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ABSTRACT

Programming robots to perform complex manipulation tasks is difficult because many tasks require
sophisticated controllers that may rely on data such as manipulability ellipsoids, stiffness/damping and
inertia matrices. Such data are naturally represented as Symmetric Positive Definite (SPD) matrices to
capture specific geometric characteristics of the data, which increases the complexity of hard-coding
them. To alleviate this difficulty, the Learning from Demonstration (LfD) paradigm can be used in order
to learn robot manipulation skills with specific geometric constraints encapsulated in SPD matrices.
Learned skills often need to be adapted when they are applied to new situations. While existing
techniques can adapt Cartesian and joint space trajectories described by various desired points, the
adaptation of motion skills encapsulated in SPD matrices remains an open problem. In this paper, we
introduce a new LfD framework that can learn robot manipulation skills encapsulated in SPD matrices
from expert demonstrations and adapt them to new situations defined by new start-, via- and
end-matrices. The proposed approach leverages Kernelized Movement Primitives (KMPs) to generate
SPD-based robot manipulation skills that smoothly adapt the demonstrations to conform to new
constraints. We validate the proposed framework using a couple of simulations in addition to a real

experiment scenario.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Robots are entering human environments such as houses, hos-
pitals and museums. Such environments are highly unstructured,
dynamic and uncertain, making explicit programming of required
robot skills infeasible. The difficulty is particularly apparent in
manipulation tasks that require an encapsulation of its char-
acteristics in specific geometry constraints data type. Some of
these geometry constraints robotics data types are: (i) Orientation
data [1], encapsulated in unit quaternions &> or rotation matrices
SO(3); (ii) Manipulability data [2-6], encapsulated in Symmetric
Positive Definite (SPD) matrices S ; (iii) Impedance data (stiff-
ness and damping matrices) [7-11], encapsulated in SPD matrices

m
s™m,, etc.
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Fig. 1. Left: a human operator teaches a robot how to perform a push-button
task. Right: a snapshot showing the Franka Emika Panda robot performing a
push-button task. It is not always straightforward to estimate a stiffness profile
from demonstrations in a way that all task constraints are accurately fulfilled.
For instance, it is not rare that, due to limitations in the underlying skill
representation, the robot stiffness becomes too high/low at a specific moment of
the task. Our approach addresses this problem by adding new start-, via- and/or
end-SPD points that represent desired stiffnesses.

The Learning from Demonstration (LfD) paradigm can be used
to learn tasks from human demonstrations (Fig. 1-left) intu-
itively [14]. Several LfD approaches have been developed includ-
ing Dynamic Movement Primitives (DMPs) [15], Gaussian Mixture

0921-8890/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Table 1
Comparison among the state-of-the-art and our approach.
Probabilistic New start-SPD point New goal-SPD point Via-SPD point/s
Jaquier et al. [6,12] v - - -
Abu-Dakka et al. [10] v - - -
Abu-Dakka et al. [13] - - v -
Zeestraten et al. [1] v v Ve -
Our approach v v v v
2Note that the proposed formulation in [1] is targeted at data on S> and not 8, . However we understand that the extension to

S8, would be trivial and thus include it here as a point of comparison.

Model (GMM) [16], and more recently, Kernelized Movement
Primitives (KMPs) [17]. In order to deal with orientation data,
the idea of transforming data from &° into R> was used in
orientation-DMP [18,19] and orientation-KMP [20]. For the case
of learning SPD matrices, one can directly stack elements of each
SPD matrix into a vector and subsequently learn motion patterns
of the corresponding vectors by using DMPs, GMM or KMPs,
whereas this treatment ignores the underlying data structure.

There are some previous works dealt with SPD data by taking
into account the insight that demonstrations lie on a Riemannian
manifold with associated metrics, e.g. learning manipulability
ellipsoids [6] and impedance profiles [ 10]. These approaches have
focused on synthesizing SPD matrices when a robot is presented
with similar inputs to those observed during demonstrations.
However, the adaptation of SPD-parameterized skills to unseen
inputs remains an open problem in the LfD literature, as well as
the adaptation to via-SPD data points.

In this paper, we go beyond previous works on learning SPD-
matrix-based robot skills' [6,10,12] by considering both the learn-
ing and adaptation of SPD-based skills. The framework is based
on first transforming SPD-matrix profiles into Euclidean space
either by using Cholesky factorization or a Riemannian met-
ric (Section 4). Subsequently, this Euclidean representation is
probabilistically encoded using GMM, which is exploited later
to retrieve the conditional distribution of the data using Gaus-
sian Mixture Regression (GMR) (Section 5.1). This distribution is
then exploited using a kernelized approach [17], which extends
KMP [17] to the case of SPD profiles (Sections 5.2 and 5.3). This
allows the model to generate desired SPD matrices for new inputs
(so-called start-, via- or end-points).

As an illustrative example, consider a robot needs to perform
a motion with learned control gains. When the task conditions
change (e.g. the robot needs to go through a narrow opening that
was not shown in the demonstrations), the control gains should
be modified in some parts of the task (e.g. to be more precise),
while keeping the rest unchanged. The proposed model allows
smooth adaptation of the gains while ensuring their positive
definiteness required for the stability of control (Fig. 1).

