This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Kallionpää, Henna; Somani, Juhi; Tuomela, Soile; Ullah, Ubaid; De Albuquerque, Rafael; Lönnberg, Tapio; Komsi, Elina; Siljander, Heli; Honkanen, Jarno; Härkönen, Taina; Peet, Aleksandr; Tillmann, Vallo; Chandra, Vikash; Anagandula, Mahesh Kumar; Frisk, Gun; Otonkoski, Timo; Rasool, Omid; Lund, Riikka; Lähdesmäki, Harri; Knip, Mikael; Lahesmaa, Riitta Early detection of peripheral blood cell signature in children developing β -cell autoimmunity at a young age Published in: Diabetes DOI: 10.2337/db19-0287 Published: 01/10/2019 Document Version Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print Please cite the original version: Kallionpää, H., Somani, J., Tuomela, S., Ullah, U., De Albuquerque, R., Lönnberg, T., Komsi, E., Siljander, H., Honkanen, J., Härkönen, T., Peet, A., Tillmann, V., Chandra, V., Anagandula, M. K., Frisk, G., Otonkoski, T., Rasool, O., Lund, R., Lähdesmäki, H., ... Lahesmaa, R. (2019). Early detection of peripheral blood cell signature in children developing β-cell autoimmunity at a young age. *Diabetes*, 68(10), 2024-2034. https://doi.org/10.2337/db19-0287 This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Early detection of peripheral blood cell signature in children developing beta-cell autoimmunity at a young age Henna Kallionpää^{1*}, Juhi Somani^{2*}, Soile Tuomela^{1*}, Ubaid Ullah^{1*}, Rafael de Albuquerque¹, Tapio Lönnberg¹, Elina Komsi¹, Heli Siljander^{3,4}, Jarno Honkanen^{3,4} Taina Härkönen^{3,4}, Aleksandr Peet^{5,6}, Vallo Tillmann^{5,6}, Vikash Chandra^{3,7}, Mahesh Kumar Anagandula⁸, Gun Frisk⁸, Timo Otonkoski^{3,7}, Omid Rasool¹, Riikka Lund¹, Harri Lähdesmäki^{2†}, Mikael Knip^{3,4,9,10†}, Riitta Lahesmaa^{1†#} ¹Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland ²Department of Computer Science, Aalto University School of Science, Espoo, Finland ³Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ⁴Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland ⁵Department of Pediatrics, University of Tartu, Tartu, Estonia ⁶Children's clinic of Tartu, Tartu University Hospital, Tartu Estonia ⁷Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland ⁸Department of Immunology, Genetics and Pathology, Uppsala University, Sweden ⁹Folkhälsan Research Center, Helsinki, Finland ¹⁰Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland *These authors contributed equally to this work †Shared senior authorship #Corresponding author: Riitta Lahesmaa, riitta.lahesmaa@btk.fi, Phone: +358 29 450 2415 1 ### **Abstract** The appearance of Type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction. Here we report the mRNA-sequencingbased analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cells fractions and unfractionated PBMC samples longitudinally collected from seven children that developed beta-cell autoimmunity (Cases) at a young age and their matched controls. We identified transcripts, including interleukin-32 (IL32) that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA-seq studies revealed that high IL32 in Case samples were contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and beta-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D. ## Introduction Family and sibling studies in Type 1 diabetes (T1D) have implicated a firm genetic predisposition to a locus containing HLA class I and class II genes on chromosome 6 suggesting a role for CD4+ as well as CD8+ T cells in T1D pathogenesis (1–3). As much as 30-50% of the genetic risk is conferred by HLA class II molecules, which are crucial in antigen presentation to CD4+ T cells. Further, CD4+ cells reactive to beta-cell antigen peptides are found in peripheral blood and the pancreas, and typically secrete the cytokine IFNy (4,5). CD4+ cells orchestrate adaptive immune responses, including that of antibody secreting B cells as well as cytotoxic CD8+ T cells. Indeed circulating autoantibodies against beta-cell antigens may appear years before the clinical onset. Further, a cytolytic CD4+ subtype might directly contribute to target cell killing (6). Although HLA class II is associated with the development of autoantibodies, HLA class I seems to be more strongly linked to disease progression (7). Histological analysis of pancreatic sections of cadaveric donors with T1D revealed that HLA class I is highly expressed in islets (8,9). Moreover, CD8+ cells are the most abundant cell type during insulitis (10), and the islets contain CD8+ cells specific for T1D autoantigens (11). Thus, the autoimmune cascade in T1D might be initiated by self-reactive CD4+ cells that activate B cells to produce autoantibodies that target the beta-cells and unleash the cytotoxic activity of the autoreactive CD8+ cells. The environmental factors triggering and driving the autoimmunity in T1D are poorly defined, but the disease has been associated with viral infections (12), diet in early childhood (13), and reduced diversity of gut microbiota (14). Currently, the appearance of T1D-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. Although the disease progression rate varies considerably, children with genetic HLA risk expressing at least two T1D autoantibodies will very likely progress to clinical disease during the next 15 years (15). However, autoantibodies are poor prognostic markers for the timing of the clinical presentation of T1D. The appearance of autoantibodies indicates an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction. Such markers would present a window for early intervention aimed at complete disease prevention. Earlier, we reported changes in whole-blood transcripts and serum proteins before the detection of diabetes-associated antibodies in children who later progressed to T1D (16,17). Therefore, we hypothesized that a comprehensive analysis of the transcriptome of longitudinal cellular samples including CD4+ and CD8+ T cells will lead to the identification of new early biomarkers. # **Research Design and Methods** ### Study cohort Samples were collected as part of the DIABIMMUNE study (FP7 grant no. 202063) from Finnish (n=10) and Estonian (n=4) participants (**Supplementary Table 1**). The HLA-DR-DQ genotypes were analysed as described earlier (18). 836 children with HLA-DR-DQ risk allele were monitored and sampled at 3, 6, 12, 18, 24 and 36 months of age. The study protocols were approved by the ethical committees of the participating hospitals, and the parents gave their written informed consent. Autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A) were measured from serum with specific radiobinding assays (19). Islet cell antibodies (ICA) were analysed with immunofluorescence in autoantibody-positive subjects. The cut-off values were based on the 99th percentile in non-diabetic children, which were 2.80 relative units (RU) for IAA, 5.36 RU for GADA, 0.78 RU for IA-2A and 0.61 RU for ZnT8A. The detection limit in the ICA assay was 2.5 Juvenile Diabetes Foundation units (JDFU). A sample was considered seropositive when any of the autoantibodies exceeded the thresholds. ### Sample collections At each study visit, 8 ml of blood was drawn in sodium-heparin tubes (Vacutainer, 368480, BD). PBMCs were isolated by Ficoll-Paque centrifugation (17-1440-03 GE Healthcare), and were suspended in RPMI 1640 medium (42401-018, Gibco) supplemented with 10% DMSO (0231-500 ml, Thermo Scientific), 5% human AB serum (IPLA-SERAB-OTC, Innovative Research), 2 mM L-glutamine (G7513, Sigma-Aldrich), and 25 mM gentamicin (G-1397 Sigma-Aldrich). After overnight incubation at -80°C, samples were stored in liquid nitrogen (-180°C). For fractionation, PBMC samples were thawed quickly in a 37°C water bath, quantitated for cell numbers and viability. On an average 90% cells were viable. Magnetic antibody-coupled beads were used for sequential positive enrichment of CD4+ and CD8+ cells (11331D and 11333D Invitrogen). RNA was isolated from the samples with AllPrep kit (80224, Qiagen), and quantity and quality were determined using Qubit RNA assay (Q32852, Invitrogen) and Bioanalyzer 2100 (Agilent), respectively. ### **Bulk RNA-seq of PBMC and other fractions** At
least 80 ng of total RNA was processed for RNA-seq with TruSeq Stranded mRNA Library Prep kit (RS-122-2101, Illumina). The sequencing was carried out with Illumina HiSeq2500 instrument using TruSeq v3; 2 x 100 bp chemistry. The average sequencing depth was around 51 million reads. Quality control was performed using FastQC (version 0.10.0). All the samples passed the quality criteria. The reads were aligned to the human reference transcriptome, GRCh37 assembly version 75 using TopHat (version 2.0.10) (20). Average mapping percentage was 93. The concordant pairs percentage was about 89. The aligned reads were counted with htseq-count (HTSeq 0.6.1; overlap mode of 'intersection-strict') (21). The read counts of genes were normalized using the trimmed means of the M-values (TMM implemented in the edgeR (22). Coding, noncoding information were taken from ensembl. Differential expression analyses were conducted separately for coding and non-coding genes, using the edgeR (22). The variance of the data was estimated using the trended dispersion method. Further filtering step retained only those genes as differentially expressed (DE) that had | median log₂FC| > 0.5 and had more than 65% samples across all individuals regulated in the same direction (i.e., up- or down-regulated). These filtering steps were added to discard false positives that may arise due to the heterogeneity of the samples due to normal variation, which is non-related to T1D and outliers. A flow chart of the scheme of analysis has been shown in **Supplementary Fig. 1**. ### Single-cell RNA-seq (scRNA-seq) The concentrations of the PBMC samples varied from 0.55 to 1.80 x 10⁶ cells/ml. From each sample, we aimed at the recovery of 5000 single cells, loading approximately 9000 cells on the Chromium Controller using Single Cell 3' Solution v2 reagents and following manufacturer's instructions (CG00052 Rev B, 10x Genomics). scRNA-seq sample processing was carried out in three batches on consecutive days using the same lot of reagents and chips for all samples. The cDNA was further amplified using a Veriti Thermal Cycler (Applied Biosystems/Thermo Fisher), followed by clean-up (SPRIselect kit, Beckman Coulter). Finally, enzymatic fragmentation, end repair, A-tailing, adaptor ligation and PCR were performed to produce indexed libraries, which were sequenced with Illumina HiSeq 3000 (one sample / lane) using paired end sequencing and 26 + 98 bp read-length configuration. The data were processed using the Cell Ranger pipeline version 2.0.0 yielding on average 2546 viable cells per sample, and 114,309 reads per cell. The reads were aligned to the human reference genome (hg19) using STAR (23). The mean raw reads per cell varied 57-200 k. QC analysis and further exploration was done using Seurat (24). After filtering steps, 18,396 cells expressing 20,830 genes were retained. For details on the filtering steps please see "Supplementary Material". The data were normalized using Seurat's default. Highly variable genes (HVGs) were selected for principal component analysis (PCA). The top 20 PCs were used in the graph-based clustering. To identify marker genes for each –cluster, cells of a single cluster were compared to the cells of all other clusters combined. A gene was considered a marker of a cluster if it was expressed in at least 25% of the cells of either of the two groups and the logFC between the cluster and all other clusters was at least 0.25. For trajectory analysis, the pooled cells were ordered in pseudotime (i.e., placed along a trajectory corresponding to a type of biological transition, such as differentiation) using Monocle 2 (25). The analysis was performed on cells specifically from CD4+ and CD8+ T-cell clusters. For the details on the trajectory analyses, please see "Supplementary Material". ## **RT-PCR** analysis For PBMC samples, 50 ng of total RNA was treated with DNasel (Invitrogen), and cDNA was synthesized with Transcriptor First Strand cDNA Synthesis Kit (Roche). For isoform-specific ($IL32\alpha$, β , and γ) assay, qPCR analysis was performed in triplicate runs using SYBR Select master mix (Applied Biosystems). Δ Ct values were calculated relative to $EF1\alpha$. For CD4+ T cells and pancreatic islets, RNA was isolated using the RNeasy Mini Kit (74106, Qiagen) and RNeasy Plus Mini Kit (74134, Qiagen), respectively. Purified RNA was treated with DNasel and cDNA was synthesized with SuperScript II Reverse Transcriptase (18064014, Invitrogen). For the detection of global $IL32_{\perp}$ qPCR reactions were run using a custom TaqMan Gene Expression Assay reagent (#AJ5IQA9, Thermo Scientific) in duplicate and in two separate runs. Δ Ct values were calculated relative to GAPDH. The amplification was monitored with QuantStudio 12K Flex Real-Time PCR System, under the following PCR conditions: 10 minutes at 95 °C, followed by 40 cycles of 15" at 95 °C and 60" at 60 °C and analysed with QuantStudio Software on Thermo Cloud. For EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-strand cDNA synthesis kit as per manufacturer's recommendations (Thermo Fisher Scientific). All reactions were performed in duplicates on at least three biological replicates. *Cyclophilin-A* was used as an endogenous control. Primer sequences are presented in **Supplementary Table 2**. ### **ELISA** To measure secreted IL-32 levels we used IL-32 duoset ELISA kit (R&D Systems, (DY3040-05 and DY008) following manufacturer's instructions. # Intracellular staining and flow cytometry The cells were fixed for 10 minutes in Fix buffer I (BD, 557870), followed by 45 minutes permeabilization using ice-cold permeabilization buffer III (BD, 558050). The cells were stained using APC-conjugated IL-32 α antibody (R&D, IC30402A) and FITC-conjugated IFN γ antibody (Invitrogen, MHCIFG01) in PBS containing 0.5% FCS. The data were acquired in BD Fortessa and analysed using FlowJo (version 10.4.2). ## EndoC-βH1 cell culture The EndoC- β H1 human beta-cell line was obtained from Univercell Biosolution S.A.S., France. The cells were cultured as described (26). EndoC- β H1 cells were stimulated with either IL-32 γ alone (100 ng/ml, R&D Systems) or in combination with a cocktail of IL-1 β (5 ng/ml, R&D Systems) and IFN- γ (50 ng/ml, R&D Systems) for 24 h. RNA samples were collected at the end of each treatment and analysed by RT-qPCR. # **Human CD4 T-cell isolation and culturing** CD4+ T cells were isolated from cord-blood collected from neonates born in Turku University Hospital and were cultured in IMDM containing 1%AB serum in absence (Th0) or presence (Th1) of 2.5 ng/ml if IL-12 (R&D). Cells were activated with plate bound CD3 (0.5 μ g/well of a 24 well-plate) and soluble CD28 (0.5 μ g/ml), both from Immunotech, with or without 50 ng/ml rIL-32- γ (R&D). 12 ng/ml IL-2 was added at 48h. For IFN γ neutralization, anti-IFN γ antibody (10 μ g/ml, R&D: MAB285) was used. For reactivation, cells were treated with 5ng/ml PMA (Calbiochem) and 0.5pg/ml lonomycin (Sigma) for 5h. # Human pancreatic islets, their infection with Coxsackie B Virus Human islets were isolated from pancreases obtained from brain dead organ donors and purified by handpicking to a purity of > 90%. Islet culturing and virus infection with Coxsackie B virus-1 (CBV-1-7-10796 (CBV-1-7) was performed as described (27). Islets were collected at the day 4 timepoint, and RNA was extracted using the RNeasy Plus Mini Kit or the AllPrep DNA/RNA Mini Kit (Qiagen). For RNA-seq, 100 ng of total RNA from three donors was used for library preparation according to Illumina TruSeq RNA Sample Preparation v2 Guide (part # 15026495). The high quality of the libraries was confirmed with Agilent Bioanalyzer 2100 and Qubit Fluorometric Quantitation (Life Technologies). The libraries were pooled in two pools and run in 2 lanes on the Illumina HiSeq 2500 instrument using 2 x 100 bp. # Results Fractionation of PBMC sample into CD4+, CD8+ and CD4-CD8- cellular subsets reveals distinct and overlapping gene expression signatures We performed RNA-seq of 306 longitudinal samples including unfractionated PBMCs, as well as CD4 enriched (CD4+), CD8 enriched (CD8+), and CD4 and CD8 cell depleted (CD4-CD8-) cell fractions from seven Case-Control pairs (**Table 1**). The seven Case children who developed T1D-related autoantibodies (Aab+) were selected from the DIABIMMUNE Birth Cohort (18), where HLA-susceptible children are sampled at 3–36 months of age (**Fig. 1A**). All seven children developed T1D-associated autoantibodies by the age of 2 years (**Table 1**) and four of them developed clinical T1D between the ages of 2.4 and 3.7 years. For each Case, an autoantibody-negative Control child was matched for gender, date and place of birth, and HLA-conferred risk category. The samples clustered according to the cell fraction (**Fig. 1B**) and the clustering was not affected by Case-Control status or sampling age, indicating that cell fraction—specific differences dominated over variation derived from other factors (**Supplementary Fig. 2A** and **2B**). When CD4+, CD8+ and CD4-CD8- samples from Controls were compared to the unfractionated PBMC samples (also referred to as a fraction henceforth), 889, 399, and 1002 genes were DE specifically in CD4+ (e.g., *CD28*, *CTLA4*), CD8+ (e.g., *CD8A*, *CD8B*, *KLRK1*), and CD4-CD8- (e.g., *IL1A*, *IL1B*, *IL6*) fractions, respectively (**Fig. 1C** and **Supplementary Table 3**). CD4+ and CD8+ fractions shared 1815 DE genes, of which 1803 genes (99%) were concordant (either up or down in both fractions) (**Supplementary Fig. 2C**, **Supplementary Table 3**). In summary, fractionation of the PBMC population based on the T-cell phenotype allowed improved detection of DE genes and enabled identification of cell subset—specific gene expression signatures. # RNA-seq analysis identifies transcriptomic changes
associated with beta-cell autoimmunity Comparison of Case samples to their respective Controls identified 51, 69, 143 and 85 genes as DE (FDR<0.05) in CD4+, CD8+, CD4-CD8- and PBMC fractions, respectively (**Supplementary** **Table 4**); with a total of 278 unique DE genes in one or more fractions (**Fig. 2A**). Six genes *AMICA1*, *BTN3A2*, *IL32*, *RPSAP15*, *RPSAP58* and *WASH7P* were upregulated in the Cases in all four fractions (**Fig. 2A**). Only 16% of the DE genes have previously been reported as DE in genetically susceptible prediabetic children using microarrays (16,28,29) or RT-PCR (30–32), confirming dysregulation of these genes in children progressing to T1D. Besides protein-coding genes, 54 non-coding genes, including three antisense, two sense intronic, seven enhancer and 18 promoter-associated lncRNAs, were DE. To our knowledge, none of these lncRNAs has been linked to the aetiology of T1D (16,28–32). # Hierarchical clustering identifies co-regulated gene expression clusters associated with T1D autoimmunity Gene- and sample-wise hierarchical clustering for each cell fraction, including PBMCs, identified a cluster, upregulated in the Case samples in all four fractions (**Fig. 2B and Supplementary Fig. 3A-D**). Interestingly, this cluster consistently contained *IL32* and *BTN3A2*, along with other fraction-specific genes (**Fig. 2C**). In the CD8+ fraction, expression of a distinct cluster, including *IFNG*, was lower in most of the Case samples than Control samples (**Supplementary Fig. 3B**). Surprisingly, in the PBMC fraction, we detected Case-specific upregulation of a cluster, including insulin (*INS*), glucagon (*CGC*) and regulin 1 alpha (*REG1A*) transcripts (**Supplementary Fig. 3D**), which are predominantly expressed in the pancreas. To explicitly define coregulated genes in these clusters, we calculated Euclidean distances for *IL32* (in each fraction), *IFNG* (in CD8+ fraction), and *INS* (in PBMC fraction) and considered the genes with a median Euclidean distance < 2.5 across all Case-Control pairs to be co-clustering with the gene of interest (**Supplementary Table 5A**). In three of the four fractions, the *IL32* cluster included *BTN3A2*, *AMICA1*, *LARS* and *RSU1* (**Fig. 2C**). *IL32*, *AMICA1* and *BNT3A2* show concerted gene expression profiles in CD4+ samples (**Fig. 2D**). In at least two of four fractions, this cluster also comprised *TRBV4-1*, *TMEM14C*, *UROS*, *WASH7P*, *BTN3A3*, *CARD8*, *CCDC167* and *LINC01184*. The profile of these and other interesting genes are shown in **Supplementary Fig. 4A-AB.** Upon examining the overrepresented transcription factor binding sites (TFBS) on the promoters of *IL32* cluster genes, the V\$IK_Q5_01 motif bound by Ikaros (IKZF1) was revealed to be among the enriched TFBS shared in both the CD4+ and PBMC fractions (**Supplementary Table 5B**). IKZF1 has been genetically associated with T1D (33). The T1D-associated risk allele rs10272724 (T) increases IKZF1 transcript level (34). IFNG cluster of the CD8+ cells included TBX21 (codes for TBET), BHLHE40, and ZEB2, transcription factors expressed in CD8+ T cells (35), as well as NKG7, OASL, and KLRD1 (Supplementary Table 5A). ZEB2 has been reported to drive terminal effector CD8+ cell differentiation together with T-bet (36). In the PBMC fraction, GCG and REG1A were coregulated with INS (Supplementary Table 4A, Supplementary Fig. 5). Transcriptional changes preceding the appearance of T1D-related autoantibodies are enriched in the CD8+ T-cell fraction To identify changes that occur immediately before the first detection of T1D-related autoantibodies (i.e., seroconversion), we performed a separate differential expression analysis for the samples drawn at most 12 months before seroconversion. Altogether 121 coding and non-coding genes were DE in Cases, as compared to their matched Controls (Supplementary Table 4 and Supplementary Fig. 6). Notably, more than half of these (58%) were detected only in the CD8+ fraction. Besides *IL32*, only two other genes were common to all fractions *RPSAP58*, and *RPSAP15*, both being the pseudogenes with unknown functions with very similar expression profiles (Supplementary Fig. 4M-T). Higher IL32 expression in Cases was validated using qRT-PCR. Interestingly, all three major isoforms ($IL32\alpha$, $IL-32\theta$ and $IL32\gamma$) were upregulated in PBMC samples in all the Case children at each of the time points including 3 months (**Fig. 3A** and **Supplementary Fig. 7**). Among these isoforms, $IL-32\gamma$ was expressed at the highest level, followed by $IL-32\theta$ and $IL-32\alpha$. Single-cell RNA sequencing (scRNA-seq) identifies T and NK cells as the *IL32* high population To specify the cell populations responsible for the *IL32* and *INS* signatures, we performed scRNA-seq on four selected Case and their nearest matched Control PBMC samples where the expression of *IL32* or *INS* was high (or low) based on the bulk RNA-seq data (Supplementary Table 6). Unsupervised clustering of 18,396 single cells from all eight PBMC scRNA-seq runs identified 13 clusters (Fig. 3B and Supplementary Fig. 8). The two largest clusters expressing high *CCR7* were merged as one cluster of naive T cells reducing the number of clusters to 12. Clusters named as *RGCC+T cells*, *CD62L+T cells*, and *Activated Th cells* expressed lower levels of *CCR7*. *Activated CD8+T cells* cluster expressed high levels of *CD8A* and *CD8B* as well as *NKG7* and two separate clusters of CD8+T cells expressing either granulysin or granzyme A were observed (*Activated GNLY+ CD8+T cells* and *Activated GZMA+ CD8+T cells*, respectively). A subcluster of Activated GZMA+ CD8+ cells had higher expression of cell-cycle genes (e.g., *STMN1, TUBA1B*) and was named Activated proliferating GZMA+ CD8+T cells. An NK cell cluster was positive for expression of *CD56*, *NKG7*, and *GNLY* and negative for *CD8A* and *CD3E*. A B-cell cluster was identified by the expression of *MS4A1*, *CD79A* and *CD79B*, whereas the Monocyte/DCs cluster was composed of cells expressing *CD14* or *FCGR3A*, *LYZ* and *TYROBP*. Interestingly, the expression of many HLA class II molecules was as high in B cells as in monocytes, suggesting high antigen-presentation potential. The contribution of different Case or Control samples to the cells in a given cellular population (cluster) varied from cluster to cluster (**Supplementary Fig. 9** and **10A-B**). The naive T cells cluster was dominated by the cells from the Control samples (p<0.05) whereas the *Monocyte/DC* cluster had more cells from Cases (p<0.005, **Supplementary Fig. 10B**). Case 9, with the highest *IL32* expression levels in the bulk RNA-seq data, dominated the *CD62L+ T-cell* cluster, *Activated NK cells*, and most clearly, *Activated and proliferating GZMA+ CD8+ T cell* clusters (**Supplementary Fig. 10B**). Conversely, Control children 5 and 9 seemed to dominate the cluster of *Developing T cells* expressing pre-T-cell receptor *PTCRA* suggesting the presence of immature T cells in those samples. Insulin, glucagon, or *REG1A* expression were not detected even in the *INS*-high samples of Cases 5 and 9, leaving the origin of these transcripts in bulk RNA-seq as an open question. In contrast, *IL32* expression was clear, and as expected, it was explicitly over-expressed in the Case samples (**Supplementary Fig. 11**). *IL32* was expressed at a very low level in Monocyte/DC, B cells, and *Developing T cell* clusters, however, it was expressed at higher levels by both the T cells and the NK cells (**Fig. 3C**). To further define the relationship of *IL32* expression and T-cell activation status, we performed separate trajectory analyses for the CD4+ and CD8+ T cells. The less activated precursor populations (naive and RGCC+ T cells), which detect CD4 and CD8 transcripts in low abundances, were used as starting point for the trajectory analyses. The results revealed three major cellular branches (I-III) in the data both in CD4+ as well as CD8+ T cells (Fig. 3D-I). The branch I consisted mainly of naive T cells, among which cells from the Control samples were enriched (Fig. 3E and H, Supplementary Fig. 12). In contrast, the highest levels of *IL32* were expressed by cells close to the end points of branches II and III, corresponding to more advanced stages of differentiation (Fig. 3F and I, Supplementary Fig. 12). ### IL-32 and IFNγ are co-expressed by Th1 cells To further study IL-32 expression, we measured intracellular IL-32 expression at protein level in CD4+ T cells isolated from human umbilical cord blood. Cells were either activated through CD3/CD28 in the absence of cytokine (Th0) or were differentiated towards a Th1 cell lineage for 72h. IL-32 was induced upon activation and, unlike IFNy, was expressed both in Th0 as well as Th1 cells (Fig. 4A). Interestingly in Th1 cells, most IFNy-producing cells were also positive for IL-32 (Fig. 4A; Supplementary Fig. 13A) and the proportions of IL-32-positive cells and the per cell IL-32 levels were higher in IFNy-producing Th1 cells than in Th0 cells (Fig. 4B-C). Furthermore, neutralization of IFNy significantly reduced IL-32 secretion by Th1 cells (Fig. 4D) confirming that IFNy positively regulates *IL32* expression. IL-32 expression was also induced by IL-32 itself in Th1 cells, both at the RNA level (Fig. 4E) as well as in the culture supernatant upon 48 h re-stimulation after seven days of polarization in Th1 condition (Fig. 4F). Pancreatic beta-cells can express IL32 in response to cytokine stimulation and viral infection To study how the elevated *IL32* expression may influence beta-cell function, we treated human EndoC-βH1 beta-cell line for 24 h with either recombinant IL-32γ alone or in combination with the pro-inflammatory cytokines IL-1β and IFNγ. In agreement with earlier published data on pancreatic ductal cancer cell lines (37), IL-1β and IFNγ significantly induced *IL32* expression in
human EndoC-βH1 cells (**Fig. 4G**) However, addition of IL-32γ did not further enhance i) the IL-1β- and IFNγ-induced *IL32* expression, ii) the expression of inflammatory cytokines *TNFA*, *IL6* and *IL8* (**Fig. 4G**), iii) the expression of ER stress marker genes (ATF3, ATF4, ATF6, HSPA5, CHOP, sXBP1) (**Supplementary Fig. 13B**) in EndoC-βH1 cells. Furthermore, the IL-32γ treatment did not affect the expression of beta-cell–specific genes, such as *INS*, *MAFA* or *PDX1* (**Supplementary Fig. 13C**). These results suggest that, while IL-32 does not appear to directly affect the survival or the differentiation status of the beta-cells, beta-cells actively contribute to inflammation in the islets by secreting IL-32 upon stimulation by cytokines. Coxsackie B viruses are beta-cell trophic viruses that have been linked to the development of T1D (38–43). To study the possible trigger of *IL32* expression in beta-cells, we infected purified human pancreatic islets of three cadaveric donors with Coxsackie B virus CBV1-7 strain. Infection by the virus led to the induction of *IL32* expression in the islets (**Fig. 4H**). We further validated this finding in the three islet samples used for RNA-seq as well as one additional islet sample using qRT-PCR assays and found a consistent increase in the IL32 expression upon CBV1-7 infection (**Fig. 4I**). Taken together these results suggest that upon a viral infection (**Fig. 4H-I**) or a cytokine rush (**Fig. 4H**), beta-cells may upregulate IL-32 secretion contributing to inflammation. ### Discussion We identified a panel of novel molecular players detected early in children who developed T1D-associated autoantibodies or even the clinical disease at a young age. Since the immunological changes related to T1D are known to be strongest among the T1D cases diagnosed at an early age (44), focusing on this age group should enhance the possibility to detect aberrations in the immune system predisposing to the disease. In this study, unbiased RNA-seq of CD4+ and CD8+ cells revealed many T1D-associated DE transcripts not previously reported. Analysis of the PBMC population offers an excellent overview of stable gene expression patterns but, at the same time, appears to mask some of the subtle fraction-specific changes. Such changes included upregulation of *CD52* detected only in the CD4+ cell fraction and downregulation of the *IFNG* and associated transcription factors ZEB2, TBX21 and ZNF683 detected specifically in the CD8+ cells. Further studies are needed to understand whether at-risk children have defects in formulating effector CD8+ response, or their effector CD8+ cells have homed to the sites of inflammation in the pancreas. We selected *IL32* as our candidate for functional studies because it has not been linked to seroconversion before, it is easy to measure with available assays from clinical samples, and as a secreted molecule it can potentially affect the function of several cell types in paracrine and systemic fashion. Increased expression of IL32 in Cases across many cell types before seroconversion suggest that *IL32* is a critical member of the immunological signature characteristic for children developing beta-cell autoimmunity. IL-32 is expressed by many immune and epithelial cells and has been described to be proinflammatory (45). However, to our knowledge, it has not been associated with human beta-cell autoimmunity. In contrast, IL32 is downregulated in CD4+ T cells from recently diagnosed adult T1D patients (46) which along with our findings suggests a dynamic changes in immune cell signalling during the pathogenesis of the disease. On the other hand, IL-32 overexpression was observed in synovial biopsies of patients with rheumatoid arthritis (47), in inflamed mucosa of inflammatory bowel disease patients (48), and in the serum of myasthenia gravis patients (49) indicating a connection between IL32 and autoimmunity in general. In T cells, IL-32 is induced by T-cell activation, and it modulates human CD4+ T-cell effector function by promoting Th1 and Th17 responses (50). Both Th1 and Th17 cells have been linked to the T1D pathogenesis in both human and mouse(50). The IL32 gene has been identified only in higher mammals, excluding rodents. Nonetheless, human IL-32y transgenic mice exhibit impaired glucose tolerance, increased levels of IFNy and other proinflammatory cytokines in the pancreas, as well as accelerated streptozotocin-induced experimental T1D (51). No specific cell-surface receptor for IL-32 has been identified, but it may act through cellsurface integrins or proteinase-3 (52). Our results showed that *IL32* was often co-regulated with genes previously linked to autoimmunity. For example, the BTN3 gene cluster reside in the extended MHC Class I locus. Further, BTN3 genes have been associated with T1D in a genetic screen, especially in the case of BTN3A2 (53). AMICA1, is a plasma membrane protein involved in lymphocyte migration through its interaction with Coxsackie-adenovirus receptor (CAR) expressed in epithelial cells and has been associated with multiple sclerosis (54). An analogous scenario could be envisaged for T1D: CAR is expressed by the pancreatic islet cells, including beta-cells (42), and its expression is elevated in autoantibody-positive individuals and T1D patients (55) suggesting that it might help recruit T cells to the islets. Interestingly, the findings point to human-specific phenomena not detectable in mouse models as IL-32 and the BTN3 protein family are not encoded by the mouse genome. The strength of our study is that the children studied here comprise a homogeneous population with the early appearance of T1D-associated autoantibodies. Increasing evidence suggests that T1D can be subdivided to different phenotypes, e.g. characterized by age-dependent B-cell infiltration in the pancreas (56), defect in Coxsackievirus-induced antibody response in children with early insulin autoimmunity (57), or rapid versus slow progression to clinical disease (58). Thus, our results may not apply to "late progressors", adolescents, and adults. Although the analysis of the global transcriptome of T-cell subsets of prediabetic children over the period of seroconversion is unique, a limitation of the current study is the analysis of only seven Aab+ children. The results of this study need to be validated and expanded on a larger cohort of prediabetic children but serve as a starting point for better understanding of immunological changes preceding the clinical onset of the disease. In the future, we are interested in addressing if our findings on cellular level are reflected also in IL-32 levels in plasma as well as to study if IL-32 alone or in combination of other identified molecules would have sufficient sensitivity and specificity as early indicators for T1D. ## Acknowledgements The authors are grateful for families for their participation in the DIABIMMUNE study. The DIABIMMUNE study group is acknowledged for their excellent collaborations, work with the families, and collection of the samples for the study. Marjo Hakkarainen, Sarita Heinonen, Päivi Junni and Elina Louramo are acknowledged for their skilful assistance in the laboratory. NGS sequencing was performed at the Finnish Functional Genomics Centre (FFGC), Turku, part of the Biocenter Finland network. We thank Professor Satu Mustjoki and her team at University of Helsinki for advice in designing scRNA-seq experiments and Riina Kaukonen at the FFGC for her careful execution. This work was financially supported by the Juvenile Diabetes Research Foundation (JDRF), The Academy of Finland (AoF) Centre of Excellence in Molecular Systems Immunology and Physiology Research (SyMMyS) 2012-2017 (grant no. 250114), AoF Personalized Medicine Program (grant no. 292482), and the AoF grants 294337, 292335, 319280 and 314444, the Sigrid Jusélius Foundation, The Diabetes Research Foundation (Diabetestutkimussäätiö), and The NOVO Nordisk Foundation. The DIABIMMUNE study was supported by the European Union Seventh Framework Programme (grant no. 202063). TL was supported by the AoF (Decision 311081). ### **Author Contributions** JS conducted bioinformatic analyses. HK, ST and UU led biological interpretation of the results. HK, ST, JS and UU drafted the manuscript. HK, JS and UU prepared the figures. HK was responsible for supervising EK. TH, HS, JH, AP and VT were responsible for sample collection, sample storage, and further clinical information of the children. RLu was responsible for study design, cell fractionation, sample analysis and data production. TL provided expertise in scRNA-seq study design, sample and data analysis, and interpretation of the results. RA, EK and OR were responsible for the isoform-specific *IL32* RT-PCR assay and the intracellular IL-32 staining in T cells and interpretation of the results. VC and TO carried out the experiments and interpreted the results of the studies in pancreatic beta-cells. MKA and GF were responsible for experiments on virus-infected pancreatic islets. HL was responsible for computational data analysis, interpretation of the results, editing the manuscript and supervising JS. MK was responsible for the DIABIMMUNE study design, sample collection, sample storage, clinical information of the children, directing of the clinical study, interpreting the results and editing the manuscript. RL was responsible for study design, sample and data analysis, interpretation of the results, writing the manuscript and supervision of the study. All authors contributed to the final version of the manuscript. ### **Guarantor Statement** RL and HL are the guarantors of this work, and had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. ### **Prior Presentation Information** The results described in this study have not be presented in any conference/proceedings elsewhere. #
