL

4G�A
ð17Þ

Eq. (17) is also similar to the solution of the classical Timoshenko
theory except for the presence of the intrinsic material parameter
g. The bending rigidities (with rectangular cross sections A ¼ bh)
corresponding to these deflections can be shown to follow, respec-
tively, the formulae:

DEB
gr ¼ DEB 1þ 12 g

h

� �2� �

DT
gr ¼ DT 1þ 12 g

h

� �2� � ð18Þ

revealing the size effect for decreasing values of hwith a fixed value
of g.

To sum up, both the classical and the strain-gradient theories
could provide a quick estimate of the bending behavior of the con-
sidered beam-like lattice structures. In the following, the predic-
tions provided by these theories will be compared to the full 3D
numerical and experimental analysis performed on the AM octet-
truss beams. Furthermore, their accuracy and applicability will
be evaluated with the help of experimental three-point bending
tests.

4. Experimental setup

The experimental and numerical investigations are held on
octet-truss lattices. A representative unit cell of such structures is
depicted in Fig. 3. As the main focus of the present work is the
investigation of lattice bending behavior, an octet-truss unit cell
indicated in Fig. 3 is used to construct the four beam-like struc-
tures shown in Fig. 4. These beams have the same length of
128 mm (32 cells) and the same width of 8 mm (2 cells) but differ-
ent heights (thicknesses): 4, 8, 12, and 16 mm, respectively (1;2;3,
and 4 unit cells). Then, the upper and the lower side of the beams
was completed to contain the full strut size of 0:8 mm (see zoomed
side of a representative specimen in Fig. 5). These complements
were added for the printing resolution and for the assumption that
possible applications would most probably include such comple-
ments. According to CAD-based FE-simulations, trusses with and
without these complements behave almost identically, both qual-

itatively and quantitatively. Therefore, the total heights of the
specimens are 4.8, 8.8, 12.8, and 16.8 mm. Thus, the constructed
thickness-to-length ratios are 0:03;0:06;0:09, and 0:13
respectively.

The specimens for experimental testing were printed in the lab-
oratory 3DMetal@UniPV using a selective laser melting metal 3D
printer Renishaw AM400. For the production of the specimens,
stainless steel powder SS 316L-0407 was used. According to the
material data sheet of the producer [33], the considered setup
leads to a bulk material with Young’s modulus 190 GPa� 10GPa
in the printing direction. This value as indicated in the data sheet
depends on the printing direction. In the orthogonal direction to
the printing the Young’s modulus is reported to be
197 GPa� 4 GPa. As these two values are fairly close to each other,
in the following we will assume an isotropic material with the
Young’s modulus being 190 GPa.The produced specimens after
heat treatment at 400�C in the chamber Nabertherm LH120/12
for 2 h are shown in Fig. 6.

Prior to performing any experimental test, the four bending
specimens were subjected to a computed tomography to acquire
the as-manufactured geometries. The CT scans were performed
with a Phoenix V CT scanner with a resolution of 61 lm.

Then, to validate the numerical frameworks proposed in Sec-
tion 2 and 3, four main quantities were determined experimen-
tally. These are the as-manufactured dimensions, porosity of the
printed lattices structures, the effective Young’s modulus, and the
bending rigidity.

As-manufactured samples dimensions
As the deviation of the as-manufactured and as-designed over-

all dimensions are expected, the corresponding measurements are
performed experimentally. In particular, an overall width, height
and the length of the printed beam specimens is measured with
the help of a digital caliper. Table 1 summarizes the experimentally
determined values together with the designed characteristics. As
there is no repetitive measurement available, we provide the mea-
surement uncertainty of the used instrumentation. The measure-
ment uncertainty is computed according to [13] using the
uncertainty propagation of the used instrument’s precision. As
the dimensions of the as-manufactured samples are measured
with the digital calipers, the instrumentation error of this device
is used to evaluate the measurement error. The results are indi-
cated in Table 1.

The values shown in Table 1 are used in this article to compute
the effective cross-sectional area A and the effective cross-sectional
moment of inertia I of the as-designed and as-manufactured spec-
imens. Both, A and I are determined by using the outer dimensions
of the beams. Furthermore, these values are used to identify the as-
manufactured porosity as described in the following paragraph.