To the best of our knowledge, no previous approach for learn-
ing SPD-based manipulation skills from demonstrations has suc-
cessfully tackled the adaptation problem to desired via-SPD-
points. We here propose a framework that allows to elegantly
tackle the aforementioned problems through the inclusion of
SPD-via-points.

In summary, the main contribution of this paper is a prob-
abilistic framework for learning and adapting SPD-based robot
manipulation skills that allows

- learning different types of manipulation skills that rely on
SPD matrices for correct execution, and
- adapting learned skills to new unseen inputs.

1 Throughout the paper we will use this terminology to refer to manipulation
skills that require some form of parameterization that relies on SPD matrices
(e.g. impedance control, where stiffness and damping matrices are SPD).

- adapting learned skills to new start-, via- and end-points
represented as SPD matrices, which are unseen during
demonstrations.

We also present a comparison between two different methods of
pre-/post-processing the original SPD data: a Riemannian metric
and the typically used Cholesky factorization [10,21-23], for the
problem at hand.

We validate our framework by simulating different examples
of two main robotic manipulation skills encapsulated in SPD ma-
trix form: (i) learning variable impedance skills, and (ii) learning
manipulability ellipsoids, Section 6. We discuss and conclude our
framework in Sections 7 and 8, respectively.

2. Related work

In this section, we review related works on SPD learning
algorithms as well as two primary applications of SPD-based
skills: learning of variable impedance skills from demonstrations,
and use of manipulability-based redundancy resolution. For the
sake of comparison, the main contributions of the state-of-the-art
approaches and our approach are summarized in Table 1.

Learning SPD profiles: Learning SPD profiles from demonstra-
tions has received considerable attention in recent years. Jaquier
et al. [12] proposed a tensor-based formulation of GMM and
GMR on the 87, which is capable of learning and reproducing
SPD-matrix-based skills without further reparametrization of the
data. Although Jaquier et al. approach inherits from the classi-
cal GMM/GMR the capability of learning with multi-dimensional
inputs, but it also inherits its limitation in adapting to different
start-, via- and end-SPD-points on a SPD manifold.

Zeestraten et al. [1] proposed to model distributions of ori-
entation data using the Riemannian manifold S3. The work ex-
tended the Task-Parameterized GMM (TP-GMM) to Riemannian
manifolds, allowing the adaptation to new start- and goal-points.
The formulation targets data in &3 but the method could poten-
tially be extended - given that S is also a Riemannian mani-
fold - to adaptation of SPD start- and end-SPD-points. However,
TP-GMM adaptation does not support via-SPD-points adaptation.

Recently, Abu-Dakka and Kyrki [13] proposed to use Rieman-
nian metrics to reformulate DMPs such that the resulting for-
mulation can operate with SPD data in the SPD manifold. Their
formulation is able to adapt to a new goal-SPD-point, but not to
new via-SPD-points.

Learning variable impedance skills: Impedance control?
specifies a dynamic relationship between position and force and
plays an important role in tasks that require physical interaction
between a robot and the environment [24]. Namely, impedance
control helps overcome position uncertainties and subsequently
avoid large impact forces, since robots are controlled to modulate
their motion or compliance according to force perceptions. Note
that the focus of this work is not on the learning of the controllers
themselves but, generally, on learning SPD-profiles, of which

2 In this paper, we refer by variable impedance to variable stiffness, however,
the proposed framework can be used to learn and adapt damping controllers.
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Fig. 2. Diagram of the proposed framework, from human demonstrations (leftmost box) to a robot performing the tasks (rightmost box).

impedance gains are only a particular case. For details on learning
variable impedance control the reader is referred to [25].

Variable stiffness is a central use case of SPD-based skill repre-
sentations and learning such skills has been of interest to several
authors: Kronander et al. [23] proposed to use GMM in Eu-
clidean space to directly encode the vectorized version of full
stiffness matrices obtained by using Cholesky decomposition. The
desired stiffnesses were physically demonstrated by a teacher
wiggling the robot to indicate the desired stiffness. Abu-Dakka
et al. [10] proposed a LfD framework to learn force-based variable
stiffness skills. Both forces and stiffness profiles were probabilis-
tically encoded using two different approaches: geometry-aware
GMM/GMR [12] and Euclidean-based GMM/GMR [26]. However,
none of the approaches presented above can adapt to new start-,
end- or via-SPD-points in the SPD manifold.

Modeling manipulability ellipsoids: Manipulability analysis
plays an important role in identifying the suitability of given
configurations to execute specific tasks by providing a sort of
performance measure known as manipulability index [2].

Manipulability measures have been used in many robotics
applications. Chiu [27] proposed to use it to measure the com-
patibility of robot postures for fine versus coarse manipulation.
Chiacchio [28] exploited manipulability ellipsoids within inverse
kinematics approaches to compute optimal time trajectory plan-
ning. In order to obtain high task-space dexterity and singularity-
free joint trajectories, designing tasks with high manipulability is
often desired. However, solely maximizing the manipulability to
achieve high dexterity in motions causes the reverse effect on the
force capability [29].