Conflict of Interests The authors declare that they have no conflict of interest. # **Data and Resource Availability** All the raw data will be deposited to European genome-phenome archive (EGA) for access. The study does not involve any non-commercial reagents and tools. ### **REFERENCES** - Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct;329(6140):599– 604. - Nejentsev S, Howson JM, Walker NM, Szeszko J, Field SF, Stevens HE, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007 Dec;450(7171):887–92. - 3. Todd JA. Etiology of type 1 diabetes. Immunity. 2010 Apr;32(4):457–67. - Babon JA, DeNicola ME, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016 Dec;22(12):1482-7. - Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016 Feb;351(6274):711–4. - Takeuchi A, Saito T. CD4 CTL, a Cytotoxic Subset of CD4(+) T Cells, Their Differentiation and Function. Front Immunol. 2017 Feb;8:194. - 7. Lipponen K, Gombos Z, Kiviniemi M, Siljander H, Lempainen J, Hermann R, et al. Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk-associated class II genotypes. Diabetes. 2010 Dec;59(12):3253–6. - 8. Foulis AK, Farquharson MA, Hardman R. Aberrant expression of class II major - histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulindependent) diabetes mellitus. Diabetologia. 1987 May;30(5):333–43. - Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, et al. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia. 2016 Nov;59(11):2448–58. - Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol [Internet]. 2009;155(2):173–81. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2675247&tool=pmcentrez&rendertype=abstract - 11. Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012 Jan;209(1):51–60. - 12. Rodriguez-Calvo T, Sabouri S, Anquetil F, von Herrath MG. The viral paradigm in type 1 diabetes: Who are the main suspects? Autoimmun Rev. 2016 Oct;15(10):964–9. - Virtanen SM. Dietary factors in the development of type 1 diabetes. Pediatr Diabetes. 2016 Jul;17 Suppl 2:49–55. - 14. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev. 2016 Mar;12(3):154–67. - Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013 Jun;309(23):2473–9. - 16. Kallionpää H, Elo LL, Laajala E, Mykkänen J, Ricaño-Ponce I, Vaarma M, et al. Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes. 2014;63(7):2402–14. - 17. Moulder R, Bhosale SD, Erkkilä T, Laajala E, Salmi J, Nguyen E V, et al. Serum Proteomes Distinguish Children Developing Type 1 Diabetes in a Cohort With HLA Conferred Susceptibility. Diabetes [Internet]. 2015;64(6):2265–78. Available from: http://diabetes.diabetesjournals.org/content/64/6/2265.abstract - 18. Peet A, Kool P, Ilonen J, Knip M, Tillmann V, Group DS. Birth weight in newborn infants with different diabetes-associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia. Diabetes Metab Res Rev. 2012 Jul;28(5):455–61. - 19. Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Ahmed MA, et al. Primary Human and Rat beta-Cells Release the Intracellular Autoantigens GAD65, IA 2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes. 2017 Feb;66(2):460–73. - 20. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013 Apr;14(4):R36-2013-14-4-r36. - 21. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. - Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–40. - 23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan;29(1):15–21. - 24. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20. - 25. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017 Oct;14(10):979–82. - 26. Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P, et al. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011 Sep;121(9):3589–97. - 27. Anagandula M, Richardson SJ, Oberste MS, Sioofy-Khojine AB, Hyoty H, Morgan NG, et al. Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol. 2014 Aug;86(8):1402–11. - 28. Reynier F, Pachot A, Paye M, Xu Q, Turrel-Davin F, Petit F, et al. Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun. 2010 Apr;11(3):269–78. - 29. Ferreira RC, Guo H, Coulson RM, Smyth DJ, Pekalski ML, Burren OS, et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes. 2014 Jul;63(7):2538–50. - 30. Jin Y, Sharma A, Bai S, Davis C, Liu H, Hopkins D, et al. Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using - expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function. Diabetes. 2014 Jul;63(7):2506–15. - 31. Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajärvi K, Härkönen T, et al. Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans. J Immunol [Internet]. 2015;194(1):68–75. Available from: - http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4273995&tool=pmcentrelease.evalue.e - 32. Heninger AK, Eugster A, Kuehn D, Buettner F, Kuhn M, Lindner A, et al. A divergent population of autoantigen-responsive CD4(+) T cells in infants prior to beta cell autoimmunity. Sci Transl Med. 2017 Feb;9(378):10.1126/scitranslmed.aaf8848. - 33. Swafford AD, Howson JM, Davison LJ, Wallace C, Smyth DJ, Schuilenburg H, et al. An allele of IKZF1 (Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against type 1 diabetes. Diabetes. 2011 Mar;60(3):1041–4. - 34. Ram R, Mehta M, Nguyen QT, Larma I, Boehm BO, Pociot F, et al. Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility. J Immunol (Baltimore, Md 1950). 2016 Apr;196(7):3043–53. - 35. Arsenio J, Kakaradov B, Metz PJ, Kim SH, Yeo GW, Chang JT. Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nat Immunol. 2014
Apr;15(4):365–72. - 36. Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, et al. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med. 2015 - Nov;212(12):2041-56. - 37. Nishida A, Andoh A, Inatomi O, Fujiyama Y. Interleukin-32 expression in the pancreas. J Biol Chem. 2009 Jun;284(26):17868–76. - 38. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007 Mar;104(12):5115–20. - 39. Krogvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. 2015 May;64(5):1682–7. - 40. Laitinen OH, Honkanen H, Pakkanen O, Oikarinen S, Hankaniemi MM, Huhtala H, et al. Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes. 2014 Feb;63(2):446–55. - 41. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia. 2009 Jun;52(6):1143–51. - 42. Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia. 2004 Feb;47(2):225–39. - 43. Oikarinen S, Tauriainen S, Hober D, Lucas B, Vazeou A, Sioofy-Khojine A, et al. Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes. 2014 Feb;63(2):655–62. - 44. Shields BM, Mcdonald TJ, Oram R, Hill A, Hudson M, Leete P, et al. C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent - Stable Phase. Diabetes Care. 2018;41(July):1486-92. - 45. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity. 2005 Jan;22(1):131–42. - 46. Orban T, Kis J, Szereday L, Engelmann P, Farkas K, Jalahej H, et al. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun. 2007 Jun;28(4):177–87. - 47. Joosten LA, Netea MG, Kim SH, Yoon DY, Oppers-Walgreen B, Radstake TR, et al. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2006 Feb;103(9):3298–303. - 48. Shioya M, Nishida A, Yagi Y, Ogawa A, Tsujikawa T, Kim-Mitsuyama S, et al. Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin Exp Immunol. 2007 Sep;149(3):480–6. - 49. Na SJ, So SH, Lee KO, Choi YC. Elevated serum level of interleukin-32alpha in the patients with myasthenia gravis. J Neurol. 2011 Oct;258(10):1865–70. - 50. Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol. 2016 Jan;183(1):16–29. - 51. Jhun H, Choi J, Hong J, Lee S, Kwak A, Kim E, et al. IL-32gamma overexpression accelerates streptozotocin (STZ)-induced type 1 diabetes. Cytokine. 2014 Sep;69(1):1–5. - 52. Xin T, Che M, Duan L, Xu Y, Gao P. Interleukin-32: its role in asthma and potential as a therapeutic agent. Respir Res. 2018;19:124. - 53. Viken MK, Blomhoff A, Olsson M, Akselsen HE, Pociot F, Nerup J, et al. Reproducible association with type 1 diabetes in the extended class I region of the major - histocompatibility complex. Genes Immun. 2009 Jun;10(4):323–33. - 54. Alvarez JI, Kebir H, Cheslow L, Chabarati M, Larochelle C, Prat A. JAML mediates monocyte and CD8 T cell migration across the brain endothelium. Ann Clin Transl Neurol. 2015 Sep;2(11):1032–7. - 55. Hodik M, Anagandula M, Fuxe J, Krogvold L, Dahl-Jorgensen K, Hyoty H, et al. Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ open diabetes Res care. 2016 Nov;4(1):e000219. - 56. Leete P, Willcox A, Krogvold L, Dahl-Jorgensen K, Foulis AK, Richardson SJ, et al. Differential Insulitic Profiles Determine the Extent of beta-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes. 2016 May;65(5):1362–9. - 57. von Toerne C, Laimighofer M, Achenbach P, Beyerlein A, de Las Heras Gala T, Krumsiek J, et al. Peptide serum markers in islet autoantibody-positive children. Diabetologia. 2017 Feb;60(2):287–95. - 58. Achenbach P, Hummel M, Thümer L, Boerschmann H, Höfelmann D, Ziegler AG. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia. 2013;56(7):1615–22. ### FIGURE LEGENDS Figure 1. Fractionation of PBMC sample into CD4+, CD8+ and CD4-CD8- cellular subsets reveals distinct and overlapping gene expression signatures. A) Outline of the sample collection and cell fractionation. B) tSNE (t-Distributed Stochastic Neighbor Embedding) visualization of the log2-transformed expression data (without any filtering steps) coloured according to cell fraction information. C) Number of DE genes, when CD4+, CD8+ and CD4-CD8- fractionated samples were compared to their original PBMC aliquots. The functionally important fraction-specific upregulated genes are highlighted in red. Analysis was restricted to healthy Controls only. For the gene lists, see Supplementary Table 3. Figure 2. RNA-seq analysis identifies transcriptomic changes associated with beta cell autoimmunity. A) Number and overlap of DE genes between Cases and Controls identified in cell fractions analysed. Genes shared between all four fractions are highlighted. B) Heatmap of the genes DE in CD4+ T cells between the Cases and Controls. Values are presented as log₂FC (truncated between [-2, 2]) between each Case-Control pair at each timepoint (3–36 months) and standardized to the mean of each gene. Genes co-regulated with *IL32* (< 2.5 Euclidean distance) are marked with red box and text. Additional information about the samples is marked on top of the heatmap. 'Before/After SC' informs whether the Case-sample was collected before (Before SC) or after seroconversion (After SC). 'Pair Info' provides the case-control pair information. The 'SC / T1D' annotation indicates whether the Case has progressed to clinical T1D diagnosis (T1D) or not (SC). C) Number and overlap of *IL32* co-clustered genes in indicated cell fractions. Genes regulated at least in two fractions are highlighted. **D)** Profiles of *IL32*, *AMICA1* and *BNT3A2* in CD4+ samples, presented in log₂ RPKM scale. For individual profiles, see **Supplementary Fig. 4**. The Case-Control pairs are grouped according to the diagnosis of the Cases. T1D= Case has been diagnosed with clinical T1D, SC=Case has seroconverted to autoantibody positivity. # Figure 3. scRNA-seq of PBMCs identifies T and NK cells as IL32 high populations A) Expression of IL32y isoform in longitudinal PBMC samples of Cases and their Controls (n=7+7), assayed by qRT-PCR. For alpha and beta isoforms, please see Supplementary Fig. 7. B) tSNE clusters from the pooled data from all scRNA-seq samples (4 Cases and 4 Controls, in total 18 396 cells). Clusters are named according to the expression of classical marker genes, such as CD8A (for details and marker gene list, please see Supplementary Fig. 8; for contribution of each sample per cluster, please refer to Supplementary Fig. 9 and 10. C) Expression of IL32 in the 12 cell clusters (natural logarithm transformation with addition of 1). For Case-Control comparison, please see Supplementary Fig. 11. D-F) trajectories emerging when using the data from CD4+ cells and the precursor cells, as well as G-I) from CD8+ and the precursor cells. Here, precursor cells refer to cells from the naive and RGCC+ T cell clusters. For the trajectory analysis of all the cells from all clusters as well as the breakdown of each individual cluster, please see Supplementary Fig. 12. In D) and G), cells are coloured based on the contributions from different tSNE clusters. In E) and H), cells are coloured by the Case (orange) or Control (grey) status. In F) and I), cells are coloured by the intensity of IL32 expression (log_{10} transformation with addition of 0.1). Figure 4. Virus- and cytokine induce IL32 expression by pancreatic beta cells A) Representative FACS dot plots showing IFN-γ and IL-32 double staining in ThO and Th1 polarized CD4+ cells. Staining controls and two other replicates are shown in **Supplementary** Fig. 13A. Percent IL-32 positive cells as well as Median Fluorescence Intensity (MFI) data (mean+/- SD) from all the three replicates are shown in B) and C), respectively. Statistical significance was determined by paired two tailed t-test. D) IL-32 secretion in culture supernatant as measured by ELISA. Cells were cultured in Th0/1 condition for 72 h in the presence (+) or absence (-) of anti-IFNγ. The expression plotted is relative to Th0 (-). Statistical significance was determined by paired two tailed t-test. E) IL32 expression in non-polarized Th0 cells and cells differentiated to Th1 for 72h in the presence (+) or absence (-) of IL-32y as measured by the Tagman assay. The expression is calculated relative to EEF1A. Statistical significance was determined by unpaired two tailed t-test. F) IL-32 secretion in culture supernatant as measured by ELISA. Cells were cultured in Th0/1 condition for 7 days in the presence (+) or absence (-) of IL-32y, followed by washing and re-stimulation by PMA and ionomycin for 48 h. The expression plotted is relative to ThO (-). Statistical significance was determined by paired two tailed t-test. G) Expression of the TNFA and IL6 or IL8 and IL32 genes when the EndoC-βH1 cells were stimulated with IL32γ alone or in combination with other inflammatory cytokines for 24 h. The fold-change is calculated compared to non-treated (NT) cells. The results shown here are from four
independent biological replicates (mean +/-SD). Statistical significance was determined by paired two tailed t-test. H) IL32 expression as measured in an RNA-seq experiment where pancreatic islets were infected with CBV1-7. Statistical significance was determined by EdgeR. I) *IL32* expression in virus infected pancreatic islets as measured by RT-qPCR Taqman assay. The expression is calculated as 2^-(dCt). The statistical significance is determined by paired two-tailed t-test. *= p-value <0.05, ** = p-value <0.01, and *** = FDR<0.001. **TABLES** | Table 1. Summary of the Case and Control children sampled at the age of 3–36 months. | | | | | | |--|--------|-----------------|--------------------|------------|--------------| | Case # | Gender | Seroconversion* | First | Age at T1D | Matched | | | | age | autoantibodies | diagnosis | control # | | Case 1 | Female | 12 mo | IAA, GADA | 3.2 y | Control 1 | | Case 2 | Male | 12 mo | IAA | - | Control 2 | | Case 3 | Male | 18 mo | IAA, ICA | 3.7 y | Control 3 | | Case 5 | Female | 24 mo | IAA, IA-2A, ZnT8A, | 2.6 y | Control 5 | | | | | ICA | | | | Case 9 | Male | 18 mo | IAA, GADA, ICA | - | Control 9 | | Case 10 | Male | 12 mo | IAA, GADA | - | Control 10.1 | | | | | | | Control 10.2 | | Case 11 | Female | 18 mo | GADA | 2.4 y | Control 11 | ^{*}First detection of T1D-associated autoantibodies. For further details, see **Supplementary Table 1**. ### **Supplementary Figures** Early detection of peripheral blood cell signature in children developing beta cell autoimmunity at a young age ### **Supplementary Figure 1.** Related to Figure 2. Flow chart depicting the steps taken in the differential expression analyses of the RNAseq data in this study. #### Supplementary Figure 2. Related to Figure 1. **A-B)** tSNE (t-Distributed Stochastic Neighbor Embedding) visualization of the log2-transformed expression data from all cell fractions and all genes. **Figure 1** was colored according to cell fractions, and here the colouring of the samples is done according to **A)** Case and Control status and **B)** age at sample collection. For further sample information, see **Table 1** and **Supplementary Table 1**. **C)** Venn diagram expanding on the 1815 genes found DE in both CD4+ vs PBMC and CD8+ vs PBMC analyses (**Figure 1C**). Here, the intersection represents the genes regulated in the same direction. For full lists of genes, see **Supplementary Table 2**. #### **Supplementary Figure 3A**. Related to Figure 2. Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, ZnT8A, and GADA) and the 51 differentially expressed (DE) genes between the Cases and Controls detected in the CD4+ fraction. Each gene's expression was standardized across samples from each case-control pair individually. Genes with an Euclidean distance (ED)< 2.5 to IL-32 (co-clustering results from k-means clustering) are marked with red text (Supplementary table 4). The samples labels along the x-axis include the sample number, case/control indicator, age of sampling in months, and months to (negative no. of months) or from (positive no. of months) seroconversion time. Here, SCC stands for seroconversion-centered, which is why the months to/from seroconversion are negative or positive. #### Supplementary Figure 3B. Related to Figure 2. Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, ZnT8A, and GADA) and the 69 DE genes between the Cases and Controls detected in the CD8+ fraction. Each gene's expression was standardized across samples from each case-control pair individually. Genes with an Euclidean distance (ED) < 2.5 to IL-32 (co-clustering results from k-means clustering) are marked with red text and those with ED < 2.5 to IFNG are marked with blue text (Supplementary table 4). The samples labels along the x-axis include the sample number, case/control indicator, age of sampling in months, and months to (negative no. of months) or from (positive no. of months) seroconversion time. Here, SCC stands for seroconversion-centered, which is why the months to/from seroconversion are negative or positive. #### Supplementary Figure 3C. Related to Figure 2. Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, ZnT8A, and GADA) and the 143 DE genes between the Cases and Controls detected in the CD4-CD8- fraction. The expression of each gene was standardized across samples from each case-control pair individually. Genes with an Euclidean distance (ED) < 2.5 to IL-32 (co-clustering results from k-means clustering) are marked with red text (Supplementary table 4). The samples labels along the x-axis include the sample number, case/control indicator, age of sampling in months, and months to (negative no. of months) or from (positive no. of months) seroconversion time. Here, SCC stands for seroconversion-centered, which is why the months to/from seroconversion are negative or positive. #### Supplementary Figure 3D. Related to Figure 2. Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, ZnT8A, and GADA) and the 85 DE genes between the Cases and Controls detected in the PBMC population. Each gene's expression was standardized across samples from each case-control pair individually. Genes with an Euclidean distance (ED) < 2.5 to IL-32 (co-clustering results from k-means clustering) are marked with red text and those with ED < 2.5 to INS are marked with blue text (Supplementary table 4). The samples labels along the x-axis include the sample number, case/control indicator, age of sampling in months, and months to (negative no. of months) or from (positive no. of months) seroconversion time. Here, SCC stands for seroconversion-centered, which is why the months to/from seroconversion are negative or positive. ### Supplementary Figure 4A-W. Related to Figure 2. Expression profile plots of genes highlighted in the manuscript: A) Expression levels of IL-32 gene in CD4+ cells. B) Expression levels of IL-32 gene in CD8+ cells. DEG Over All Timepoints: IL32 FDR = 3.34750773439632e-33, Median LogFC = 1.2753207171961, % Up-Regulated = 92% C) Expression levels of IL-32 gene in CD4-CD8- cells. DEG Over All Timepoints: IL32 FDR = 5.00715039175544e-26, Median LogFC = 1.02104899092152, % Up-Regulated = 84 % **D)** Expression levels of IL-32 gene in PBMCs. # DEG Over All Timepoints: AMICA1 FDR = 231370877035674e-09, Median LogFC = 0.806214764405675, % Up-Regulated = 75% **E)** Expression levels of AMICA1 gene in CD4+ cells. F) Expression levels of AMICA1 gene in CD8+ cells. # DEG Over All Timepoints: AMICA1 FDR = 0.000434825570123128, Median LogFC = 0.560439291296879, % Up-Regulated = 66% **G)** Expression levels of AMICA1 gene in CD4-CD8- cells. H) Expression levels of AMICA1 gene in PBMCs. # DEG Over All Timepoints: BTN3A2 FDR = 1.0234838456149e-13, Median LogFC = 0.75165263074075, % Up-Regulated = 78% I) Expression levels of BTN3A2 gene in CD4+ cells. J) Expression levels of BTN3A2 gene in CD8+ cells. # DEG Over All Timepoints: BTN3A2 FDR = 2.01189886944382e-17, Median LogFC = 0.795428777816898, % Up-Regulated = 82% K) Expression levels of BTN3A2 gene in CD4-CD8- cells. L) Expression levels of BTN3A2 gene in PBMCs. ### DEG Over All Timepoints: RPSAP15 FDR = 5.82127700825433e-26, Median LogFC = 1.44472640284937, % Up-Regulated = 75% ### M) Expression levels of RPSAP15 gene in CD4+ cells. N) Expression levels of RPSAP15 gene in CD8+ cells. # DEG Over All Timepoints: RPSAP15 FDR = 5.32314905726484e-26, Median LogFC = 1.62142730156426, % Up-Regulated = 74% O) Expression levels of RPSAP15 gene in CD4-CD8- cells. **P)** Expression levels of RPSAP15 gene in PBMCs. # DEG Over All Timepoints: RPSAP58 FDR = 1.0656775476997e-42, Median LogFC = 1.34071165073582, % Up-Regulated = 67% **Q)** Expression levels of RPSAP58 gene in CD4+ cells. R) Expression levels of RPSAP58 gene in CD8+ cells. #### DEG Over All Timepoints: RPSAP58 FDR = 6.70517105944752e-51, Median LogFC = 1.47479372172279, % Up-Regulated = 71 % S) Expression levels of RPSAP58 gene in CD4-CD8- cells. T) Expression levels of RPSAP58 gene in PBMCs. DEG Over All Timepoints: INS FDR = 9.3351601477442e-11, Median LogFC = 0.739926117529327, % Up-Regulated = 74% **U)** Expression levels of INS gene in PBMCs. V) Expression levels of GCG gene in PBMCs. # DEG Over All Timepoints: REG1A FDR = 4.98145775801475e-08, Median LogFC = 0.517199222755978, % Up-Regulated = 66% ### W) Expression levels of REG1A gene in PBMCs. X) Expression levels of TRBV4-1 gene in CD4+ cells. # DEG Over All Timepoints: VIPR1 FDR = 0.0192216332832046, Median LogFC = 0.52712894908211, % Up-Regulated = 73% Y) Expression levels of VIPR1 gene in CD8+ cells. **Z)** Expression levels of PRKCQ-AS1 gene in CD4-CD8- cells. # DEG Over All Timepoints: RP11–747H7.3 FDR = 0.000778155971399923, Median LogFC = 0.711745514222584, % Up-Regulated = 69% AA) Expression levels of RP11-747H7.3 gene in CD4+ cells. AB) Expression levels of CTA-445C9.15 gene in CD4+ cells. ### Supplementary Figure 5. Related to Figure 2. PBMC-specific co-regulation of pancreatic transcripts Insulin (INS), Glucagon (CGC) and Regulin 1 alpha (REG1A). Profiles of *INS*, *CGC* and *REG1A* show concerted gene expression profiles. For individual profiles, see Supplementary Figure 4. ### **Supplementary Figure 6**. Related to Figure 2. Number of DE genes between the Cases and Controls in the time-window of 12 months before seroconversion (RPKM > 3 for coding genes and RPKM < 0.5 for non-coding genes, Up- or downregulated in \geq 65% of the Cases). For complete listing, see Supplementary Table 3 columns "12 mo before SC". ### Supplementary Figure 7. Related to Figure 3A. mRNA expression of IL32 isoforms analysed in PBMC samples of Cases (n=7) and their matched Controls (n=7) by qRT-PCR. For expression level plot of IL32 γ isoform, please refer to **Figure 3A**. ###
Supplementary Figure 8. Related to Figure 3. Heatmap of the top 10 most highly expressed genes in the 13 clusters identified after Seurat clustering analysis of the pooled single-cell RNA-Seq data (4 Cases + 4 Controls) represented as a tSNE plot in **Figure 3B**. As the two biggest clusters were similar in their gene expression profiles, they were merged to form the Naive T cell cluster, leaving in total 12 cell clusters. Genes used in the annotation of the cell clusters are marked on the right column, where bolded genes are those that were also found to be DE between Cases and Controls in the bulk RNA-seq data analysis (**Supplementary Table 3**). **Supplementary Figure 9**. Related to Figure 3. Contribution of individual samples in the t-SNE visualization of pooled single-cell RNA-Seq data, presented in **Figure 3B** and $\bf C$. В ### Supplementary Figure 10. Related to Figure 3. **A)** Proportion of cells coming from individual samples per cluster (cluster-wise proportioning) **B)** Box-plot highlighting the proportions of cells per cluster in Case (orange) and Control (green) samples. * p < 0.05, *** p < 0.005 according to paired t-test of the sample-wise proportions of cells per cluster. ### Supplementary Figure 11. Related to Figure 3. Violin plot showing the expression of *IL32* in the 12 cell clusters identified from the single-cell RNA-Seq data, displayed separately for Cases (orange) and Controls (green). # Supplementary Figure 12. Related to Figure 3. **A)** Trajectory in pseudotime of CD4+ specific and **B)** CD8+ specific cells along with the precursor cells plotted individually. Supplementary Figure 13. Related to Figure 4. **A)** Two additional replicates of the Th0/Th1 intracellular staining data shown in **Figure 4C**. **B)** EndoC-βH1 cells were treated for 24 h with recombinant IL-32 γ in presence and absence of IL-1 β and IFN γ , and the expression of ER stress markers *ATF3*, *ATF4*, *ATF6*, *CHOP*, *HSPA5* and *sXBP1* was measured by RT-qPCR assay. **C)** Expression of endocrine marker genes *INS*, *PDX1* and *MAFA* was measured after treatment of EndoC- β H1 cells with 100 ng of IL-32 γ for 24h. In **B-C** fold change is calculated as compared to non-treated (control) cells. Statistical significance was determined by Tukey's multiple comparisons test. * =p-value <0.05 while ** =p-value <0.01. ### **Supplementary Material** ### **Bulk RNA-seq data analysis** #### RNA-seq data processing and analysis Of the 306 RNA-seq samples (Supplementary Table 1), 298 were used for the differential expression analysis because some Case samples had more than one corresponding control samples. The average sequencing depth of the samples in this study was around 51 million paired-end reads. Quality control checks were performed RNA-seq the data using FastQC (version 0.10.0. on raw http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were aligned to the human reference transcriptome, Human GRCh37 assembly version 75 (http://feb2014.archive.ensembl.org/index.html), using TopHat (version 2.0.10), where the default parameters of the software were retained. On average, approximately 93% of the reads from each sample in each fraction were mapped (average overall read mapping of samples in each cell type was CD4+: 93%, CD8+: 92.6%, CD4-CD8-: 93.4%, PBMC: 93.5%). This resulted in about 89% of concordant pair alignments (CD4+: 88.9%, CD8+: 88.93%, CD4-CD8-: 89.89%, PBMC: 89.89%). The aligned reads, with a mapping quality > 10, were counted at the gene level availing the htseqcount function from the HTSeg package and using the overlap resolution mode of 'intersection-strict' (htseq-count version 0.6.1). The read counts of genes were normalized using the trimmed means of the M-values (TMM) method, implemented in the software package edgeR, which adjusts for varying sequencing depths as well as normalizes for the RNA composition. Using the biotype information, the genes were divided into coding and non-coding categories. The biotype data for each gene were retrieved from the Ensemble database, and the descriptions of biotypes were taken from Gencode (http://www.gencodegenes.org/gencode biotypes.html). #### Filtering genes using RPKM values First, the RPKM values were calculated for each gene in each sample of the analysis, where the length of the gene was taken to be the sum of the lengths of all its known exons. Second, a max-of-means RPKM value (mmRPKM) was computed for each gene to assess the overall expression of the gene in all the samples of the analysis. As the differential expression analyses in this study usually involved two groups (e.g., cases and controls, CD4+ and PBMCs), the max-of-means of RPKM value refers to: maximum(mean("RPKM values in Group 1"), mean("RPKM values in Group 2")). Subsequently, coding genes with mmRPKM > 3 and non-coding genes with mmRPKM > 0.5 were retained. These filtering criteria usually retained about 7000–7500 coding genes and 600–700 non-coding genes. #### Differential expression analysis Differential expression analyses were conducted separately for coding and non-coding genes, using the *edgeR* package. The variance of the data was estimated using the trended dispersion method. #### Post-differential analysis filtering steps (only for paired sample analyses) The *edgeR* output of differentially expressed (DE) genes with FDR < 0.05 from the paired sample analyses were further subjected to median log₂FC filtering, where DE genes with a |median log₂FC| > 0.5 were retained for downstream filtering step. The final filtering step retained only those genes as DE that had more than 65% samples across all individuals regulated in the same direction (i.e., up- or down-regulated). These filtering steps were added to discard false positives that may arise due to the heterogeneity of the samples due to normal variation, which is non-related to T1D and outliers. A visual depiction of the RNA-seq data processing and analysis pipeline has been shown in **Supplementary Figure 2**. #### Analysis 1: Cell fraction vs PBMC In this analysis, the expressions of genes from each cell fraction (i.e., CD4+, CD8+ and CD4-CD8-) were compared to those of the (paired) original PBMC population of Control children. Samples collected at all ages were included but were required to have expression data from both the fraction under analysis as well as PBMCs. #### Analysis 2: Cases versus Controls – over all timepoints The aim of this analysis was to identify genes that are differentially expressed in children who have seroconverted to autoantibody positivity (Cases) in comparison to those who have not (Controls). Each Case child was matched to a Control child, according to date of birth, HLA-risk class, gender and country. Case samples were compared to the samples from their matched Controls that were collected at the same age. In these analyses, other than for pairing purposes, the sampling ages were not utilized. Differential expression analysis of Cases and Controls were compared with another method. The RNA-seq data of the filtered coding and non-coding genes were modelled using generalized linear mixed effects models (GLMMs) using *glmer()* function from *Ime4* package (23). A random effect is added in this model for each child's samples. GLMM with the negative binomial likelihood was fit to the data using the *MASS* package, where the dispersion values per gene were obtained from the *edgeR*. For the filtered coding and non-coding genes from all fractions, the Spearman rank correlation coefficients of the results from the two methods ranged between 0.91 and 0.96 with an average of 0.936, indicating similar ranking of the genes after FDR correction in both the methods. Further details of RNA-seq data analysis can be found in the "Supplementary Material". # Analysis 3: Cases versus Controls – 12 months before the seroconversion window This analysis is similar to **Analysis 2** in terms of the Case versus Control analysis setup. However, to understand gene expression changes that take place in Cases right before seroconversion, this analysis compared only those Case samples that were taken at most 12 months before seroconversion with their matched Control samples. For comparison, the RNA-Seq data of the filtered coding and non-coding genes were also modelled using generalized linear mixed effects models (GLMMs) using the same design as explained in **Analysis 2**. A random effect is added in this model for each child's samples. The *glmer()* function from *lme4* package was used here for modelling. GLMM with the negative binomial likelihood was fit to the data using the *MASS* package, where the dispersion values per gene were obtained from the *edgeR* **Analysis 2**. For the filtered coding and non-coding genes from all fractions, the Spearman rank correlation coefficients of the results from the two methods ranged between 0.91 and 0.96 with an average of 0.936, indicating similar ranking of the genes after FDR correction in both the methods. # Differential gene clustering To find the genes and autoantibodies (together referred to as 'features' in this section) co-regulated/co-clustering with *IL32* in each cell-fraction, *k*-means clustering, followed with Euclidean distance based co-clustering selection criteria, was performed on the expression levels of coding and non-coding differentially expressed genes (**Analysis 2**) as well as on the autoantibodies. Due to the heterogeneity of the data and the disease, the clustering was done individually on each case and its matched control. Before clustering, the RPKM expression values of each gene and expression level of each autoantibody were log₂ transformed to ensure approximately normal distribution of the values, and gene-wise standardized to make the features comparable. For each possible number of clusters (i.e., from 2 to total number of features - 1), the features were clustered using the *k*-means