Porosity of the printed structure

Fig. 3. CAD model of the octet-truss unit cell [18].
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Fig. 4. Investigated CAD models of the octet-truss beam structures.

Fig. 5. Zoom on the completed upper and lower struts of the beam 2� 32� 2.

Fig. 6. Printed specimens after heat treatment.

Table 1
Dimension comparison of the beam specimens (D stands for as-designed, M stands for as-manufactured).

Specimen Width [mm] Height [mm] Length [mm]

D M D M D M

2� 32� 1 8.00 8.22 � 0.001 4.80 4.96 � 0.002 128.00 128.82 � 1e� 4
2� 32� 2 8.00 8.22 � 0.001 8.80 8.89 � 0.002 128.00 128.83 � 1e� 4
2� 32� 3 8.00 8.22 � 0.001 12.80 12.89 � 0.001 128.00 128.91 � 1e� 4
2� 32� 4 8.00 8.22 � 0.001 16.80 16.96 � 0.001 128.00 128.91 � 1e� 4
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The overall porosity of the lattice structures is measured for two
reasons. The first motivation is to compare the experimentally
determined porosity value to the as-designed CAD-based ones,
thus, providing the first estimate on the geometrical variations of
the as-manufactured geometries with respect to the original CAD
models shown in Fig. 4. The second reason is to experimentally
verify the porosity values determined from the acquired CT scan
of every beam. The porosity values are determined by evaluating
the mass of the specimen m. Then, considering the printed density
q indicated in [33] the overall porosity can be calculated as:

/ ¼ 1� m
qV

ð19Þ

where V is the measured volume of the bounding box of the speci-
men. The porosity is measured for a single sample of every setup
indicated in Fig. 4. To compute the porosity according to Eq. (19),
the high-precision scale is used to evaluate the mass of the speci-
men m. The volume of the overall bounding box of the specimen
is computed using the measured values from Table 1. Thus, their
instrumentation precision is considered and indicated as the mea-
surement uncertainty in Table 2.

Effective Young’s modulus
The second quantity of interest is the effective Young’s modulus

of the octet-truss lattice. This value is important for the investiga-
tion of the applicability of the beam models as described in Sec-
tion 3. The as-manufactured effective Young’s modulus E� is
determined via a tensile test of the sample lattice specimens. The
experiment is performed in the material mechanics laboratory
with the help of the MTS Insight System. For the elongation mea-
surements, a video extensometer is used (see experimental setup
in Fig. 7). The effective Young’s modulus is then computed accord-
ing to ASTM E111 standard [2]. The determined value is
E� ¼ 12 533� 751 MPa together with the corresponding measure-
ment error.

Bending rigidity
The final experimentally determined value is the bending rigid-

ity of the octet-truss lattice beams as defined in Eq. (6). This quan-
tity describes the characteristic overall (global) resistance of the
structure against the bending deformation. The values of bending
rigidity of the four 3D printed structures of Fig. 6 is experimentally
measured by a three-point bending test under quasi-static condi-
tions and displacement-controlled velocity (see Fig. 8). The span
(L) between the supports is 120 mm, while the applied point load
(F) is transferred in the middle of the span of the beam. During the
experiment, the imposed displacement and the corresponding
force are recorded. The bending rigidities of the beams are then
computed by using Eq. (6). Similar to the evaluation of porosity,
we indicate the measurement uncertainty stemming from the used
instrumentation. In particular, the precision of the video exten-
someter, the force measurement precision, and the uncertainty of
the initial length measurement using the digital calipers is consid-
ered.All tests are performed in both elastic and plastic regime.
However, for the aim of this work only the elastic characteristics
are considered. Experimental results will be discussed together
with the numerical values in the following sections.

5. Numerical investigations

In this section, the results of the numerical investigations on the
octet-truss lattices are discussed in detail.

First, the behavior of the octet-truss lattice structures undergo-
ing a bending load case is analyzed numerically in Section 5.1. In
this section, the as-manufactured and as-designed octet-truss
beams are compared geometrically and the differences are quanti-
fied by means of the macroscopic porosity defined in Eq. (19).
Then, the direct numerical simulation of the three-point bending
test is performed on both CAD and CT geometries. The properties
of the bulk material are assumed to be isotropic with the values
indicated in Section 4. All numerical investigations with the Finite
Cell Method are performed using the extensively verified and val-
idated in-house immersed high-order FEM code AdhoC++ continu-
ously developed at the Chair of Computational Modeling and
Simulation of TUM (see, e.g., [7,9,10,44]). The achieved numerical
results are finally compared to the experimental values.