Because of the complementarity of force capability and ma-
nipulability, a particular level of manipulability can be sought.
Lee [29] showed that for required motion and force trajecto-
ries of a given task in dual arm manipulator, a profile of de-
sired manipulability ellipsoids can be predetermined. Similarly,
an optimization-based approach was developed by Lee et al. [5]
for a humanoid robot to select a reaching posture by follow-
ing manually-specified desired manipulability volumes. Note that
both approaches [29] and [5] are task-oriented and need to man-
ually predetermine the desired robot manipulability. Such proce-
dure requires a careful motion analysis, which is often a burden
on the user. Moreover, the aforementioned approaches over-
looked the fact that the manipulability lies on the SPD man-
ifold. Differently, Rozo et al. [6] applied the geometry-aware
GMM/GMR [12] to solve the manipulability transfer problem
between teacher and learner robots in order to learn and retrieve
desired manipulability ellipsoids based on imitation learning. De-
spite the fact that Rozo’s work tackles the manipulability on the
manifold of SPD matrices, their approach suffers from the same

Table 2
Description of key notations.

m £ matrix dimension

n £ dimension of vector space

L £ number of demonstrations

T 2 number of datapoints

G £ number of Gaussian components

X 2 an arbitrary SPD matrix

& £ input vector

== ({65, Xe)_J., £ set of SPD profiles

D= {{&.x}/_ )}k, £ transformed data obtained from =,
Sections 4.1 and 4.2

D, = {§rI, e, i‘[}fz1 £ probabilistic reference trajectory extracted
from D

M £ a Riemannian manifold

TpPM £ a tangent space of M at point P

s, 2 m x m SPD manifold

Sym™ £ m x m symmetric matrices space

M £ the mean of {{X,}/_;}L,

vec(+) £ a function transforms symmetric matrices into
vectors using Mandel’s notation

I £ pew test input

k(-,-) 2 Kernel function

= 2 expanded vector and matrix

limitations as [12]. In other words, the approach in [6] is still
unable to adapt to new start-, via-, or end-SPD-points in the SPD
manifold.

3. Proposed framework

The probabilistic distribution of multiple demonstrations often
encapsulates important motion features [16,20] and further facil-
itates the design of optimal controllers [11]. For that reason, we
propose to transform SPD data into Euclidean space, which hence
enables the probabilistic modeling of transformed trajectories
(see Section 4). Afterwards, the distribution of the transformed
data (see Section 5.1) is exploited using a kernelized approach,
whose predictions allow for the retrieval of proper SPD data (see
Section 5.2). The whole pipeline of the proposed framework is
illustrated in Fig. 2. We summarize key notations used throughout
this paper in Table 2.

4. From the SPD manifold to Euclidean space

Let us define 87, as the set of mxm SPD matrices, X € 87, as
an arbitrary SPD matrix, and & = {{§/, X.,}/_;}_, as a training
data set containing inputs and SPD data. Ef, € R? is the input
vector (e.g., time, force, Cartesian position, etc.) at t-th time step

from the I-th demonstration. Furthermore, let us denote x;; € R"
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as the vectorized version of the projection of X;; onto Euclidean
space, which leads to a new training set D = {{&/, x.;}l_,}}_,.
which will be probabilistically encoded later in Section 5. In order
to compute the vectorization of X; ;, we implement two different
approaches: (i) Cholesky-based approach, and (ii) Riemannian
metric-based approach.

4.1. Cholesky-based projection

In order to reduce the dimensionality of the data X;; while
ensuring that the resulting matrices are always SPD, X;; can
be projected onto a Euclidean space variable x; ; using Cholesky
decomposition by first extracting the Cholesky factor .A;; (from
X = AI,Af,,) and then vectorizing the factor a;; [10]. This rep-
resentation reduces the data space dimensionality to m(m + 1)/2
and avoids replicating information due to the symmetry. For
example, given A € Si 4 then its Cholesky vector representation
a is derived as follows

AT _ | a
A=A A, A—|:0 (13:|’

(1)

,-,a:[al az a3]T

Here, X,y = a;; and D = {{&, a;;}/_,}L_, which will be
used to estimate the joint probability distribution P(&%, a) (Sec-
tion 5.1).

4.2. Riemannian metric-based projection

In mathematics, a manifold is a topological space that locally
resembles Euclidean space near each point. A Riemannian mani-
fold M is a smooth manifold that is equipped with a Riemannian
metric. For every point P in a manifold M, i.g. P € M, one
can attach a tangent space 7pM. For ST, this tangent space
corresponds to the space of symmetric matrices Sym™. The metric
in the tangent space is flat, which allows the use of classical
arithmetic tools despite the original data being ST, . Note that
the space of m x m SPD matrices 87, can be represented as the
interior of a convex cone embedded in its tangent space.