clustering algorithm (*kmeans* function implemented in R *stats* package). Subsequently, using the resulting classification of features into clusters along with the Euclidean distance measures between the features, a silhouette score was calculated. The optimum number of clusters was chosen to be the one with the largest silhouette score. The features were then clustered into the "optimum number of clusters" using *k*-means clustering with 20 random sets of initialization values and sufficient iterations for convergence, where the configuration with minimum loss score was reported as the best clustering. Once clustered, the cluster containing *IL32* was considered the *IL32*-cluster with its coregulated features. To summarize over the *IL32*-clusters from the seven case-control pairs, a feature coclustering with *IL32* in at least one case-control pair was considered to co-cluster with *IL32* if the median of its Euclidean distances to *IL32* across all pairs was below 2.5. This selection criteria, based on median Euclidean distance to *IL32*, ensured that only those features were considered to co-cluster with *IL32* that co-clustered with it in at least 5–6 case-control pairs (**Supplementary Table 4**). As *IFNG*-cluster in CD8+ cells and *INS*-cluster in PBMCs were of specific interest also, the Euclidean distance-based summarization over the seven case-control pairs was repeated for these genes as well (**Supplementary Table 4**). # Transcription factor binding site analysis Overrepresented transcription factor binding motifs on the promoters of IL32 and its co-regulated genes were analysed with updated (2018) TRANSFAC database, using the Fmatch tool with default parameters (best supported promoter, -10,000 to +1000 bp around transcription start site) and a randomly selected gene set as a background. Afterwards the p-values were corrected for multiple testing using the Benjamini-Hochberg method. Results with FDR < 0.05 are presented in **Supplementary Table 4**. ## Single-cell RNA-seq data processing and analysis The Chromium single-cell 3' RNA-Seq data from four Case and four Control samples (**Supplementary Table 5**) was individually preprocessed using the Cell Ranger Single-Cell Software Suite. The reads were aligned to the human reference genome (hg19) using STAR and the data from non-cellular barcodes were filtered out. Across samples, the mean raw reads per cell varied between ~57 k to ~200 k (**Supplementary Table 5**). To identify rare cell types, the cells from different samples were pooled together using Cell Ranger's multi-library aggregation algorithm where the samples were normalized using subsampling normalization. The downsampling (subsampling normalization) of sample reads after pooling retained on average ~31 k confidently mapped reads per cell (from ~59 k raw reads per cell on average). These mapped to the median of 801 genes per cell. After the pooling, expression of 32,738 genes from 20,370 cells was obtained. For QC analysis and further exploration of the single-cell RNA-Seq data the Seurat R package was used. Firstly, all the genes expressed in less than one cell and all the cells expressing less than 200 genes or more than 4000 genes were filtered out. Furthermore, any cells containing more than 5% of mitochondrial genes or a UMI count higher than 5000 but a gene count less than 500, were also filtered out. The latter filtering steps involved filtering of cells with high UMI count but low gene count on the basis of the gene count and UMI count relationship plots following the recommendations of Seurat tool. After these quality control filtering steps, 18,396 cells expressing 20,830 genes were retained for downstream analyses. The filtered data were normalized using Seurat's default global-scaling normalization method, 'LogNormalize', and variation from uninteresting sources (i.e., the number of molecules detected and percentage of mitochondrial genes expressed per cell) was regressed out. To capture the heterogeneity of the single-cell data and cluster the cells, a set of highly variable genes (HVGs) was selected, whose average expression was above 0.0125, and dispersion above 0.5 resulting in ~1200 HVGs in pooled cell library. Principal component analysis (PCA) was then performed on the HVGs, and the resulting top 20 PCs were used in the graph-based clustering employed by Seurat, keeping other parameters as default. To determine the cell type represented in each cluster, markers defining the clusters were determined via differential expression algorithm implemented in Seurat, where cells of a single cluster were compared to the cells of all other clusters combined. A gene was considered a marker of a cluster if it was expressed in at least 25% of the cells of either of the two clusters and the log fold change between the cluster and all other clusters was at least 0.25. On average, one to five genes were used as markers for each cluster (**Supplementary Figure 8**). On the basis of these cluster-specific markers, no biological difference was found in two of the 13 clusters, which both represented cells from naive T cells. Therefore, they were merged into a single cluster and were labeled as naive T cells, resulting in a total of 12 different clusters. ## Single-cell RNA-seq trajectory analysis The QC filtered pooled cells from the Seurat analysis were ordered in pseudotime (i.e., placed along a trajectory corresponding to a type of biological transition, such as differentiation) using Monocle 2. The trajectory analysis was performed on cells specifically from CD4+ (CD62L+ T cells and Act. Th cells) and CD8+ (Act. GNLY+ CD8+ T cells, Act. GZMA+ CD8+ T cells and Act. prolif. GZMA+ CD8+ T cells) T-cell clusters, using the cell typing information from the Seurat analysis. In both CD8+ and CD4+ specific cell ordering, cells identified as naive T cells or T cells were also included. The trajectory analysis in Monocle 2 has three major steps. In the first step, all genes expressed in at least 1% of the cells were used in a principal component analysis, whose resulting top PCs (six in the case of CD8+ and 11 in the case of CD4+ specific single-cell trajectory analyses) were used to initialize the t-SNE ordination of the cells. Then, the *dpFeature* function was used to cluster the cells defined in the 2-D t-SNE space. Finally, the differential gene expression test of all genes expressed in more than 10 cells was performed between the clusters defined in the previous step as a way to extract the genes that distinguish them from each other. The top 1000 significant genes were then selected for subsequent steps of the analysis. The second step reduced the dimensionality of the data using the feature genes from the previous step and availing technique called reverse graph embedding (RGE) implemented in DDRTree algorithm. In the final step, cells were ordered along the trajectory by performing manifold learning on the tree from the second step. #### Supplementary Table 1A: Description of time-points where samples from each Case and Control was available for the analysis Total Number of Samples = 306 Coloured = Sampled Empty = Not Sampled #### Supplementary Table 1B: Description of Cases and Control samples including seropositivity | Case 1 FINLAND Female Yes 3.2 Moderately increased Father age 9 E003251 0 0.32 0.18 0.06 3 0.01 0 0.08 6 0.45 0 0.16 12 14.08 21.75 0.08 18 53.07 1933.3 88.23 24 14.44 305.98 510.62 36 2.3 119.94 678.3 Case 2 FINLAND Male No Moderately increased Father age 27 E003989 0 0 0 0 0.13 3 0 0 0 0.14 6 0 0.15 12 13.46 0 0.15 | 0.07
0.06
0.08
0.3
6.37
12.89
22.46
0.05 | 3
0
0
0
374
747
512 | |--|---|---------------------------------------| | 6 0.45 0 0.16 12 14.08 21.75 0.08 18 53.07 1933.3 88.23 24 14.44 305.98 510.62 36 2.3 119.94 678.3 Case 2 FINLAND Male No Moderately
increased Father age 27 E003989 0 0 0 0 0.13 3 0 0 0 0.14 6 0 0 0 0.15 12 13.46 0 0.15 | 0.08
0.3
6.37
12.89
22.46
0.05 | 0
0
374
747 | | 12 | 0.3
6.37
12.89
22.46
0.05 | 0
374
747 | | Case 2 FINLAND Male No Moderately increased Father age 27 E003989 0 0 0 0.13 6 0 0 0.15 18 53.07 1933.3 88.23 24 14.44 305.98 510.62 36 2.3 119.94 678.3 3 0 0 0.13 6 0 0 0.15 12 13.46 0 0.15 | 6.37
12.89
22.46
0.05 | 374
747 | | Case 2 FINLAND Male No Moderately increased Father age 27 E003989 0 0 0 0 0.13 119.94 678.3 12 13.46 0 0.15 12 13.46 0 0.15 12 13.46 0 0.15 12 13.46 0 0.15 12 13.46 0 0.15 0.1 | 12.89
22.46
0.05 | 747 | | Case 2 FINLAND Male No Moderately increased Father age 27 E003989 0 0 0 0 0.13 3 0 0 0 0.14 6 0 0 0.15 12 13.46 0 0.15 | 22.46
0.05 | | | Case 2 FINLAND Male No Moderately increased Father age 27 E003989 0 0 0 0.13 3 0 0 0.14 6 0 0 0.15 12 13.46 0 0.15 0.15 | 0.05 | 512 | | 3 0 0 0.14
6 0 0 0.15
12 13.46 0 0.15 | | 312 | | 6 0 0 0.15
12 13.46 0 0.15 | | 0 | | 12 13.46 0 0.15 | 0.06 | 0 | | | 0.06 | 0 | | | 0.02 | 0 | | 18 12.75 3.46 0.07 | 0.1 | 6 | | 24 7.28 22.16 0.11 | 0.15 | 0 | | 36 5.96 173.27 0.15 | 7.53 | 512 | | Case 3 FINLAND Male Yes 3.67 Moderately increased Maternal uncle age 12 E006574 0 0 0 0.07 | 0.12 | 0 | | 3 0 0 0.09 | 0.04 | 0 | | 6 0.42 0 0.08 | 0.03 | ŀ | | 12 0.7 0.07 0.1 | 0.05 | ļ | | 18 8.93 0.71 0.08 | 0.14 | 6 | | 24 30.08 195.49 1013.95 | 13.67 | 1024 | | 36 11.9 64.38 894.54 | 36.06 | 2048 | | Case 5 FINLAND Female Yes 2.63 High Maternal grandmother age 15 E010937 0 0.06 0 0.04 | 0.05 | 0 | | 3 0 0 0.05 | 0.06 | 0 | | 6 0.22 0 0.07 | 0.06 | 0 | | 12 0.09 1.1 0.1 | 0.03 | 0 | | 18 2.42 0 0.17 | 0.07 | 0 | | 24 6.49 2.64 19.82 | 3.58 | 47 | | 36 3.97 0.32 74.61 | 0.5 | 256 | | Case 9 FINLAND Male o, transient abs Moderately increased E026079 0 0 0 0.14 | 0.06 | 0 | | 3 0 0 0.08 | 0.13 | 0 | | 6 1.36 0 0.07 | 0.07 | 0 | | 120.391.43 0.08 | 0.06 | 0 | | 18 12.28 11.57 0.11 | 0.1 | 4 | | 24 1.55 0.99 0.16 | 0.1 | 0 | | 36 4.7 0 0.09 | 0.13 | 0 | | Case 10 ESTONIA Female Io, transient abs Slightly increased T013815 0 0 0 0.13 | 0.15 | 0 | | 60.04 0.05 | 0.05 | 0 | | 12 21.78 18.46 0.07 | 0.09 | 0 | | 18 34.01 1.94 0.08 | 0.12 | 0 | | 36 8.09 0 0.14 | 0.1 | 0 | | Case 11 ESTONIA Female Yes 2.41 Moderately increased Father age 5 T025418 0 0.53 0 0.09 | 0.04 | 0 | | 3 0.05 0 0.08 | 0.03 | 0 | | 12 0.983.95 0.09 | 0.11 | 0 | | 18 | 0.17 | 0 | | 24 8.59 189.7 0.39 | 0.13 | 512 | | 36 32.98 26.36 3.48 | 0.15 | 16 | | Control 1 FINLAND Female No Moderately increased E003061 0 0.19 0.26 0.08 | 0.06 | | | 3 0 0 0.06 | 0.04 | ŀ | | | | | | | | 6 | 0 | 0 | 0.08 | 0.06 | | |--------------|----------------|----|------------------------|--------------|-----------|----|------|-----------|------------|--------------|--| | | | | | | | 12 | 0.28 | 0.07 | 0.09 | 0.07 | | | | | | | | | 18 | 0.28 | 0.07 | 0.07 | 0.07 | | | | | | | | | 24 | 0.28 | 1.56 | 0.09 | 0.13 | | | | | | | | | 36 | 0.92 | 0.71 | 0.11 | 0.13 | | | Control 2 | FINLAND Male | No | Moderatelyincreased | | E001463 | 0 | 0.31 | 0.71 | 0.02 | 0.18 | | | Control 2 | FINLAND IVIALE | NO | wioder atery micreased | | E001463 | 3 | 0.14 | 0 | 0.02 | 0.18 | | | | | | | | | 6 | 0.63 | 0 | 0.02 | 0.07 | | | | | | | | | 12 | 0.63 | 0 | 0.06 | 0.06 | | | | | | | | | 18 | 0.2 | 0 | 0.16 | 0.06 | | | | | | | | | 24 | 0 | | | | | | | | | | | | 36 | 0.14 | 0.93
0 | 0.1
0.1 | 0.05
0.09 | | | 6 | FINILAND AALL | N. | Madantal dan arad | | F0.066.46 | | | | | | | | Control 3 | FINLAND Male | No | Moderatelyincreased | | E006646 | 0 | 0.62 | 0 | 0.09 | 0.02 | | | | | | | | | 3 | 0 | 0 | 0.13 | 0.03 | | | | | | | | | 6 | 0.53 | 0 | 0.11 | 0.03 | | | | | | | | | 12 | 0 | 0 | 0.12 | 0.05 | | | | | | | | | 18 | 0 | 0 | 0.09 | 0.07 | | | | | | | | | 36 | 0.23 | 0 | 0.14 | 0.11 | | | Control 5 | FINLAND Female | No | High | Father age 6 | E013487 | 3 | 0.36 | 0 | 0.1 | 0.09 | | | | | | | | | 6 | 0.34 | 0 | 0.07 | 0.07 | | | | | | | | | 12 | 0.02 | 1.62 | 0.08 | 0.07 | | | | | | | | | 18 | 0.46 | 1.57 | 0.07 | 0.15 | | | | | | | | | 24 | 0.86 | 0.39 | 0.07 | 0.11 | | | | | | | | | 36 | 0 | 0 | 0.07 | 0.07 | | | Control 9 | FINLAND Male | No | Moderatelyincreased | | E026325 | 0 | 0 | 0 | 0.12 | 0.07 | | | | | | | | | 3 | 0.77 | 0 | 0.32 | 0.1 | | | | | | | | | 6 | 1.03 | 0 | 0.09 | 0.08 | | | | | | | | | 12 | 1.41 | 0.21 | 0.06 | 0.1 | | | | | | | | | 18 | 0.28 | 0.72 | 0.11 | 0.09 | | | | | | | | | 24 | 0.38 | 0 | 0.11 | 0.09 | | | | | | | | | 36 | 0 | 0 | 0.07 | 0.1 | | | Control 10.1 | ESTONIA Female | No | Slightly increased | | T012808 | 0 | 0 | 0.24 | 0.08 | 0.05 | | | | | | | | | 18 | 0.49 | 1.14 | 0.1 | 0.14 | | | | | | | | | 36 | 0.68 | 0 | 0.12 | 0.1 | | | Control 10.2 | ESTONIA Female | No | Slightly increased | | T014292 | 0 | 0 | 0 | 0.15 | 0.08 | | | | | | | | | 6 | 0.17 | 0.09 | 0.08 | 0.09 | | | | | | | | | 12 | 0.56 | 0.21 | 0.13 | 0.07 | | | | | | | | | 18 | 0.39 | 0 | 0.08 | 0.12 | | | | | | | | | 36 | 0.62 | 0 | 0.09 | 0.09 | | | Control 11 | ESTONIA Female | No | Moderately increased | | T026177 | 0 | 0.7 | 0 | 0.12 | 0.03 | | | | | | | | | 3 | 0.35 | 0 | 0.06 | 0.05 | | | | | | | | | 12 | 0.95 | 0.05 | 0.11 | 0.1 | | | | | | | | | 18 | 0.12 | 0 | 0.13 | 0.08 | | | | | | | | | 24 | 0.75 | 0 | 0.12 | 0.1 | | | | | | | | | 36 | 0.53 | 0 | 0.13 | 0.11 | | ## Supplementary Table 2: Primers and probes used in this study Primers/probes used for Tcells | Target cDNA | Sequence of 5'-primer (F) | Sequence of 3'-primer (R) | Probe (if applicable) | |-------------|-----------------------------|--------------------------------|--| | IL32α | 5'-GCTGGAGGACGACTTCAAAGA-3' | 5'-GGGCTCCGTAGGACTTGTCA-3' | | | | | | | | IL32β | 5'-TCTGTCTCTCGGGCCTTG-3' | 5'-GGCTCCGTAGGACTGGAAAG-3'; | | | | | | | | IL32γ | 5'-AGGCCCGAATGGTAATGCT-3' | 5'-GGCCACAGTGTCCTCAGTGTCACA-3' | | | | | | | | EF1α | 5'-AGCAAAAACGACCCACCA-3' | 5'-GCCTGGATGGTTCAGGATAA-3' | | | | | | | | GAPDH | 3'-CCGGCTTTCTTCGCAGTAG-5' | 5'-CACGGACGCCTGGAAGA-3' | 5'-FAM-ACCAGGCGCCCAATACGACCAA-TAMRA-3' | Primers used for EndoC-βH1 cells | | Target cDNA | Sequence of 5'-primer (F) | Sequence of 3'-primer (R) | |---|---------------|---------------------------|---------------------------| | | | | | | | Cyclophilin A | ATGGCAAATGCTGGACCCAACA | ACATGCTTGCCATCCAACCACT | | | | | | | * | IL32 | GAGCTCTTCATGTCCTCTTTCC | GGCAAAGGTGGTGTCAGTAT | | | | | | | * | IL8 | AAATCTGGCAACCCTAGTCTG | GTGAGGTAAGATGGTGGCTAAT | | * | IL6 | CCAGAGCTGTGCAGATGAGT | GGGTCAGGGGTGGTTATTGC | | | ILO | CCAGAGCTGTGCAGATGAGT | GGGTCAGGGGTGGTTATTGC | | * | TNFa | GATCCCTGACATCTGGAATCTG | GAAACATCTGGAGAGAGGAAGG | | * | BAD | ATCATGGAGGCGCTG | CTTAAAGGAGTCCACAAACTC | | | | | | | * | BAX | AACTGGACAGTAACATGGAG | TTGCTGGCAAAGTAGAAAAG | | | HSPA5 (BIP) | TGGCTGGAAAGCCACCAAGATGCT | GGGGAGGCCTGCACTTCCAT | | | DDIT3 (CHOP) | GCACCTCCCAGAGCCCTCACTC | CCCGGGCTGGGGAATGACCA | | | sXBP1 | CTGCTGAGTCCGCAGCAGGTGCA | GGTCCAAGTTGTCCAGAATGC | | | ATF4 | AAGGCGGGCTCCTCCGAATGG | CAATCTGTCCCGGAGAAGGCATCC | | | ATF6 | ACCTGCTGTTACCAGCTACCACCCA | GCATCATCACTTCGTAGTCCTGCCC | | | ATF3 | AGAAAGAGTCGGAGAAGC | TGAAGGTTGAGCATGTATATC | | | | | | | | INS | TGTCCTTCTGCCATGGCCCT | TTCACAAAGGCTGCGGCTGG | | | PDX1 | AAGTCTACCAAAGCTCACGCG | GTGCGCGTCCGCTTGTTCT | | | MAFA | GCCAGGTGGAGCAGCTGAA | CTTCTCGTATTTCTCCTTGTAC | | | | | | ^{*} KiCqStart[®] SYBR[®] Green Primers Predesigned primers for gene expression analysis | Supplementary Table S | u. Office sinily exp | | is ON y CORe and COLCOR fraction compared in the | od glod PERC field or judeg samples from leakhy scatted shifter | esM. | | | | | | _ | | | | |
--|--|--|---
--|--|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|---------------------------------|-------------------|-------------------|----------------------|-------------------|---------------| | Herit De Di
Hecapatons | Draw Marine
POR | Symbol | Nation there have
PSR price exagency, but family by calle him a | Location Type (d) Drug(d)
Made Mouse Model, del
Other other | CDB-vs PENC | COE+us PEME
-EAC | CD4 CD8 vs. FEMC | CDD W PERSON. | COD W/SMC | COLCOR W. PIRIC | CONTRACT CONTRACT | MINE COLCONALPINE | CDE++-FEME
322 | COD or PERSON | CONCOR W.PEMC | | HANGEGEREN
HANGEGEREN
HANGEGEREN | THE THE TENT | THREETIN | to committee protein 1864
integriscolout of pla 26 | Rematteniane aumentrae respis, 7 CC, quittable | 4.00 | -6.56
-6.05
-6.07 | -018
-120
1.86 | 0.00
0.00
0.00 | 6.00 | 620
620
0 620 | | 11
100 | 20 | 20 | - | | I MINE CERCE TO 7
I MINE CERCE TO 2
I MINE CERCE CO 1
I MINE CERCE TO 2 | DAY
DAR | COME | growth arrestoperal of 7
CONN makes also
Brashnolysed on blasses
planning on all value, architecture plan
THO protein by calm billione is reliegion bit in | Optoplann trans system regulator
Planna Miembrane in commenterare receptor
Optoplann income cale brut ob, 900 4 220
Planna Miembrane in commenterare receptor | 42 | -0.00
-0.00
-0.00 | 0.00
0.00
0.40 | 0.00
0.00
0.00
0.00 | 680
680 | 644
613
660 | : : | = | = | 20 | : | | FRANCISCO SCI
FRANCISCO STATE
FRANCISCO STATE | C02 | THESE | | Name to entrare a name in order or explain | 48 | -6.86
-6.87 | -0.00 | 0.00 | 630
630 | 628 | | 76
6
100 | 32
32 | 200
200 | * | | I MADOLECE TO SEC
I MADOLECE TO JUL
I MADOLECE TO MAJ
I MADOLECE TO THE
I MADOLECE TO THE
I MADOLECE TO TO | TIMP
NAME? | TON
THE | CEX malessie
then the phaybarylase
MAM fundy member 7 | Remattenisse assemisse respectivitiesende
Estanblist Space groek beter
Hernattenisse dier eleksende | 4.87 | -630
-630 | -028
-026
0.00 | 0.00 | 6.00
6.00 | 600
671
600 | | | = | 200
200
73 | | | 1 Marie CE CE CE CA 2 | THOMPSE | ORN
VOM | | | 4.0
4.0
4.0
4.0 | -136
-631
-638 | -001
-038
0.00 | 0.00 | 00
00 | 628
620
620 | | | = | 97
200
200 | * | | I MANCOTT COS AND Y I MANCOTT COS AND A I MANCOTT COS ATO A I MANCOTT COS AND | COTA TRANSPORT ORN ORN OCH ORN FOR FOR FOR FOR EXAMP AND | CHARL | copping actin protein, principal for
columns (six 1 | Extraction Space growth form
Extraction Space other
Nation other
Manual Contract other | 48 | -640
-630 | 0.00
0.34
-617 | 0.00 | 6.00
6.00 | 681
681
680 | | 2 | = | 200 | 2 | | | PERSON. | POMA
INC.
PRINCE | pengink new th Yet petrongen on the privace privace plant of | Optophon maybe staneto, anagretido, s
Marines transliptioning sistem
Optophon maybe constant linearity and | 48
48
43 | -639
-637 | 0.M
0.22
0.35 | | | 600
603
600 | | | = | 87
200 | | | HANGED OF NO. | DESTR. | 10 TH | IF CD learning B, CD PE cost complex component
option P | Optober ster
Estandarium ster | 1.00 | 288 | | 0.00 | 600 | 000 | 200 20 | | - | - : | | | HECTORIAN
HECTORIAN | HCHG. | ARAS
RNG
LATE | Index for activation of Tracks bondy member 2 | Graphon siter Extraorbier Space problème Mannahl enforce siter | 4.07
4.38
4.30
4.30
4.30
4.30 | -620
-636
-636 | -048
0.09
-028
0.09 | 0.00 | 68 | 626
620 | | 7 | = | 20 | 2 | | HANGED COOK | EXACT | EAME | to be confident advantage or to be confident advantage or to be confident advantage or to be confident as the confiden | Optophen mayine Manna Minnisane in numericane recepto Entranchia r Space mayine | 4.00 | -036
-036
-737 | -016 | 0.00 | 68
68 | 6.00
6.00 | | | - | 100
100 | | | HANGED COOPS | C SEA | PRICE COM LIAASS LIAASS HAMEST TOPO GENET TSUS TS | produgi and to end up a made specimen 1
seconds to let
go best to 2 | Optoplasm enzyme Petrasskrivenski o stil, s
It all medider Symbol sophili ne
Optoplasm siller | 4.8
4.8
4.7
4.8
4.0
4.0 | -6.07
-6.02
-6.02 | -0.09
-0.09
-0.09 | 0.00
0.00
0.00 | 6.00
6.00 | 020
020
030 | | 27 | 20 | 20 | 2 | | I MINOGEOGRAFI
I MINOGEOGRAFI
I MINOGEOGRAFI | HAND IS
TOPO | HARRES | priestes
hemenygeners
to mine by postete | Extraordian Space after CTCCS
Optigation enzyme to mesopolytis
Optigation a numericane receptive part, clama pine, til | 4.07 | -833
-838
-338 | 0.0
0.0
-043
-041 | 0.00 | 68
68 | 660
660
660 | | 2 | 30
30 | 200
200 | | | FRANCISCOCOS
FRANCISCOCOS
FRANCISCOCOS | CLDAN
CLDAN | ETM
ETM | gunge H
gunge E
7 od bolenis/jephana3A | Optoplann projekten
Optoplann projekten
Marina kana dybennegulatur | 4.00 | -638
-538
-648 | -041
0.00
-028 | 0.00
0.00
0.00 | 600
600 | 628
628 | | 2
U | 32
32 | 87
200 | : | | HANDGEGEGEGET
HANDGEGEGEGET | CTATO
MALES
CTAT | CDED
MPRICE
CTUE | CDD minute
Militanto accepte the 2
ordered 2 | Manuald entrare in summirare receptions and, CCLSI, SA-
Marina band system equitor
Oddolom profiles | 4.27
4.30
4.30
4.30 | -538
-648
-646
-246
-640 | 0.87
0.48
0.49 | 0.00 | 6.00
6.00 | 620
620 | | 100 | = | 20 | * | | I MINISTERNATION IN A SECONDARIO | HIE
HIE | TUMS
HE | Intelligence or the findy tyrothe linear | Optophore other sylvacidates, document
Optophore blasse rule disk boost ob
Automobiler have | 410 | -636
-636 | -CAS
CAR
-CAR | 1.00 | 68 | 600
600 | | | = | 20 | 2 | | HERETE TO THE | TUR
PUR | CETS
TARK
MP2
TMP5 | tal formepa E
probable dynamic 2 | Rematteriore assessment respect Th 200, edgened
Optober temporare | 4.0
4.0
4.0
4.0
4.0
4.0
4.0 | -0.00
-0.00
-0.00 | -012
0.00
0.00 | 0.00
0.00
0.00 | 68 | 600
600
600 | | | = | 20 | | | HANGERCONS | COTIA | RECH.
COLI | FIRE and options to believe the estate of both 11 de
construction Parks landing protein 1 | r Other after
Opposition after | 4.0 | -628
-839
-237
-538 | 1.00
-044
1.30 | 0.00 | 600 | 660
660 | | 100
36 | = | 200 | | | HANGERCON | CTSH
RPIC | KING S
CORES
CORES
CORES | orderann
respectionality who/he as without 2 | Optoplan problem
Planna Manhame Strame | 4.0 | -6.76
-0.00
-6.00 | -017
0.86 | 0.00 | = | 620
620 | | 4 2 | = | 20 | ÷ | | HANGE COMP
HANGE COMP | LEARNS
COUNTRY | UUM3
CDMA | is fragment of ig it receptor it
to design or recently district for receptor IC
CD76 make de | Remailmine demonstrat respis
Remailmine demonstrat respis | 4.07 | -6.00
-6.00 | 0.00
0.00
0.00 | 0.00 | 6.00
6.00 | 030
038 | | | 22 | 20
20 | u
a | | HANDSTONAN
HANDSTONAN | CPVL
TRANSC THE | 96.67
(7%.
156667/86 | natural lifer oil grandeproleto?
codingge plides, vielig et citie
la namenicae proleto 2018 | Monatembrase after
Quation position
Other after | 4.00
4.00
4.00
4.00 | -6.76
-6.26
-6.27 | -615
-615
-618
-618
-628 | 0.00 | 68
68 | 6.00
6.00 | | 2 2 | | 200 | | | | TABLE 1 HOSE CERN TIME PLAS TRANCE IS. GET LE ANTE CERN REFIC LEARN LEARN LEARN MEST CENN THERE TH | TMENTO IN
POLINE
VIII
MAP RE | PDI and LBH domain 1
Vest immune galating exceptor
mitage nearlies to duration into an immunitarior. | Same before the control of contr | 416 | -2.66 | -can | 0.00
0.00
0.00 | 6.00
6.00 | 548
550
550 | | 30 | = | 20 | | | HANDERCONS
HANDERCONS |
18:30
18:30
PR4 | G212 | mitagene chard protein blue orbinare braze E
CC malfohematine by good 2
TECI domain body member 6
delected all paths by an C | Extraorbior types cybil ne minustre
Manual tembrane diller
Ottoplane accome | 4.07
4.07
4.21 | -0.00
-6.00
-6.00
-6.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 600 | 620
621
620 | | - | 12
12 | 20 | | | S MAND CORD COLOR OF P | MINA
SCHAI | DISE
DISE
MINUM
SECURI
PRESENT | TRES demands bend y member 9
de the SE sid quitte figure 6
memberse que sel sig 6 demants AMA
solute contre ficindly 35 member 12
PO U class 2a sociating fictor 1. | Other ster
Oppless temporar | 48 42 | -68
-68
-63 | -025 | 0.00 | 68 | 621
620 | | | = | 20 | M.
M. | | HAND GEORGE CO. 1975 | CHOIC
ADM | ALDRO | POU class To consisting Setor 1
consists 32
at delayde delayd age usen 2 Family (ni back and tal) | Chaptern after
Optoplern enter
Optoplern entere totalese, doublesen, d | 438 | -0.00
-0.00 | 0.8
-033 | 0.00
0.00
0.00 | 5.00
5.00 | 520
520
520 | : : | | = | 20 | n
m | | PRINCEPOLISMS PRINCEPOLISMS | CHPT 1
CHPT 1 | CHPT | lymphotoate lets receptor
challen phosphotoard erace 1
de region sulfate aptivarias | Placma M embrane - dramembrane recepto
Optoplacin enzyme
Optoplacin enzyme | 40 | -6.00
-6.00 | 0.8
0.8 | 0.00 | 5.00
5.00 | 6.03
6.00
6.00 | | | = | 20
20 | : | | FRANCESCO 2387 | MACIE
CHI
WIPA | MACHE.
COM | phosphate and action and attention
COSE malerale
variable and and action of the cost th | Optoplan after
Plannations a numerican recepts
Entranslate Space growth from constitutions in the | 4.17 | -638
-335 | 1.05
0.05 | 0.00 | 620
620 | 600
600 | : | - | = | 20 | : | | E MANGESTE COLONIA MANG | THE TOP OTHER TOP OF THE T | VHUM
LTER
HEREIP
SMAC
EMPSIO | COM included years follows: A season medicinal years follows: A special post of the company t | Pleasable rights great to the Laboratory and to the Laboratory I allow to the Laboratory and the Laboratory I allow to | 4.E
4.E
4.E
4.E | -640
-640
-638
-548 | -028
-029
-029
-129 | 0.00
0.00
0.00
0.00 | 600 | 020
020 | | | | 20 | E | | HAROGEOGRAFI
HAROGEOGRAFI | 001 E | EMPSED
COME
COME | ring Engerprotein III | Optoplann projektion
Manual tentrane - a namenture receptivistace pt, sie bei opt ji
Manual tentrane | 48 | -6.00
-6.00
-6.00 | -018
0.00
0.00 | 0.00 | 500 | 620
620
640 | | | = | 20 | 27 | | B MAND CED CES MAD IS
B MAND CED CES MAD IS
B MAND CED CES MAD IS
B MAND CED CES MAD IS | COLT
PLUE | MAK | grandpon
plantario | Qtopiom ster
Qtopiom ster | 49 | -646 | | 0.00 | 6.00
6.00 | 040
040 | | - | = | ** | | | B MAND CET CET AND I
B MAND CET CET AND I
B MAND CET CET MAN I
B MAND CET CET MAN I
B MAND CET CET MAN I
B MAND CET CET CET AND I
B MAND CET CET CET AND I
B MAND CET CET CET AND I | EHOLI
HCF2
CTED
CUPIE
HFC2 | HIP2
C710 | ractioning to only menter U
restricted option to factor 2
or the pain O | Qdoptem engre
Qdoptem peptibles | 48 | -600
-600 | 0.00
-018 | 0.00 | 6.00
6.00 | 630
600 | | - | 22 | 20 | 2 2 | | FRANCISCO CONTRACTOR IN CONTRA | HPC2
PLANNIS | COME
Marries | | Manuald embrane is numerobrane receptoralism/M gradim/blar
III Salvanelidar Space skier | 4.71 | -636
-637
-538 | 0.M
0.M | 0.00 | 68
68 | 680
680 | | | ** | 100
100 | n
* | | FRANCISCO COCA
FRANCISCO COCA
FRANCISCO COCA | PLUDHOL
TOPM
CLU
SCAP1
MARCI
CUSA
USPA
GODI
SDCI | 100 | pinkers hand up and the SEP deman containing to
be subming growth for to how belond
on the containing addition 1. | Estantián type ster | 427 | -0.00
-0.00
-0.00 | -011
-016
-010 | 0.00 | 68
68 | 600
600
600 | | 2 | = | 100
97
100 | | | PROCEEDIDAS | CETA | MADE
MADE
GITA
UNITS | cen her can't engan philana I phosphological disent transmissing 1 phosphological disent transmissing 1 (EX compare related proteins 1 (EX) compare related proteins 2 equiples and the STEE A dates that per related to the STEE A dates that per related proteins to respect and to respect and to the STEE A dates that per related proteins that the STEE A dates to S | Estantido (que moye
Quiplem alter
Manadiminas a sonaniras resolutario adoresi con | 4.0 | -0.00
-0.00
-0.00 | -010
-047
034
036 | 0.00
0.00
0.00 | 620
620 | 020
024
020 | | N
U | = | 20 | * | | PRINCES COMP | 1000
1000 | 1002 | opins with 2
opins of | Graphon after
Manustranium after | 4.0 | -6.00
-6.00 | -029
0.00
-031 | 0.00 | 600 | 600
643 | | | = | 20 | n
n | | FRANCISCO ON 1
FRANCISCO CO VIDA
FRANCISCO ON A
FRANCISCO VIDA | 193841
1938 | 75 MG
8152
PT GB82
E38 | ld gering me plur represed on myris doels. 1
Earth Mired syndrome 2 | Manual tentrare a remembrare recepto
Optoplare silver | 4.00 | -632
301 | 1.80 | 0.00 | 600 | 0.00 | 200 20 | | = | 20 | - 1 | | FRANCISCOUNTS
FRANCISCOUNTS | E38
(291) | E2H
E2H | produpt and indiversely for 3
in the leater 1 bette
CDM reclassion | Hamatil entrare grain capid exoptyrologianth IS, OF Estavelide Space split se camety, continues
Hamatil entrare site: | 4.00 | -630
-630 | 1.00
1.00
0.00 | 0.00 | 6.00
6.00 | 620
620 | | | * | 20 | : | | I MAND CERCIJ NO. 0
I MAND CERCIJ KOMA
I MAND CERCIJ KOM I
I MAND CERCIJ KOM | CFF
IM RE | COME
PRAIS
COP
ADMINIS
PALS | COM relevale for of ally and direct place 3 complement factor proper de althorism of some compled or coptor K3 file temper like 3 | Plantablemisse prater capiel ecept to a peri
Estate lider lipace aller
Plantablemisse aller | 4.20
4.21
4.31 | -636
-636 | 1.00
-0.01
0.00 | 0.00 | 680
680 | 620
620
620 | | 100 | | 20
20 | - | | HAND CERCIT MATE
HAND CERCIT MATE
HAND CERCIT MATE
HAND CERCIT MATE | PLACE STATE | MES
ARRESTA
MA | file tangen like 2
apalipapar bet off million editing e sayone catalytis sake
interferon engals tony factor is | Security of the th | 4.00 | -6.00
-6.00
-6.20 | 0.86
-025
0.86
0.86 | 0.00 | 640
640 | 620
620 | | 20 | = | 20
20 | a . | | PRODUCE CLICATY | MEPTE
NA | WEFFE
MECTED | | Ole aler | 4.00
4.00
4.00 | -639
-539
-638 | 0.75
0.75
-0.18 | 0.00 | 50
50 | 600
600
603 | | 100 | = | 100
71 | : | | PRINCESCULUS PRINC | ILM2 | UUR2
NAME | to the last process of the receptor ID to pain its opening population, providing to the feeting to expert or schools alpha 1 principles. | Planation american respin | 42 | -622
-628 | 0.88
-018 | 0.00 | | 600
607 | | 3 4 | = | 20 | = | | | INVESTIGE. | ESHAS
MARK
MARK | | Rematt entrare in unentrare reception bedeto beneficio
Estrarelián figure siler 003-20, 08.403-02
Estrarelián figure siler | 4.37
4.86
4.38 | -630
-630
-636 | -017
0.85
0.80 | 0.00 | 620
630 | 600
600 | | e e | 20 | 200 | : | | I MICCECU AND
I MICCECU AND | BADI
BADI
HE | ENAN
BADS
HRE | joining chain of multiments by A. and by M.
SMAP out his og Breef complex schans 20
lid les cell leates the recognise D1.
he raids I, EC12 in less other protein. | Estraetide (pare ster
Optoplan ster
Parmatteniane anameniane recepto | 6.80
6.80
6.71 | -839
-830 | -CEE
C.SE
C.SE | 0.00
0.00
0.00 | 68
68 | 600
600 | | - | = | 100
100 | | | HANGED CHANA | COM IS
LANCO | CDM | Learning Control of the t | Optoplasm saler
Plasma Michaele a remembrane receptio
Marinea brans dythorony sider | 4.0 | -636
-636 | -CIN
0.33 | 0.00 | 00
00 | 500
500 | | 2 | 30 | 200 | 28 | | FRANCISCOMOS
FRANCISCOMOS
FRANCISCOMOS | COSS
LMCD
COSS
STOOL
SILE
MLX
1138M
TIME
2138A
PROPEZ
TOSS
TOSS
TOSS
TOSS
TOSS
TOSS
TOSS
TOS | EDER
EDITE | CDM release
optain 11
Hitzant-program to landy brokenings | Manual desirane ster
Manual desirane transporter
Granton blown od methods | 4.00
4.00
4.00
4.00
4.00 | -0.00
-0.00
-0.00 | 0.46
0.85
0.87 | 0.00 | 6.00
6.00 | 620
620 | | M
M | = | 200
200
200 | | | I MICCE CLIMA | HER
HEREN | HLX
BARN | NI Olie bereden
Intelesion I receptor attagonici
Infilia constant | Males tensphoregider
Establisher Spice ophics | 48 | -646
-646 | -007
1.31
0.48 | | 00
00 | 661
660 | : : | | = | 20 | 1
2 | | HANDGE CHESCH | E13KA
HIMP2 | ETWA
HIPPE | Interlegio II e ceptur calcult alpha
Fibrichiety medi Schur Heling protein I | Manual entrare a summirare recepto que tello, 85075.3
Extrarelidor Space silver | 4.0
4.0
4.0
4.0 | 187 | 1.38 | 0.00
0.00
0.00 | 6.00
6.00 | 000
000
000
000 | 300 30
0 60 | 2 | = | | 2 2 | | HAND GE CLI NG 1
HAND GE CLI NG 1 | 100
1000
1000
1000 | 182
182
1981
1984
1984
1984
1972 | tal the receptor 2
thrombospord to 5
semaphorto 26 (tale Million Hage nid and group) | Manual Indiane alumentum recepts CM 37 (1 pd
I stransfilm type alumentum recepts | 411 | -636
-636
-636 | 0.%
0.6
1.62
1.69 | 0.00
0.00 | 6.00
6.00
6.00 | 620
620 | | 100 | = | 20
20
20 | | | HAND GE CHANGE
HAND GE CHANGE | MACC
JORG | EARD
IDF2 | EACS, menter Mitanage or landy
tradition to the protein 2 | Optophen phesphelane
Optophen mayone
Marine bank dythology delar | 48 | -636
-637
-647 | -033 | 0.00 | 500 | 600
600 | | 2 | = | 200 | - | | FRANCISCO CALORO
FRANCISCO CALORO | MACES
MACES
MACES | mer. | to be force, or made to or factor & | Optoplasm after
Mailma transdythologyaldar |
4.60
4.00
2.5
4.00
4.00
4.00
4.00
4.00
4.00
4.00
4. | -2.09 | 1.00
1.00 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 620
620
620
620 | 0 0
0 0 | 76
60
100 | 100 | 200
200 | | | FRANCISCO CA SAFE
FRANCISCO CA SAFE
FRANCISCO CA SAFE | PUME
PUME | PENEL
PENEL
PRINCE | nereted and transmershame 1
Interferon televid transmershame posteriol
protein planned; also described and described | Estrandidor Space other
Mannatul enforce other
Obseinen other | 410 | -676
-661
281 | -017
-018
1.30 | 1.0 | 6.00
6.00 | 681
680
680 | 20 20 | 2 | 100 | 20 | | | FREE CECH STATE | MILES
PORTA | PERMIT MERCED POINTS AND A SECOND SEC | Is the first induced it assumed a separate in it. proteing being descripted upon diving basedone and it and bandaging the bestinate for frequencially its respect to the frequencially its respect to the frequencially in respect to the frequencially in respect to the frequencial in the frequency of | Hamatimirae aler
Hamatimirae assembrerospis MI | 40 | -6.00
-6.00 | 0.00 | 0.00
0.00
0.00
0.00
0.00 | 600
600 | 628
660 | : : | | 32
32
32
33 | 20 | 2
2
2 | | HANGE CLARK | EHCH
LIORES | LHORS. | ractionality to only member 8
by one MMM Challes partner the 2 | Other major | 48 | -538
-538
-639 | -648
1.80 | 0.00 | 680 | 620
620 | | 27
80
180 | 100 | 200 | | | HANGED CARRO | MATERIAL STATES OF THE | THOMPS 1.
DOMES
COMM | private | Optoplasm silver | 4.0 | -08
-08
-08 | 1.00 | 0.00
0.00
0.00
0.00 | 6.00
6.00
6.00 | 600
600
600
600 | | | - | 20 | - | | HANDERSON T | ET SA
LATES | 873.4 | toppend and frame igned is 14
in get and cappens the 2 | Manual Manual politica | 4.3 | -639
-639
-630
-640 | 0.72
0.87
0.78
-1.02 | 0.00 | 600
600 | 600
603 | | 300 | = | 20
20
20 | | | HAND CODE CO. SEC.4 | MATE
MINER
MATE
HORE
MARE
CINA | EATE
MICH
GETIDI
HORE | and recorded the company and the TLC
in gentumer suppression time as 3
ray about or of the problem in great on ELT
grouply in these trademain containing 1
for missing and only a spreaded homeowher
to see the could be ground become less
to see the could be ground become less
to see the could be ground become less
to see the could be ground become less
1. COMB continued. | terapanan atau
Labandahir Spane mayan
Malina kana diploring dalar | 4.0
4.7
4.7
4.3
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0 | -6.06
-6.26
-6.31 | -614 | 0.0
0.0
0.0
0.0
0.0 | 68
68 | 663
665
661
666
666 | : : | 100 | 100 | 20 | | | PRICEE CO. CO.S. | MARC.
CERA
HRIEN | EARES
COMA
HREN | | Familiar Spice siler
Plantablembase siler
Other siler | 4.00
4.00
4.31 | -628
-628
-628
237
-639 | -130
-531 | 0.00 | 600
600 | 0.00 | 33 | | 320 | *** | - | | FRANCISCO NO. | HARMAN
NA.
NA.CHAT
H ISMAPS
MISLAS
B ISMAPS
TOPAMOS
COA. | NOW
MEMPS
MINAS | | Manual Ambrasa trasporte
Optoplana literae | 4.00 | -628
-628
-548 | 0.44
-610
0.41 | 0.00 | 6.00
6.00 | 601
601 | | a
a | = | 200 | - | | HEREGICANA
HEREGICANA | MINERS
BERNITY
TOPANER | 119441 | salate context family 7 member 7
phospholased blieff shown a deptar protein 1
membrane spreading of dismalase A3.