Second, in Section 5.2, the applicability of the beam theories
described in Section 3 is investigated. Both, the classical and the
strain-gradient Euler-Bernoulli and Timoshenko beam theories
are applied to analyze the behavior of both as-designed and as-
manufactured octet-truss lattice beams.

5.1. Comparison of as-manufactured and as-designed mechanical
behavior in bending

Geometrical comparison
To highlight the macroscopic differences between the as-

manufactured geometry extracted from CT scan images and the
as-designed geometric model, zoomed views on both geometries
are depicted in Fig. 9. From a thorough comparison of the two geo-
metric models (see Fig. 10), the following geometrical features of
as-manufactured geometry can be observed compared to the as-
designed ones:

� larger truss thickness;
� partially melted material powder particles in overhanging sur-
faces opposite to the build direction;

� excess material collection in the nodes.

These features are well-known side effects of the SLM printing
process. It is also established in literature [3,6,18], that these geo-
metrical features have a strong influence also on the numerical

Table 2
Porosity comparison of the beam specimens.

Specimen CAD-based
porosity [–]

Experimental
porosity [–]

CT-based porosity
[–]

2� 32� 1 0.756 0.638 � 0.006 0.647
2� 32� 2 0.770 0.630 � 0.004 0.639
2� 32� 3 0.775 0.677 � 0.003 0.679
2� 32� 4 0.777 0.630 � 0.002 0.671

Fig. 7. Experimental setup of a tensile experiment on an octet-truss lattice
structure [18].
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results, and thus as-designedmodels lead to a quite inaccurate pre-
diction of the mechanical behavior of lattice structures.

To obtain the depicted CT geometries, the threshold value of
Hounsfield units HUthres has to be determined. As indicated in Eq.
(2), this value is also essential to perform the Finite Cell analysis
on the as-manufactured geometries. This process of image seg-
mentation is well-established in the field of medical imaging.
Although this work’s application area is metal CTs, we employ

the same algorithms to segment the CT images of the octet-truss
structures. In the following, the single threshold technique is used

Fig. 8. Bending of beam specimens.

Fig. 9. Zoom on the geometrical features of the as-manufactured (left) and as-
designed (right) bending specimen (build direction marked with the black arrow).

Fig. 10. Comparison of as-manufactured and as-built octet-truss bending specimen
2� 32� 2 (build direction marked with the black arrow).
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to identify the threshold value (see, e.g., [28] and the literature
cited therein). In particular, as the beams’ material is metal and
the size of the features is relatively large for the lCT scan, the con-
trast in the obtained images is very high. Thus, the image has a
bimodal histogram of the intensity values. To simplify the determi-
nation technique, we employ Otsu’s global thresholding technique
[28]. This provides a good estimate of the necessary value relying
on the fact that the CT image histogram is bimodal. Of course, there
is a particular transition area which justifies a slightly varying
HUthres. However, the determined values were used in this work
‘‘as is” without further modifying its values. To quantify the
obtained results, as described in Section 4 the CT-based porosity
values are compared to the CAD-based and experimental ones.
Table 2 summarizes the achieved results. As expected, the CAD-
based porosity is always larger than the printed one. This is also
supported by the geometrical comparison of the CAD and CT-
based model (an example of specimen 2� 32� 2 is shown in
Fig. 10). The excess material collection in the nodes together with
the larger truss thickness leads to a lower manufactured porosity.
Overall, the CT-based porosity is in good agreement with the
experimental values, making us confident in the sufficient accuracy
of the as-manufactured geometry representation provided by CT
scan measurements. However, the porosity value of the thickest
beam differs from the experimentally determined value by 6.5%.
Although there is a certain possibility to vary the threshold value
of the CT scan, the experimental porosity value cannot be achieved
within a reasonable range of variation of HUthres. Curiously, the
beam with 2� 3� 32 cells indicates an increase in the experimen-
tal porosity, which is also observed in the CT scan. This tendency,
however, seems to be reversed in the case of the thickest beam.