To operate on the tangent space, a mapping system is required
to switch between 7p.M and M. These mapping operators are:

- The exponential map Expp(I'): 7pM +— M is a function that
maps a point I in the tangent space to a point Q € M, so
that it lies on the geodesic starting from P in the direction

of I'. In the case of 87, Expp(I') is defined as [30]:

Expp(I") = PZexpm(P~2 ' P~2)P2. 2)

- The logarithmic map Logp(Q): M — TpM is the inverse of
the exponential map and defined as follows for the case of
S’ manifold [30]:

Logp(Q) = P2logm(P~2QP~2)PZ. 3)

where expm(-) and logm(-) are the matrix exponential and loga-
rithmic functions.

In order to project the demonstrated data {{X;}{_,}}_, onto
Euclidean space, we need first to introduce an auxiliary SPD
matrix M € 8. For a proper selection of M, we can use [12]
to estimate it as the mean of {{X;/}/_,}._,. Subsequently, we
project the demonstration data {{X;;}/_,}}_, into the tangent
space Ty M using (3), where Logy(X¢.)) = M, Heg € Sym™. Af-
terwards, Mandel’s representation of a symmetric matrix can be
used to reduce the data space dimensionality by vectorizing #;
such that

vec(H1) =hyy, hy e RY, (4)

Robotics and Autonomous Systems 141 (2021) 103761

where vec(-) is a function that transforms symmetric matrices
into vectors using Mandel’s notation. For example, given a 2 x 2
symmetric matrix, the transformation is

vec([g b:|)= éb : (5)

This representation reduces the data space dimensionality
to m(m+ 1)/2 and avoids replicating information due to the
symmetry.

In this case, x;; = h;; which leads to a training dataset
D = {{&,, hy ;}]_,}._, so the joint probability distribution P(§”, h)
can be estimated in Section 5.1.

5. Probabilistic learning of SPD profiles

The training dataset D can be encoded using different prob-
abilistic models [17]. In this paper, a mixture of G Gaussians
components is used to estimate the joint probability distribu-
tion P(&7, £°), with £€° = x through expectation-maximization
[26]. Subsequently, we use GMR [26] to retrieve the trajectory
distribution that initializes KMP (Section 5.2).

5.1. Probabilistic modeling of SPD data

Given the training dataset D, we use GMM to model the joint
probability distribution P(&%, £°), leading to

G
PETE) ~ D 7N (g, T ), (6)
g=1

I'LI SI O
where wg, u, = [ﬂé]ﬂg = 251 Zé’o correspond to
g
the prior, mean, and covariance of thegg-th Gagussian component,
respectively. G denotes the number of Gaussian components.
Later, we employ GMR to retrieve the conditional distribution
P(ECIED) as
G
P (E°167) = D h (67 (i (87). £, (7)
g=1
where

hg (§7) = (8)
Y N (g IRE, BF)

g (87) = 18 + Z9TET (67 — ng) 9)

5, =30 5oyl 'xgIo, (10)

As shown in [17,26], we can approximate the distribution in
(7) by a single Gaussian distribution, i.e., £ (& ~ N(fi,, ;).
Finally, for a given input sequence {’;‘II}tT:p we can derive a
probabilistic reference trajectory D, = {Etz . ﬁ't}le, which can
be exploited directly by using KMP, since D, encapsulates the
distribution of training trajectories in D.

Noteworthy, the upper triangle matrix A (Section 4.1) or the
symmetric matrix 7£ (Section 4.2) can be re-constructed from
the output ft, of GMR, and accordingly the desired X can be
computed. However, in this paper, we will introduce further
treatment to GMR output {i,, L}}Ll as explained in the next
section.
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Algorithm 1 Learning and adaptation of SPD profiles using
kernelized approach

1: Prepare reference trajectory D, = {’;'tz, i, i‘t}tT:l from

expert demonstrations (Section 5.1)

- Collect demonstrations = {Sﬁxt,}t -

- Transform Z into Euclldean space using Cholesky
decomposition (Section 4.1) or Riemannian metrics
(Section 4.2)

- Extract D, through (7)

2: Transform the desired SPD data & = {E,I )~(,},L:l into desired

Euclidean data D = {E,I élo},L:] and update the reference
trajectory D, (Section 5.3)
3: Prediction of new SPD data

- Define A and k(-, -)

Input: query point &2

- Compute Eq. (11) for prediction

Project predicted data to SPD manifold (Sections
4.1/4.2)

Output: X

5.2. Kernelized learning approach

In this section, we exploit D, in KMP [17]. For a new test point
£"", we predict the corresponding output £°(£§7") as [17]

(")
where
K = [k(&", &) k(£ &)
k(gi, gi) k(f,:{;,g@ k(!;‘{;', gi)
Kk(&7, k(£Z, .. K(&L,
o= ‘(52. &) ‘(52' &) . ((&2' &) (13)
K(EFED) K(EFE) - K(EF &)
is a matrix evaluating a chosen kernel function I<(., ) and
k(&7.&67) = k(& .&)1, where i,j = 1,2,...,T. & is an

ernpmcally chosen hyperpararneter n = [;ﬂﬂ;

= blockdlag(Z‘ 3. ET)
The kernel function depends on the characteristics of the train-
ing data. In this paper, we use the squared-exponential kernel

— K (K+1%) (11)

k(& )] (12)

7] and

k(& &) = of exp (- & — &1%)., (14)

a common choice in the literature, with hyperparameters {r, afz}.