USP disMobile best also 1, to the conjugate contexts
for appears III
spikillandownia see | Please ster al rely bendament no
a Optopion entyre
Please ster | 4.35
4.37
4.30
4.30
4.30
4.30
4.37
4.37
4.37
4.30
4.30
4.30
4.30
4.30
4.30
4.30
4.30 | -100
-107
-401 | 1.01
-0.11
0.46 | 0.00 | 680
680 | 6.00
6.03
6.00 | : : | 1 m
G | - | 20 | n | | HAROGECOMA
HAROGECOMA | CDA
PCHENO
THROUGH | CEM. | | Naina mojne jojiške drantu e ti
Rama Menicon i namenicon recepto | 4.00 | -3.28
-6.27
-2.88 | 0.00
0.00 | 0.00 | 6.00
6.00 | 628
628
620 | | 100
100 | ** | 20
20
20 | | | I MICCECAGES | PCHEST
THREFT RC
ECTES
HIS
CRAC
NA
29 MA | CONTRACTOR OF O | le militare II | Manual Membrane sther
Graphen inner | 407 | -238
-838
-338 | 0.00
0.02
0.03 | 0.00
0.00
0.00
0.00 | 6.00
6.00
6.00 | 620
620 | | 100 | = | 20 | | | HANGERCH W/O | NA
SP MA | 20184 | in the presentation | Naina ster | 410 | 638
-638 | -081
0.86 | 0.00 | 68
68 | 000 | | | 30 | 20 | * | | HANDERSON TO 1
HANDERSON TO 1 | CICLE
EMPT
MARK
CTOL | CELS
MP7
MP1
MAS | rether bridge protein 7
MX is not by parts done to contact thing 2 | Optoplace other
Optoplace other | 45
45
46
46
46
46 | -286 | -011
0.88 | 0.00
0.00
0.00
0.00 | 620
620 | CAR | | : | 30 | 20
20 | | | PARCECCATAL
PARCECCATAL | CAR
ERION 1 | CTE
EXECUT
EXECUT | orderprinter maked in designed in
orderprint
IN Electron budge protection | Optoplasm profities
Optoplasm after | 40 | -05
-05
-03
-03
-03 | - G48
- G48
- G48 | 0.00 | 6.00
6.00 | 620
620
620
620 | : : | 2 | - | 20
20
20 | * | | FREEDOM DE LA FR | NEGAN
NEGAN
NEGAN | NEW
NEW
KRI | Obto the industry the force of the control c | Optoplasm saler
Optoplasm saler
Other saler | 4.11
4.18
4.0 | -636
-636
-735 | -610
0.48 | 0.00 | 680
680 | | | | = | 200 | m
m
n | | HANGED CORNER
HANGED CORNER
HANGED CORNER | KELL
MALL
MALL
MALL
FRANCY | NUMBER
MARCE
MARCE
MARCE | registrate of custom of the est of one stigen
ESM-handing most protein C
pro-plate in land, protein | Maine atter
Maine atter
Extraorities (pase sphittse | 4.0
4.0
4.0
4.0
4.0 | -6.00 | -CEE | 0.00
0.00
0.00
0.00
0.00 | 620
620 | 620
620
620 | | | = = | 20 | n
m | | I MICCE CA STATE | CERT. | CCM | pi se le facure
CC matifichemistrer sue plur 1
maris Book (Ferna) | Tutrachiar tipus opticus
Manual minus protei capiel mops
Nales trachias capiel mops | 4.0 | -636
-739
-633 | -081
-014 | 1.0 | - | 000
004 | l : : | × | 30 | 200 | | | HAROGECTANES | I MY. 1 | METS.
METS. | spine assessment by some intercentation factor, many dataset for the control of t | Optoplasm innane volubrosis, 700-90 q e
Marinas brons spilotore | 4.00 | -630
-340 | 0.00
0.00 | 0.00 | 640
640 | 620
620 | | 120
44
20 | = | 20
20 | | | NAME OF CANCEL
SHIP OF CANCEL
SHIP OF CANCEL | O'B
HEFE | HPLE
HEPS
CHEE
HCPSC | faction is phaghaban 1
optatrone in 20 between
material optach factor X proving me | -graptom phophatose
Optoplasm enzyme
Optoplasm sther | 4.00
4.00
4.00 | -640
-640
-640
-640 | 0.33
0.35
0.36
-Ca10 | 0.00 | 6.00
6.00 | 0.00
0.00
0.00 | | 20 | 30
30
30
30 | 20
20
20 | | | I MICCECTAGE
I MICCECTAGE
I MICCECTAGE | ADE
ADEP
HARESE | MEPE
MEN
AMPE
MAKEURE
PROC | ophalorom is 200 beta data
set adopt i ophalo data 'E' pandig me
phappi bija and D'andig member d.
and an antiopa phase, member se
family at the appearse and a tip 200 member C
propressional propression and a tip 200 member C
propressional propressional pro | Estrantidorique mojne
Plematicmiane pojitime (pojitim-197 alphace
Other silver | 4.07
4.00
4.00 | -6.06
-6.06
-2.09
-6.07 | 1.00 | 0.00
0.00
0.00 | 680
680 | 620
620
620 | : : | m.
100 | = | 200 | : | | HANGED CORRECT
HANGED CORRECT
HANGED CORRECT | PROC
MARIS
SORE | NAME. | preprincipalité EASS, manifer MA occupent limity serum deprise bonnespoisse | Extraordider Space other
Optoplasm extraor
Plasma Miller other | 4.8 | -620 | -C38
-133 | 0.00 | 6.00
6.00 | 000 | | 38
3 | 30 | 20 | : | | I MICCECTORY | AMERIA
MICI | MINOTE
MINO
PRANE
CUCA
CLECK | abhydiches donate contenting 10.
MEC protocologyers, to mot placed regulator
al abid activating finite record. | Tatanida (Ipra
Malas dier
Manadimpe gran oorden oorder | 4.00
4.70
4.77
4.00
4.73
4.00
4.70
4.00 | -038
-030
-030 | -038
0.00 | 0.00 | | 620
620 | l : : | 27
M
100 | 1 | - | | | HAROGECIA MOS | CHES | CHES | skippintusedumin oseking Th
MBC protecongene, te mot place i regulator
place in achieving in the receptor
C-C-C mat fuhernative by and X
ships the late of the schemes C | Extraorbier Space spake or
Hernatt entrare booksend | 48 | -6.07
-6.08 | 0.00 | 0.00 | 680
680 | 000
084 | | 100 | = | 20 | | | PROCEEDINGS
PROCEEDINGS | 200
2004
2014 | 2003
FF (BAM) | itse finger Ir ion ländig homenkon 2
In tig rinnskusti si ple M
CDM molenske | Racina blank place resplain Racina Manhara a samenhara respla Racina Manhara a samenhara resplain | 4.8
4.8
4.9
4.9
4.9
4.9
4.9 | -146
-146
-646
-747 | -630
-637 | 0.00
0.00
0.00 | 6.00
6.00 | 620
620
620 | | 100 | = | 200
200
200 | | | HANGED COMM | OTAL
MA
PPE
GRES | | | Macrael embrare - graten coapled e-cept
Mail na - stier | 4.37 | -527
-630
-633
-648 | -631
-633
-626
6,87 | 0.00
0.00
0.00 | 600
600 | 600
600
681
688 | : : | | - | 20 | - | | Telescond Tele | CHES
CHES
CHES | CIRCIA | Coming to publish recognism 1 CEEC Triggs or publish in AMI gas and rist executing proteins 6. CEES recolonisms recolon | Same below of the control con | 4.07 | -5.00 | -887
1.08 | 0.00 | 6.00
6.00 | 000 | 0 33 | | 30 | 100
100 | | | HANGED CLYBER
HANGED CLYBER
HANGED CLYBER | CTM
THE
JUP
MERCI
MERCIA | CTON
THREE
JUP
HERES | orde panell
Id bles panelliks are 1
Junit orphingistes | Qioplan problem
Qioplan binase
Planna
Mirene sher | 411 | -640
-640 | -040
0.00 | 0.00 | 680
680 | 500
500 | | 11
12 | = | 14
200
200 | 1 | | PRICEEDINA
PRICEEDINA | MARIE | HERES
COLUMN/COLUM
LANCON | junit orphingh in
regit to ngalatur of mail orangen species
Ell golgin All'andy member A
le universitàre per tocolo hing 26 | Optoplace silver
Optoplace silver | 4.0 | -0.00
241 | 0.81
1.87 | | 680
680 | 600
600 | | | - | 200 | - | | | MES | unds. | - and the same of | | 4.0 | -6.0 | -cm | 1.0 | | 520 | | = | - | 20 | | | B MARIO CEDICEZ MARIO
B MARIO CEDICEZ MARIO
B MARIO CEDICEZ MARIO
B MARIO CEDICEZ MARIA | DOMES
DOMES
BROWN | 20100 six fage processes
DBAS DBAS find y 074 o 3
BCDCS UD+ 0500c beated betw-1,0 the only glasses may | Cities sites
Manual tenderum misyen
trus Optophon misyen
I. Malina kuna dybinregulatur | 420 | 187
-638
-638 | -182
0.80
0.32 | 0.00
0.00 | 630
630 | 600
600
600
600 | | 0 | - | = | 200
200
200
211 | 2
2 | |--|--|---|---|---|--|--|---|----------------------|--------------------------|----------|-----|-----------------|----------------|--------------------------|---------------| | | ERRET
MAPA
MATTER
COLD | MOST in a handen treen to a tracked opport protects MOSTAL meteors the git of ord of the restriction angulatur CD29 CD29 review in | 1 Maine transiplioning data
Optigion after
Manual misure in commisure reveals before to | 4.0 |
-010
-010 | 1.31
0.86
1.39 | 0.00 | 68
68 | 660 | | 37 | 100 | - | 300 | : | | B MANAGER CLY 700.5
B MANAGER CLY 700.6
B MANAGER CLY 700.6
B MANAGER CLY 700.6 | ALCEL
THE | MACIC: MACIC, pig I accels to discretory primary linear
ALIC: ALICCHAMBER like
THD I benderockite | Salambiar (pare mayor
Qiopiam alter
Hamati mirare in annerirare recepto | 4.80
F.33 | -6.28
-6.27 | 6.73
-634 | 0.00 | 500 | 600 | 300 | | | 100 | 200 | - | | HAND CODE COVERAGE | COMELS
HAROURI | CORD S CORD make the forming marrier to | Manual entrare after 1 Manual entrare after | 420 | -630
-630 | 0.M
0.07 | 0.00
0.00
0.00 | 500 | 600
600 | | | 71 00 | = | 20 | 27 | | I MICCECUCATA | F#1 | COTA size it mayor is black my at fairing complex. It make the
MISS perfects it.
SPERS splitting of one-Splitting balance plan it.
EASTER SPERS, member of SEAS acceptant family. | Gisplan kaspate
Hamati enirare protei mapiel eceptimal piopiete, figa | 46 | 507
-130
-327 | -001
-001
-001 | 1.0 | LE CO | 600
600
610 | | 37 | 27 | = | ** | 2 2 | | HANGED COLUMN
HANGED COLUMN
HANGED COLUMN | AGUS
SPESS | EA725 DAY 25, member of EAA servage or family
ANDLY amount to A7
20/725 this flagor protein XXII
ADDRY Artistration of Manualis 2
200425 compulsation 68 | Remail minus ster
Nation ster | 4.20 | -828
-530 | 0.38
-C85 | 0.00 | 6.00
6.00 | 010
010
000
000 | | | * | 22 | 200 | | | | MAR SEC
ALIZEL
THE
CORELLE
HA OURS
FIFT
SIME
MARS
MARS
MARS
MARS
MARS
MARS
MARS
MARS | AMERICAN AND ADDRESS OF THE PARTY NAMED IN COLUMN 1 | March March San | 4.0 | -0.76
-2.56
2.64 | 0.00 | 12 | 68
68 | | 200 | | : | 100 | 200 | | | PROCEEDINGS
PROCEEDINGS | TOUR DESCRIPTION | 100 lamaisinn 2 | Extraction type after
Extraction type temporer
Ottober | 4.27
4.88 | -6.22
-6.09
-6.08 | 1.62
-607
-636 | 0.00 | 648
648 | 620
628
620 | | | 4 | - | 200 | - | | HANDSESSAFE
HANDSESSAFE | CORGO
CORGO
CORGO
FCAR
LLANC | CDEED code del terantymenter f | Remattenisse ster
Remattenisse ster | 438 | -8.00
-6.00
-6.00 | 0.M
1.M | 0.00 | 680 | 600 | | | | 120 | 300
300 | - | | PRODUCTOR OF THE | LEADER . | CONTRO CONTRO make sub- PORA 11/0964 be sharped or from any dealed the race plan SE 11/0965 be sharped or move any dealed the race plan SE 11/0965 be sharped or move any dealed the race plan SE 11/0965 be sharped or move any dealed the race plan SE 11/0965 be sharped from calculated alpha S | Planationism ster
Planationism ster | 43
43
48 | -635
-638
-635 | 2.06
0.06
-028 | 1.0 | - | 600
600
601 | | | - | = | 20 | | | HANGED CLARA?
HANGED CLARA? | LAMA PROJ. PRICE TO PRICE TO PRICE P | MACLINE femiglate subset sight 2 MACLINE femiglate sequence destacts 211 semiler 8 MACLINE femiglate femiglate senior 0 MACLINE parel last 5 | Color siler
Naina siler | 4B
4B
4B | -636
-646 | -011
0.0
-011
0.3 | 0.00 | 648
648 | 600
600 | | : | • | = | 200 | | | FRANCISCOPANIA
FRANCISCOPANIA
FRANCISCOPANIA | HACKER
STORE | MEACHES major bear competibility complex, class 8, DK beta 5 SSEAL SSEcurity and blocking protected. | Maine transipliorregister Memostratizare assumetrare recepts apatrumati Optophon siter | 4.00 | -6.28
-6.38
-2.80 | -018 | 1.00 | 680
680 | 500 | | | | 12 | 200
200 | | | FRANCISCOPINGS
FRANCISCOPINGS | MAPS
FARMS
10% | TURN MAN S | Planati mirase miyre Planati mirase a summirase recepto Naina trans debormator | 4.00 | -0.00
-0.00
-0.00 | 1.0 | 0.00 | 640
640 | 620
620 | : | : | 100 | = | 20 | : | | I MICCECHOLS | HEADQA1
OMCA | TCM: La man yakes factor d. HA-CQUC: imager labal comparts filling complex, size as 0,000 a light BESS: BEST payed and an interest of split 1. SEPRES: complete fill imministers of split 1. SEPRES: complete fill imministers of split 1. | 1 Manual Ambane a commitme recepto
Optoplare sergine | 411 | -628
-639 | 0.82
0.88
0.87 | 0.00 | - | 650
684 | | | E. N. | 20 | 200 | | | I MANICOLECTO TALO
I MANICOLECTO TALO | 100 PROA.1
13 API.3 | 19 PPSG corpin South America 1
CMAS corpinment Chamopian 1
199611 managing an operand 1 | Extraction Space other
Pleasable micros grants copied ecops | 42
42
42 | -236
-632
-637
-638 | -0.01
-0.01
-0.08
-0.11 | 1.0 | 640 | 600
600
607
601 | | | | = | 200 | | | I MANIE COM CON TORA
I MANIE COM CON TORA | PMP
CHO | PAP prospect CD complement factor D NAMES. Family of the opening distribution A. | Extraolider Space other
Extraolider Space positions | 4.M
4.M | -6.0
-6.0 | -017
-010
0.86 | 0.00 | = | 600
600 | | | | - | 200 | - | | HAND COLOR NO. 1 | RCIII
NPA | MCD2 phaphalpaseCpress 2 | Olive sher
Oliveism exigne
Manua Mentrane phophatase | 4.00 | -530
-636 | 1.39 | 0.00 | 500 | 600 | | | 100 | = | 200 | | | FRANCISCON INCO
FRANCISCON INCO
FRANCISCON INCO | HACKEN
BODDS
CHG | MA-COSTS major facts compactifiely complex, do a 8 , DR beta 1
9-COSTS SHI demail counts being 38
COSTS on Anniel Costs and Co | Manual findrate a committee recepto
Optoplace after
Optoplace ecopie | 4.77
4.77 | -6.22 | 0.00
0.00
-0.04 | 0.00 | | 620
620 | | | | | 20 | n
n | | HAND COD COD COD COD COD COD COD COD COD CO | HEACHA
HEACHA | PORMA/PORMA (Frequented by Early Prepare to the MAYOR | Planta Memirane di comemirane recepto della
Marina bana di bone di bone quidare
Planta Memirane di comemirane recepto | 480 | -6.01
-6.22
-1.01 | -081
0.38
0.39 | 0.00 | 648
648 | 628
628 | | : | : | = | 97
200
97 | e
e | | HANGGEGEGEGE
HANGGEGEGEGE
HANGGEGEGEGE | HEACHA
HEACHA
LITT. | MEA-CREA major inducempe thirty complex, sie at 1, CRE of pla
MEA-CREA major inducempe thirty complex, sie at 1, CRE of plan
LETS in along to specific transcript S. | Planationizae a commisse recepto Planationizae a commisse recepto Planationizae a commisse recepto | 4.77
4.02
4.00 | -1.68
-1.69
-4.86
-4.85 | 0.30
0.35
0.32
-0.10 | 0.00
0.00
0.00 | 680
680 | 625
627
638 | | | - | 12
12
13 | 20 | | | HANDERS SAN | EEC
IEWA | ADDRESS adhesion of paste los expeller expeller ESS ESSES Immunophila Interpresentated ESSES Immunophila Interpresentated 4 | Manual territorie siber Manual territorie protein copied ecopie totale fair Tipes siber Totale fair Tipes siber | 42 | -635
-635
-338 | 0.33
-083
-083 | 0.00
0.00 | | 627
660
660 | : | | - | = | 200 | | | PROCEEDS 1993
PROCEEDS 1993
PROCEEDS 1995
PROCEEDS 1995
PROCEEDS 1995
PROCEEDS 1995 | HEVO-M
HEVO-N7 | EXVENT Immuniphed to be take our skiller of | Places Maria ser yearder coupled analysis I state faller (game of their I state faller (game of their I state faller (game of their I state faller of their I state faller (game | 4.26 | -730
-645
-638 | -081
-081
-081 | 0.00 | 6.00
6.00 | 620 | | | * | 120 | 300
300 | | | FRANCOSCO SMA | HLV3-67
HLV3-67 | MEVS-67 Immunglobal to lamb be subble 1-67 | Estantido Spane other
Estantido Spane other
upe Other other | 1001 | -60
-639 | -049 | | 5.00
5.00 | 600
600 | | : | 27 | = | 20 | - | | S MAND CERCOT 188-1
S MAND CERCOT 188-9
S MAND CERCOT 188-9
S MAND CERCOT 188-0 | HEVY-M
HEVY-M
HEVY-M | EXY-E tomos qui ai tri mide seratio 2 di
EXY-E tomos qui ai tri mide seratio 2 di
EXY-E tomos qui ai tri mide seratio 2 di
EXY-E tomos qui ai tri mide seratio 2 di | | 68
68
96
96 | -6.8
-6.8
-5.80* | -011
-011 | 120 | 600
600 | 660
660 | : | : | 27 | 2 | 20 | | | PROCESS SALE | HEAD-IN | EEV2-23 Immunopical televalue sarticle 2-28 EEV2-21 Immunopical televalue sociale sarticle 2-28 EEV2-24 Immunopical televalue sarticle 2-28 EEV2-24 Immunopical televalue sarticle 2-24 | Chier sther
Extraorbier Space sther
Extraorbier Space sther | 4.00 | 100°
100
400
400 | -040
-047
-048 | 1.0 | 620
620 | 620
620 | | | 34
34 | 20 | 20 | | | HANDSON NAME OF THE PARTY TH | MEV2-TI
NA | | Extraction Space other
Extraction Space other | 4.00
4.00 | -630
-638
-649
-730 | -628
-687
-626 | 1.0 | 68
68 | 620
620 | | | 2 | = | 20 | - 1 | | HANDSDOD SOT | 18.00 | HEAVE 1. Immunospirala Initi milak variable 9-4. HEACS Immunospirala Initi milak constant 3. HEACS Immunospirala Initi milak constant 1 (Inter-Circ market
HEACS Immunospirala Initi milak constant 1 (Inter-Circ market
HEACS Immunospirala Initi milak constant si piata 2 (ACS market
HEACS Immunospirala Initi meny constant si piata 2 (ACS market
HEACS Immunospirala Initi meny constant si piata 2 (ACS market
HEACS Immunospirala Initi meny constant si piata 2 (ACS market
HEACS Immunospirala Initi meny constant si piata 2 (ACS market
HEACS IMMUNOSPIRALA INITIALA | Other ster
Extraorities Space other | 422 | -028
-628
-629 | -618
-629
-649 | 0.00 | 600 | 620
620 | | | | | 200 | | | HANDGE CO. 1874 HANDGE CO. 1874 HANDGE CO. 1874 HANDGE CO. 1874 | 104E | EME Immerglold Inherry costs of alpha 2 (A2n mark
EME Immerglold Inherry costs of genma 2 (E2n mark | m) I strantider Span sther
de Manuald enfeam poptibus | 40 | -838
-835 | -0.71
-0.67 | 0.00
0.00
0.00 | 68 | 600 | | : | 11 | = | 200 | : | | HANGER CO. 1804
HANGER CO. 1804
HANGER CO. 1807 | 18 No.1 1862 1862 1862 1862 1862 1862 1862 186 | 1995 Internacy field in home process of a global Tythin mark
1995 Internacy field in home process of a general 2 (32 or on
1995 Internacy field in home process of a global
1995 Internacy field in home process of general 2 (32 or on
1995 Internacy field in home process of general 2 (32 or on
1995 Internacy field in home process of a general 2 (32 or on
1996 Internacy field in home
process of a general 2 (32 or on
1996 Internacy field in home process of a general 2 (32 or on
1996 Internacy field in home process of a general 2 or on
1996 Internacy field in home process of a general 2 or on
1996 Internacy field in home process of a general 2 or on
1996 Internacy field in home process of a general 2 or on
1996 Internacy field in home process of a general 2 or on
1996 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
1997 Internacy field in home process of a general 2 or on
19 | The state of s | 6.00
6.00 | -130
-130
-648 | -041
-041
0.20 | 1.00
1.00 | 5.00
5.00
6.00 | 666
667 | : | | 2 | = | 20 | 3 | | HANGER TO 1867
HANGER TO 1864
HANGER TO 1864
HANGER TO 1864 | 1040
1040
1009-1 | EPO Immungitud in heavy constant distra
EPOH Immungitud in heavy constant or us
EPOH Immungitud in heavy us raid or 1
EPOH Immungitud in heavy us raid or 2 | Extraction Space after
Pleasable misrae a remembrae recepts
Other after | 4.8
4.3
4.8
480* | -640.
-630.
-630. | 0.33
-028
-024
-034 | 120 | 680
680 | 629
621
620 | | | | = | 20
20
20 | 10
M | | NAME COLOUR SHIP
NAME COLOUR SHIP
NAME COLOUR SHIP
NAME COLOUR SHIP
NAME COLOUR SHIP
NAME COLOUR SHIP | 89673-1
89673-1 | 1994 Immunigital history contains one 1994 Immunigital history contains one 1994 Immunigital history or risk +0-1 1994 Immunigital history or risk +0-2 1994 Immunigital history or risk +0-2 1994 Immunigital history or risk +0-3 1994 Immunigital history or risk +0-7 | Other after
Other after
Extraor fider Space after | 1801 | -0.00
40'00, 33
-0.00 | -625
-625 | 1.00 | 5.00
5.00 | 600
600 | | | : | 10
10 | 500
500 | | | FRANCOZEGO SKO | MA
MMV911
MMV918 | EPON-13. Immungicial Inhany or takin 9-13 (prov) or oday
EPON-13. Immungicial Inhany or takin 9-23. | per Other siler | 48 | -222
-620
-646 | -687 | 1.0 | 680
680 | 600
600 | | : | 21
27
22 | - | 7%
300
300 | 2 2 | | B MANDO CET COT SHE B
B MANDO CET COT SHE S
B MANDO CET COT SHE S | EBN/318
EBN/921 | 1906-11. Introducing to let to know your risks of 11 (go only or other 1906-10). Introducing to let to know your risks of 20 (1906-10). Introducing to let to know your risks of 20 (1906-10). Introducing the let to know your risks of 21 (1906-10). Introducing the let to know your risks of 21 (1906-10). Introducing the let to know your risks of 22 (1906-10). | Other aller | 4.80 | -6.3E
-6.0E | -684
-628 | 0.00 | 6.00
6.00 | 000 | | | | = | 300
300 | | | HAND COD CO. SALS | NA
EDIVINES | EPOS CE Immangicial Inhany or tall + 2 CE | Estantido Spane diler | C 100 | -629
-646
-640 | -010
-011 | 1.0 | = | 000
000 | | : | | = | 20 | - 1 | | NAME OF CUT AND A PROPERTY OF A PARTY P | EDIVORS
EDIVORS | 1996-93 Immunopia kali tahunan ya riali a 9-39 1996-94 Immunopia kali tahunan ya riali a 9-30 1996-95 Immunopia kali tahunan ya riali a 9-30 1996-96 Immunopia kali tahunan ya riali a 9-30 1996-96 Immunopia kali tahunan ya riali a 9-30 1996-96 Immunopia kali tahunan ya riali a 9-30 | Chie siler
Chie siler | 48
48
48 | -6.28
-6.29
-6.27
-6.28 | -001
-081
-017
-018 | 0.00
0.00
0.00 | 648
648 | 620
620 | | | 3 | = | 20 | | | PRICE CONTRACTOR OF A | EDOVS CS
EDOVS CS | 1995. 40 Immunogia hai habany ur i tid a 2-36
1996. 40 Immunogia hai habany ur i tid a 2-36
1996. 40 Immunogia hai habany ur i tid a 2-36
1996. 41 Immunogia hai habany ur i tid a 2-36
1996. 41 Immunogia hai habany ur i tid a 2-31 | Other aller
Other aller | 43
1801
438 | -628
-628
-647 | -613
-613 | 0.00 | 500
500 | 020
020 | | | | 20 | 200 | | | S MANDO CEC CON 1984 9 S MANDO CEC CON 1983 2 S MANDO CEC CON 1984 9 S MANDO CEC CON 1984 9 S MANDO CEC CON 1984 7 S MANDO CEC CON 1984 7 S MANDO CEC CON 1987 9 S MANDO CEC CON 1987 9 | EDOVERS
CHES | EDAS 40 Immungitial Inhang or risk a 5-40 EDAS 40 Immungitial Inhang or risk a 5-40 CLECS ship by no of the channel 3 | Other after
Other after
Males brokered | 4.75
4.36
4.39 | -6.00
-6.00
-5.00 | -038
-033
-003 | 0.00
0.00
0.00 | | 600
600 | | : | | = | 20 | | | B MANDO CORT. ATT 9 B MANDO CORT. ATT 1 2 C | CHAR | CTATE characters premadiglate & constant/constant prign Asterdynamier A | Other after
Optophem after | 4.0.
2.07 | -6.29
23.8 | -028
1.86 | 0.00 | 640 | 600 | 200 | = | e u | 120 | 200 | 1 | | HAND COD COD COD I | HACPE.
ENVISE | CHPO COAT/whenev letting protein deta MACHEL major inhomorp their complex, do a E, OP lock 1 EXMS 50 Innova agin had to heavy so rold a 0 50 EXMS 50 Innova agin had to heavy so rold a 0 50 PEACHEL major laborance their complex, do a E, OR beta 1 | National base dysterrogistics
1. Plasma Ministrate disconnistrate recepto
8 strate fider Space other | 4.0 | -625
-625 | 0.33
0.34
-0.29 | 1.0 | 500
500 | 631
680
680 | | : | 27 | = | 200 | | | | HLA-CP/G | MACPEL study of listenance fields; complex, size 8, 10% and 12, 10 | Other siter i ju Other siter 2 Mematembrane a summirane recepto | 48 | -680
-680 | -044
0.38
-014 | 0.00 | 600
600 | 600
601
608 | | : | : | = | 20 | E. | | I MARIO CED CER 147% I MARIO CED CER 1464 I MARIO CED CER 147% I MARIO CED CER 147% I MARIO CED CER 1464 | HADORS
HADORS
HADORS
HADORS | NACO many barance fields consist a first Colors | Clie aler | 4.07 | -625
-626
-630 | -631
-633
-614 | 0.00 | 6.00
6.00 | 600 | | | | 2 | 200 | | | I MANGEMENT IN A STREET OF THE | MANUAL MA | HA-CE IN major listic comparticity complex, size 8 , CC) in the CE III of o | Optoplem majore Manual Ambrose a commitme recepto 7. Manual Ambrose a commitme recepto | 411 | -080
-630
-638 | -014
0.00
0.00 | 120 | 640
640 | 587
587
580
580 | | | 107
70 | - | 500
500 | | | HARCECON 1 | mw.c | | Extraorbior Space poptibles
Places to the contrast of cont | 4.72 | -629
-738 | -011
-021 | 0.00 | 600 | 600 | | | 27
42
82 | 120 | 300
300 | | | FREE CECCO CON T
FREE CECCO CON CON C | 100 VS -07
100 VS -08 | USBC be despited conserving state in the case plan AS
SERV-S to immunophis had to be pare somethin 5 of
SERV-S to immunophis had to be pare somethin 5 of
SERV-SS to immunophis had to be pare somethin 5 of
SERV-SS to immunophis had to be pare somethin 5 of | Clie der
Laborate Space der | 9 | -6.00
-6.00 | -643
-643 | 1.0 | 5.00
5.00 | 600
600 | : | | | = | 200 | - | | PROCEEDIAN
PROCEEDIAN
PROCEEDIAN | HEVE-SE
HEVE-SE
FLHENCE
HEACHIN | REDGE places band up dents continue CE | Other after
Other after
Optophon after | 4.0 | -6.00
-6.00
-6.30 | -018
-029
0.37 | 0.00 | 640
640 | 600
600
600 | | : | 2 2 | = | 20
20 | - | | HANGED CHEST
HANGED CHEST
HANGED CHEST | HEACHE
HEVS-40 | HEA-CHIES major inducating thirty complex, do a 1, Chit le to
1997-10 immunophilat into pp. sertable 2-40
1997-12 immunophilat into pp. sertable 3-40 | Planta Membrane in comembrane recepto
Extrace fider Space other
Other other | 4.8
1861
1861
4.8
4.8 | -6.00
-6.00
-6.00 | 1.00
-000
-001 | 0.00
0.00
0.00 | 648
648 | 620
620 | | | 10
2
27 | = | 20
20 | | | F MARIC CERCOL MARIA
F MARIC CERCOL AND 7 | HEVE-OLD | EEV-1 Immungistal into per verticle 1-0. | Chie dier | | -630
-630 | -641
-643 | 0.00 | | 600 | : | | 27 | = | 200 | - : | | HANGED CO. CO. C. | HERVE OF
HOSE
LYN | MINTY-27 Internating in but to be year our table 1-07 100 International instances between 1500 1500 International | Optophem transporter I condection
Optophem binase 630027, erbeid tells, de | 4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00 | -6.00
-6.00
-6.00
-6.00
2.84 | -626
-620
630
-627 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 600
600 | 600
600
600 | | | | = | 100
14
200
200 | | | HAND GER CET MEST | ETH
HELLS
PTD-EBIGLE
BCSM
EMM | TOP of the country to | Manual Ambanian Sampane clumb | 1.86 | 284
-142
-647 | 1.56 | 0.00 | 600 | 0.00 | 200 | 30 | - | - | 97 | | | PRODUCTE CT. TOP 3
PRODUCTE CT. TOP 3 | PRICE
DOMES | ETRES protectioner option PRIES protectioner option CEPELS speak growth fator receptor the S | Optoplasm minyme
Optoplasm bloase Cepadas atthator, ing
Other aller | 48 | -180 | 0.88
0.88 | 0.00 | 5.00
5.00 | 620
620
678 | | : | | = | 20 | 1 | | FRANCISCO CO MOTO
FRANCISCO CO MOTO
FRANCISCO CO MOTO | PARCE
O OPELS
ENAME
ORE
SELECTE
PARCE
ELVIDOR | TABLE 1 (Secretary
of Secretary Secr | Extraction Space engine Optoplace engine Places of missage other | 411 | -140
-140
-140 | -028
-038
1.30
-088 | 0.00 | 60
60 | 660 | | | | = | 20 | W U | | PROCEEDED NOT
PROCEEDED NOT
PROCEEDED TOTAL | MIND
MINDS | PERSON purious of creamping P. 20. 1 EEV 20.00. Immunosphilate in middle narrathin 100.00 | Planta blantrare binchared
Clier siter
Nation benefit being sider | 4.6
180*
4.10
4.10
4.10
4.10
4.10
4.10
4.17 | 100 | 1.30
-CAB
-CAB | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 6.00
6.00 | 600 | : | | 100
E | 20 | 200 | | | FRANCISCO CO NO V
FRANCISCO CO NO V
FRANCISCO CO COA | PER I | CREM COAT/inhance laiding protein lets SEAP SEA higher and CREstant log members protein phosphage and the laid of decidents containing 1 SEA Could decident log and 2 ADMS 29 ADMS reality population dental 23 | Plana Menhase after
Optoplasm after
Extraorible State code or | 411 | -0.05
-0.05
-0.05
-0.05 | -028
-037
0.89
0.61
0.80 | 1.0 | 6.00
6.00
6.00 | 660
660
660 | | | | - | 100
100
100
73 | | | I MICCECOLORS | MANAGE
SPG | DC DC contributing protein | Plantable militare projetime
Optoplant after | 2.00
2.00 | -8.80
3.08
-6.67 | 0.80
0.87
1.83 | 0.00 | 540
540 | 520
520
520 | 200 | 100 | 100 | - | 200
0
200 | | | I MANICOLD CON 753 3
I MANICOLD CON RECK | INC
EHMS | MC MC problemagere, more optically solve bloose EMMS in high texture landing protein 1 MCMS by droppe length and in coptical 2 COMEA COMEA not compared to the | Optopherm bloom tedenth, EC-C, je une
Optopherm sither | 1.00
2.07
4.00
4.22
4.31 | -650
221
-628 | 0.86 | 1.0 | 5.00
5.00 | | 200 | 100 | 100 | 100 | 100 | | | PROCEEDINGS | COMEGA | COMEA COMEs make alle
TERRI I just sed manang me on/byptophen benerang: | Manual Ambrase a nonembrase recepto
ma Optoplaco trans della completar | 42 | -00 | 1.00
0.07
-048 | 0.00 | 5.00
5.00 | 6A3
660 | | | | = | 93
90 | | | HAND CERCECTO | TREES. | THE TAKE leading time of TAKE STATE | Qiquiam binase
Estacelair Spice baspoter andester, melliquis | 410 | -2.98
-1.38
-6.00
-6.22 | -026
0.89
-032 | 0.00
0.00 | 6.00
6.00
6.00 | 633
680
688 | | | 122 | = | 200
97
88
200 | | | FRANCISCO SHI N
FRANCISCO SHI N
FRANCISCO SHI N | O ME EXAMP ROS | | Other after
Nation time dylanogalour | 4.11
4.25
4.21
4.05
4.37 | -6.22
-5.00
-5.00 | 1.68
1.69
-01h | 1.0 | 600
600 | 600
600
600
600 | : | | 100 | 20 | 20 | - 1 | | HAND CONTRACTOR OF THE T | FOR MED 1 | MEST MEST MEST MEST 1 | Other siber
Plannahl milaser is numericase recepto
Optoplasm siber | 419 | -0.00 | 1.61 | 1.0 | 600 | 600 | | : | 27
120
26 | = | 200 | 71
0
22 | | HANGED COMMAN | 1000178
10077 | 1997 Inch Regreshis for India protein 7 | Other other
Extraorities Space Semporter
Other other | 4.00
1.00
1.00
1.00* | -038
-638
5-88* | 6.27
-624
-648 | 0.00
0.00
0.00 | 648
648 | 621
621 | | | | 12
12 | 200 | - | | I MICCECCION 1
I MICCECCION 1 | MERFE
BARA
BARA
BRANG
BEPRE
GPT
SEGRA
GPT
BRETE
BETER
CORRECT | NOTE HOOK landing protein I | Optoplasm after
Marine transdythorogulator
Optoplasm minuse | 4.00 | -226 | -603 | 0.00 | 600
600 | 600
614 | | | 100 | = | 10 | u
M | | HANGED CO. AND 2 | COMACS | MARIA. di plu 400 cer plys lactic constituture
GMALIA. di print the conductati de la 20
CCAPC. di cre frej plur general de conflict est manyal da se 2
GLEPIC. dili put lagrant de crei altri di 2 | Manual misus mayor
Qiqqian mayor | 18
18
18 | -636
-635
-636
-539 | -0.15
0.00
0.00
-0.25
0.00 | 0.00
0.00
0.00 | 540 | 650
650
650 | | | | = | 20 | n
26 | | I MICCOLON 76 A | 091
1204 | | Otopian kespate
Otopian kespate | 48 | -1.0
-1.0
-1.0 | 0.00
-0.04
0.38 | : a | Ξ | 587
633
588 | | | | = | 20 | | | HANGGEGE TO TO | MPT IN | COREC CORECINE COR | Optoplasm existre
Plasma Mambrase in commissione recepto | 48 | -638 | 0.37 | 1.0 | = | 614
600 | | | - | = | 20 | | | HANDGEGEGEGE
HANDGEGEGEGEGE | CEPT IN | CSPSS color divide the belief and president and colors | Maine transiptorregular
ula Mamathenirare a nonemirare receptifu ga mostin, ritual
Optopium alter | 48
48
48
48
48
48 | -630
-687
-246 | 0.86
0.86 | 0.00
0.00
0.00 | 636
636 | 000
000
000
000 | | | e
e | = | 200 | : | | I MANCOCCON NOTO
I MANCOCCON VAN | UNLI
CRYSM
BID
BIDVARI
MARCI
BIDVARI
BIDVARI
BIDVARI
BIDVARI
BIDVARI
BIDVARI | BED Britishers ding demain des the gents
BOOK-EL Immenglichel Informy versichen GES
MATEU meng des auseit und EL voll gestle protein
MATEU massephale germegter utblied lage nach Graduse | Other siter
Extraorbior Space siter
Plannablemicase assembleme recepto | 4.0 | -0.00 | -CAR
CAR | 0.00 | 680
680 | 600 | : | : | | - | 200 | M
I | | I MANGEMENT TO A
I MANGEMENT TO A | BRIS STA | III Inneliteraty report I | Qiaplam aller | 10 | -630
-66
-636
-638 | -611
-629
136
-663
-628 | 0.00
0.00
0.00 | 600
600
600 | 620
620
620 | | : | 27
17
27 | = | 200
200
200
87 | 1 | | HAND COLOURS | GACUA
THE MEG | CIRCUA Citype intindonate findly 12 member A
19 MBC Upmosple of eithers and de of emby member 2
MBCNC7 membrane transfor septransformeds main contain | Remarks other other | 4.00 | -6.00
-6.07
-6.06
-2.08 | -043
-028
0.40 | 0.00
0.00
0.00 | 600
600
600 | 620
620
620 | | | 27
00
73 | = | 97
200
200
200 | | | I MICCOLOT BLY | GUC
EMM1 | CON CON mileste ETHIAL ETHIE plantability to 10 milester (march | Florinate other
Qualitation mayor | 12
18
42
17
47
42
12 | -0.00
-0.07
-0.00
-0.00 | -012
0.07
-018 | 1.0 | 600
600 | 600 | | : | | = | 20 | | | PROCEEDINGS
PROCEEDINGS
PROCEEDINGS | EMPLS CONTRACTOR | 1994 Of Immunglated Inheroperated a 2-34
1994 of the material control of MEDA type selected a
CDCD 1994 CDCD of the day producted. | Other Machanel
Optoplace after | 420 | -0.00
-0.00 | 0.03 | 1.0 | 620
620 | 610
687
600 | : | : | | 20 | 300
300 | 2 | | I MINICERCIA VICE
I MINICERCIA VICE
I MINICERCIA MOTO | MAN CAL
MINES