Direct numerical simulations of three-point bending test
In order to further support the above observations, we carry out

a numerical simulation of the three-point bending test described in
Section 4. Numerical experiments are performed for each one of
the four specimens on both as-designed (CAD) and as-
manufactured (CT) geometrical models. In both cases, the same
boundary conditions and load cases are applied as in the experi-
mental setup. The simulation of the as-designed geometry is car-
ried out by using ComsolTM, with quadratic tetrahedral Finite
Elements, whereas as-manufactured geometry is simulated using
the Finite Cell Method as described in Section 2. The latter is per-
formed directly on the complete CT image. A complete scan of
every beam specimen is immersed in a grid of finite cells of poly-
nomial degree p ¼ 3 containing 2� 2� 2 voxels. An example of the

used discretization for the analysis of the beam specimen depicted
in Fig. 10 is depicted in Fig. 11. Fig. 11 shows a complete finite cell
mesh with two consequent zooms on the corner of this model. As
an example, for this specimen a total number of 51� 524� 32
cells is used. The authors would like to emphasize, that no simpli-
fications are carried out to incorporate the as-manufactured geom-
etry in the direct numerical analysis.

Representative displacement and von Mises stress distributions
for an as-manufactured beam specimen are shown in Fig. 12.

The numerical bending rigidities are, then, computed by using
Eq. (6) and their values are compared to the experimental ones
in Fig. 13. To provide an insight into the necessary computational
resources, the simulation of the as-designed beam of 2� 3� 32
is performed on the standard workstation with i7-9700 K proces-
sor and 64 GB of RAM using shared memory parallelism. The total
wall clock time for the computation amounts to 2 min including
pre- and postprocessing. By contrast, the simulation of the as-
manufactured geometry on the cluster using the distributed mem-
ory parallelism on 40 28-way Haswell-based nodes with 64 GB
RAM takes 37 min. This large difference is due to the fact that
the latter model incorporates many more small scale details.

The qualitative comparison of these results shows that the as-
designed and as-manufactured geometries follow the same ten-
dency of a higher rigidity value for thicker beams. Nevertheless,
quantitatively the relative errors in the bending rigidity value are
always above 40%. This gap is largely driven by the geometrical
difference between the as-manufactured and as-designed geome-
tries. As the CT-based and experimental porosity values shown in
Table 2 are lower than the designed ones, the as-designed bending
rigidity should agree with this trend. According to the results in
Fig. 13 the as-manufactured bending rigidity is larger than the
designed one, thus, supporting the described tendency. Further-
more, the numerical simulation on the printed geometry via com-
puted tomography provides an excellent agreement with the
experimental tests, with a relative error always below 4%. Interest-
ingly, although the porosity determined by a CT scan for the thick-
est beam is lower than the porosity determined experimentally
(see Table 2), the numerical bending rigidity for this specimen is
slightly higher than the experimental value. The dependency
between the porosity and the bending rigidity of the samples is,
in general, non-linear. This is similar to the tensile characteristics,
such as the homogenized Young’s modulus (see [18]). However,
the results are ‘‘reversed” in this case. As the experimental value
is obtained by measuring one specimen, this could suggest that

Fig. 11. Finite Cell mesh with 51� 524� 32 cells for 2� 3� 32 beam specimen.
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the CT-based porosity provides a more accurate estimate. Further-
more, this would support the trend of a slightly higher porosity
value for thicker beam setups as described in the previous section.

5.2. Experimental validation of strain gradient beam theory for octet-
truss lattices

Since in a three-point bending it is often desired to predict the
mechanical behavior by dimensionally reduced beam models, we
investigate more carefully the applicability of the beam models
described in Section 3 to octet-truss lattice structures.