In summary, given a query input 151*, we predict its cor-
responding output £°(£”") through (11). The predicted result
is used to retrieve the corresponding SPD data by constructing
the Cholesky matrix as described in Section 4.1, or by using
Riemannian metrics as shown in 4.2. For the sake of clarity, we
follow either of the following options: (i) when the predicted
vector from (11) ’;‘O is a Cholesky vector (Section 4.1), then we
can reconstruct the Cholesky factor A as in (1), which allows us
to compute the Cholesky Matrix (the SPD matrix) A through A =
AT A, however, (ii) when EO corresponds to Mandel’s represen-
tation of a symmetric matrix (Section 4.2), then by applying the
inverse of (5), we can reconstruct its correspondent symmetric
matrix # in the tangent space 7y.M. Later we project this matrix

Robotics and Autonomous Systems 141 (2021) 103761

back to the 8™, manifold using Expy(#£) operator as in (2) with
respect to the same auxiliary SPD matrix M. See Fig. 2 for an
illustration of the pipeline of the framework.

5.3. Adaptation of SPD profiles

In this section, we extend the original capabilities of KMP to
adapt to new desired start-, via-, and end pomts (unseen in the

demonstrations) to SPD data. Consider = {’g‘, X0 }i—; to be
the set of desired SPD data, where EI’O € R and X° € st
The transformation of this desired set 1nt0 Euclldean space (using
Sections 4.1 or 4.2) is denoted as D = {5, , §, .In addition, (11)
requires the assignment of covariance matrices i‘o for each new
desired point é to control the adaptation precision (the smaller
the covariance the higher the prec1510n)3 Therefore we have
an additional reference trajectory D, = §, ,’g‘, , X}, which
can be concatenated w1th Dr, y1eld1ng an extended reference
trajectory D, = {’.;'t ) §t X, }”L defined by

’S.t =§t17

1;:?:,1?, if t<T,

=57 (15)
-7 ~T

& =& 1,

E0=F ., fT<t<T+L

S0 L0

Et :err’

Subsequently, the newly obtained trajectory D, can be used to
generate n-dimensional trajectories in Euclidean space via (11)
and retrieve the corresponding SPD profiles capable of passing
through the desired points é’o.

The entire proposed framework of adapting SPD data profiles
is summarized in Algorithm 1.

6. Experiments

We evaluated the proposed imitation learning framework us-
ing a couple of simulation setups in addition to a real experiment.
The simulations and the real experiment serve as a proof of
concept and consist of the following:

- Learning and adaptation of manipulability ellipsoids in tra-
jectory tracking problem.

- Learning and adaptation of variable impedance skills.

- Adaptation of variable stiffness profile towards a via-stiffness
point to perform push button task.

All algorithms have been implemented in MATLAB® using
a workstation running Ubuntu 18.04 LTS with Intel Core i9-
8950HK CPU @ 2.90 GHz x 12, 16 GB of RAM. The experiment
is performed using the Franka Emika Panda robot.

6.1. Adaptation of manipulability ellipsoids

Manipulability is encapsulated as an SPD matrix and repre-
sented as an ellipsoid in a b-dimensional Euclidean space. The
manipulability of a given configuration of a robot defines the
capacity of change in pose of its end-effector. The manipulability

3 The prediction in (11) can be interpreted as the maximization of the

. . e .. . e
posterior given the distribution of training data, thus the covariance X,

. . . . . =T =0
determines the adaptation error corresponding to each desired point {§, , &, }
see [31] for more details.



FJ. Abu-Dakka, Y. Huang, J. Silvério et al.

10

10 initial

o

-10 ‘ ﬁnal—l()

Robotics and Autonomous Systems 141 (2021) 103761

10

o

-10 -5 0 5

— W IND
oldInp

n

-10

c

X T
(8) (h)

Fig. 3. Reproduction and adaptation of a L-shape trajectory-following task. Gray ellipsoids represent the demonstrated manipulability ellipsoids 7', violet ones are for
the desired manipulability ellipsoids T'© generated by the proposed framework, green ellipsoids represent the real measured robot manipulability 7', (shown for a

subset of points). Red ellipsoids correspond to new via-manipulability-ellipsoids T‘I'O which were not presented in the training data. ‘initial’ and 'final’ indicate the
starting and ending points of the tracking task, respectively. (a) A 3-DoFs teacher robot builds the set of training data = to be used in the learning framework. (b) A
5-DoFs learner robot reproduces a manipulability profile using the proposed framework while tracking a Cartesian trajectory obtained using GMR. (c)-(f) A 5-DoFs
learner robot tracks a reference Cartesian trajectory (similar to the demonstrations) and adapts its manipulability ellipsoids profile to new via-manipulability-ellipsoids.
In each plot, different numbers of via-manipulability-ellipsoids are considered and we show one complete robot motion. Notice the different kinematic configurations
of the robot due to the tracking of new via-manipulability-ellipsoids. (g) A 5-DoFs learner robot tracks a completely new reference Cartesian trajectory and adapts
its manipulability ellipsoids profile to via-manipulability-ellipsoids. (h) Shows the matching between the desired manipulability profile (violet) and the current ones
(green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of a robotic arm is derived from the relation between joint and
task velocities (q and § respectively),