BASIALTS | PARCES. Family of the operand shall of the distribution A. ASSEC and ingle-parcels in receptor 2 BIOLETS. betw. 1, by also chapter such as sect. | Other silver
Manual Manhama in commission recepto
Optophon ecopyse | 4.8 | -640 | 0.30
0.39
0.40 | 0.00 | 600
600 | 638
684
680 | : | | 100
100 | 20 | 78
300 | : | | I MICCOCCA TO I
I MICCOCCA TACO | THE STATE OF S | COLUMN description of special | Optophon after
Humati entrare after
Other grien | 18
18
18 | -539
-539
-639
5-89* | 0.00
-037
1.71
-048 | 1.0
1.0
1.0 | 600
600 | 620
620
620 | : | : | M
U | - | 20 | 1 | | HERCECA CO. 7 | Mars
COLI | SPO. 02 Introducing his bit home you will a 7-3 or 1000. SPO. 1000. If you have been don't you ready the MODiffice where it as the second you will be the second of s | Optober tempoter Interdior Space option | 18
18
12 | 100°
-038
-630
-038 | -048
0.31
1.39
0.80 | 0.00
0.00
0.00 | 600
600 | 660
660 | | | | = | 100
14
100
100 | | | HAND CODE CO. FOR SEC. | OHT2
ADMITTED | DOTS as design to efficient with a content of a second or | Opplem mayre 1 ii Estarbler Space populace | 0.20
2.44 | 228 | -618
0.72
2.86 | | 620
620 | 620
620
620 | 300 | - | - | - | 20 | | | PRODUCTE COL COLS | HIEL
SEPL | HEEL Section of places to management for an appealance to a specific participation than the section of sect | igrapism majore s, dietiglia banuster,
Malma bana dyborregister
Other alber | 427 | -0.00
-0.00
-0.00 | 0.40
0.30 | 1.0 | 600
600 | 600
600 | | : | | = | 20 | n
M | | FRANCISCO 181
FRANCISCO 17174 | RADICS
SMASS
TRAITS | PUDC1 plants dans conducting 1
ONG 2 Operandoral sight 12
THE 11 Language particular in i | Normald entrare other Please of entrare order Cities other | 4.28
2.46
4.27
4.22
2.27
4.37
4.80
4.27
880
4.75
4.75 | 176
-186
-277 | 0.33 | 12 | 646
646 | 528
520 | 0 0 | 0 | : | == | 200 | : | | HANGE CE CO MAN | SHOOT
BHOKE | 19873 spready 87 diger by and point 2
8900-91 binning dy lab binning or risk o 571
800C rac burning & mily member C
MANC MANC family binner 2 | Plantable misses other Other other Plantable misses misyes | 180" | -can
-238 | 0.00
-620 | 1.0 | 620
620 | 661
666
668 | : | 0 | #
| = | 78
300 | | | FRANCISCO NO. 8
FRANCISCO NO. 8
FRANCISCO NO. 8 | MANU
MENTAL
MANUAL | MARY MARKET STATE | Clie lines
Clie aller
Estendier June more | 1.30
2.86
4.63 | -230
-236
281
-682 | -018
-010
1.01
1.00 | 1.0
1.0
1.0 | 600
600 | 668
660
660 | 200
P | - | 100 | 100 | 20
20
8 | | | | THE MICH MICHAEL SHOULD | ASSA may into | Table Tabl | 1.8
4.0
4.0
4.0
4.0
4.0 | -186
-188
-130 | -cos
0.38 | 0.00
0.00
0.00 | 680
680 | 000
000
609
000 | | | a
2 | = | 20
20
20 | | | I MINICODECTA 340 7 | MARIE | RPM phospholystylasphotoce1 | Honald misus phaphetus | 4.0 | | 0.86 | 1.00 | | 660 | • | | w w | 100 | | | | FREDERINGS MISSES FREDERINGS MISSES FREDERINGS MISS MISSES | MEDC1 meadern derlager at santilate 1 Other
190/01 throntox are Asynthe e 1 Manual Americana
199/01 throntox global following santilate 2 St. Other | ster
mayor signal
ster | 4.36 -5.36
4.36 -6.36
488* -6.37 | -643
-643 |
0.00
0.00 | 5.00
5.00 | 600
601 | | 0 a | 120
120
120 | 20
20 | n
u | |---|---|--|--|--|------------------------------|---------------------------------|--------------------------|-----------------
---|-------------------|-------------------|----------------| | HARDERSKED OFF THE
HARDERSKEDE WAY
HARDERSKADE DECI | TREE I feories on Apprile 9 1 Planta Ministra enforce Ministr | major
Tana di Barragalan
Alber | 4.51 -5.31
189* -6.37
4.01 -6.01
4.01 -5.03
4.01 -5.03 | 0.07
0.00
1.00 | 0.00 | 0.00
0.00 | 600
600 | 1 | 12 | = | 20 | : | | HAROGEOGRAPY 6AC
HAROGEOGRAPY MANS | CHIEFE And Agency | ater
ater | 0.00 -0.00
0.07 -0.00 | 0.41
0.88 | 0.00 | 5.00
5.00 | 000
088 | | | 32
32 | 200 | : | | FREEDRICKES SON
FREEDRICKES SOTT NO.2 | PMSSS protesphaghe to 1 regulatory colour LLS Cliev
BISC outly growth reponse 2 National | ater
tres delerregister | 4.0 -10
4.0 -10 | -0.28
0.28
0.38 | 0.00 | 600
600 | 600
600 | | 0 100
0 11
0 10 | = | 20 | | | D MADO CEDITO NOTE BASIS. D MADO CEDITO NATE COMA. D MADO CEDITO NATE COMA. | 1900. granyer A. Quipleon
1900. spingulo Esterbilar Spin | population
growth forther | 48 40 | -687 | 0.00
0.00
0.00 | 540
540 | 600
600 | | 0 I | - | 11 20 | 11
U | | HANDERSKAA SKIE
HANDERSKAA KINZO-SI
HANDERSKAAA KOPA | 1980 spingelin Saler 1990 Siler State State Spine 1990 Siler 1990 Siler | aler
aler | 435 -135
486" -135 | 2.46
0.36
-0.07
0.48 | 0.00
0.00
0.00 | 640
640
640 | 6.00
6.00 | | | = | 97
200
200 | | | FRANCISCO BALANCE
FRANCISCO BACQ | | time determined as a second | 4.0 -08
4.0 -08 | 0.60
0.33
-GA7 | :
: | 500 | 600 | | 10 to | = | 71 100 | : | | HANGERGETT ADMIC | 1825 ti pada marija mengala ke sest
1875 1975 ha kitalog probina sastanifatar, EMApalyo Nai na | inee
tens deliveragine | 4.22 -4.20
2.26 14.6 | 0.M
1.60 | 0.00 | | 600 | 20 | 20 10 10 | - | 20 | - 1 | | FRANCESCONOR HAS
FRANCESCONOR HIS
FRANCESCONORY 2442 | 1951 - Ny derson spirant 1 Planta Mindraw
1967 - New York State (1964) Y | tions
also | 48 -48
41 -12
48 -12 | -676
0.00
0.00 | 0.00 | 6.00
6.00 | 6.00
6.00 | | | 20 | 20 | : | | 1 Managements Finds
1 Managements And
1 Managements Artist | PRODE behaving not an old the district to contact thing is Citizen Production of the Pro | ater
ater | 4.00 -1M
4.00 -2M
4.00 -107 | 0.0 | 1.0 | 600
600 | 600
600 | | | = | 200
200
200 | ÷ | | FRANCESCH TRA | Peter personnel personnel personnel personnel Peter personnel pers | aler | 40 -00
40 -00
40 -00
40 -00 | 0.38
-047
-027
-028
0.38 | 0.00
0.00
0.00
0.00 | 500 | 600 | | | = | 20 | | | HAROGEOGYPEN COPER | 1893 Institut Microsoft State (1994) COPE sub-ridge for dispersion to Color Otto shadotte safet system 1 Qisplane | ater
major | -181 -188
-188 -121
-136 -138 | 0.39
0.86
0.33 | 0.00
0.00 | 6.00
6.00 | 600
600
601 | | | = | 200 | 27 | | FRANCISCO STATE OF THE | COPPE date does does the open talk SE Clie OPPE date does does the open talk SE Clie OPPE date does does to open talk SE Clie OPPE date options 1 Se Clie OPPE date options 2 Sec Clie OPPE date options 3 | option
time dyborogulary | 4.20 -430
4.20 -230 | 1.70
-623 | 0.00 | - | 0.00 | | 180 | - | 20 | - | | FREGUESTAND BAN
FREGUESTAND BAN
FREGUESTAND | 1000 mer'n groech en proces 2 Mari ma
1000 retherd 2 e region a julie Mari ma
CERNA opit neb predicti i man i didition 2A Mari ma | kana dykurreg aktor
Nispendest nateur redinde, dia ordat sykre
Nispe | 4.6 -22
4.6 -28
4.8 -28
4.7 -27
2.37 381 | -628
0.33
0.86 | 0.00 | 5.00
5.00
5.00 | 618
620 | | | = | 200 | | | FREEDERSHIP HAVENS FREEDERSHIP FOR | HACKE In-patitis And ass collabor recognize 2 Manufacture FIDE milescore of mRMs descripting 6 Optopions TRS Interspheriptine bearing and Optopions Optopions | ater
ater | 4.77 -3.77
2.37 181
4.32 -140 | 0.86
1.35
1.86
-628 | 0.00 | 520
520 | 600
600 | 200 | 10 tr | 0 | 100
0
100 | | | FREEDERINGS BLV9-IC | TRI Id complexities in terms and Quay-learn MESSAN MESS interes also in the A EXTENDED Interestable to the Australia Extended Complexities and | ater
ater | 6.12 -5.00
4.00 -5.21
5.00° -6.27
2.31 3.18
6.12 -6.00 | -63%
0.00
-641
-630 | 0.00
0.00 | 0.00
0.00 | 600
600 | 200 | 0 10
0 8 | = | 200 | : | | FREEDERCHMAY TRANSFE
FREEDERCHMA GETTI
FREEDERCHMAY HERT | MCC MCC MCC MCC MCC MCC MCC | aler
major | 4.0 -4.0
4.11 -3.0
4.11 -3.0 | -630
0.00
0.00
-634 | 0.00
0.00
0.00 | 640
640
640 | 620
620
620 | : | 0 2 | = | 20 | 2 | | FRANCISCHERAZ CHAN | CRRC1 or hier represent of EALST resisted green 1 Mail ma
APPCR as to related protein 2/h complex subset 18 Optopless
ECML1 on combon making the 1 (Drosophia) Mail ma | time determines
after | 438 -436
438 -438
236 338 | 0.38
-0.14
0.30 | 0.00 | 500 | GA1
GG0
GG0 | : | : : | = | 100
100 | | | FREEDRICK STR. COCTL | 1992D 1992 Indichorded Park Total | time dybury data | 4.99 -228
4.99 -239 | 1.0 | 0.00 | 500 | 500 | : | 100 | 100 | 200
200 | Ē | | FREDERICHMEN GAD
FREDERICHMEN MINTER-R
FREDERICHMEN ANCES | CMD spirete sall dis still markerplane Optoplane EBY204 Immunglish into you work in 104 Other AMODE an iny temperal and size flager domain cost sining 1 Mail ma | aler
tree delerenden | 2.95 3.88
580°
2.66 3.76 | | 0.00
0.00
0.00 | 5.00 | 600
600 | 0
0
200 | 12 8 | 120 | <u> </u> | n n | | FRANCEDERING PRINCES FRANCEDOTORS PRINCES FRANCEDOTORS UPPER | AMED'S and principles and state they demain containing 1. Mail no. BEMATI late 4, by also should read to an 1. Optophore PEMATIR provides this contained and they all regulatory color. PEMATIR provides the provides by all regulatory and only all provides by all regulatory and only all provides and public contained pu | inas
paties | 2.81 3.74
4.82 -6.81
4.09 -2.08
2.00 1.72
4.88 -2.08 | -cas
1.33 | 0.00 | | 634
600
600 | 20 | 1 10 | ** | 200 | E . | | FINANCISCOLOGICA WARE FINANCISCOLOGICA EA FINANCISCOLOGICA CLOS | March Marc | opide on took acrosis, of hat mad
opide on | 4.76 -8.29
4.57 -1.00 | 1.61 | 0.00
0.00
0.00 | 5.00
5.00 | 620
620
620 | | 0 78
0 100
8 79 | 12
17 | 200
200
93 | 0
20 | | FREEDRICKS SOUR SOUR | UNAN principle Manual Medium 1902 unit openin 32 Optobern CUICA Cope Institutionals Sandy Counter A Manual American | aler
tempeler | 48 -48
48 -48 | -027 | 0.00 | 540
540 | 0.01
0.00
0.69 | : | | = | 20 | e e | | HANGERGUENE PER | CLCGA Crigo les Indication It soil of commister A Partical Minister A Participation Close Participation Close Participation Close Participation Close Control and Participation Part | mayre
alter | 48 -10 | -024
-034
-036
-039
-037
-132 | 1.0 | 600
600 | 0.00
0.00 | _ | | = | 8.7
200 | n
M | | HANGEGUEST TANKS | 1932 - Flex 23 Halles CRIPT central or protein T Opinglaum TMS NOTE la numericare protein 200 Opinglaum | ale: | -1.50 GR1
2.36 3.70
2.06 3.81 | 0.87
1.82 | 0.00
0.00 | 600
600 | 681
600
600 | 20
20 | 10 10
10 10 | | : | | | S MAND CERCES TRANS SANSAGE
S MAND CERCES TRANS SANSAGE
S MAND CERCES TRANS | routille Tembrat is expense ded and planeshed F Clifer EMPARE only Expense to LAM Graphen EMPARE only allow of Dynamical and ag 1 to Graphen | milyes
alter | 2.08 1.81
4.00 -4.00
4.39 -3.00
4.00 -3.07
4.00 -8.30 | -611
0.86
-618
0.80 | 1.0 | 6.00
6.00 | 607
600
600 | : | | 22 | 200
200 | 1 | | FRANCESCONO TAMEN
FRANCESCONO TAMEN
FRANCESCONO COL | | ater
option general | 2.3 011
4.8 440 | 0.80
0.84
0.88 | 0.00 | 6.00
6.00 | 000 | 200 | | 100
0
10 | 100
8
100 | 11
26
21 | | HANGED CO. CO. S. M. P. LP CO.
HANGED CO. CO. S. C. S. CO. S. C. S | MARCHIS independent of protein the condition by protein the National 1908
2 1908 down introducing protein 2 Quantum PRD phasphaghouse in debyding one or Quantum | dier
der | 1.5 001
4.8 -4.0
4.0 -1.0
4.8 -1.0
4.0 -1.0 | 0.71
0.71
-601 | 0.00
0.00
0.00 | 640
640 | 600
684 | | 100 | 120 | 20
20
20 | 0 12 | | FREE CERCULONS ACAM | MAX.75 mingerend bet sprinten lineare debut plant linear (September 1975) MID 2012 10 district all being passed plant between (September 1975) MID phiniphophose September 1975 MID phiniphophose Capture 1 Quiplaine MID Quiplaine MID 2015 phiniphophose Capture 1 Quiplaine MID 2015 phiniphophose Capture 1 Quiplaine MID 2015 phiniphophose Capture 1 Quiplaine CMID 2015 phiniphophose Capture 1 Quiplaine | major
major
litera | 1.07 1.70
-1.27 -1.00 | -048 | | 100 | 000
000 | 10 | 1 2 | = | 87 | | | FREEDRICH TEN FACTS FREEDR | RCD1 phosphalpose Carbo 1 Opoplasm CPRD1 should be be phosphashe race domain containing 1 Opoplasm CPRD1 contracted by | mayor
mayor | 0.20 EAR 2.31 LAR 4.00 - 6.20 CAR 2.31 - 6.20 2.31 LAR 4.00 2.31 LAR 4.00 2.31 LAR 4.00 CAR 4 | -011
0.86
-043 | 0.00 | 640
640 | 000
000 | 200 | 12 N | - | 200 | 2 2 | | Manufacture | Control | Service of the control contro | 439 -440
230 -440
230 -439
440 -439
440 -438 | 1.35
1.75
-024
-045 | 0.00
0.00
0.00 | 640
640 | 600
600
684
600 | 20 | 10 10 | - | 100 | | | ENGINEERS PRODUCTIONS PRODUCTI | CAPACI. calus normal cabus II. Glopham PRICI. printiply might normal advantured INC repeats set at National HCTARENCE HCCAL recently and normal RAD, myeloid specific 1. Cities | majore
alter | 1.00 -1.00
1.00 1.01
4.07 -2.01 | 1.m
0.m | 0.00
0.00 | 0.00
0.00 | 600 | 100 | 30 E | 100
100 | 0
100 | | | FREEDOCKERS COMP
FREEDOCKERS FREEDOCK
FREEDOCKERS MET NOT R | C16ep up St. 1 Qrapium 19 GBT subryak in minima intintus later C1 is sing passe Qrapium MTR brestlyteringin/side hamoptetermentights sub- Qrapium | Tank being data
major medalami, op med | 238 341
449 -240
234 388
428 -238
239 348 | 0.62
-082
0.88 | 0.00 | 6.00
6.00 | 0.00
0.00 | 200
200 | 10 E | 320 | 200 | 20
20
21 | | FRANCISCO NAT FINE
FRANCISCO NAT VAP | PRINTED PRINTE | time determination
after | 4.96 -4.96
4.96 -4.96 | 0.62 | 0.00 | 500 | 629
629
600 | | | = | 20 | <u> </u> | | FMICOECUSORY NEEDS | 1000 NCCC, cylectrones addressorably prairie Graphon | aler | 4.8 -3.6 -4.8 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 | 0.8
0.0
-0.18
-0.28
-0.10 | 1.0 | 500 | 638
600
603 | | | = | 20 | | | FREEDRICK SOF SICE
FREEDRICK SOFT APACES | TRUE: 1 of empty of the content (the ST) and | aler
populare | 4.56 -136
4.57 -138
4.58 -136 | 0.02 | 0.00
0.00 | 540
540 | 648 | | : : | = | 97
200 | | | EMBODIECT TO A DESCRIPTION OF THE PROPERTY | 13 NEE Industries ofter chairs member E Chier
EEV7-SE Internagiolal his table anticle 1-SE Chier
EDCCCO — an autonomorphism SO Marina
17 PS 14 populaj (organism S | aler
aler | 186 186
188* 188*
236 188 | 1.01
-087
1.02 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 200
200 | 1 E | - | 200 | - | | FRANCESCAME THE FACTOR FRANCESCAME FRANCES | TPFL 14 popular) Graphium 1 EECV-3 Immungistal Into ppu variable t-3 Cities EECC marky grants in popular 3 Marina | peptiden
alter
time dyboring dator | 180 - 120
1801 - 1801
180 - 1801 | -637
-627
-108 | 0.00 | 5.00
5.00 | 600
600 | | . n | 320
60 | 200
200
87 | - 1 | | E MANDERSCHONNE BETT. E MANDERSCHONNEY MEDICE E MANDERSCHONNEY MEDICE | RETS lone removalured oil adject Plantablembare
NEE/RD NEE/RAN binding pulstakeD Optoplane | aler | 4.71 -680
4.86 -580
2.87 | -688 | 0.00 | 540 | 600 | 0
0 | | 120 | 200 | 12 | | FRANCISCOLUMN STANIS
FRANCISCOLUMN POLANY | SEESE and Episoning relative 2 Graphon
PELINE PEZ and List dominin 7 Graphon
EPE relation grand case 2 Principles and by Graphon | ater | 1.01 1.01 | 1.00
1.03
-004 | 1.2 | 500 | 0.00
0.00
0.44 | 200 | 10 m | - | 200 | 1 1 | | HANDERSON PRODUCTION | P790.3 protein jeg mentan 2 jih mentreman nej grop 33 Qenjamin
1990.033 301 dann nin albeg i Marailer inte jene bil 1990.3 Qenjamin
1900.033 301 dann nin albeg i Marailer inte jene bril 1991.3 Mariana
CEDCS-MEL CODCSE settemen MA.1 Other | phaphatana
allar | 4.00 -1.00
4.00 -1.00
4.00 -1.00 | 0.88
-G81 | 0.00 | 500 | 000
000 | : | , , | = | 20 | 2 2 | | EMBORROSCOMA RM-718183
EMBORROSCOMA M-1M
EMBORROSCOMA PETANO | PTMC1 protein to 64 or phosphalan, nor respiriting 12 Cytophon
1968062 100 dans in design beautir ship se bid les Malen
CECC-94 CCC2 est beautir 1964 11 Chie
RTM restal to 1964 11 Chie
RTM to 1964 to 1964 11 Statembris or particit 12 Chie
MSSM1 neal of expressed continue protein 1 Cytophon | aler | 1.6 184
4.0 -440
4.0 -440 | -618
0.76
1.68 | 0.00 | 6.00
6.00 | 628
600 | : | : : | 100 | 300
300 | n
n | | | MSMPL mad of expressed membrane protein 1. Queplann
HPML lest shak protein family H (HqSSQ) member 1. Queplann
FSSQ personalist Subsection (Subsection Space | ater
ater | 4.20 -2.77
2.28 2.28
4.76 -444 | 0.07 | 0.00 | 600
600 | 000
000 | 20 | 0 NF 100 | | 200
200 | | | MAIO COLOR MAI PTO | FT20 periodicit Statemental Statemental (periodicity Statemental S | aler
aler | 4.6 -18 | -638
-637
638 | 0.00 | 600
600
600
600 | 600
618
600 | | | | 200
200
84 | 10
10
27 | | | PERA patrel trouving his old ety pr 2 receptor a lyke Pleane Membrane 27 S Syste Pleane Membrane EEVD-9 trouving his late which works to 2-9 (proyles subgen. Clier | aler
aler | 4.0 -4.0
4.0 -4.0 | -629
-621 | 0.00
0.00
0.00 | 0.00
0.00 | 587
500
500 | 1 | | = | 100
97
300 | : | | FREE CERTS OF SEP | PREMIT Myller deschaft CHEST cetting extent del plant in Balance hier Types FIGUR 10 for 1,00 for 1 for any plant feature admits FIGUR 10 for 1,00 for 1,00 for any plant feature admits FIGURE 10 for 1,00 for any plant feature admits FIGURE 10 for 1,00 for 1,00 for any plant feature FIGURE 10 for 1,00 1,0 | time dythorogodess
after | 48 48
40 48
48 48
48 48 | 0.00
-624
0.76 | 0.00
0.00
0.00
0.00 | 68 | 600 | | | = | 20 | 2 | | HANGED CLASS COM | CUSP duriquefully phophetent National Original O | phasphatous
pegithins | 4.8 -18
4.9 -60 | 0.89
-607 | 0.00 | 6.00
6.00 | 600
603 | | | = | 200 | | | PRODUCED MA OFFE
PRODUCED MA OFFE
PRODUCED MA OFFE | INTEGE ex based each Stylesquise dybusybulydistant Graylous
OPE glab blue penada e I Istanbilar Ipan
CROMAT COM egals by whatta and the dynamics Marina | maps
also | 1.00 130 140 140 140 140 140 140 140 140 140 14 | 1.33
0.86
1.81 | 1.0 | 6.00
6.00 | 600
600 | 0
20 | 10 IN 10 10 10 10 10 10 10 10 10 10 10 10 10 | - | 200 | | | EMBODIECTIONS EAST. EMBODIECTIONS MAP | CRIMAN CRIM-spike to the contract season of spike beat. Most sea. E.E.E. I be well beat in breat processor I Planeat territories CRIM. I if will you dispute register are the Option State of Sta | major
time deliverable | 1.00 140
1.00 -1.00
1.00 -0.00
1.00 -0.00
1.00 -0.00 | -018
0.30
0.31 | 0.00
0.00
0.00
0.00 | 600
600
600
600
600 | 6.00
6.00 | : | E 2 | 12 | 10
10 | | | 1 Macagaga Mar 8947-8
1 Macagaga Mar 945
1 Macagaga Mar 945 | EDIT 6 Immungibile inhawy sortal e 2 Cile
INCS Immultimer 5 Cylopium
DPG gliptun 2 Planta Ministra | item , 9.55, methodosing
other | 4.00 -430
1.00 111
1.20 | 0.37 | 1.00 | | 618 | 200
200 | | | 82 | = | | FREEDERSTON CHRISTAN
FREEDERSTON CHRISTAN
FREEDERSTON | Service Control of the th | aler
aler | 2.07 188
2.03 684
4.06 -2.08 | 0.86
-0.78
0.83 | 0.00 | 0.00
0.00 | 6.00
6.00 | 20 | 12 B | : | | - ÷ | | HAROGOGIANO MAS | 1987 The metalopopulari deliter 2 Fabración Spice
MES mate-quelle latel Standag Droupido) National
STAND Spice (Standard Standag Droupido) National | aler
two delared dear | 4.00 -4.00
2.31 -4.00
4.00 -4.00 | -0.00
0.00
0.00 | 0.00 | 648
648 | 0.04
0.00 | 200 | 0 G | | 0 | | | I MERCHENIAN BETAL | ELPS Bugget life is day 11 Mad ma
EREE in bit is formly member E Quiption
ELC 341 sales carrier formly 11 member 1 Planta Members
EREE members in the Company of Compan | aler
Impale | 4.8 -52
2.51
4.0 -4.8
4.0 -4.9
4.0 -52 | | 0.00
0.00
0.00 | 62
62
62 | 600
600 | 200 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - | 20 | 1 | | FREDERICK MAD ANALY | MCC 2001 - Marke de rei te sering 11 menuter 2 - Pennet de Reine 2007 - Marke 2 | major
peptiden | -1.00 -1.00
2.27 1.63
-1.00 -1.00 | -GD1
1.61
0.88 | 0.00 | 540
540
540 | 587
520
520 | 20 | | - | 200 | | | PROCEEDINGS PROFITS PROCEEDINGS PROFITS PROCEEDINGS PROFITS | VCR villanti D (), 20-ditydropel lantin D() eroptor Mail ea.
1963D interferon gamma receptor 2 Manna Mariane
LAPSdS bysocomi protein transmirrida ne 5 Manna Mariane | a namenia me receptor de feron pormo Si-
alter | 4.9 -4.9
4.8 -4.9 | 0.80
0.80 | 0.00 | 5.00
5.00 | 687 | : | | 22 | 20
20 | = | | HAROGECUS MET 100 | PRINT Información prima respira 2 Manche Medicines 14750 Indicesso justico Securización de S. Planche Medicines 1451 Indifference just 3 1457 Indicesso justico Securización de d | aler
two spherogram | 2.07 1.88 -2.02 (1.78 -2.02 (1.78 -2.03 (1.78
-2.03 (1.78 -2.03 (1 | -018
0.38
1.38 | 0.00 | 600
600
600
600 | 600
600 | 20 | 30 10 | = | 20 | | | FREE CERCES SERVICES | THE I special refusion 2 Planta M entirement
NET SEC. FARM done becoming Opinion
SECLE STATE SECRET SEC. SEC. SEC. SEC. SEC. SEC. SEC. SEC. | aler
aler | 187 188
4.77 -238
4.78 -58
4.99 -69
4.87 -28 | 0.70
0.70 | 0.00
0.00 | 6.00
6.00 | 600
600 | 0 | 0 100
0 70 | 22 | 200
200
84 | | | FREE CERCES MAIN GALANTS FREE CERCES MAIN CERCES MAIN CERCES MAIN CERCES FREE CERCES MAIN CERCES MAIN CERCES MAIN CERCES MAIN CERCES FREE CERCES MAIN | MILLS MILLS fromly monter 5 MARITY pripage of the workly destinating the ordering 2 CDM colonial TMC formation of the colonial production | mayor
a someticare recepto
alter | 0.87 -0.88
0.87 -1.80
0.77 -1.80
0.87 -1.38 | 0.00
0.07
0.07
-603
1.40 | 0.00
0.00
0.00 | 68
68
68
68 | 618
600
600 | : | | = | 94
200
200 | 1 | | FRANCESCAPEN PRESS
FRANCESCAPEN PRES
FRANCESCAPEN SEPT | PADA1 pinkata hand op Hedonan brity Amerike 1 Queston
RDE3 RD He2, AP-110 mar pinefator salanti Rai na
RDP2 RDP petholonan salanti I Rai na | aller
bana dyborny datar
aller | -1.07 -0.00
-1.09 -0.00
1.00 0.01 | 1.00 | 0.00 | 68 | 681
681 | 200 | 1 N | 12 | 92
0 | | | HAND CERCOLOGY DANNERS | 1997 Sept. | prates couled mosps
majore | 1.80 13.0
4.20 -4.86
2.31 085
4.76 -1.81
4.76 *-80* | 0.98
1.88
1.38
1.80
0.46 | 0.00 | 6.00
6.00 | 600
600 | 200
0
200 | 10 M
1 10
5 7 | 320 | 0
200 | | | FREE CECENTRAL STATES | LTMS Implicações (Agin Milandy member S Manual Ambrase
1998) - Hanal Amerika (Ambrase Ambrase) - Grandem
1998) - Lakaling amma complea a social el pole (Milandy Ambrase) | aller DITTORISM. | 4.78 -1.85
4.78 -1.89* | -080
-038 | 1.0 | 5.00 | 660 | | 0 1 | = | 200 | | | Manufacture | TARCEM Labeling amme complex associately as to the Option Com-
Complex of the saleg along one to the ordinate containing a Option to
1800 of the Communication of the American Communication of Chief
1805 of the Option Chi | aler
aler | 4.38 -40.0 1.38 -31.0 1.30 -3.0 4.30 -4.0 2.31 -0.0 4.30 -4.0 4.30 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.31 -4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | 1.02
1.37
-019
0.32 | 0.00
0.00
0.00
0.00 | 60
60
60
60 | 600
600
600 | | 0 W | = | 20
20
20 | | | PRODUCTIONS INCOME. | HETSHAL Is done shown 1 MA landy number o Name . 188551. Inch. devision and medicate points 15 in Parameters in the second and analysis. | ater | 4.60 -327
1.87 188 | -084
0.70
0.38 | 0.00
0.00 | 640
640
640 | 620
620 | 200 | | - | 20 | 11 | | HANGERGE PORTS | Fig. price and price P | Sales | 4.75 -475
4.76 -476 | | 0.00 | | 618
600
600 | | | ** | 200
200 | * | | HAND GET COUNTY IN THE TOTAL IN THE COUNTY CO | BLEET 6 gelature PC validar eshi av 4 Girppiano
1996 Japan A, Ipanan et Oligne Girppiano
HICCOM HICC Admin 16 ale qu'il prote in ligne 8 Girppiano
18273 : acche part in 31 Girppiano
18853 : Il partir collabor granta 5 Plenski de mini ave | moles
moles
moles | 1.07
4.08 -1.08
1.08 1.72 | | 0.00 | 5.00
5.00 | 5.00 | 0
200 | 0 0
30 100 | 120 | 200 | 320
0 | | F MADE CERCES TO A STATE OF THE | GALDET gestamen Friedrick sehame 6 (populare
100 fl. byson, fry men of a stilling at
MCCD 90CC desired 30 days for year lique 8 (populare
MEND school proper in MCCD of the Company | aller
aller
kans dyborny datar | 2.00 180
-1.81 -1.07 | 1.36
0.37
0.36 | 1.00 | 5.00 | 620
620
620 | | 0 N | = | 200 | 1
27
0 | | FRANCESCATAL SPANT FRANCESCATAL FRANCE FRANCESCATAL FRANCE FRANCESCATAL FRANCES | 20007 Inc Rege protein (67 Rei net
MEUSE melo hier He until glass central den Griphen
17803 hing rinnkulet in in 2 Meunst melone
17903 dalapite unt in patiti er 21 Griphen | tana dytenny data
mayra
a reneritana respis | 4.70 -4.30
4.87 -8.23
1.88 -4.38
4.38 -4.38
2.31 1.88 | -048
-048
-051
-051 | 0.00
0.00
0.00
0.00 | 640
640
640 | 0.00 | 0
300
0 | 1 N | 120
0
120 | 100
8
200 | M | | FREEDRICKENS UPON
FREEDRICKENS PARTY
FREEDRICKENS BARRY | TREE Segretaria Maria 2 Maria | peptikan
atler
mayre | 2.38 3.88
4.30 -4.88
4.30 -4.80 | 0.86
-0.78
-0.08 | 0.00 | 600
600
600 | 600
600
600 | 0 0 | 10 10
0 0 | 100 | 200
200
200 | 0
120
17 | | I MINIOTECT THE T MINE
I MINIOTECT THE COMMAND
I MINIOTECT THE COMMAND | 1977 - Anlyth yearth yearth at 2. Green bear and the second of secon | ater
ater | 4.00 -0.00
4.00 -0.00
4.00 -0.00
1.00 -0.00
4.01 -0.00
1.00 -0.00
4.00 -0.00 | 0.TI
1.34
0.63 | 0.00 | 600
600 | 504
500
500 | 200 | = " | - | | | | PRODUCTIONS WEST | W CCA NO repent done to 25 Mains. OCA State of the State of the State of S | aler
aler | 1.00 102
1.00 018 | 1.67 | 0.00 | 600 | 000
000 | 200 | 10 10
10 | - | 8
33 | | | HAROGEOGRAPH THEODY | MARY is not remain phosphor basely rando rane. It chance balor Space. 10.2 MA solub control bring 30 member 1. Marie and miles and 19.0 CCS 1. MC density from the 1. Marie and 19.0 CCS 1. MC density from the 1. Marie and 19.0 CCS an | temporer
after | 4.8 -128
1.8 -132
1.8 -132
4.8 -133
4.0 -133
4.0 -134
4.0 -136
4.0 -136
1.3 -136
1.3 -136
1.3 -136
1.3 -136 | 0.MI
-0.08
0.38 | 0.00
0.00 | 0.00
0.00 | 628
620
600 | | | = | 200
200
200 | M
D | | FRANCESCH TUT ELER
FRANCESCH GUN LIPPAL
FRANCESCH GUN WARRP | BCG Investigis dated Other
UP-96. UP-9 Newstal like Plantate entrane | ater | 2.01 148
1.00 -1.00
1.00 149 | 0.00
0.00
0.00
1.00 | 0.00
0.00
0.00 | 600
600
600 | 660 | 100
0
100 | | - | 200 | u
u | | B MANICOLECTOR TALE NA. B MANICOLECTOR MED. P. MAN | I . | mayor
alter | 0.60 -331
1,67 148 | | 0.00 | 5.00
5.00 | 600
601
600 | 6
200 | | 120 | 200 | n
20 | | I MARCONICA MATE
I MARCONICA MATE
I MARCONICA MATE | AMT anticonstiption who are Optoplasm ADDP1 Artistanded Michaeles 1 Maries SCOR coppressor of opinion againing 8 Optoplasm | mayre
after
after | 2.88
4.80 -1.86
4.27 -2.78 | 0.00 | 0.00 | 500 | 500 | 200
0 | : : | -
 | 97
200 | : | | FREE CECTATAL MARCAL
FREE CECTATAL AND A | MARCAT manusational pictures yet mg to the Company of C | pratti capital morph | 4.00 -1.00 | 0.81
-081 | 0.00 | 0.00
0.00 | 600
600 | | | = | 20 | - | | FRANCISCO TOTAL HORSES | 1862 186 fay fayer dand comb bing 1 Planta M millows | atler
mayor | 1.00 -1.00
1.00 -1.00
4.00 -1.00
4.00 -0.00
4.00 -0.04 | -019 | 0.00
0.00
0.00 | C.00 | 600
600 | 200 | 0 M | - | 200 | | | March Marc | ADDITION | manyon cher diper | 0.00 -0.00
0.00 0.14
1.75 1.81
0.87 -1.80 | -1.33
0.85
1.37 | 0.00
0.00 | 620
620
620 | 600
600
600 | 20 | 1 | - | : | - 1 | | FREE CECHOLT THE MANA
FREE CECHOLT CLES | 11.00 Intercopping or part colored in Open Colored Intercopping or Colored Intercopping Open Colored Intercopping Intercop | ater
techanal | 1.86 312 | -648
0.38
-601 | 0.00 | 646
646
646 | 613
688 | 200 | | | 100
10
11 | 10
10 | | FREE CENTERS SHOT
FREE CENTERS FFE
FREE CENTERS COLFE | 1997 S.MCII, for the specific population 7 Maries. 1973 printing from the literature 3 Graphium C.No.190 shown come 7 open reading State 90 Other | pe pit blese
en syste
sither | 4.37 -68
1.80 130
4.88 -180
4.78 -180 | 0.88
-CAR
0.88 | 0.00
0.00
0.00
0.00 | 648
648 | 520
520
521 | 200 | | 100
100 | 100
100 | | | FREE CE CE VALLE | EAS 84ND Wilder had appropriate and decidate 1 Nation | t and dy the regulator | 1.0 141 | 1.8 | 0.00 | 648 | 500 | 20 | 100 | | • | | | HANDED COMMON | TO HORE
AMPA | MINE
MERI | Lare or to L'ancomenia and protein 1
ADP risoglet se factor 8 | Monadomicae populae
Monadomicae baspate | 127
4.88 | -18 | -017
-011 | 0.00
0.00
0.00 | GED
GED. | 600 | 200 | | * | 120 | 20 | |
--|--|--|--
--|---|--|--|------------------------------|------------------------------|----------------------|-----------------|------------------|------------------------|-------------------|------------------|----------| | FRANCIZE CONCAN
FRANCIZE CONCAN | APR
MESS
MAPRICA
URIGIS
BUSINA | MADE DE L | matural optionality trigg using receptor II
MAPPETC terrologistics
shapetin cooping tings regime IZ II
solute carrier fit mity 7 member II | Other after
Opinion mayor | 4.00
4.00
4.00
4.00 | -146
-146 | -070
-031 | 0.00 | 500 | 0.00
0.00
0.00 | | | 2 | = | 20 | - 8 | | FRANCISCOCIONO | SCHA
GRAAP | NAG. | udote carrier family 7 re-mber 5
GASA Type A receptor excepts ted protein
Mrt LEURA wigd sted adoptor malessie 3 | Remaildenieure temporte
Originam temporte | 4.00 | -0.07
-0.09
-0.01 | 0.84
-037
0.88 | 0.00 | 5.00 | 500 | | | | 320 | 81
200 | | | HAND GEORGE TAND | 101012
DOM: | DHOD II | nuclear lister to pp. Broduett 2
DBAN-box helius e. III. | Males tree dyborogister
Males moyer | 1.80 | 147
187 | 1.86 | 0.00 | 5.00 | 614
600
600 | 200 | 120 | 100 | 0 0 | 0 | : | | NAME OF CUI AND O | ACTM | ACTION
LIMPS | C & C mail fuhernisher receptor II
or the neighbor i
epithetial membrane posternii | Pleasa Mareirane protein copied ecopie
Optopiem trans dythology detar | 4.0 | 126
-086 | -010
0.00
0.00 | 0.00 | - | 600
600 | | M
M | | = | | 11 | | 1 Marc 020 027 780 7
1 Marc 020 022 880 0 | CDTS 1
BELVE-00 | CDTM1 | CDTG make sie (Kaph bloody mag)
Immunglichal in is mich verbilde 9-49 | Remattenisse aller
Olier aller | 0.37
1881 | -0.00
15001 | 0.38
-081 | 0.00 | 600 | 600
601 | | 0 | | 320 | 200 | 31
60 | | B MAND CERCES MAY 4
B MAND CERCES CERCES | SANG
SANG | 801013
9900
9903
9903 | pale allow channel bitramerication denote containing
spends 2
signal popisie pe pillonel fie 2% | Extraction technical Extraction time after Monattenione politice | 4.00
1.00 | -638
1319 | 0.86
1.80
1.86
0.86 | 0.00
0.00
0.00 | 6.79
6.79 | 5.00
5.00 | 200 | 4 | 100 | 320 | 10 | n | | HAND COLOR OF 2 | CONT. | (31)(3) | Open popule populare i fin 28
VPMZ, IMP complex calcula
CSC finger protein 1 | Opingian after
Maine transdythorográfor | 1.0 | 184 | 1.M
0.M
1.M | 0.00 | | 600 | 20 | = | - | : | : | : | | NAME OF CUSTOS | APWP
FHEE | APWP
FR01 | MD report dura 1091
A Transfer transporting V2 colored F
make 9 1 | Qrisplann mayor
Qrisplann mayor | 4.99
4.98
1.86 | -132
-138 | 1.86
0.86
-016 | 0.00
0.00
0.00 | 5.00 | 500 | | : | | 32
32 | 200 | : | | HANDGEGEGERO | AMBEC
MICHAEL | HIDS
WARD
WIGHT
COMPAN | 1994, benede plante medicy? I then this is one dig to
adoption related protein complex 2 min 2 subset 1
PFD and CAPD done to contact og
characterism 20 operated dig file me 30 | Optobern engine
Optobern transporter
Optobern transporterpolator | 3.85 | 141
610
-236 | 0.33
-0.60 | 0.00 | 6.00
6.07 | 548
549 | 200 | ** | e 2 | 100 | 6
43
300 | - : | | 1 MINOREST 200 2 | CHARLE
SER | 1RR | character 2 species dig faire 12
segleta
20 september 2 | Other aller
Original aller | 0.00
2.00
4.02 | -238
381
-538
527 | -640
1.0
0.0
1.0
0.0 | 0.00
0.00
0.00 | 68
68
68 | 000
000
000 | | | 500
M
500 | - | 200 | | | HANDGE CHARA | 2000 | SER
SORT
SORT
STREE
LOCKECTORY | tergipula
1901 complex 3
1901 demarks rolling pures n.h.