The beam models rely on the identification of effective quanti-
ties, such as Young’s modulus E� and shear modulus G�. As briefly
mentioned in Section 3, there are two ways to obtain the necessary
quantities. For the as-designed geometries, only the first-order
mean-field homogenization can be applied, as there is no possibil-
ity to perform experimental tests on it, while for the as-
manufactured structures, the effective Young’s and shear modulus

can be measured experimentally. In the scope of this work, only
the as-manufactured Young’s modulus of octet-truss lattices is
experimentally evaluated, whereas the effective as-manufactured
shear modulus is determined by means of the first-order mean-
field homogenization technique mentioned in Section 3. To
account for non-periodic as-manufactured cells, the homogeniza-
tion is performed through the whole structure, taking the mean
value of the homogenized shear modulus similar to the identifica-
tion procedure of the homogenized Young’s modulus described in

Fig. 12. Displacement and von Mises stress distributions for as-printed beam 2� 3� 32 utilizing the Finite Cell Method.

Fig. 13. Comparison of bending rigidity obtained by numerical bending tests on the original as-designed geometry and on the as-manufactured geometry obtained from CT-
scan data.

Table 3
Effective mechanical quantities of the octet-truss specimens.

Effective quantity As-designed As-manufactured

E� , MPa 7356 12;533� 751a

G� , MPa 2742 5651

a Experimental measure.
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[18]. Table 3 summarizes the effective quantities used in the
following.

Furthermore, to apply the beam theories described in Section 3
the effective cross-sectional area A and the moment of inertia I
have to be computed. These quantities are dependent on the over-
all dimensions of the beam specimens. The as-designed and as-
manufactured values as indicated in Table 1 are different. Thus,
the values indicated with D in Table 1 are used to compute the
effective geometrical characteristics of as-designed models, while
the ones indicated with M in Table 1 of as-manufactured shapes.

Fig. 14 shows the normalized bending rigidity D=DEB with
respect to the beam height h (see Eq. (7)). The normalization is per-
formed with respect to the Euler-Bernoulli bending rigidity DEB

solution as follows:

D

DEB ¼ DwEB

F
¼ wEB

w
ð20Þ

where wEB is the classical Euler-Bernoulli solution for three-point
bending as in Eq. (4), w is the experimentally recorded maximum
deflection, and D is the compared bending rigidity.

As the as-manufactured and as-designed geometries have dif-
ferent geometric and mechanical effective properties, the bending
rigidities are normalized with the Euler-Bernoulli solutions using
the respective quantities from Table 3 and, thus, they are plotted
separately in Fig. 14a and b.

In both plots of Fig. 14, the dashed lines indicate the results pre-
dicted by the classical beam theories, while the solid lines stand -
the strain-gradient beam theories. The blue dots correspond to the
experimental bending rigidity, whereas the crosses indicate the
results of the numerical bending simulation computed on the as-
manufactured specimen from Fig. 13. Both values are normalized
with the analytical Euler-Bernoulli solution using the as-
manufactured effective Young’s modulus from Table 3. The brown
dots in Fig. 14b indicate the CAD-based results of the numerical
bending test and again the results are normalized with the Euler-
Bernoulli solution with the as-designed effective Young’s modulus
from Table 3. Since as-designed geometry allows for further reduc-
tion of the considered thickness-to-length ratios, an extra point is
added at the height of 2:4 mm. This setup leads to a thickness-to-
length ratio of 0:015.

Classical beam theory using as-manufactured and as-
designed geometry

As the normalization is performed with respect to the corre-
sponding classical Euler-Bernoulli solution, the dashed black lines
remain at the value 1 for both as-manufactured and as-designed
geometries. If the octet-truss lattice beams were to follow this
behavior, all bending rigidities would lay on a straight line. How-
ever, neither as-manufactured nor as-designed values seem to com-
ply with the assumptions of the Euler-Bernoulli theory. Thus, the
classical Euler-Bernoulli theory cannot be applied to the characteri-
zation of the bending behavior of the considered octet-truss lattices.

The classical Timoshenko beam theory indicated with the green
dashed line converges to the Euler-Bernoulli theory with the
decreasing beam height. These states correspond to extremely
slender beams, thus, making shear effects of minor importance.
The as-manufactured geometry results as shown in Fig. 14a pro-
pose that only the thickest specimen with 2� 32� 4 cells and
the thickness-to-length ratio of 0:13 follows the Timoshenko the-
ory. However, the rest of the points do not follow this curve. The
as-designed bending behavior as depicted in Fig. 14b shows a sim-
ilar trend, where for the thickest specimens the points lay on the
curve. Although the Timoshenko beam theory seems to provide a
better solution compared to Euler-Bernoulli, none of them can cap-
ture the observed bending behavior well.