q=J"s, (16)
where q € R? and J € R®*? are the joint position and Jacobian,
respectively, of a d-DoFs arm robot. The superscript ™ denotes the
pseudo-inverse of a matrix. In addition, the set of joint velocities
satisfying ||q] = 1 corresponds to a point (in Cartesian space)

lying on the surface of an ellipsoid. By substituting the unit norm
constraint in (16),

aq=3 (") s =873, (17)

the manipulability ellipsoid ¥ = (JJT)+, where T € ST, pro-
vides an intuitive indicator of the direction of possible movement
of a configuration.

The objective here is to learn manipulability ellipsoids from
demonstrations (from a teaching robot) and transfer them to a
learner robot with higher DoFs. Unlike the work proposed by [6],
we are not only aiming to reproduce the task by tracking a desired
Cartesian trajectory, but also to adapt to new via-manipulability-
ellipsoids and track a new Cartesian trajectory. In this simulation,
we will use the toy example implemented in [6] to evaluate our
framework.

Asset of training data & = {{&],, T ,}I_,}}, from a trajectory-
following task is collected when a 3-DoFs robot tracks an L-shape
Cartesian trajectory, see Fig. 3-(a). Ef, = s is the Cartesian
position of the robot end-effector. Let us define v as the vec-
torized form of I after projecting it onto Euclidean space using
either Cholesky factorization (Section 4.1) or Riemannian met-
rics (Section 4.2). Afterwards, we train a 4-states GMM over
D = {{§/,, ve}]_,}L, to estimate the joint probability distribu-
tion P(&%, v). Then, the desired reference trajectory D, is com-
puted by GMR as explained in Section 5.1, which will be used as

a reference trajectory in KMP (Section 5.2). During reproduction
and adaptation, using KMP with hyperparameters sz =1r =
50 and A = 1, a 5-DoFs robot tracks unseen desired Cartesian
position trajectory §. Note that, due to the different kinematic
chain, without manipulability tracking the 5-DoF robot would
likely exhibit a different manipulability profile than the 3-DoF
one. The robot estimates its desired force F at the end-effector
by obeying the following controller [6],

tq=JF— (1-JT)ave(q; o>0 (18)
where ] is the inertia-weighted pseudo-inverse of J, 74 is the
desired joint torque, and the cost function g;(q) is defined as
in [6],

T? + Ta,t(q))
2

g(q) = log det(
(19)

- %log(det (r? Ta,t(q)))

where 7'© denotes desired manipulability ellipsoids obtained
from our framework. ¥ ,(q) represents actual manipulability el-
lipsoids of the current robot configuration.

Fig. 3 illustrates reproduction and adaptation of manipulability
ellipsoids while the 5-DoFs robot end-effector is tracking an
L-shape trajectory. Moreover, it illustrates how the desired ma-
nipulability ellipsoids 7' (67" (in violet) and the current robot
manipulability (in green) are smoothly following the demonstra-
tion ellipsoids X (in gray), Fig. 3-(b). In addition, it shows the
matching between the actual and desired manipulability ellip-
soids.
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Fig. 4. Difference between the five designed via-manipulability-ellipsoids (red)
and the ones from the four demonstrations (gray), at the corresponding time
step. Each plot corresponds to one demonstration, in a total of four. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Figs. 3-(c)-(f) show the ability of the proposed framework
to adapt the manipulability profile to new via-manipulability-

ellipsoids TI’O (in red). This kind of adaptation is not achiev-
able using GMR and to the best of our knowledge no previ-
ous approach tackled this adaptation problem. The new via-
manipulability-points (see Fig. 4) have been designed in order to
be different from the demonstration data and to maximize the
manipulability of the robot at a specific Cartesian position. The
figures illustrate how the manipulability profile smoothly adapt

to TI’O. These via-manipulability-ellipsoids gradually affect the
evolution of the robot configuration, starting by one in (c) and
ending with five in (f).

Fig. 3-(g) shows the adaptation of the manipulability profile to
a completely new Cartesian trajectory and five via-manipulability-
ellipsoids. For this last run, the matching between 7 (§%7) (in
violet) and Y, (in green) is shown in Fig. 3-(h).