Line Sugar and ETS demain containing 26
and an obvioud LOCISE SECTION. | Optoplasm salver
Mailes bens dyburregister | 4.8 | -8.60
-8.63
320 | -641 | 0.00 | 5.00
5.00 | 000 | : | | 100 | 325
325 | 20 | 0
EL | | I MANORECCI CON CONTROL OF THE CONTROL | MPS
MPS
PMS | MPTS. | manifement and adjusted protein 1
adjuster related protein complex 5 lets 1 schools | Monate disc
Monate disc
Quelon der | 0.80
0.80 | -2.00
-2.00 | -012
0.78
-017 | 0.00
0.00
0.00 | 5.00 | 620
620 | : | : | a
27 | 320
320 | 200 | 2 | | I MANGEMENT HET DE LE HE LE MANGEMENT HET DE MANGEMEN | SPHES. | MPFI. PME. LTRIPE IPPEL DEHALL CORDIA BACKET | is test transferring growth is stockets in adogmost
spiritigad and time 1
DRI princes 196.3. | Manus Marinkow (Manus Manus Ma | 1.8
0.87
2.88 | -2.07 | -087
1.00 | 1.0 | - | 600 | 200
200 | 0 | 100 | 120 | 200 | | | NAME OF OTHER PARTY. | CDID 3A
BAADE7 | GAACHET | DEH MELANDE MAL 1
Option production may 1 3A
EAAST | Naina ilina
Naina iller | 2.86
1.86
2.38 | 179 | 1.87 | 0.00 | 500 | 600 | 20 | 120
U | 100 | | : | | | I MICCECIONE | MERAT
TOES | CSPS.
MERITA
TRANS
MERCEL POS | IS AGONE coloning Streams frog to cour 3 count of a recorder frog accounts feed 7 Interpreted 3,7 factories feed 11 page coloning from counterfort participates one is not discent pages gli account tous dimensional course of modes provided in 1 | Other other
Optophers maybe | 4.22
4.27 | -337
680
-686
-186 | -610
0.86
-687 | 0.00
0.00
0.00 | - | 600 | | 72 | | = | 28 | | | FRANCISCO ACT
FRANCISCO ACT
FRANCISCO ACT | 08001
AP1 | COMP IS | mit about to by exceled digitalization is an disc i pass
glument to directable by element to subago extent
LAP vision in agents. | d Other alter
Naina bens dybornychter
Naina bens dybornychter | 4.8 | -08
-08
-08 | -037
-033
-038 | 0.00 | 5.00
5.00 | 600
600 | | | | = | 20 | 2 | | HAND GEOLEGIANIA
HAND GEOLEGIANIA | TALDET | | | Otopiem mayre
Other after | 4.0 | -086
-186
146 | -631
-638 | 0.00 | 5.00
5.00 | 0.00 | 0 0 | | | 120 | 25 200 | : | | I MAND COM COM THE 2
I MAND COM COLVERN | MAPS | MUPS
MURS | I in multi-dane 1
multiplin gerele te d 20
MSE is ni ly pyrin dana incontaining 1
manghaney serviced og comples schan 2
Min (20 MSC comples 2004 helt case | Optoplesm after
Malesa after | 1.82 | 181 | 0.88
1.80
0.89 | 0.00 | 500 | 500 | 20 | 100 | 100 | | : | | | FRANCISCO COLORA
FRANCISCO COLORA | MOVE
MALE
MARTE | MONED
HOME 2
FORMS
BELIA
PETHO | Min SCHEC complex SIAN bet case 1982 - Mar, GMT CEST complex calculat 1 problem 2 - managelisand for our 1 Min rest dans, alpha-1- Interferon tellucal transmission reporte to 2 | Qiquiam imaa
Qiquiam assyre | 1.8
2.8
1.87 | 186
186
188 | 0.00 | 0.00
0.00
0.00 | 5.00
5.00 | 0.00 | 20 | 32 | - | | : | : | | FRANCISCOURCES
FRANCISCOURCES | PING
HING | BELIA
BETME
LIMPS | | Originam engre
Originam alter
Manadaminam alter | 1.00 | -121 | 1.30
-044
2.35 | 0.00 | 5.00
5.00 | 600
600 | 0 | 0 | 10
24 | 220 | 200 | - | | I Manager Con Co. 7 | MHIAN. | DESCRIPTION OF THE PERSON T | g de filos Stranbracy 1
the UTs a strating primite? | Optoplasm enzyme
Optoplasm skher | 4.00 | -586
-586
-586 | -633
1.00 | 0.00 | 500 | 600 | | | 100 | = | 20 | | | HANDER CHARA | UNIT CITICAL | CENTE
PET
CENTE
WORK | cycle de pendentic men i distar X.
P.T., pendegis na tra AAA poptible a salanti
coded-cal dans income rang R.C. | Optoplasm prohibine
Other silver | 1.75 | -225
226
238
238 | -081
0.86
1.35
1.33 | 0.00
0.00
0.00 | 100
100 | 0.00
0.00 | 200 | 320 | - | : | | : | | NAME OF COLUMN A
NAME OF COLUMN A
NAME OF COLUMN A | LMIATS
EARLASS | IPONTS
EMAAGE | and the second state of the second state of the second state of the second seco | Qtopton after
Qtopton engre
Othe after | 1.86
4.86
4.81
4.88 | -0.00 | 0.37 | 0.00 | 5.00
5.00 | 588
588 | 0 0 | 0 | | 320 | 200 | : | | HANGER
CLARA
HANGER CLARA | MAP
MARIE
CRICIO | CMOP
MENES
CREEKS | o Mal telung protein
mindepent de is mer 1
quincin suffição o colo e 1 | Optoplasm siter
Optoplasm binase
Optoplasm assume | 1.00 | -636
517
-536 | 0.00
1.00
0.00 | 0.00
0.00
0.00 | | 644
660
660 | 200 | | 100 | 10
0 | 87
8 | | | HAND COLOREDA
HAND COLOREDA | BON
BARN | TEP1 | THE landing protein 1
EMIC landing, Mile polymerated transcription factor | Other after
Other after | 0.38
1.80 | 188 | -633
0.49 | 0.00 | 6.00
6.00 | 500 | 200 | 320 | * | 300 | 64 | n
N | | NAMES CONTROL TO A
NAMES CONTROL TO A
NAMES CONTROL TO A | 1962
1969/188
1961 | THOUGH | o MM feature protein mindapen file it men 1 quincin suffragi y code to 1 MMS landing protein pro | Qisptem prjitten
Estrantiar Spice splitse belmanati
Males alter | 1.00
4.00
4.00
4.00
2.00 | 180
-64
-128 | -615
-622 | 0.00 | 5.00
5.00 | 600
600 | | 0 | n
n | 100 | 200 | - | | F MAND COLD COA SHE'S
F MAND COLD COA SHE'S
F MAND COLD COA SHE'S | CHOIR
CHOIR | MIAPS
CSIL/O
MESADE | cellin 1 photolel 12 myrks in 12 meritin tolund protein 1 characterism 20 open meding for on the 20 SSA downto containing 2 formation y light + 1, planta to actual to a high cylotic 1 this are | Optopleon after
Other after
Nation benefitsburgedater | 2.80
2.80 | -128
320
-68 | 0.20 | 1.00 | 640
640 | 520
586 | 100 | 220
PL | | 10
0
10 | 100
0 | 27 | | HECCECCOS | HARAS
IPES | MEAS
1963 | Faculties, a jobs 4-2, places
to activities of the grant of the see | Extraorbiler Space excyrre
Optophen litrate | 4.0
4.0
1.0
4.0 | -120 | -014
-015 | 0.00 | 640
640 | 620
621 | | i | | 12 | 300
97 | | | HAND COLOR CO. 2 | MALE I | DVMSLD | dynamic cytopia ents 3 fig to between da te chain 2 | Graphen Stepate
Optoplem Stepate | 4.07 | 1344
-237
-586
-139 | 1.63
-637
6.87
-648 | 0.00
0.00
0.00 | 5.00
5.00 | 600
600
600 | : | | | 32
32 | 100
300 | 70
20 | | I MANDOZECTA MOLA
I MANDOZECTA COLA
I MANDOZECTA COLA | MP-CD1
EVW
BCRA1 | MAP 300
MIN COS
BLAVE
BLOOKS | on the section of sec | Qiquiam engre
Qiquiam engre
Pennati entree treporte | 4.80
4.30 | -0.00 | -0.00 | 0.00 | 5.00
5.00 | 688 | | | 16
16 | 32 | 20
20 | | | HANDOECO BAS
HANDOECO 1353 | NA
SCRIE | 9091 | | Manual Ambana alber
Gloplam mone | 1.80 | 187
-186
-876 | 1.00
0.01
0.00 | 0.00
0.00
0.00 | 540
540 | 600
600
600 | 200
0 | 0 0 | | 10
10 | 200 | 3 | | | Marie Mari | PARK
PARK
PRINCE
PRINCE | INCE is deploy point in S. RASEA, remainer this description family from a risk in Entire description provide a phosphole to 1 mg dails by subset 1198 lateau or worship factor super family grander to making personal to the grander family provider to complete the subset of the control of the control of personal complete family to member 2. | Section of the content conten | 4.00 | -538 | 1.0 | 0.00 | 100 | 520
520
534 | | | 76
100 | 12 | 100
87 | | | HAND CERCH NO.4
HAND CERCH NO.2 | MARKET SERVICE | 1001
MARK
W PAG | mitagenesis independent interest interesting parter
serpin frontig it member 2 | nt Optophore after
Extraorbider Space after | 1.00 | -181
180
-428
-148
188 | 2.00
2.02 | 0.00
0.00
0.00 | 640
640 | 000 | 20 | er
e | 100 | | 200 | : | | FREE CECUTATE
FREE CECUTATE | MACE
APRIL | PAG
AMIG | catalglas allet and march 1
MAC philip specific disorders rate of
adapter retried protes complexit agent asked | Qisplam pojitime
Qisplam pojitime
Qisplam tampater | 1.00 | -188
188
-180 | 1.35
-0.28 | 0.00 | 5.00
5.00 | 634
600
600 | 200 | 320 | 100 | 0 100 | 0
0 | - | | FRANCISCO TANA
FRANCISCO TATA
FRANCISCO TANA | EMI
EMI | CCM3
SOURS
SOURS | Njajah parijitrasika se 21, NAA aad teysiketi
qali et2
senil nalesis etNA kat genet2 | Naina store
Naina dier
Oler dier | 1.8
1.8
1.8 | 120
140
186 | 0.88
1.37
1.42
1.37 | 0.00 | 0.00
0.00 | 600
600 | 20 | = | 100 | : | : | : | | HAROTECTURES | CERT
LAMPS | DIR
LAMPI
SARPI
SHEE | to blind law dend is 2 paperson reverpoor 1
Ignocene i access and membrane protein 2
TAX (NOV-1) ENA landing protein 1 | Remail micros a summicros recepto
Remail micros mayor | 4.86 | -688
-582
547 | 1.77
-049
0.83 | 0.00 | 500 | 520
520 | | | | 220 | 200 | | | N MARIO CERCOLA SARIA
N MARIO CERCOSA MARIO S | 1962 | 1942
1940
1940 II | IF is addonate is only member IX | Other after
Optigation literate | 4.00 | -0.00
-0.00
-0.00 | 1.00 | 0.00 | 5.00
5.00 | 0.00 | : | : | 90
100 | 320
07 | 92
97 | : | | HAND GET COLORS | TAKESI
MELIA | 198211 | signal i decodyratife also assisted. He II
In summirae and sales of density I
ICL bencrupresse 36 | Clier tempeter | 48 | -1.07
-1.07 | -018
-028
-018 | 0.00 | 500 | 628 | | | a
2 | = | 20 | | | FRANCISCO COLORS
FRANCISCO COLORS
FRANCISCO COLORS | HIPS
LIKTLE
RACES | LICER
REG | inmunghisi inspetint ymentett
UCT i ot prenttik plangfator
phaphdyduranik e 1 | Mains aller Mains aler Manual enlare major | 1.88
1.88
4.78 | -8.86
33.8
-5.88 | 0.86
0.85 | 0.00
0.00
0.00 | 640
640 | 0.00
0.00
0.00 | 20 | ET E | | 120
0
120 | 200 | 2
11 | | NAME OF CHARGE
NAME OF CHARGE
NAME OF CHARGE | EIHOZ
EHOZ | 08 | O-bit with antigly uncomme (BMM) transferors
behindeness contacting 2
unal nations (SM) but gree 1 | Originam engree
Originam after
Other after | 1.00 | 187
180
187 | 0.00
0.00
0.00 | 1.0 | 5.00
5.00 | 0.00
0.07 | 20 | - | 10
10 | | | | | N MARIO CEE CLU 207 D
N MARIO CEE CLU NOS 4 | ALI MICI | MONEY.
MARKET | partition has present model | Manual stee | 4.00 | -138
-187 | -034
0.07
-024 | 0.00 | 5.00
5.00 | 660
660
660 | : | | | 320
320 | 97
300 | | | FRANCESCORYCLY
FRANCESCORYCLY
FRANCESCOLYCLY | CH2 | ECAPITA
COME
MECON
COMPTO | as to 2. For all receptor assess ted protein SC CDES molecule standards complex subsets 23 tennological complex complex for 23 tennological to home you raide of \$100.30 di pion-facili protein dy sed any phosphological, non-morphic Type 38. | Optoplasm transporter
Manual Ambrone alber
Malma transporter galaxy | 4.81
1.87 | -138
-288
181 | 0.00
1.00
0.07 | 0.00
0.00
0.00 | 5.00
5.00 | 000 | 200 | 0 200 | 100 | 32 | 200 | | | FRANCISCO CO C | PPICE
PPICE | ENVIOLE
FIRES | characters oper setting from 21
terminagicial telescoper tall of \$12.25 d. pare for the
problem, and replantical telescoper type 22. | Citer ecopies
to Citer diler
Malesa phasphatase | 4.00 | -830
-638
-538 | -018
-080 | 0.00 | 0.00
0.00 | 500
548
500 | : | : | - | 100
100
100 | 92
92 | - | | FRANCISCO COLOTO | MARY
PEG | MPET
PEZ | unjan å måg 8 member 8
månge medhe tedpraten idne se 7
perastomal lag meds fictor 1 | Optoplasm after
Optoplasm litrase
Optoplasm engree | 4.78
1.86 | -0.8
-2.3
1.7 s | -0.08
0.30
0.39 | 0.00 | 6.00
6.00 | 626
620 | 0
0 | 11
0 | 23
U | 320
320 | 200 | 27 | | FRANCISCO CATALO
FRANCISCO CATALO | PHT IS OR | PPRINT
PORT | problem hopis to the Legislatory tridition subsetted
propriet to come floor subsitist of both hype 7
CDDS Jeffe disciprate to d | E Optoplace phosphates | 1.86
1.86
4.72
1.86
4.28 | -238
138
187
-186
184
-280 | 0.38 | 0.00
0.00
0.00
0.00 | | 618 | 90 | | | 320 | 200 | | | I MINICOLOUPE OF | CDCE39F4
DPG | | CDCE2 of the compression of a picture of the compression compre | Qrapton ater
Qrapton ater | 1.0 | 141 | 0.70
0.70
0.70 | 0.00 | 6.00 | 600
600 | 100 | 320 | | 100 | 100 | 1 | | FREE CECHANO | THEALACT
CHIPS | PHO
PHODS
STREAMACE
GRIPS
MASS
GARR
SERVICE
TRACE | d pictomate promote di pictomate di pictomate constante gi 1 ET ETHE cott jujui acticomate de al pic 4, trata juliu activa constante di pic 4, trata juliu activa constante di pic 4, trata juliu activa constante di pictomate con gi 170 per ale tra | so Origina engre
Estantidoripas alter | 1.00 | 182
-138
182
184
188 | 0.85
1.36
1.86
1.80 | 0.00
0.00
0.00
0.00 | 0.0
0.0
0.0
0.0 | 600
600 | 20 | 120 | 100 | 320 | 200 | 11 | | HAND GEORGE CO. | CYTHE | CAMP | arging SSA quite to e
to quarte
streetery with hand og 2
to fielding lived aproblets. | Graphen engre
Nation problem
Other transdipterregulator | 1.00 | 111 | 130 | 0.00 | 58 | 600 | 20 | = | 100 | : | | . : | | FRANCISCO MATE | MATERIA
GAPE | MESTS
CAN | to fining the depotent
EAST is nily blowning protein 1
optoble to accept tel protein 6 | Maina ater
Oropium ater
Oropium ater | 18 | -0.00
-0.00
-0.00
-0.00
-0.00 | 0.00
-0.00
-0.00 | 0.00 | 620
620
620 | 0.00
0.00 | | | 100 | 22 | 20 | Ξ | | F MAND CED CES TO FE
F MAND CED CES TO FE | MADS
TEMB | TERM | phophispared does to contact og 2
total chapatible operations on 198 | Extraorition types after
Cities after | 1.0 | | -029 | 0.00
0.00
0.00 | 520 | 520 | 20 | | | 320
0 | 200 | - | | HANGE CE COLOR | B 100.00
D 83.07 | BTROMA
DHEAT | interprisi cold and a transfer &
delptings only sholes 7 | Estantiaripae aler
Clier moye | 1.86 | 141
-cm | -018 | 1.0 | - | 660 | 200 | 320 | | - | 20 | 2 | | FRANCISCO 78-4
FRANCISCO 78-1
FRANCISCO 78-73 | TET
FOR IDE | 107
107 | dyments laiding protein
to soletakee
1992 toldstorreption | Qisplam alter
Qisplam engre
Naina kenadplannyaktar | 4.00 | -0.00
-0.00
-0.00 | 0.00
-0.00
0.00
1.00
0.00 |
0.00
0.00
0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | 100
34
100 | 32
32
32 | 20 | - | | HANDGE GE BAT
HANDGE GE BBA
HANDGE GE BBA | GENTS
GENTS | MAC 3971 GLPA AAGG 11CMS 10MS1 ENNA1 DMSIP TEP MYSIS DOGS1 GMA2 CCSM PM1GA CCSM PM1GA CCSM PM1GA CAPT AND | And we have been been deed to be a second of the | Optoplasm exagene th Optoplasm transporter Manual Manufaces a communicate communicate | 1.8 | -088 -088 -088 -088 -188 -188 -187 -188 -187 -188 -188 -1 | 1.38
0.30 | 0.00 | 600 | 000 | 0 | M | 100 | 32 | | : | | HANDERSCHILDS | HPEA
HPEA | PRICE
CIENTE | protesphagistic tradigit schools jihr
characters operating fore 27 | Optopleon phosphetase
Other aller | 4.0 | -776 | 6.36
-637
-681 | 0.00
0.00
0.00
0.00 | 640
640 | 600
600 | | | 2 2 | = | 20 | | | HAND COLOR CO. S. | CSL/IB
MM 129 | CONTR. | characters operating form the
MECO thomaign, opinion to walke members | Clier aller
Halma brookhinengakor | 2.38
1.81 | 188
128 | -0.61
0.05
1.07
0.00
1.07 | 0.00 | 680
680
680 | 641
660
660 | 20 | 220 | 100 | : | : | : | | B MANDOCE COM 277 2
B MANDOCE COM 178 2
B MANDOCE COM 476 2 | PMI
ETE | APR
APRAL
CARMED
PRILED | actioning transcription factor 2
amplications precured protectioning family America
paying protecting policy and reports 21 day 2 | Naina kanadybornyddor
6 Qioplam kwysorle
Manadienicze dier | 1.8
1.8 | -140
131
134 | 0.20 | 0.00 | 5.00
5.00
5.00 | | 20
20 | 0
127
127 | | | 200 | | | I MINICOLE CIA CINO
I MINICOLE CIA TRAN
I MINICOLE CIA MINI | WHITE
WHENCE
MARK | WHEED | MSEI dans brooks blog 1
TH dans brookship g 2 | Optoplasm stiller
Optoplasm analyse | 1.00 | -18
188 | -638 | 0.00
0.00
0.00
0.00 | 68
68
68
68 | 660
663
660 | 100
200 | 300 | 100 | 100 | 20 | : | | FREE CECUSARY | 120315
MOT 15.37 | 00001
MRTTLS7 | DMDtachine II
melytanbaselle 17 | Other mayor
Malma after | 1.86
1.86 | 141 | 1.00
1.00
1.00
0.04 | 0.00 | 6.00 | 520 | 20 | 320 | | : | : | | | HANDERSTRANS | PHERM | PERMIT.
PREDER
SERVICE | plesistic band up the daman facility timenter t
NOTO- e-gal de danly incoped protein | Other aller
Nation State Option register | 1.87 | 142
148
-181
186
-248 | -048
0.80 | 0.00 | 640
640 | 0.00
0.00 | 200 | 320 | | 120 | 100 | 2 | | S MAND COR COLUMN A
S MAND COR COLUMN A
S MAND COR COLUMN A | CLIC
PEDII | CLES
CLES
PIEDR
ANNAS | CDCI deli med 3
periodi topp dilemperi di matri | qenyasını birası (2014, rab me Bedi, pilk
Mari ma birasın
Qenyasını atler | 1.86
1.86
1.88 | 131
140
138 | 0.87
0.87
0.86
0.88 | 0.0
0.0
0.0 | 640
640 | 600
600
600 | 20 | 10
10 | - | : | : | | | NAME OF COURSE | MA.
DID | DED
NAZ | ar to be of CPTCAT on bending 2
dropping medianeline | Other aller
Males mayre | 1.87
2.35
1.87 | 187
148 | 1.34 | 0.00
0.00
0.00 | 620
620
620 | 620
620 | 20
20
20 | 120 | 100 | | : | | | NAME OF CASE OF A SECOND STREET | MAZ
EDENA
URIDAL | DOM: | Tru the edisptor 2
CRAD-box helius er 16
URZ-donato protein 6 | Manual Ambane dher Malina mayre Estrantidar Space dher | 1.60
1.61
1.66 | 100
101 | 0.00
1.00 | 0.00 | 600 | 0.00
0.00 | 100
100 | 32 | | : | | : | | I MINICIPERE THE C | RHOA
M.DR | ROA | Order Section 19 1 | Qtoplam mayre
Qtoplam mayre | 100 100 100 100 100 100 100 100 100 100 | -128
-128 | -010 | 0.00 | 600 | 620
620
621 | | 0 | | 22 | 20 | | | NAME OF COLUMN 1 | MARK | BETS ALC
DHAMA | sake carrier family 2s manufact24. Does hand shade protein family (Supple) manufact At | Odoplam transporter
Malma alter | 1.0 | -18E | 0.38
-0.09
0.38 | 0.00 | 6.00
6.00 | 500 | 200 | 120 | - : | - | 200 | | | HANDER COURTS HANDER COURTS HANDER COURTS | Chaps
Chaps | CHAPE | of the offing elements before the | Other diter Manual Mentruse diter Optoplasm diter | 1.80
1.80 | 180
161
186 | 1.0
0.0
1.0 | 0.00 | 600
600
600 | 6.00
6.79
6.00 | 20 | 10 | - | : | : | ÷ | | B MANDOED CELEBRA
B MANDOED CELEBRA
B MANDOED CELEBRA | 121
121 | DODA URSH PODA ADR HCPS SCS-024 SCS-024 SCS-024 SCS-024 SCS-024 SAMS SCS | pilatan-yinepinatinjihanki u
175 marij polinia 2
rikalime
polinikanci ish
fagin hatakantad
polja Alpondipena
polja Alpondipena
Citatahan dipenish disalahan bisa
Citatahan dipenish disalahan bisa
Citatahan dipenish disalahan bisa | Qdaptern mayre
Mailes transityteringsleter
Qdaptern litrase | 1.00
4.00
4.30 | 135 146 146 146 146 146 146 146 146 146 146 | 0.00
0.00
-0.07 | 0.00
0.00
0.00
0.00 | 620
620
620 | CAR | 0 | - | : | 120 | 87
200 | | | HANDSESSANT
HANDSESSAND1
HANDSESSAND1 | MIS
ME | PROS
HET
GERMAPA | problemment less
fagle landhested | Optoplasm litrase science of relicable arts,
Optoplasm analyse | 1.07
4.01
1.05 | 188
-186
-078 | -037
-032
-128 | 0.00 | 6.00
6.00 | 620
620
620 | 100
0
100 | 0
11 | : | 120 | 20 | W. UT | | I MINICIPE CHIEFA
I MINICIPE CHIEFA | CH1 | COM1 | grigh All paradigment
spitets | Other after
Males after | 1.00 | 111 | 1.01 | 0.00 | 100 | 540 | 20 | 320 | 100 | | 1 | : | | HANDERCOAM | CICIA
CHIT | CEDS | Clariton dependent dend norder dag 5
CDD reviewie | Optopion siter
Planationirase siter sietuumi, 82.883 | 1.8 | 111
-127 | 0.00
0.00
-601 | 0.00
0.00
0.00 | 6.00
6.00
6.00
6.00 | CAR | 200 | 320 | : | | 20 | | | S MANDOCTO COLLABOR
S MANDOCTO COLLABOR
S MANDOCTO COLLABOR | # M.1
M.2
251 | APIA
PE | anyioliketa preceser proteinisteling findly A new
interferon egalsking fictor S | de Optoplasm komparter
Marina koma dytkorregulator | 1.86
1.80 | 188
148
182 | 1.87
-111 | 0.00
0.00 | 648
648 | 600
600 | 20 | 320
220
87 | 1.00
0
81 | : | : | 20 | | PROCEEDINGS
PROCEEDINGS | NW3
ALDOA | BOTH BUTCH B | touch they could be during protein t
separagny (200, cycletisce
of diless, forces to ploud stee). | Extraoritater Space strier
Optoplasm enzyme
Optoplasm enzyme | 1.88
1.88 | -140
131
-138 | 0.00
0.00
-0.00 | 0.00
0.00
0.00
0.00 | 6.00 | 600
600
600 | 100
0 | 122
0 | - | 120
0
320 | 200
200 | n
k | | FRANCISCO MATERIAL PROPERTY AND ADDRESS OF STREET | NAMES OF THE PARTY | 9-90-02
10-90-32
A/100 | riented thomas 2
and natur riendequate the build 128
atmost lands to a facility | Optoplasm after
Marina mayore
Manna mayore | 1.81 | -138
-648
180
687 | 1.00
1.00
0.00
1.01
0.00
1.01
1.01
0.00 | 0.00 | 620
620
620 | 520
520
520 | 200 | 12 | 100 | 320
0 | : | | | HAND COLOR OF HELD | PP
(MAP) | DAMPS. | projekty mightone mar 7
DNA mehyltonderson Laurata tedyroten 1 | Option stayes
Nation transferring dates | 4.00
1.86 | -238
331 | 1.25
0.39 | | 68
68
68 | 620
620
620 | 200 | 320 | - | 100 | 20 | | | HAND GEOLOGY
HAND GEOLOGY | COCHO
LINERA
COCHO | COCH | implicate a spressed at gen 1 (byd ar at daw)
lymphopte a sig on 1 family member COB
coded-call dams to code ting 1 80 | Other after
Other after | 2.86
2.86
1.86 | 137
188
189 | 1.96
1.96
0.96 | 0.00 | 600
600 | 600
600 | 10
10 | 12
12
12 | | : | : | . : | | B MANDOZECTI KOP 1
B MANDOZECTO CALO
B MANDOZECTO CALO | WIND
WHI | RALIPEZ
WPG
8907
APZIAZ | emphasizacy processor productivating floring is now in the contract of con | Other after
Other after
Other after | 1.00
1.00 | -038 328 327 328 328 -138 -138 -138 328 328 328 328 -638 -638 -638 | 0.89
0.80
1.61 | 0.00 | 600 | 628
620
620 | 200 | 0 | W 25 | 10 | 20 | | | HANDGEGENERA
HANGGEGENERA
HANGGEGENERA | APTIAL
PTO-SIPSIA
RUNCHS | APSIAL
RIVER | A The on SEAL
PLY WIDH hope also fing or S | Extraorbile Space Suspense
Other aller | 1.86
2.39
1.83 | 120
214
588 | | 0.00
0.00
0.00 | 680
680
680 | 600 | 20 | 122
U | | | : | . : | | HANDSECUTETY
HANDSECUTETY | STOM
COM | UNITED STATES | quality parents 1 | Plantationicus über
Plantationicus über | 4.0 | -828
-638 | -017
-013
-013 | 0.00 | 620
620
620 | 661
661
660 | | : | 6 3 | 120
220 | 200
87
200 | × | | HAROCECCHIAN | 11.000
0000 W | RTWICK SEPRIS STEM CAS BLACK COURS LISTE ADRES HIGH | restricted to most plantator 1
DNO-loss between 1981 | Naine tractphoropide
Naine mayberrapide | 188 188 188 188 189 189 189 189 189 189 | -236
548
334
-638 | - CEE | 1.0 | 620
620
640 | 500 | 20 | - | 2 | - | 17 | - | | | March Marc | ADM2 | ACTION type and Toppe 1 signal right by particular 1 signal right by particular 1 solven the 1 solven the 2 s | Companies Comp | 1.0 | -60 | 0.00 | 1.0 | 0.00 | 600 | 200 | 10 | - | = | 72 | | | S MANDOCE CEL TELA
S MANDOCE CEL TELA
S MANDOCE CEL MEZ 7 | HOUSE
THRESPLAN | DOOM A
HOM PE
THORNEY TO
MERCE
MERCEL | terme termed M.