Strain gradient beam theory using as-manufactured
geometry

Fig. 14a indicates the presence of a stiffening effect. When the
height of the beam is close to the characteristic size of the unit cell,
the size effects affect the macroscopic bending behavior of the
components and cause stiffer behavior in comparison to a standard
prediction of the classical beam theories. This size-dependent
bending phenomenon is precisely captured by the strain gradient
beam theories on the as-manufactured geometries.

The strain gradient beam theories as described in Section 3
introduce an additional material parameter g. This high-order
parameter is unknown a priori and can only be determined by a
calibration of the solid lines to the obtained numerical and exper-
imental solutions (or by other generalized homogenization pro-
cedures [12]). As mentioned in [16], this intrinsic length
parameter behaves as a material parameter and it is independent
of loading, problem type, or the beam model. This quantity only
depends on the underlying geometry. Thus, it must be the same
for both strain gradient Timoshenko and Euler-Bernoulli theories.
The value of the high-order material parameter g is determined as
0:349 [mm] for the as-manufactured octet-truss lattice (see
Table 4). This intrinsic length parameter characterizes the size
effects in the octet-truss lattice structures via both Euler-
Bernoulli and Timoshenko strain gradient beam theories. Its
order is close to the smallest strut size diameter of the unit cell
of 0:4 [mm].

Although both strain gradient beam theories seem to capture an
overall stiffening trend, it is important to know which theory is
applicable. The numerical solution indicated with crosses seems
to rather follow the Euler-Bernoulli approximation. However, the
experimental data indicated with blue dots do not give a clear
direction of which theory to follow. The first three points lay on
the strain gradient Euler-Bernoulli theory, while the last point cor-
responding to the thickness-to-length ratio 0:13 seems to be away
from it. This can suggest that for the last configuration the strain-
gradient Timoshenko theory is more appropriate. However, the
measurement error bars on the experimental data indicate that
both theories could be applicable for this setup and the last point
can as well lay on the black solid line. Furthermore, the CT-based
porosity value for the thickest beam is further away from the
experimental one. Thus, it could lead to uncertainty in the com-
puted bending rigidity. To further clarify this let us look at the
as-designed results.

Strain gradient beam theory using as-designed geometry
As already pointed out, the effective quantities obtained on the

as-designed model are far from the experimentally determined
bending rigidity and are depicted separately in Fig. 14b.

Curiously, for the as-designed geometry, a weaker stiffening
effect is observed. For the thickness-to-length ratio of 0:03 (i.e.,
for the thinnest beam), the CAD-based results show about 8.4%
stiffening compared to the thickest observation, while the as-
printed analysis indicated 9.5%.

This is also reflected in the intrinsic high-order material param-
eter g. It is determined as g ¼ 0:244 mm in the same manner as for
the as-manufactured geometries (see Table 4). The most remark-
able observation is that this high-order material parameter is
lower than the one for as-manufactured geometries, similarly to
the behavior already observed in the porosity values, the effective
quantities, and the bending rigidity of the octet-truss specimens.

Furthermore, the as-designed numerical results seem to clearly
follow the strain gradient Timoshenko theory, whereas the strain
gradient Euler-Bernoulli curve does not provide an accurate solu-
tion to the overall bending behavior. Although it should be noticed
that for the thickness-to-length ratios of two thinnest specimens
(h < 5 mm) the strain gradient beam models are already very close
to each other.
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Comparison between as-manufactured and as-design results
All in all, the overall stiffening tendency is similar to the one

observed from the experimental and as-manufactured numerical
analysis. But the as-manufactured values are about 50% higher
than the designed ones as shown in Fig. 13. The as-manufactured
computations always lie within the uncertainty range of the exper-
imental measurements, whereas as-designed numerical results
never fall in this range. This rather large difference has been
observed in similar studies conducted by the same authors on ten-
sile behaviors of octet-truss lattices [18].

Moreover, when a closer study on the as-manufactured and as-
designed geometries is undertaken, the stiffening trend differs.
Firstly, we have observed that the considered octet-truss beams
experience size effects, such that classical beam theories are not
applicable to approximate the bending behavior, whereas strain
gradient beam theories provide a much more accurate description.
Secondly, the as-manufactured bending rigidities show a stronger
stiffening effect than the designed ones, as also reflected in the
intrinsic material parameter determined for both geometries. This
observation well correlates to all other material characteristics
determined by the authors.