6.2. Retrieving variable impedance skills

In this section, we propose to use a toy example of a 2-
dimensional virtual Mass Spring-Damper system (MSD) in order
to evaluate our framework by learning and adapting force-based
variable impedance skills. Inspired by [10], the MSD system starts
from the rest position with a horizontally-aligned stiffness el-
lipsoid K”. To stimulate the MSD dynamics, external forces f¢
are applied while K” is rotating through R'K”R until it ends
up with a vertically-aligned ellipsoid as shown in Fig. 5-bottom.
Afterwards, we transform these time-varying stiffness profiles
into Euclidean space as mentioned in Sections 4.1 or 4.2. Sub-
sequently, we use these transformed profiles along with f¢ as
a training dataset for 4-states GMM by defining & = f¢ and
£° = v”, where v” is the vectorized form of K”. Then, the
desired reference trajectory D, is computed as explained in Sec-
tion 5.1, which is used to initialize the KMP (Section 5.2). The KMP
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Fig. 5. Learning and reproduction of variable stiffness profile using the ker-
nelized approach. The demonstrated stiffness ellipsoids are shown in gray. They
start from the rest position at (5,0) with a horizontally-aligned ellipsoid and end
with a vertically-aligned one. Green ellipsoids represent the reproduction using
GMR, while the red ones are the result of the kernelized approach. Top: Stiffness
profiles over time. Bottom: Stiffness profiles over the Cartesian trajectory of the
MSD mass. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 6. Distance error comparison between Cholesky decomposition (Section 4.1)
and Riemannian metrics (Section 4.2) on the reproduction of stiffness profile.

hyperparameters used in this simulation are crf2 =1,r =30 and
A=1

Fig. 5 shows the reproduction case of the proposed frame-
work where Cholesky factorization has been used to project full
stiffness matrices into/from Euclidean space. Fig. 5-top shows the
resulting stiffness profile over time, while Fig. 5-bottom shows it
over the Cartesian trajectory of the MSD. We observe an accurate
tracking of the initial stiffness profile, validating our approach for
reproducing stiffness profiles.

Fig. 6 compares the average difference between all demonstra-
tions and the stiffness profile obtained by the proposed frame-
work, based on Cholesky decomposition and based on Rieman-
nian metrics. In order to carry out the computation of distances
in 8T, we used different metrics, e.g. (i) log-Euclidean, (ii) Affine
invariant, and finally (iii) Jensen-Bregman log-determinant. Read-
ers may consult [32] for more details regarding these metrics.

The distance between each stiffness demonstration profile and
the generated dataset from GMR and the proposed framework
are analyzed in Fig. 7. Here we used the log-Euclidean metric
to calculate the distances. It is clear that both approaches per-
form similarly in the reproduction case. However, the proposed
approach results are smoother, as a result of the kernel treatment
of KMP.

6.3. Adaptation of variable impedance skills

Another test is shown in Fig. 8 which illustrates the ability
of the proposed approach to start from a new stiffness ellipsoid
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Fig. 8. Adaptation of variable stiffness profile using the proposed framework.
Gray ellipsoids represent the demonstrated stiffness, while the output of the
proposed approach are colored in red. The two yellow stiffness ellipsoids at
the beginning and end of the trajectory are the start- and end-points of the
stiffness profile. Top: Stiffness profiles over time. Bottom: Stiffness profiles over
the Cartesian trajectory of the MSD mass. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

and smoothly adapt to follow the demonstrations. Moreover, the
figure shows how smoothly the algorithm adapts to a new goal
ellipsoid, which is different from the demonstrations in terms of
size and orientation. The two yellow ellipsoids in the trajectory
represent the new desired stiffness K”-°. The set of red ellipsoids
represents the output of KMP transformed into SPD manifold
K” (&%), using Cholesky decomposition. The design of the de-
sired stiffness ellipsoids is based on the direction of the desired
stiffness.

6.4. Push-button task

In unstructured hostile environments such as industrial floors
or other similar scenarios dangerous for humans, robots can be
used for pushing objects, operating valves and doors, and other
tasks that require application of forces to environments. In the
same vein, we demonstrate the applicability of the proposed
approach in a task where a robot without a force sensor needs
to push a button.

In order to teach the robot how to perform the push button-
task, a human teacher provides several demonstrations by kines-
thetic teaching, see Fig. 1. The user holds the robot end-effector
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Fig. 9. Top: tracking errors in z-axis during the execution of the push-button
task; Middle: desired force at the end-effector; Bottom: desired torques. Gray
curves correspond to the reproduction, while the green curves correspond to the
adaptation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

and guides it along the desired trajectory (in this case, to push
the button) in such a way that the desired task is successfully ex-
ecuted. During the demonstration we recorded only the Cartesian
trajectories s as no interaction forces can be recorded without
a force sensor. To train the GMM model, we used five Gaussian
components with five demonstrations, each demonstration takes
Cartesian position as input &£ = s and the Cholesky vector v” of
a constant stiffness profile with value K” = [200, 50; 50, 200] for
each datapoint as output (§° = v*). This model is used later by
GMR to obtain D, which subsequently will be exploited by KMP.

We tested both the reproduction of push-button task and the
adaptation to via-SPD points.* In both cases we used a Cartesian
impedance controller to execute the task by computing the de-
sired forces F; from the resulting virtual mass spring-damping
system at the tip of the end-effector

¢ =J"Fs+f(q. 9. q) (20)

where F; = —K? As—KY(J q) and f(q, 4, §) is the robot dynamics
model.