Summi remarket tery strat specie de merkinds
30 montes speciently menter 136. | Maine major
ng Naine kanadytaningskar
Manadhaninan manadran raspis | 1.86
4.86
4.87
4.87 | -187
-187
-281 | 1.07
-017
1.00 | 0.00
0.00
0.00
0.00 | 640
640 | 000
001
000 | 0 0 | | 100
00
00
100 | 32
32 | 200 | : | | FREE CE CE AND 1
FREE CE CE AND 1 | MINUTE
MINUTE
AT MINUTE | MANUEL
MANUEL
APPLIE | MAPR med derail opering the other binare 2
fact the MA behave
amplications present a protection and a Present | Optoplasm blease of TICE
Mail no mayore
& Optoplasm bleas dystorregulator | 1.87
1.82
1.88 | -185
-185
148
148 | 1.86
0.86
1.36
-0.70 | 0.00 |
6.00
6.00 | 600
600 | 200 | 12 | 100 | | | | | | | | | • | | | | | | | | | | | | | | FRANCIZZON NO. 4
FRANCIZZON NO. 4
FRANCIZZON NO. 4 | P2 006
PEXE IN
1 14E.2 | PERSONAL PROPERTY AND PROPERTY AND PERSONAL PROPERTY PROPERTY AND PERSONAL PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PROPERT | partery complet P2: 5
Pinc probest 2
action described and and probest of a | Remail entrare binchared
Citie diler
Citie diler | 1.00
1.00 | -180
180
187
-181
110 | 0.86
0.86
0.86 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 100
100 | 120
17 | : | 0 0 | 0 | : | |---|--|--
---|---|---|------------------------------------|--|------------------------------|--------------------------|--------------------------|-------------------|------------------|-----------------------|-----------------|------------------|----------------| | I MICCOECULOUS
I MICCOECULOUS | CLEAN
HAPES | Charles
HMPS | EC2 lie 11
characters 1 open realing frame III
manufactures acceled page 11.13 | Che aber Opington Other aber Opington aber | 1.0 | -3.86 | 0.00
0.00
0.00 | 0.00
0.00 | 640
640 | 620
620 | 200 | - | - | | 100
8
97 | : | | S MADO CERCIS DO PE
S MADO CERCIS MOD
S CER | PRICE
PRICESSA
SMINES | MARKET
MARKET | adapter refered protein complex 1 general 2 solvett. La commissione protein CSI mit agence than te dynamic bloom to along protein 1. | Oley dier | 1.8
1.8
1.87 | 128
129
129
144 | 1.37
0.38
0.88 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 20 | 22
22 | E | 0 | | n
n | | HAND CERCES THE 2
HAND CERCES THE 2 | MPIDIS
MINIS
MINIS | THORSE 2 | Turner probets DIG No.2 | | 1.0 | -5.86
-5.86 | 0.02
-C88 | 0.00 | 68
68 | 600 | | : | 7 | 120
127 | 20 | u u | | 9 Mario GED CS 200 4
9 Mario GED CS 200 1
9 Mario GED CS 4 707 2 | THE
PLEC | TORR
TORR
PLBC | interlection 20 exceptor cubanti alpha
La marighton factor IIII
pertigen 2 | Plantationismo assumismo recepto
Nationa tima dyberregistro
Plantationismo silor | 48 | -186
-186 | -607
0.00
-603 | 0.00
0.00
0.00 | 680 | 687
681 | : | : | ÷ | = | 97
200 | 6 10 | | HAND CODE COLORS 2
HAND CODE COLORS 2 | GLIMA
GLIMA
TLIM | CAUM3
60:901
13:11
P 7122 | new reach 21 mayor and the particle of the form the form the perflying a 2 or him homestants made due 2 graphs a material form the th | Clier ster
Nains ster
Nains ster | 1.6 | -181
142
-686 | -CAB
1.88
-G22 | 0.00
0.00
0.00 | 5.00
5.00 | 600
600 | 200 | | 2
2 | 0 200 | 97 | - | | I MICCECTANN I
I MICCECTANN I | WEST
WEST | | in a diagnite transport 32.2
We now upon one through the house
had easy! \$250, in whoth the | Malma after
Malma migrae
Qdoplann migrae | 1.00 | 180
166
-238 | 1.30
0.86
0.88 | 0.00 | 500 | 620
620
620 | 200 | = | 100 | | : | : | | NAME OF COLUMN 1
NAME OF COLUMN 2244 | CHE CHECKS | CIES
CYBERAS | to many 2004 y chine or
SAAD ben'y member 2
CDCI field mee's
sphale one 1801 family member Al | Naina bina dyborry ddor
Naina bhase
Crispian dher | 1.0 | -328
378
-38 | 1.00 | 0.00 | 6.00
6.00 | 000 | 300 | 320 | 100 | 0 320 | 20 | - : | | I MICCECU
SCO
I MICCECU SCO
I MICCECU SOA | MARTY
ME-MOS | CAP PRANTY METHEDS MET | exterfire benedig
problems green methylored one 7
MACF delydigenes, value 11 (complex t)
write up the bell like, facility 2
ti parte maked green 7 | Optopless star
Optopless expre
Optopless expre | 1.0 | -186
181
-686 | -0.00 | 0.00
0.00 | | 600 | 100 | | 11 | 120
0
120 | 100
1
17 | | | FRANCIZZON MAZ
FRANCIZZON MAZ
FRANCIZZON MAZ | ONLY
N.P.23 | GMET
HAPTON | serine pe pit disse hid litter, Eurital spe 2
El partiet moderati ga rema 7
modes partir 22k | Patracellar Space stler Places Membrase scapes Nations stler | 1.00
1.00 | -0.36
-0.36
-0.38 | -637
0.86
0.86
0.88 | 0.00
0.00
0.00 | | 600
600 | 200 | 32 | | 120 | 20
0 | | | HANGED COTO | MAZE
MAZE | NACS
MACS
MACS | Open Michael german 7 molespets (2) moles 9 molespets (2) moles 9 molespets (2) moles 9 molespets (2) (2 | Graphon atter
Graphon atter
Graphon atter | 1.86 | 1319
-138
-660 | 0.80
0.60
-609 | 0.00 | 640
640 | 620
620 | 200 | = | | 122 | 20 | : | | I MANGEMENT THAT
I MANGEMENT THAT | PREACA | MINCA | This Medical is the common of the selection select | Other after
Optoplasm binase
Optoplasm binasporter | 48 | -586 | -624
-623 | 1.00 | 500 | 681
681 | : | | 2
2 | 22 | 200
200
82 | M
N | | HAND CERCUTATION OF THE PROPERTY PROPER | MAY CENT | orq. | lycke methyka sale a e 10:
sa dragge pli dise Cj | Naina moyre
Estantido: Span popular | 1.01 | 114
281
-18 | 1.00
1.00
-048 | 0.00 | 648
648 | 600
600 | 200 | - H | 24
67 | 320 | 20 | - | | FRANCISCOURS | MAIN
MAIN | MACH
MACH
MAGAC | shed she to dehydrogen any reducte or facet by MEU room
consistent dehydrogen ann
consistent of C | Malma other
Optoplasm mayne | 1.0 | 338
348 | 1.00 | 0.00
0.00
0.00 | | | 20 | | 100 | | • | • | | FRANCISCOSCIANOS | 20.00E | 20.002
1925
193 | uning part in it. They RABERS type containing 2 when yeth the solution notice in the 2 Brochastle pade signal on general research with 1 East life with LABER 1 EERT accordingly policies 2 | Naine trace determined | 1.40 | 121
138 | 0.86
0.86
-641 | 0.00 | = | 520
520
520 | 20 | - | 100 | | | - 1 | | HANDGE CHARCE | MES. | RET.
GEPAPE
HOARD | ten the without CAR 1 1889 - monitoring provint 1 1889 - monitoring provint 1 1889 - monitoring provint 1 | Remailmenture store
Remailmenture store | 1.00 | 128
138
-138
-138
148 | -628
1.88 | 0.00 | 500 | 600
600 | 200 | - | 100 | - | 20 | | | HANGER COURTS | AMERICA
AMPAN | OFFET
OFFET | g you'd tylinghates option for me I
unbelgins to this and more?
OTU declinghisme 1 | Ottober more | 1.80 | 134
226
-628
-128
-128 | 1.00
1.01
1.00 | 0.00 | | 620
620 | : | | 100 | - | 20 | • | | HANGED COANS | CITATION . | OTERS
MINES
SPRING | CTU declarations 1
ENAboding melf protein 26 | Clier peptiber Nation other | 18 | -588
538
-588 | 0.0
0.33
1.31
-G44 | 0.00 | 500 | 628
620
620 | 200 | = | 100 | = | 20 | - | | HANGED CO. CO. 1 | MCTAZ | 1162
923343
10163 | 20 Mining Engary potent Mar. Types market for the Car. Substruction & Mary 21 member 2 And the carrier & may 21 member 2 | Clie der
Manual minure bespaler | 1.86 | 128
122 | 0.8h | 0.00 | | 600 | 20 | | : | | - | 1 | | PROCEEDINGS | THETES | TAT
THE TOTAL | te pirecyclin II
Index for authorities of Tracils
TECS demain family member 6
CORD demain contacting II | Remattenbure blose
Optobern other | 2.08
1.86 | 186 | -0.08 | 0.00 | - | | 20 | - | | | | = | | HANDGE CHART | MAPE
COLUMN | PROPE
PROPE
COLUMN | poster at a claimed to produce it
colleges type 2012 o lyke 2 a bets | Otopiem stope
Estate file and a second contract to the contra | 1.00
1.00
1.00 | 318 | 1.00 | 0.00 | 5.00 | 550 | 100
100 | - | 100
er | - | | : | | | PIA
LANCE | MAPS
LIMITS
HAPPELS | TO mappe access to distance 1 PERSONAL leading protein LESS dama minuse 1 Audient measure by protein 1 like 4 | Maine tune dyborneguleter
Optoplane kinase mak, dekrabelijka en
Optoplane skler | 1.88
1.80
1.67
1.69 | 141
-128
140 | 1.21
0.21
0.02 | 0.00 | 648
648
648 | 650
650
650 | 200 | - | 100 | 120 | 200 | i | | B MANDOED COM MAI 1 B MANDOED COM MAIO 1 B MANDOED COM MAIO 1 B MANDOED COM MAI 1 B MANDOED COM MAI 1 B MANDOED COM MAI 2 B MANDOED COM MAI 2 B MANDOED COM MAI 2 B MANDOED COM MAI 3 MA | 20 KUR
30 KUR | 20110 | coprecipite ratios e 1
tion finger protein 12.38
manuscriber of pie class 38 member 1 | Malma mayon
Malma aller
Geograph | 1.86 | 131
584
182 | 0.32
0.37
0.33 | 0.00 | 520
520 | 620
628 | 20 | * | 2 | | | | | HANGED COUNCIL | D LES
CHARLE | CETTO
CETTO
DETO
MICELO | manuscripte of pie class 26 member 1
cleaning of multition for the subsett 2
interferon todaced proteins the tracks apoptible repose
BECD limit with curren with site 1. | Mains other
Optophom other | 2.00
4.00 | 171
-178
160
161 | 0.11
1.01
-ccs
-cas | 1.0 | 520 | 620
623
640 | 200 | - | | 122 | 87 | | | I MINE CERCIA 27 A
I MINE CERCIA NO. A
I MINE CERCIA NO. A | March Marc | DCAN.
POTTM | BED bird y the cargo als plan 1
DDB1 and CLA to a solute of actor 8
profel & hydroglam, Sunsambara | Same of the control o | 1.00 | -138 | 0.86
0.88 | 1.0 | | ano
ano | 300
0 | | 100 | 100 | 20 | n | | I MADORECTI MATA I MADORECTI MATA I MADORECTI MATA I MADORECTI ATI | EMEL
EMEL
PHECA | MEMOD
MEMODA | projet bydougles, kanementes se
stor finger CEPHyse containing SE
replantan initiates 3
phosphat delinated 6 times type 2 siples | Otopiem other
Malma other
Otopiem bloom | 1.0
1.0
4.0
4.0 | 138
287
-148
-588 | 0.87
0.38
0.88 | 0.00
0.00
0.00
0.00 | 520
520 | 520
520
520 | 200 | | #
| = | 200 | | | I MIEGEGEART
I MIEGEGEART
I MIEGEGEART | AM
CATE | ATM
CAPE | replanten telleter 1 phosphel dyterated 6 tone or type 2 dyter RATenselffying Seter A Tenselffying Seter Laborated to make the seterate of make the higherater | Otophen ster
Malma bloom ATCIN
Otophen ster | 4.80
4.00
1.00
1.00 | -120
084
127 | 0.00
0.33 | 1.0 | 600
600 | 600
600 | 200 | | 100 | 122
0 | 11
1 | : | | HANGED CRASHO
HANGED CRASHO
HANGED CRASHA | POLICE
POLICE | HINTS
FOLIAN
STEEL
THE CASE | A the trangen was a was
an inglessed
mades a copies interesting protein 3.
EMAphysium or Machaniti
of program 1.
It is noted transplar patential cotton channel subfamily C. | Nation tone delivery date. Nation tone delivery date. | 4.38
1.80
4.87 | -186
319
-686 | -cas
c.m
-cas | 0.00 | 640
640 | 600
600 | 200 | = | E F | 320
0 | 200
B | | | I MINICOLOGIANO 9
I MINICOLOGIANO 9 | THE COLD IN | MICHAE
MITTEL
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MICHAE
MI | in montreceptor patential cathor channel
subfamily C
to be protest complex calantial title
pre-collect, proceeding factor 20 | Optophers transporter
Nation other
Malma other | 1.88
1.89
1.67 | 181 | 1.38 | 0.00 | | | 20
20
20 | 120 | 100 | | | | | NAME OF COLUMN
NAME OF COLUMN
NAME OF COLUMN | 89475
10 LR4
198 | HARTS
HARMA
THE
THE
THE
HARMA | rus borneing is only member 12
means) and 15 should be protein by an 6
TRAFO and NOST mercant og 60 mem | Ottopiom magne
Ottor alter
Floratel missue binase | 1.00
1.70
1.00 | 118
187
188 | 0.86
-G84
1.80 | 0.00
0.00 | 640
640 | | 200
200
200 | | 100 | 0 | : - | | | FRANCISCOS NO 2
FRANCISCOS COMOS O | MATHER
MATERIAL | TO PAIN
EMPTEZ
MEDICE | mant well skipt in praint type 4. TAPIS addited dermit og trane TITES, als jur midded problemanijke Camerating pr ring 8 operproblem 127 arrestledamate containing 6. | Naina ster
Naina miyre
Citer ster | 1.61 | 141
-180
-188 | 1.80
-641
0.86 | 0.00 | 6.00
6.00 | 600
600 | 0 0 | | 100 | 320 | 200 | | | I MANGEMENTO NOR 1
I MANGEMENTO NOR A
I MANGEMENTO NOR INCRE | PLEET
MAS | PLEAS
MATE | pertipant
unio de family W.W. dana income bing pentent. | Optophon after
Optophon after | 1.0 | -180 | 0.37
-0.11 | 0.00
0.00
0.00 | - | 600
600 | | : | - | 320
320 | 14
100
97 | *** | | HAND GEOGRAPH 4
HAND GEOGRAPH 7 | 00 MEAN TO THE PERSON NAMED IN COLUMN COLUM | 001
0007
936 | per tilpt m.E. unber där Family MF Mråmen become belog per ble m.E. EECHE, 49 Fa jilpt bleam militation bennskig EEHE, 40 Familie m. 37 PRE harmonism 6. | Qiqqison bush borrqishtar
Narima moyra
Narima bush qiborrqishtar | 1.60 | -137
280
589
389 | 0.00
0.00
0.07 | 0.00
0.00
0.00 | 6.00
6.00 | 600 | 100
100 | | 100 | | | 34 | | I MAND CERCES MAN 72
I MAND CERCES MAN 72
I MAND CERCES MAN 7 | PTS-MEDICELY
EMPER
AMPE-AC | OFFICE
AMES-AC | in the epock and ETE does to contribute the gib
AMEL of the contribute 1
Delt does nice sing protects | Cite dier
Cite dier | 1.86
1.72
2.86 | 240 | 0.22
2.75 | 0.00 | | 525 | 87
87 | 20 | | : | : | | | I MINE CERCE CEN 2
I MINE CERCES NEM
I MINE CERCES NEW 2 | MEENS.
LEWIS | MATERIA
MATERIA
MATERIA
MATERIA | Det danst når ding protet n 1
mit saknad tal careter 1
skrigette open for poptide 24 | Cite dier
Groten dier
Nafes peptike | 1.66
1.66
1.66 | -128
138
128 | 1.35
1.21
1.20 | 0.00
0.00
0.00 | 648
648 | 550
550 | 200 | = | 100 | 0 0 | 97
0
0 | : | | FRANCISCO COMO
FRANCISCO COMO
FRANCISCO COMO 1 | HARTS | THE PARTY OF P | | Other other
Optophora peptidase
Other mayone | 1.02
-1.00
2.30 | -146 | 0.00 | 0.00
0.00
0.00
0.00 | | 600 | 0
0 | | : | 200 | 200 | | | I MANO CED CENTRA A
I MANO CED CENTRA A
I MANO CED CENTRA A | THE MED 7
CHEST | | le genet o 1964 methyta odie a e 11 hand og le state richte yek te ded og path hands og demán og te state richte yek te ded og path hands og demán og te somende sen y richte 137 O odd gjorg vætte odjang hålane tilgmang en yeke fypatil ov oderdana stat sted 1 | Origina tuna debergalaw
Clie aler
Males peptikus | 1.8
4.87
1.73 | -128
-128
188 | 0.07
-0.00
1.00
-1.10 | 0.00 | 640
640 | 600
600 | 200 | | - : | 100 | 20 | n
= | | A MONETON NO. MONE | EM MONEY MINEY MINEX MINEY MINEX MINEY MINEX MINEY MINEX MINEY MIN | 1987
1997
19003 | | Chies aller | 1.01 | -CIR
3.78 | 0.86 | 0.00 | 500 | 650
650 | 0
0 | - | | 120 | 200 | n
2 | | HANDERSON DE LE MANDE CONTRACTOR LA | MCONE
BOATS | TENNE
THE TENNE | sharped multimosal ar body protein 40
TRCS domain family member 3 00 | Quipleon after Naina after Quipleon scopme | 1.0 | -5.59
-6.66
6.63 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 680 | 586
588
680 | 200 | - | 10
10
10 | 100 | 100 | | | I MANOGERICA POR
I MANOGERICA MOTE
I MANOGERICA MOTE
I MANOGERICA MOTE | METHOD
CORES | BZMS
UNPED
DDBS | ate: Begin DROC type containing 7
he is became apper and 100 demans 1
shaps to open to position 20
demage specific DRA landing protein 2 | Graphen subject
Graphen translation guides
Graphen peptition
Malma other | 438
1.88
1.38 | -0.00
133
130 | -681
-628
0.88 | 0.00 | 640
640 | 620
627
620
624 | 200 | - | - | 120 | 100
0 | - | | HANDOODOO NO 2
HANDOODOO NO 2 | CID-HIMALLI
BENA
BINALI
ARCH | MPG
NDA | ring Engerproteind 1 under grante State of the | | 1.07 | 131
-08
302 | 0.38
0.33
0.33 | 0.00 | 6.00
6.00 | CA1 | 200 | - | | 320 | 20 | • | | # MERCORDON NO. 2
MERCON NO. 2
MERCORDON NO. 2
MERCORDON NO. 2
MERCORDON NO. | MACE. | AARS | Titlete grint only sight 1,5 colytom/wave 2
as to existed protein 2.0 consists subset 1 | Quiquian mayore Filance Indicase transport Quiquian dalar Quiquian dalar Quiquian band diphonopidas Rati Na Santa Sphonopidase Rati Na Santa Sphonopidase Rati Na Santa Sphonopidase Rati Na Santa Sphonopidase | 1.87
4.83
1.86
4.87
4.88 | -130
-138 | -604 | 0.00 | 600
600
600
600 | 625
648 | - | | - : | 12 | 100 | | | HANGED COOKS | 01F0
87 AU
19803 | ENTE
SPEE | CAP-Objectments consisting their protein 3
object transferor and as the or of the completion 2
to report to 2
MCC exciton report 5, endined wave | Naine tone deleroyates
Naine toneous | 1.78
1.88
1.66
1.82
1.82 | -1ME
181
130
130 | 1.8
1.3
1.3
0.37 | 0.00
0.00
0.00
0.00 | 640
640
640 | 600
600
600 | 200
200
200 | = | 100
er | 0 | : | | | I MICCELETA TRAC
I MICCELETA TRAC
I MICCELETA MICT | THEST
HISTS
HEAT
LIPES
HAPS
CODES
BUZINOS | EPIGAS
LISPES
HARRY | | Optoplasm translation regulator
Optoplasm peptidase
Optoplasm after | 1.80
1.86
4.80 | 181
118
-120 | 1.25
0.62
0.86 | 0.00 | 648
648 | 650
650
650 | 200 | | 100
100 | 0 | 17 | | | NAME OF COURSE | ECICIO
MCIMO
MCIMO | HCDAN | when you have noted to a block of AC about the partie of the SE
Annual to specify the partie of the SE
ANNUAL AND THE ANNUAL THE SE AND THE SE
AND THE SE AND | Other siler
Originam traspater
Nation siler | 1.88 | E#2 | -621 | 0.00 | 600 | 688 | 200
200
200 | | 27 | 0 | : | 24 | | NAME OF OTRACE | HACI
HERES | HAZ
HAZ
HERVEL | inexisfandy review 22
el 82 (favoriem 22 3
lumaget les televisie 185 protein with ulagett eithe di
on exp. 185 cign lag (equidan 2
MASS) sitt againm and or who he complex according to | Naina moyee
Oropion after
Oropion after | 1.8 | 138
130
-68
-10 | 0.00 | 0.00
0.00
0.00 | 640
640
640 | 620
620
620 | 20 | | = | 0
17 | 200
200 | | | NAME OF COLUMN 2
NAME OF COLUMN 2
NAME OF COLUMN 2 | RPGS
RAG
HREADS
OPPS
RELEASE
HESE
ASS
HESE
HESE
HESE
HESE
HESE
H | HELDANA
MELDA
MELDA
I FERRA | MACE size qui une autie relucio e complex accentity fo
ACE riscopistos fictur like EEP are M.
existryatic to relation tetratos fociar 2 Roubent delta | Cyclesium pytithen (Opin the State Opin O | 4.88
1.87
4.88
1.37 | -188
-138
-138 | -607
1.37
-618
1.8 | 0.00
0.00
0.00 | 600
600
600 | 504
600
600 | 100
1
100 | | 100
27
100 | 0
320
0 | 20 | - | | NAME OF CASHICA
NAME OF CASHICA
NAME OF CASHICA | MARCE
MARCE
MARCE | S LINES
HOME | m 10.2
Sediend UKSM denotecontribute 1
mertin (sedien mertine mentine protest) | Optoplace after
Marina after
Marina after | 1.00 | 618
689
-361 | -CR6
0.07
-CR0 | 0.00 | 6.00
6.00 | 620
620 | 300
300 | 67
66 | 0
=-
27 | 0 0 320 | 10 | n
n | | NAME OF COLUMN AND A
NAME OF COLUMN AND A
NAME OF COLUMN AND A | MA
APMER | ATRICE
MINER | Article protein 9 Article Principality Visidenti li MACH delphigence, calcutt 5 (complext) | Nafea lines
Qiqilan başabi | 1.0 | 128
-128
-128
-128 | -137
0.86
-688 | 0.00 | 648
648
648 | 680
680 | *** | | | -
 | 300
300
87 | - | | HANGED CHARACT
HANGED CHARACT
HANGED CHARACT | LITAP
DIPSA | | | Gyrighison kompar Ne
Gyrighison mayor
Mari Ma ma si diphonegidata
Mari Ma kompa diphonegidata
Mari Mariana mangka
Gyrighison dibar
Gyrighison dibar
Mariant Mariana mangka | 4.07
4.09
1.08
1.02 | 141 | -628 | 0.00
0.00
0.00
0.00 | 610
610
610 | 600
613 | 200 | - | 11 | 120 | 83 | | | HANDGE CEPTAGE
HANDGE CEPTAGE | DP3A
FRAN
MM11
Maibez | DIFTA
TELAN
ARRES
RACHFE | Springerschaft between 20 Factor d on termining protein Thomaing A long rincolout at pipe is arvectiohete 1 ji milati in barrol ogs and PTAT domain containing 2 | Optoplasm sther
Optoplasm sther | 48 | -0.00
-0.00
-0.00 | -018
-018 | 0.00 | 600 | 600
600 | 0 0 | | | 320
320 | 22
200 | E 20 | | I MANGEMENT COMMA
I MANGEMENT COMMA | HEST
PERMI
UNIX
UNIX
CHOS | PERM | | Planna Mientrane in numericane recepto
Optoplane entry grahita, cil confest, mi
Optoplane linear ateritoriz anticesse di
montra | 4.0
4.0
4.0
1.0
1.0
4.0
4.0
1.0
1.0 | -cm
-cm
-130 | - GA 4
G.M.
G.M. | | = | 600
600 | | | 11 | = | 20
20 | 2 | | HANGED CO. NO. 7 | CHOS
MENDOS. | ERG
CHES
ME-MELL
MATE | minimum of tests 1 pulposes represents complex 2 cub
characteristis habita in EMA habitag problem 1
NACH debydrage man, cubust 4. (complex t)
upo middas/upo mino NE-scriptus submin in 1 | Marine mayor date/pail beri, spra
Quylan mayor
Quylan mayor | 1.8 | 118
148
-08
-182 | 0.88
0.88
-C84
0.88 | 0.00
0.00
0.00
0.00 | 600
600
600 | 000
000
000 | 200 | |
100 | | 87
200 | | | HERECTE CHARLES | MP-MDA. MATE UP-MC ST APA CTU-MM HOMAS TMG HOMS | 2990 | spe military permine EC merbyta nahra o 1. ppin 1 20 Status Engerprotein signal transform; sals plan forthy member 1. sharesone 12 open meding for me dit | Maina phophane
Maina kanadphonguktur
Qiqqian aker | 1.07 | 117
588
-88 | 0.00 | 0.00 | 68
68 | 520 | 20 | 120 | * | | | | | HANGED CO. TO. | COLUMN
HOME
THE | COLUMN
HOACH
MICH
MICH
MICH | signal franchisting also plans for the committee 1. In commence 2.1 opening day for one 40 In comments are class to the 2. In comments are class result the 2. JRT-trakeard day to deman represents 1. | Other aller
Nations transditioning determine, to be set by last
Opposition aller | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | -680
137 | 1.8 | 0.00 | 600 | 600 | 200 | | -
- | | 20 | | | I MICCOLOLO PARA
I MICCOLOLO PARA
I MICCOLOLO PARA | MODE
MCMS
MP3E | HPLE | più trabane de fi deserva protein 1
salute contre firmig il monder 81
bustingtio torrant aggress to 1 misted
0 più te nobusti sipite 38 | Optoplasm stiler
Plasma Mandrane Vanaparier
Optoplasm stiler | 1.60 | 548
327
587
338
-680 | -618
0.45
0.80
1.86 | 0.00
0.00
0.00
0.00 | - | 000
000
000 | 20 | 120
M | 100
100 | : | : | 1 | | HAND COLD CO. CO. A. S. | CODERF
DISTRIBUTION | GEDEN/
HHD1 | E parte material sigle 33
collect out de me translette g 5.7
De 24 pér en celebrat 3
De 24 pér eng tier site déspir que en
mit appar de 3 | Manual entrare entre
Othe siter
Otopion siter | 1.88 | -08 | 0.38
0.28 | 0.00 | 600 | 614
697
600 | 200 | -
 | TO THE REAL PROPERTY. | 100
0
100 | 200
20 | 24
40
1 | | FREE CECESORS
FREE CECESORS | SICRES HPSE GRACII CORCEY TROS GRACII CONS GRACII CONS GRACII TAMA TRI TRI TAMA TRI TAMA TRI TAMA TRI TRI TAMA TRI | DO HEDH
MELAZ | D-2 hydrog lakrakrákyd quese
mitgyarák 2
MOL derad grantnes násgálneská práda | Optoplasm magne
Other other
Marina other | 1.86 | 118 | 1.0 | 0.00 | 600 | 600 | 200
200
200 | 12
12
12 | 100 | 0 | : | : | | I MINICEDE COMMA
I MINICEDE COMMO
I MINICEDE COMMO? | COPA
MITTER | KSPS
COM
MPH
MHG | MOI de rad og centre a nång tilse risk protein
polyj C kinding protein 1
contrere protein complex colonit slyka
mystrophin | Mai ma - Eurob Scoragaidear
Qeopinum - Europailer
Mai ma - Eurob Aphineng sidear | 1.8
4.8
1.0
4.9
1.0 | 128
-128
140
-122
127 | 0.76
-0.67
1.87
-0.68
1.88 | 0.00
0.00
0.00
0.00 | 500
500
500
500 | 600
600
600 | 100 | - | 100 | 120
0
120 | 100
0
100 | 120
0
17 | | I MICCECLICA
I MICCECLICA
I MICCECLICA | TWING
TWING
H GAPS | WHAT
WHAT | mystrogens
upt regions only glatents a tale of lysice its hyrates
typic or 2 consuming our only graph on becoming our
phosphal dybrocked in the weights proving our | Mains ster
Qtoplem ster
Other ster | 4.22 | -68
188 | 1.0 | 0.00
0.00
0.00
0.00 | COD | 600 | 200
0
200 | 1 | 100 | 100
100 | | | | NAME OF OTHER PARTY
IN MANUSCRIPTOR PARTY
IN MANUSCRIPTOR PARTY | EDATA
EDATA
ENTRE | THE HALL
HE SAME
L'SAME
EDNESA
SHEET HOS
GLASS
HOLES | in skalt teen Art hydroclase
hydron de medhylase IA
en Sansale skalt Style sayde in dip haapinskyd achon it jirak | Qdoplaun mayre
Mail na mayre (1902)274102
Qdoplaun mayre | 1.60
-0.20
-1.60
-1.60
-1.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
-0.00
- | -138
338
688 | -687
0.62
0.60 | 0.00 | 500
500
500
500 | 550
583 | 200
200 | -
-
-
- | 21
21 | 0 0 | | : | | I MINE CERCES COM IN
I MINE CERCES COM IN | POLIS
POLIS
PREPSAIL | MAIN
MAIN AND | ne benederable typesque in dynagologica have by all
going glospy and an activation of the colored
1948, pair year non epichar, called to subset
1948. He selected 1944. I
is present colored to grant 1933
nuclear years the Armagethan factor the
mobile bloss and tig engine 1
have a wind to TCO | Optopleon stier
Mail ma mayon (@moctalitie, clade)
Other stier | 1.80
1.80
1.81 | 588 | 0.00 | 0.00 | - | | 200
200
87 | | | : | | | | I MIRECEDERANE A
I MIRECEDERA
I MIRECEDERA 7948 | NEX
KES | SHEPS AND
HARRAN
HARRAN
HONG
ARRICAN | If point except after option 200
exchange in the Armon of the fact of the
ends to become ding expens 5 | Manualdenizare protein capiel ecept
Qinplam stier
Manualdenizare peptidae | 1.0
1.0
4.0 | -828
342
-638
-538 | -625 | 0.00
0.00
0.00
0.00 | 6.00
6.00
6.00 | 620
687 | 200 | - | | 120
0
120 | 200
0
200 | | | HANGED COVERS
HANGED COVERS
HANGED COVERS | MEA
MEA | APERICAL
NAME | turner probets DIC
apulip oprobet nit millet, witting entryter catalytis calcust
retinans and receptors lyths | Qripton dher
Naina majore
Naina hispodest nainar rat WING, ale palme, an | 4.00 | 559 | -628
6.87 | 0.00 | 685 | 600
600 | | ÷ | - | - | 42
47 | u
u | | NAME OF COMMON
NAME OF COMMON
NAME OF COMMON | MARIANIA
CHRISTA | EARA
ATADI
EAREPI
CHINE | retext and receptors jobs
A.Te or 6 mily, AAAAbanato constitute 2
East CTO a activating probint
optobrane in miletane 6 | Malma mayre
Malma other
Optoplesm mayre | 1.89
1.61
1.89
4.36
1.61
1.61 | -0.80
1.01
1.37
-1.08 | 0.00
0.00 | 0.00
0.00
0.00 | 600
600
600 | 600
600
685 | 300
0 | 300 | | 122 | 200 | | | | DOMPAGE OPPER MAR. EXX. TO 2 ANTE OR MARCH CROSS MARCH CROSS MARCH EXX. | HAPE
BOSE | mother flator role ted to happed in roling parte in
by sharonan binding protein 4.
30 CM hamalog C, CD M coal complex component. | Mail ma trans dybining skilor
Optoplasm skilor
Optoplasm transporter | 1.61
1.66
1.68 | 281
326
330 | 0.21
-081
1.88 | 0.00 | 640
640 | 681
680
680 | 200
200
200 | = | 100 | | : - | | | HAND CED CO 700 H
HAND CED CO 271 A
HAND CED CED RE 7 | HIE
STEE | HAR
MY 13.
RCIER | fundituse
symptote grant 1
for schedule toketantid delydrograme blore
sakde carrier firmly the member P2 | Optoplasm liteaue
Optoplasm brancparter
Optoplasm liteaue | 1.86
4.80
4.80
4.80
1.88
4.87 | -636
-136
-137 | 0.34
-633 | 0.00
0.00
0.00 | 640
640 | 628
629 | 200 | | 6 | = | 200 | : | | HAND COLOR DO I | LIMP
CHESII | HARP
CHEST | salate control formity the manufact P2 EE accounts tell control filt receive placepholises CEP I file MANUFACT year exercise are domain contacting it. The delication of control of | Other silver
Optoplane phosphates
Estimation Spine opticise | 1.0 | 138
-138 | 0.33
1.58
-Gd8 | 0.00 | 600 | 000 | 200 | 320 | | 0
30 | 0
20 | u u | | I MICCOLOL IN I |
MACH
MACH | 99ACB
00061 | TO alpha traker dyna te tot. The nucleated in the might top. The findatalm cub. COMP to the force of to the first top. In comments we also see like to. | Mari ma mariyan adi ila nejinga mata nejil
Mari ma mariyan | 1.0 | 182
-180
142 | 0.00
0.30
1.07 | 0.00
0.00
0.00
0.00 | 000
000 | GB7
GD3
GD0 | 20 | - | 100
100 | 122 | 200 | • | | I MEDICAL SOL | DOM | TMCS
LZTR1
DHOSE | to remembrate do mel the 6
le autre stypes the transcription regulator 1
CRANNO helica e 36 | Optoplasm brans dydening skilar
Optoplasm arang sydening skilar
Optoplasm arangem | 1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 106
118 | 0.86
0.86
0.86 | 0.00 | 5.00
5.00 | 620
620 | 20 | 27 | | : | : | : | | S MAND CELE COM MAIL S MAND CELE COM TAVA | PAGE
AARDS
PAGE
GRAV
PAGE
PAGE
PAGE | AMERICA
MARIETA
MARIETA
MARIETA | in tag rad membra neputale to 2C
all any 4900 cyclinds are done to contact ag 1
paint facilities as 1
Mathematics and Complete and School and all contact. | Optopherm other
Marina mayne
Marina binase
Optopherm | 1.m | -CME
3377
EMB | -can
1.06
0.00
-633 | 0.00
0.00
0.00 | 648
648
648 | 600
600
600 | 200 | = | er
100 | | | | | I MEGICAL TOTAL | CHI
Pasa | COM
PARCE
HURLL | Mijajanja rejitranska oraz, Mattaski yla salant
CDM malassie
protestara 201 salasti, A.Tele t
filosložija naski fasto prostorit in 1 | Memalitaniane aler
Melas populare | 1.80
4.30
4.30
1.80
4.67 | -080
-138
-138
-138 | -621
-641
1.30
0.86 | 0.00
0.00
0.00 | 680
680
680 | 600
600
600 | 200 | = | 31
100
100 | - | 87 | | | I MARIO DED COLO IN
I MARIO DED COLO INALIA
I MARIO DED COLO INALIA
I MARIO DED COLO INALIA
I MARIO DED COLO INALIA
I MARIO DED COLO INALIA | HPML
CDS3
SECTAR
LAPTAGE | HARD
COME
SLOTAR | Fibroblezg couth factor as ceptor-t for 1
apoint 1
CDM reviews
taken contact to may 7 member to | Company | 4.07
4.00
4.00
1.00
4.00 | -138
-138
-138
578 | -613
-627
-628 | 0.00 | 646
646
646 | 600
600
600 | | | 4
27 | 22 | 97
90 | | | HERCOTOR SHOT | LAPTHAGA
DRAFG | LAPTIMA
DRAFG | salub carrier bendy 7 on mber 6
Ignacers i protein transmerskan en Galpha
dynein auconnal bezog chain 5 | Optoplace other | 1.0 | -08
314 | -621
1.0 | 0.00
0.00 | 680
680 | 548
548 | 200 | | 180 | 100 | 100 | I MICCECCIONA
I MICCECCI APO | IME
IME
IMA | EAG
EAG | ESSAbording most protein to
Interlegish 1 receptor accepted little in 2
ESSA biteracting protein | Nation other
Formatt embrase binase
Nations other | 1.8
4.0
1.0 | 348
-348
338 | 1.86
1.36
0.86 | 0.00 | 6.00
6.00
6.00 | 550 | 20 | - | 100
100
30 | 120 | 100 | | |--|---|--
---|--|---|-----------------------------------|---|--------------------------------------|----------------------|--------------------------|-------------------|-----------|------------------|----------|----------------|----------| | NAME CONCURSORY
NAME CONCURSORY
NAME CONCURSORY
NAME CONCURSORY | MAN
MP MC3 | MP MCS | PM internaling protein point mentaling protein subpt over containing, NP is les p(1) phosphose to (1994, for jumps over 1994, CESP internaling to (1994, for jumps over 1994, | Males after
o Originan temporte
Originan engre
I Estantidor Specia optica | 1.80 | 131
133 | 0.00 | 1.0 | 68 | 600
600
600
600 | 20 | = | 100 | | : | | | B MANUFACTURE CO. S.
B MANUFACTURE CO. S.
B MANUFACTURE CO. S. MOTO. | MPINCS
CMPMN
WAVE
MAPP | VAVA
UKSP7 | CEPT to MACAN. I ameninka reducate contribu-
tar gar the reduction between any effect or 3
center and explanarish sphing the clar 7 | Estavelidor Space opticae
Estavelidor Space opticae | 4.0 | -1M
-08
149 | -029
0.0
1.0 | 0.00 | 6.00 | 680
680 | | | 100 | 120 | 300
73 | | | HANDERCOLORY
HANDERCOLORY | HERE
ARE | HOS.
MH | HI bitinefantly nester I
ADFrilacylation fator I | Maina aller
Quiplam mayre | 4.37 | -189
-676 | -087
-082 | 0.00 | 5.00 | 600 | 0 0 | | | 30
30 | 200
200 | 120 | | I MINORE CO. CA 7
I MINORE COL ROS II | CD0230 | CDETTE
CDETTE
SPLEE | PC complex values, CRA damage recognition and re-
cyclin dependent is noted. The
PDD and we look protein the | Maina ster
Maina tinase | 1.00 | 110
147
692 | 0.56
1.36
0.60 | 1.00 | | 600
600 | 20 | = | | | : | : | | NAMES OF COLUMN 2 | HONE ARRE THE CONTY THE | TANK. | 100 magica associa indiperiore 1
mit admentito i ribasconi protein LIB | Ottober major
Ottober über | 1.60 | 286
286 | -610
0.m | 0.00 | 68 | 600 | 200 | 100 | 4 | | | ** | | I MICCITCORY | MACI
MIDEE | MEANS.
MUDAN | ERCAL account also did Affair a client for 1
count it producing outing model after 1 | Mains dier
Manationiese dier
Opplan inne igendinelate | 1.8 | 126
128 | 1.36
0.86 | 0.00 | 6.00
6.00 | 000
000 | 100
100 | | : | : | : | : | | HAND CERTIFIED | NCMA
POLICE | PREI
MICHAE
POLICE | problemblesse Chile
salute carrier femily 25 manufact
EMApolymers & I salusti C | Optoplace transporter
Mailma moyee | 1.0
4.8
1.0 | -08.