6. Conclusions

The numerical analysis of additively manufactured metamateri-
als can be prohibitively expensive and often impossible at full
scale. In the present work, we have shown and validated an effi-
cient numerical framework to incorporate complex as-

manufactured geometries in a direct image-to-analysis workflow.
The achieved numerical results are fully supported by the experi-
mental tests performed on the octet-truss lattices. These findings
suggest that in both direct numerical simulations and beam theo-
ries there is a strong need to incorporate as-manufactured geome-
tries into the numerical analysis of lattice structures manufactured
using LPBF. In particular, the direct numerical simulation of CT-
based as-manufactured geometries delivers results very close to
the experimental measurements, whereas numerical analysis com-
puted on the as-designed model fails to correctly predict the
mechanical behavior of these metamaterials, presenting relative
errors in the bending rigidity value always above 40%. We would
like to remark that this astonishing deviation is not general to all
additive manufacturing processes. Although we expect the devia-
tions not to be so drastic for trusses with larger diameters, the
manufactured octet-truss structures are already at the upper limit
of the used LPBF process. Considering the majority of LPBF printers,
the size of the octet-truss lattices is near the upper bound of the
cell size. Larger cells would require support structures to prevent
bending distortions of the struts and heat accumulation. This, in
turn, introduces a practically unsurpassed level of complexity in
the support removal. By contrast, when a smaller size of geometri-
cal features is considered, the gap between as-manufactured and
as-designed structures drastically increases. Thus, an accurate pre-
diction of the mechanical properties of both small and large-scale
lattices requires an incorporation of production defects into com-
putational models.

Furthermore, we have demonstrated the applicability of classi-
cal and strain gradient beam theories to the prediction of the bend-
ing behavior of AM octet-truss lattices. This work has confirmed
that size effects arise in these metamaterials, thus raising the
importance of the high-order continuum theories. Additionally,
we validated the strain gradient beam theories in combination
with the Finite Cell Method. In particular, a high-order intrinsic
material parameter was determined directly from the numerical

Fig. 14. Normalized bending rigidities of the octet-truss lattice beams with respect to the beam height.

Table 4
Comparison of as-designed and as-manufactured high-order intrinsic length param-
eter of the octet-truss specimen.

As-designed g [mm] As-manufactured g [mm]

Octet-truss beam 0.244 0.349
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analysis of the as-manufactured geometries. As this material
parameter is independent of the problem type, it can be used for
the dimensionally reduced modeling of such octet-truss lattice
components under different loadings and boundary conditions.

Overall, the image-to-analysis workflow is not limited to the
analysis of the bending rigidity of the metamaterials. This work
serves as a step towards the complete validation of the proposed
approach in application to the additive manufacturing product
simulation. It can be naturally applied to the mechanical character-
ization of almost any type of manufactured product, e.g., to deter-
mine the linear elastic characteristics in tension or shear or
thermal quantities. Furthermore, it is flexible to be extended to
perform the non-linear analysis. For example, limit load could be
an essential characteristic of the manufactured lattices.

To conclude, the proposed numerical framework provides an
accurate and flexible tool to analyze the behavior of as-
manufactured metamaterials. Furthermore, these results represent
an excellent initial step toward the validation of the strain gradient
continuum theories in the field of additive manufacturing. In this
line of research, we intend to incorporate the demonstrated tech-
nique into the analysis of the statistically similar CT models of such
mechanical metamaterials in the future. This step will then allow
to expand the capabilities of the proposed image-to-material-char
acterization workflow. It would mainly allow evaluating the possi-
ble variability of the mechanical quantity under constant manufac-
turing conditions. For example, a variability of the homogenized
Young’s modulus can be assessed depending on the underlying lat-
tice microstructure and fixed printing parameters. This can be
done by analyzing the CT image of an as-manufactured structure
and generating a set of statistically similar geometries. Thus, such
an approach could evaluate the variability before the manufactur-
ing process via sample printing. This could be especially useful to
establish an expected safety factor depending on the used manu-
facturing parameters.
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