Reproduction. We reproduced the push-button task without any
adaptation or force feedback information. In this case, the robot
was unable to push the button, because the estimated stiffness
profiles did not result in a high enough stiffness at the final point
and thus failing to produce an enough desired force at the robot’s
tip to push the button. Fig. 9 shows the evolution of the robot
execution in gray color for the reproduction. These results show
that it is not always straightforward to design an appropriate
stiffness profile in a way that all task constraints are fulfilled,
even though the robot might be capable of tracking a desired
trajectory. Note that this is not to say that an LfD stategy is a bad
choice - the stiffness profiles up to the end-point in the push-
button task were accurate enough to drive the robot to the end
configuration. However, in some cases, additional human inputs
are required for task success. In this paper, we do this by adding
new via-SPD points.

4 A video of the push-button experiment can be found at https://irobotics.
aalto.fi/video-geometry-based-manipulation/.
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Fig. 10. Adaptation of the stiffness profile towards various desired via-SPD
stiffness points. Top: The adaptation over time. Bottom-left: Adapted stiffness
profile over z-axis (green) and demonstrations (gray). Bottom-right: Demonstra-
tion profiles (gray) and the adapted profile (green) over the Cartesian trajectory.
The interaction between the tip of the robot and the button is shown between
the dashed black lines. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Adaptation. Here we introduced two via-SPD points: one to make
the robot stiffer in the direction of task evolution (z-axis) and the
second one to make it compliant by reaching the end of the task.
The green curves in Fig. 9 illustrate the tracking errors, force in
z-axis at the tip of the robot, and the desired torques (20) during
a successful execution of the task. Fig. 10 shows the evolution
of the stiffness adaptation towards the via-SPD stiffness points
over time (top). By including via-SPD points, the robot was able to
accomplish the task. The interaction between the robot’s tip and
the button is bounded by the dashed black lines in both figures.

7. Discussion

The experimental results show that our approach allows for
proper reproduction and adaptation of demonstrated datasets of
SPD matrices. Note that due to the kernel treatment and the
choice of a squared-exponential kernel (14), the adapted trajec-
tories are smooth. Other kernels can alternatively be employed,
depending on the properties of the data to be handled (e.g. a
periodic kernel could be used for cyclic SPD-matrices in robot lo-
comotion scenarios). We also saw that transforming the data into
Euclidean space using the Riemannian metric resulted in more
accurate reproductions than those from the Cholesky decomposi-
tion. This stems from the fact that S? . is a Riemannian manifold,
hence its geometry is better captured by the logarithmic and
exponential maps than the Cholesky factorization.

One difficulty that might arise in practical scenarios is the
definition by the user of the new stiffness/damping matrices or
manipulability ellipsoids that the robot should go through. After
all it can be unintuitive for a human experimenter to reason in a
&', manifold as we are conditioned to think in Euclidean terms.
In order to mitigate these practical limitations, interactive devices
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could be used to measure muscle activity from a human and
map it to desired impedances [33,34]. In the same way, computer
vision tools [35] can be used to track the human kinematic
chain, compute manipulability ellipsoids at the end-effectors and
add them to the reference database of the KMP on demand.
Additionally, the structure provided by KMP for adaptation is
prone to be used in Reinforcement Learning (RL) where one can
potentially define a reward function that the robot would aim to
maximize by placing start-/via-/end-points in different locations
of the space. In this case, the generation of desired SPD matrices
would be done by the RL algorithm. It should, however, be noted
that RL can be used to solve the problem of learning SPD matrices,
but its solution is different from one proposed here. RL typically
relies on exploration and exploitation (i.e., errors and trials) to
find the optimal solution, usually hundreds or thousands of trials
are required to find a proper policy. Our solution does not need
any extra learning of trials and errors as well as the definition
of reward function, i.e., the optimal skill (encoded by SPD ma-
trices) can be obtained immediately given a new inquiry point,
allowing for straightforward applications in an online setting.
As an example, RL could potentially have been used to fulfill
the push-button task by letting the robot discover what was the
appropriate stiffness that pressed the button (by defining the task
using a proper reward), as opposed to defining the via-SPD point
manually.

Finally it is important to note that, while here we limited
the dimension of the inputs to 2, the kernelized structure of
KMP allows for inputs of higher dimension. For instance, in [11]
we used the position of a human partner to teach collaborative
tasks to robots. This opens up several possibilities for further
applications of our approach.

8. Conclusion

In this paper, we proposed a new learning-from-demonstra-
tion framework, using a kernelized approach, for learning SPD
data profiles associated with multi-dimensional inputs. This ap-
proach is not only capable of reproducing new SPD data, but also
capable of adapting them to towards arbitrary desired via-/end-
SPD points. We exploited our approach in robotics manipula-
tions tasks, where the skills to be learned are encapsulated in
SPD matrices, e.g. tasks that require variable impedance skills,
or others require high arm manipulability in the workspace. As
KMP operates in Euclidean space, we proposed two different
approaches to transform SPD data from/into Euclidean space. The
first one is based on Cholesky decomposition while the second
one is based on Riemannian metrics.

We evaluated the proposed approach using two simulated
scenarios. The reported results show the ability of the kernelized
learning approach to learn and adapt SPD data.

In future work, it will be interesting to develop tensor-based
formulation of kernelized movement primitives on Riemannian
manifold 87 which will allow for direct learning and adaptation
of SPD data without any further reparametrization (e.g. without
using Cholesky decomposition).
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