180 | 0.00
1.00 | 0.00 | 68 | 600 | 200 | - | 100 | 100 | 100 | | | PRINCES CHOICE
PRINCES CHOICE
PRINCES CHOICE | COURSE
COURSE
MP38 | COMMAND
MINTER | EMApologous as tradeout C
recibelar prodes 11
optic do pendentis race 2 access ted protein 1
recibesport 128
de athenous te dynottes | Naina aler
Naina aler
Naina kaspole | 1.00
0.00
1.00
0.17 | 112
-181
114 | -640 | 0.00 | 648
648 | 600
600 | 0
20 | 222 | 22
22 | - | 200 | - | | PROCEEDIANO | E/P | DAP
SOF | | Optoplan trans dyborneg sister
Optoplan sister
Optoplan storm | 1.40 | -130
338
-080 | -630
0.63 | 0.00 | 5.00
5.00 | 600
600
600 | 200 | 120 | - | | 100
0 | 71 | | I MINORECUENTA
I MINORECO MON | MINTS. | MART
MAREL
MARCE | EAST, menter Mitonogene landy
and hybrar has ecoptor nuclear translocator ble
too bis exisptor | Maine tracelythorogalder
Pleasablemirare siler | 1.0
1.0
1.0
1.0 | -08
133
-133
138 | -CAS
0.36
0.40 | 0.00 | 640 | 660
660 | 20 | 100 | | 300 | 87 | *
* | | HANDERDE TO THE
HANDERDE TO THE
HANDERDE TO THE | MCBAZ
TRMS | MARCE
MATE
TRANS
OVERS | to the salapter
anaphore promoting complex schools.t
salars control for the member (AZ
1984 methylands) as 1
as that of glossymbols. | Option mayine
Colorium mayine
Extraoribin Space mayine | 1.8
1.8 | 288
288
234 | 0.72
0.87 | 0.00 | 680
680 | 600 | 20 | * | | | : | : | | | MEP 288 DIP SCAP MART ARRES STA STA STA STA STA STA STA STA STA ST | ANCIDA
MERCIA | orthical phopositions AT lasting constraints only to member 4 | Grights Sampare (1997) Freehold (1997 | 1.01
1.01
4.30 | 141
-641 | 0.00
0.00 | 0.00 | 600
600 | 620
637 | 200 | = | 180 | | | : | | HANGERCH THE | THOMAS | 7071 | on many groups and the stip 0 member 4 phosphat digits calculated, bilaybecyda in 6 kin oer ca to lyte to commissione protein 64 1949 danute cantel step 52 | Gtoplam siler
Naina siler | 48 | -18 | -611 | 0.00 | = | 000
000 | | : | | Ξ | 20 | - | | PROCEEDINGS
PROCEEDINGS | PAR
MYCOS | MARK
MARK | the large CEENtype containing it | Maine transdythorrogalder
Optoplan bloom
Optoplan stier | 1.61 | 137
-can | -010 | 0.00 | cm
cm | 550
550 | 200 | 120 | 2 | 0
0 | 83 | n
M | | HAND CERCUT COLOR | DREADS | DIRECT S | myssin III
CRA methyli anchrase 1
III TA diamate containing 2 | Maine moyre beylooded, dellab
Qeoplam transdythorográfia | 4.23 | 5.68
-688 | 1.33
0.88
-0.00 | 0.00 | 5.00
5.00 | 628 | 200
0 | 87 | 100 | 100 | 20 | | | FRANCIZECIA ANA
FRANCIZECIA ANA
FRANCIZECIA ANA | MP NEW
PER
Chief NE | PRINCES
COMMISSION | MACH debyd operate, subset 1 (complex 1)
cMAP dependent protein him er trickfor yn mar
characteries 1 operated by finne 302
ENICS, ICAP/MACH action who begroup he
subset | Other ster | 48 | -130
-130
-335 | -625 | 0.00 | 5.00
5.00 | 600
600 | | | | = | 20 | : | | HANDSESSON | DES
DESE
DA
PERS | 2072 | | Other siles | 1.38 | -138
588 | -633
6.36
-638 | 0.00 | 5.00 | 600
600 | 200 | - | - | | 0 | - : | | HAND GEORGEA | PERS.
DE | EM.
EME.
EME. | gi unadanes (de , ard
pp soute de lydrag ma e láticae 1
la tentransferot agginado de carbeta la adag postera
E2 habathe 7 cel láticas | Optoplasm engine ingit tal, nor dicase Optoplasm binase dicitareaments and di Endowerholer Space growth Schar Optoplasm binase perspects | 1.86
1.86 | -3.25
6.76
3.07 | -089 | 0.00 | 6.00
6.00 | | 20 | e
e | | : | | | | FRANCESCO TO S | DMT91. | DMFPS
TMAS | cycle D landing coph life transcription for last 1
1.6 cycles or grander associated MAX landing protein | Optophen blease peoparti
Malma kanadythologyástar
Malma kanadythologyástar | 1.80
1.80
1.40
1.40
4.80 | 118 | 0.86
0.86 | 0.00 | 500 | 600
600 | 20 | = | 100
100 | | | : | | HANDGECHAUT
HANDGEGFORT | TAALI
TAALI
TEMBERI
COME 7 | 19 (20)
COR 20)
COR 20) | Have dain reduction 1
ships to copyring rayme 12 (1).
If bosons 7 | Optoplace major drigambamaboage
Optoplace major
Optoplace about | 4.M
1.0 | -030
-138
144 | 0.35
0.38
1.33 | 0.00 | 680 | 620
620 | 0 | : | 20
20
300 | = | 100 | * | | FRANCESCO NO S
FRANCESCO NO S | ELTP
DIALES
PRICE
ECRAR
RECP | DMAES | glycolycitizatolopyrates
Dischest shak protein body (topic) member (2
protaglanino)2 quibase | Ballas Sana Sphangadari
Dalam Sana Sphangadari
Cyapian miya
Cyapian miya
Cyapian dari
Balla Sanasina
Balla dari
Balla dari
Cyapian dari
Cyapian dari
Cyapian dari | 1.8 | -CAR
3.88 | 137 | 0.00 | 500 | 600 | 200 | 200 | 30
100 | 300
0 | 100 | | | I MINORECU TO T
I MINORECU TO TO | DERMI
MEP | PTION
SCHOOL
PLOP | produgi and to CD spectrums
goigns, EARS toler and og
probjekte language belane | Optoplann alber
Optoplann prystalann | 1.07
1.08 | -186
137
-671 | -0.18
-0.28 | 0.00 | 68
68 | 600
600 | 200 | 320
31 | 100
24 | - | | | | Main CEP CEN 201
 Main CEP CEP 422 | THE | 7318
98971 | tabulaty rate by selle 1
NO report costs bing a observato 7-78 | Laboration Space maybe | 1.80 | 276
328
348 | 1.0 | 0.00 | | 520 | 200 | - | 100 | | 14
0 | | | PRINCED CONTROL | CDGXSIJ
TELE
WEATTE
DCDM | DODIA
POR | DC danat name to tang M. | Extraction Spee maybe Main aller Quoplam aller Quoplam blase CP-923 Cibe aller Quoplam aller Color aller | 1.00 | 101
101
-188 | 0.00
-610 | 0.00 | 500
600 | 621
628 | 200 | | - | - | 20 | 27 | | PROCEEDINGS
PROCEEDINGS | THE CO. | MAKESA. | MACRandone SIA3
La sementrare pt the floing protein to
family of the openine directly SE remiter A | Other after
Opposition after
Other after | 1.80
0.30
1.80 | -040
584 | 0.30
-CA7 | 0.00 | | 520 | 0
0 | | | - | 20 | | | HANGED COURSE | NA
DEED | DH00.0 | Other has believe ED | Males mayor | 1.0 | 114 | -687
6.80
6.73 | 0.00 | 5.00
5.00 | 600
600 | 20 | 320 | | | | | | PROCEEDINGS PROCEEDINGS | PHDE
TAL | HADAI
BIANA
BIANA | sphigeosydo placy hadrat ware 4, neutral membras
pi missi to hand ago like donain is et ly Amerike 2
signal transiscer and action for of the scripton 4
186-sap | Other dier
Origina dier
Naina benahburguktur | 1.0 | -8.28
-2.28
-2.00 | 0.00
0.00 | 0.00
0.00
0.00 | 6.00
6.00 | 620
620
620 | 0
100 | 100 | 180
200 | - | 200 | 11 | | I MANISTECCHIANI MANISTECCH | MP-MDE
DATE | MINER
MAD | MACH deligibings mane, subunit 4 (complex 4) | Opposition after
Opposition maybe
Opposition | 1.80
1.77
4.20
4.80 | 141
-080
-146 | -680
-611 | 0.00 | 68 | 500 | 1 | | | 17
17 | 11 | E | | PRINCED CO. 1969
PRINCED CO. 1969 | March Marc | DAS
TREVZI-S
ESTA
DIPS | or other dead order actions 1
T cell ecopies less verbile 391 (non-livel one l)
interiods Transpler school alpha | sementary tapes Mariam Graphiam | 0.88
0.88
0.88 | -146
-286
324 | 0.00 | 0.00
0.00
0.00
0.00 | | 600 | 200 | | | 120 | 100 | | | B MANDO CETO CETA 154 N
B MANDO CETO CETA 155 N | CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CONTRACT
CON | Q 100 S | COPS, guart remarked deventur app factor
guart records discopt a sub-are catalytic calanti i
by diagramsi ing egiste dicharanti i | Totale Ster
Opplan style
Name Manicale books and | 1.80 | -238 | 0.38
0.38
0.38 | 0.00 | 6.00
6.00 | 678
680
680 | 200 | | | 100 | 100 | 1 | | I MICCECT WOLL | 2011 | 2010 | CORE, power to receive delivered age factor
quant der CORE - deputie make are contrigite colorest 1.
by dropp and tags game dicharanted 1.
John Stager part der CORE - des contrigite part der CORE - des parts p | Naina dier
Naina dier | 1.80
1.80
1.37 | 110
102
500 | 0.71
1.37
0.86 | 0.00 | 500
500 | 600
600 | 20 | 32 | 100
100 | | 0 | | | HANDERCH MEN
HANDERCH MEN | CARCI
VARIO | CAPIC | origin praise 1
origin n3
origin MA systeme 2, mt original si | Optoplace periodice
Optoplace periodice
Optoplace marying | 1.00 | -138 | -628 | 0.00 | 6.00 | 681 | 0 20 | • | • | 300 | 300 | 10 | | PROCEEDS TO 4 | ARPS | AMPTS
NARS | ship the life with PHD and ring frag or do realise 2
unity to reposit and PTM disent none being 3.
MISP Abbullup protein 2. | Malma majore
Optoplem transdythorography | 1.80 | 131
130
-180 | 1.00
0.76
0.00 | 0.00 | 68 | 650
650
650 | 200 | | 100 | : | : | : | | I MINICOLON WER | (B)(C)(P) | CROTTER | state Attenting passess;
of lary matter on left out, matter operating one 2
extensible to matter to fall too for the
CDB materials
at out would phosph or faculty made man pure using one 3 | Cities after
Optopion transitioning sister | 1.86
4.83 | -68 | 0.0 | 0.00 | 68 | 600
683 | 200 | 320 | | - | 200 | n
e | | IN MINISTER COLUMN TO THE PROPERTY OF PROP | KAPT. | EN
EN
ENERT | | Manual desirate a numericate recepto
Other silver
Otherism silver | 4.8 | -139
-538 | -188
133
036 | 0.00 | 680
680 | 600
600 | 1 0 | - | | | 97
97 | : | | P MANUFACTOR COST TIME OF THE COST COST COST COST COST COST COST COST | VM | MATERIAL SALES OF SAL | pre-milità processi qu'actor il
strendo
multi-estodor landy culture 12.38
co quae 2 | Mains after
Opppion after | 1.00 | 130
-680 | 1.00
1.00 | 0.00
0.00
0.00 | 680
680 | 600 | 100
0 | - | 100
100 | 100 | 11 | : | | PROCEEDINGS
PROCEEDINGS | OUT
KINS | CAST
PORT | mathemistic look values (128)
carpaie?
polycomb group ring Buger 8
cyclinde product is most regulatory values (1 | Marina alive Quaglaum alive Quaglaum alive Quaglaum alive Quaglaum peptidase Marina alive Marina linnas Marina alive I Marina alive I Marina alive I Marina alive I Marina alive | 4.8
1.0 | 118
-08
684 | -040
0.00
1.01 | 0.00 | 5.00
5.00 | 628
628
620
620 | 0 | - N | 100 | 120 | 20 | | | NAMES OF STREET | CDISING. | K191
CDS91
2019 M | cyclindependents meet regulatory salaret
1
star flage and ETE domain containing 16
matchingmanner relation meet angles component 8 | Maina ilinae
Maina iller | 4.0 | -136
-688
131 | -082
-081
0.86 | 0.00 | 680 | 620
620 | 0 | : | : | 100 | 100 | 120 | | IN NOCE CALCULA NAMES IN NAMES CALCULATION IN IN IN INSIDE CALCULATION IN IN INSIDE CALCULATION CALC | TORA | TO ISA
BADA
CO. | tradicionaly 2 member A.
bromadanal nambating 8
CST telement rigil tatton complex components. | Ballan shire Char shire Char shire Char shire Char shire Char shire Char shire Charles | 1.0 | -122
129 | 0.07 | 0.00
0.00
0.00 | - | 600 | 0 | - | - : | 100 | 100 | • | | HANDERSON NO. | MARCE
MARCE | AARDI
BEER | CET telement repitation complex components AlpC/TA enterodente represionate containing 1 conting cents 8 | Mains ster
Othe ster
Others benoate | 1.00 | -087
-138 | 0.00
0.07
-0.07 | 0.00 | 68
68 | 620
620 | 0 0 | 11. | e . | 12 | 20 | | | PROCEEDINGS | METER S | DOM: N | matet, mischedal distintere directing in
DND to below th | Graphem after
Malma mayre | 1.80 | 128 | 0.86 | 0.00 | 600 | 600 | 20 | = | 100 | : | | | | HANDSESSESSES
HANDSESSESSESSES
HANDSESSESSESSES | MACES | ENG. | APQMR2 Family member 2
IDS banding
manipulation of pin class 20 member 2 | Maine tensisphonycida
Maine aller
Optoplam mayne | 1.07 | -0.00
512
-0.00 | 0.00
0.00 | 0.00
0.00
0.00 | 68
68 | 650
650 | 200 | W . | | | 100 | | | HAND GEOLOGY
HAND GEOLUTICS | CMT
EHECT | 0107
8CH002
10018
83072.8 | | Mains ster
Other ster | 1.86 | CAS
CAS | 1.0 | 0.00 | | 550 | 20 | * | | | | | | B MARIO CED COLUMNO | HORSES
WHEN
MOSTES
ACTUMPTES
THE
TRAFT | | charactes 7 map Cut high state durant contining 2 SSS transcriptioning data? Fundy number 8 ring 8 operprotein 2 38 unche in chetted LOCS SSS SSS | Cher shire Mail na Yana Aghinn ng datar Qiqubann mayan Cher shire Mailer Planta Mankazan shire Planta Mankazan bilasa | 1.00 | 130 | 1.21 | 0.00
0.00
0.00
0.00 | 50
50 | 600 | 20 | 320
87 | - 1 | | : | 10
11 | | PROCEEDINGS
PROCEEDINGS | | TRACE
MARIEN | specific
1 of explorements tells now misses also to 1
males at to 27 | Manual desirane aller
Manual desirane liteaue
Malina transporter | 1.0 | -68
121 | -187
138 | 1.0 | 60
60 | 600
600 | 20
20 | 0 | 100 | | | 12 | | PRINCED CO. TANK | TEME | TOMOREA
TOMOREA
EASTERNI | skip the accelered and thit danger come bing A
tall the receptor which or make six 1 | Optoplace maybe
Nationa other | 1.0 | 583
-387 | -140
0.87 | 0.00 | 6.00
6.00 | 600
600 | 200 | 320
0 | | 122 | 200 | 300 | | NAMES OF COMMON ASSESSMENT OF STREET, | TEARS
TEARS
EALERS
STAL
ACTS
CORRES | FAMILE
FAMILE
ARTES | tell for marger adepter modes de 1
EAS gas op rei entreg protein 2
en blandere motoratabale a sont atendipantet nitte 6
anbyt to op est and EAST done to constatit og 1
cASS responsible alle net blanding protein 3 like 2 | Optoplasm after
Optoplasm after
Optoplasm basels benning sletter | 1.0
4.3
1.3
1.3
1.8
4.0 | 182
075 | 0.M
0.M
0.00 | 0.00
0.00
0.00
0.00
0.00 | 6.00
6.00
6.00 | 620
620
620 | 20
20 | 30 | | | | | | FRANCISCO CO POR | HEXCHE'S | HOUSE | hodemorabide televing pasters? | Maine transdythorogulator
Optoplasm after | 1.00 | -140 | -629 | | | | 200 | | | : | 200 | - | | HANDER CLEAR | USPEC
STEER | UPPE
UPPE
ERCI | things in specific population in the specific product of the specific population in the specific product of the specific population in populati | Estanolido Space popilibre
Naciona literae | 1.00
1.00
1.00
1.00
1.00
1.00 | 687
678 | -681 | 0.00 | 640
640 | 600
610 | 200 | 200 | | | | E . | | HANGED COMPT | IEIFS | NC#1 | MECT and RED detailed containing as the depathographical designs to quarter by produce as the centre of | Optoplan after
Mains after
Manadistrae after | | 122 | 128 | 0.00 | 68 | 610
600 | 20 | 30 | 100 | : | | : | | HEROTECH MC1 | BARRY
(EW) | MAIN
MADE
CCANZ | cult dans constitute to
cell cycle and apoption regulator 2 | Other after
Optobers peptidos | 1.0
1.0
1.0
1.8
4.8 | -640
120 | 0.35
0.36 | 0.00 | 6.00
6.00
6.00 | 180
687
660 | 200 | 10
10 | | | | * | | HANDER COMMON | MECH
MECH | PERMIT PERMIT PERMIT PERMIT UND | regulator of Operational goal of Community 2
Principal of Operational goal of 2
Principal on the Community of o | Remail entrue after
Optoplem mayne | 1.8 | 128
-136
873
-138
680 | 0.8
-041
0.8
-019
0.3 | 0.00 | 5.00 | 660
660
660 | 200 | | 20 | | 11
20 | | | FRANCISCOLOGY &
FRANCISCOLOGY WITH
FRANCISCOLOGY WITH | MERT. | WEST. | untiliteimaet
Wirdown indegroom 1 | Optoplace Steel
Optoplace Steel | 1.0 | 680
679
332 | 0.38
0.38 | 1.0 | 6.00
6.00 | 620
621
620 | 20
20 | - | | : | | 10
34 | | I MICCECCAMA | MARIA Z | MADE
PLANNE | used 10 obtained in the ground 1. CDD region to product a sector dynamic to 1, such direct counts thing 2, products counts and AZ on beauting | Other siler
Others siler | 1.0
1.0
4.0
4.0
4.0 | -1.00
6.00
-1.00 | 0.86
0.86
0.86
0.89 | 0.00 | 60 | 624 | : | - 1 | 20 | 100 | 17
47 | - | | HANDER COURSE? | M TATESTS.
MARKE ZIA | METATROS
MARCOSA | minimum by montries? I produce to produce to
family at the segment and only 127 remains A | Qtoplam aller
Citie aller
Manualdenirare aller | 420 | -0.8 | -081
-081
-044 | 0.00 | 620
620 | 600
600 | | | 1
M | = | 14
20 | | | I MINICOTON NO. I
I MINICOTON 201 | MODEL | MOCON | on mit calcount in the mounted ACP spoth count is providing one of
family on the sequence denti or the 127 counter A
of tarry matter and less out, restriction
mountage of the distriction in
RACO Clothers after 2. | Manual entrare after
Quantum after | 1.86 | 510
611 | 0.34 | 0.00 | | 603 | 200 | | | | | | | HANGERSTON ATT | *** | MARCON GROCE MARCON EDITO EDITO MARCON EDITO EDITO MARCON | EXECUTION WAS ABOUT A STATE OF THE | Optoplace sites | 1.86
1.61
1.61
1.80 | 181
188
137 | 1.33
0.87
0.48 | 0.00 | | 600
600 | 20
20 | - | | | | | | PROCEEDINGS
PROCEEDINGS | ALCOD AP
RC101 | RCMS. | aradiskostet il paggiore esthating protein
RCID danati contri ring 1
maladiscon contributo aradish 27 | Remark entrare stier
Other stier | 4.00 | -18 | -CA1 | 0.00 | 6.00
6.00 | 620 | 0 | | - 1 | 12 | 200 | . E | | I MICCOCCI TA 4 | THE CAME | | Intermediation 1 | Manual tentrare a remembrare recepts | 1.8
1.0
4.0
1.0 | 128
131
-127
282
118 | 0.80
0.87 | | 68
68
68 | 600
600
600 | 200
0
200 | | - | 100 | 20 | | | PRINCIPOL CONTRA | 2000
0733 | 2010
2010
2010
8172 | to the procedural for to 1
clar forcio 12
clar forcio 12
clar forcio 12
clar forcio 12
clar forcio 12
cpatricio non tractico 12
cpatricio 12
cpatricio non tractico 12
cpatricio 12
cpatric | Maine time dyborregister
Oppiers after | 1.0 | 118
178
-180 | -012
1.86 | 0.00 | CE CE | | 20 | 120 | n | | | | | HANDERS TO S
HANDERS TO S | CAN
DAVIDE AT | EMECUAL AMERICAN | optobrome is 20. alpha chain
IS ACC 201 fee | Opplem ster | 1.0
4.37
4.38
1.07 | -0.00
-0.00
0.75
0.00 | -087
0.30
0.31
0.38 | 0.00 | 6.00
6.00 | 620
628 | 0
0 | 2
20 | 2
2 | 120 | 72 | | | PROCEEDINGS | 20074
20074 | AMILANIA
MUZIK
DIXXID | the error actually products
the large products: | Origina tempote
Maine tempoterquito
Origina | 1.0 | 086
084
078 | 0.38
0.63
-648 | 0.00 | 6.00
6.00
6.00 | 683
660 | 300
300
300 | | - | | 100 | n | | HAND GEOLOGY | EMP1 | PORTOS.
DAMPS. | the Office and harding problem its
time frage problem in 22 of the data or of option on 12
partiesty of compile 7273
data openiting placeplature 3
that when dirth beading it
the minute of 279 beading it
in manuscriber and only be did dates in 8
million on the beading it
and openiting its problem in the or 8
and openiting its problem in the or 8
and openiting its problem in the | Harmatteniane grain capiel ecops
Mai na phaphatae | 1.0
1.0
1.0
4.0 | -0.00 | 1.35
-668 | 0.00 | 600 | 600 | 200 | 30
20 | 100 | 0
16 | | 0 | | PRODUCTION OF | MAC
MCM | THETH | tos related CEP binding C
to commende and out led cold disma to: 6
mitage on allow to dynamic bins on 6 | Other ster
Other ther | 1.88 | -188 | -614 | 0.00 | 500 | 600 | 200 | | - | 0 320 | 200 | | | PROCEEDINGS | AMAD | PENTS DURPS EMAIC TMEDS MAPIS UMMOS APTES APTES | In the second stage of the second sec | Maine after
Manufil misus majos | 1.39 | 501 | 0.70
-669 | 1.00 | 68
68 | 660 | 100
0 | 100 | | - | | | | PROGRAMA | APRIL
THESE | APRIL
MICCO
PHICE | CC matifulamento receptor 6 ATM content for an aporting scient let all THO complex 2 proble sphoothe to a Greg de tary subset 13. | Florationism tempore regardisms to their start s | 1.0
4.0
1.0 | -832
-680
337 | -133
037
138 | | 640
640 | 0.00
0.00
0.00 | 100 | 2 | | | 71 | : | | PRINCE COURT | 1961
1961 | | problembaghetise (regulatory subsett). Imported for deletation | Other phaphatase
Oppion after | 1.39
4.39
4.08
2.31 | -638
-138 | 1.06
0.46
-604 | 0.00 | CUE
CUE | 624 | 0 | | • | 220 | 200 | ÷ | | HAROGECUSTO | MI CIR | THE S
ECO
MIT-COS
MINAME
MARCHES | Language 17, Fort the Med Light South Line To the Constitution of production to the Constitution of the Constitution on Minight South of American on Minight South Arts register on Minight South Sou | Manual entrare a remembrare recepto
Oppoleon entrare pares, a tompore girl
Other other |
2.31
1.37
4.39 | -638
-637
141 | -181
-588 | 0.00 | 600
600 | 620
620 | 200
200
200 | - 1 | : | 120 | 81
84
8 | e | | I MICCECCO TO 1 | BPDKI
TRAX | MACCO | tratie mangiospherodelpingman 1
Labeline jake Si | Quantum major fe-Sqliteatri, mede
Quantum aller i hindranifemanisis | 4.9
4.9
4.9
1.0
1.0
1.0 | 141
-138
-638 | -628
0.86 | 0.00 | 5.00
5.00 | 618
600 | 0 0 | : | 6 | 120 | 200
87 | : | | FRANCISCO COMANO
FRANCISCO COMANO
FRANCISCO COMANO | EDAR
MERCE | TAME
FOR
FOR | es bullyplants Armospher 3-light scaped yr at a de lighting enn on 2 milliochend to i ribenome i protein 195 | Rematit entrare is rementrare recepto
Optophon entrare
Optophon transis bonnes sistem | 1.0 | 128 | 1.0 | 0.00 | 0.00
0.00 | 600 | 20 | W 100 | 180 | | : | | | PROCEEDINGS | COM.
PCEG | PERSONAL PROPERTY AND PROPERTY AND PERSONAL PROPERTY AND PERSONAL PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PRO | compared of digeneric golg complex 1
Polarism contents 2 | Option temporary
Mains temporary data | 1.01 | 110 | 0.00 | 1.0 | 500 | | 20 | = | : | | | M
II | | HANDER CO. CO. | CENTS
TIPES | AMERICA TOPAC | magdasterdomin continue t
Talentae | gisplan pytike
Naina dier | 1.0
1.0
4.0
4.0
1.0 | -CM
-CM
311 | 0.0
0.0
0.0
0.0 | 0.00 | 6.00
6.00 | 600
601
600
600 | 0 200 | - | 36
38
100 | 320 | 94
97
0 | | | PROCEEDS SET | TICS?
PERSON | POLINET | skingleisten dermit von beleinig d. 13 PH i de 2 13 PH i de 2 14 PH i de 2 15 | Opposition after
Opposition engine | 1.30 | 107 | 0.00 | 0.00 | 6.00
6.00 | 600 | 20 | | - | | | = | | PRINCIPED BOX | 360 DE
1830 | 16000
16000
1630 | to anomics pitto filing puter t
The linding puter 1 | Original temporal
Males temporal | 138
138
138
138
138
138
138 | 110
104
817 | 0.0
0.0
0.0
0.0 | 1.0 | 640
640 | 200
200
200
200 | 200 | 320 | | | : | | | HANGED CO. CO. S. | CARRO
EUE
ACOMETES | EP2 | calcine articled up protein.)
el organica actigita exiles el complex calcinit. 2 | Mains after
Optoplasm after | 1.0 | 133
133
-188 | 0.0
0.0
0.0 | 0.00 | 620
620 | 600
600
678 | 20
20 | = | | 9 | 0 | | | PROCEEDINGS | MATE
MA | MEE | Ne cardina in discrime/firms of melitrace | Optoplace bloom | 1.38
1.38 | -5.00
6.00
6.00 | 0.0
0.0 | 0.00 | 680 | 625
600
600
600 | 200 | 220 | : | | | | | PRINCES CAN
PRINCES CAN
PRINCES CAN | HIS
MADEP
HEPM | WARRE | le pitasyteg mak ik stor e gd de dtyratie idane mi
WAA pritein ik mly koming 4 perulagene | Other siler | 1.00
1.00
1.00
1.00
1.00 | 120
120
117 | 1.0
1.0
0.0
1.0
1.0 | 0.00 | 6.00
6.00 | 680
680 | 200
200
200 | 32 | 100 | | | | | HAROGEOGRAFIA
HAROGEOGRAFIA | MC1 | EAG. | unal nation ESMs charles to group be pulgopt the di
recreited CE betalman to absolute the 2 (rise family,
A bloom a relation or a comment | Maine time dyborogista
Manual misus mayor
Oranium atter | 1.0 | 118
102
-128
138 | 1.38
-629 | 0.00 | 630
630 | 000
000
000 | 200
0 | 0 | 100 | 120 | 20 | | | I MICCOCK MA | HOLE | INFE
INDI
ARIMS | sould make a 1996 of the long complete pulpopular is
recorded for the advance leaders and the 1(r he finding
A bloom a riched og protein the
sking the seconds bell protein 13 he
for damed committeining of
ACP r line cylet has factor CEP one a clima bing protein 1. | Males ster
Name to entree engre | 1.31 | -137 | -0.39
0.37
-0.37
-0.33
1.32
0.38
0.38 | 0.00 | 68 | 620
620
620 | 20 | 320 | 100 | - | 87 | | | PROCEEDINGS
PROCEEDINGS | DESCRIPTION OF THE PERSON T | EPZE
EPZE
EPZE
EPZE
DEEL | ADV forgistes fator ETP are a clim ing protein 3
innote fundy consists 23.8
Il pente operimaly coppressor 2 | Opplem tempore
Opplem aller
Mains transplancegular | 1.40
1.37
1.86 | 110
110 | 1.00
0.00
0.00 | 1.0 | 680
680 | 660 | 20
20 | 0
10 | | | | | | HAROGEGA POR | DATE: | CLES | ADP Neophine Solve ST was also ingressed: 1 In partie up Shang capp moor 2 d bythe other parties 1 liter could be becoming a 1 light parties or according solve in 1 light parties on according solve in 1 2004. Spr. or 1 | Cities after
Males time Aphronychia | 1.8
4.8
1.0
1.9
1.8
1.9
4.0
1.8
1.8 | 580
-138
138 | 0.49
-587
0.87 | 0.00 | 5.00
5.00 | 600
600 | 20 | | | 100 | 200 | 20 | | PRICE CE CU PA 1 | URL
MARK | um. | DM by or 1 | Nation stops | 1.0 | 538
589
-586 | 0.36 | 0.00 | 68
68 | 600 | 20 | er
e | - | - | 200 | | | HANGED CO. CO. T
HANGED CO. CO. T
HANGED CO. CO. C | ARI
ARI
HIPI | AUL1
HOREN | is where the AM, protecting one 1, non-recipitally value like as
least which factor broking protein 13
which makes 12 opening drip (in one 2)
other brokes the broking of 2 | Place and the manufact agents that has been been been been been been been bee | 1.38
4.38
5.37 | 111
641
-186 | 0.02
0.37 | 1.0 | 6.00
6.00 | 620
681
688 | 200
0
0 | 320
E5 | | 220 | 10 | | | | ## 15 | MECH
ALLS
HUPS
CISH FIN
GOOD
BETT
ALPON | characters again dig form to | Company | 131
431
431
438
438
437 | -66
-13
518
-133 | -049
-049 | | 600 | 600 | 0 | • | 1 2 | 10 | 75
300 | : | | PRINCIPED TO A
PRINCIPED TO A | AFCS
URL | ARPS
URES | grow glatenybunderase 7
acts which prairie/house/acutes/1
skipsto prairie typesti conpositionscapie 1 | Oppose aller
Oppose aller | 1.8
4.17
1.86 | -120
118 | -687
0.86 | 1.0 | 5.00
5.00
5.00 | 550 | 0 200 | - | M
m | - | 11
100
0 | HANDSBOTH STATE | ATIEA
MICI | ATION activities grade to disk. Planta Manha and assert after 2000 to the Stage Stringe contribing 1 Marie as except 7500 per contribing 1 Marie as deliver 1750 per contribution to the contribution of c | 1.35
4.31
4.80 | 133
-136
-146 | 1.01
-cas | 0.00
0.00
0.00 | 520
520
520 | 600
600 | W7
0 | 30 | 100 | 100 | 200 | - | |--
---|---|--|------------------------------------|--|------------------------------|-------------------|--------------------------|------------------------|------------|-------------------|-----------------|------------------------|----------| | I MANOCED COMMON 7 I MANOCED COMMON 7 | 1911 | 2011 See Sup Stripe seeking 1 | 1.00 | 202
202 | -641
-638
0.07 | 0.00 | 500 | 600
600
600 | 200 | 120 | - : | : | 0 | - | | 1 Marc CE CE 1204 | ACH
D-Mar | ACRI A Prisolog construction for Promoter S Claim benquier 52-blar monitorana dani bin'dring Chitigae fugar 2 Quiplano moyee ARRICA N. All-photologolomin costolog SN Claim moyee | 1.0 | 130
-138
148 | 0.30
0.36
-087
0.38 | 0.00 | 5.00 | 650
650 | 200 | 320
0 | 100 | 320 | 200 | - | | PROCEEDINGS
PROCEEDINGS | MHDISK
MHDISK
MCIB | ASSEST Milejander (ASSESSE) ASSESSE AS | 1.01
1.00 | -1.30
682 | 0.31
0.02 | 0.00 | 5.00 | 620
621 | 0 200 | - | 7 | 320 | 200 | 27 | | PROCEEDINGS | THE REAL PROPERTY. | 2015 State | 1.00 | 585
685
-686 | 0.81
-681
0.32 | 0.00 | - | 680
681 | 200 | 100 | - | : | : | | | FRANCISCO CONTRA
FRANCISCO CONTRA | 0081
828 | COST de mage sperfu CNA, binding protein 1 Real max other other sperfu CNA binding protein 1 Real max other | 1.35 | -638 | 0.80
0.40 | 0.00 | - | 600 | 200 | 32 | 100 | 122 | 83 | : | | HANDERS AND | CONTROL
CONTROL | THE COST SECTIONS the Common Part Cost Cost Cost Cost Cost Cost Cost Cos | 1.0 | 101
184
181 | 1.M
0.M
1.37 | 0.00 | 5.00
5.00 | 600
600
600 | 20 | = | 100 | | : | : | | I MICCOCO MAI | HEICHTS
PARTHERS | NODE NADM dependent difference dut are 1 Optophore existere 1 MACRICEZ family of the squeece dent only 300 revenior 82 Other called | 1.80 | 180 | 0.67 | 0.00 | 500 | 600 | 20 | ** | - | : | : | : | | PROCEEDINGS
PROCEEDINGS | CETATION CETATION | CETS: salesal and midding to the 1: Had man been dyboring dates SEES on any fighteened that regulate with man 1: Quing been. Street CENS 60 shows man 22 opens as long for me 60 Had man other | 1.0 | -58 | -683
0.40 | 0.00 | 5.00 | 600 | 200 | | | 320
320 | 20 | 20 | | 1 Marcan Calanta | GERMAN. | March Marc | 1.80 | 337 | -225 | 0.00 | | | 20 | | | : | | _ | | FRANCISCOURSES | MIL. | PEE. phosphat dynamic glyc are nober basynthe & class. Optoplasm surpre
PEEE personalasm & Optoplasm surpre | 1.00 | 1318
-138
-138 | 0.60
-618
-681 | 0.00 | 68 | 600
600
600
600 | 200 | 100 | 6 | 100 | 200 | - 1 | | FRANCISCO (NAS
FRANCISCO (SE EST
FRANCISCO (SE EST) | HMAX
STR.1 | 1992 Institlit activited operation 2 Queption bloom
1903 we underlike TV TV in a copyring handing Manual of enforce entry or
2015 spreagability to 1 Manual Manual entry or 1995 of the control | 434 | -636
-536 | -641
-641
-641 | 0.00 | 640
640 | 600
600 | | : | | 32
32 | 200 | | | HANGE CHOICE I | CER | EPRION riseased parts of line At Optoplace binase OTE spice in E Optoplace positions Other in the Atlanta contains a | 48 | -538
-538
5316 | -62%
0.37
0.06 | 0.00 | - | 523
589 | | - : | 7 | = | 20 | 70
27 | | HANGE CHOOSE | LIKTL
CDAG | COTE update to the Acceptance of | 1.00
1.00 | 148 | 1.86
0.82 | 0.00 | = | 600 | 20 | = | 100 | | | | | HAND COD COMMEN
HAND COD COMMEN
HAND COD COMMEN | MANUAL PROPERTY OF THE PARTY | 1986/31 to relate a of tree relation of a reconstruct 21. Qi aptions after 1972 write and any teleprising factor 20. Mail ma. After 1973 delegation and relations of the construct of the construction | 1.07 | 114
184
68* | 1.M
0.M
0.M
1.3h
-GA7 | 0.00 | 6.00
6.00 | 600
600 | 20 | - | 100 | | 0
67 | | | I MINICOLOGIANO
I MINICOLOGIANO | CLUMPS | MART seld excel de dominious epistets. Qiopiam transporter latidose triologic
CLUPR slottered introduced to handing pre-adopted. Other other | 1.36
1.37 | 141
100
581 | 0.87
0.37 | 0.00 | 5.00 | 600 | 200 | 100 | - | | : | 14
10 | | I MANICOLOGICA PARA
I MANICOLOGICA PARA | NATE. | PIED phosphologicus bilgionabiligi mana sales biages fined a client it. Qenphone mitypee
BMES. BMES, SEPER black and ding per alem. Bull and mitypee
PCRES. prophysio be delicated like Cities sales | 1.80 | 110 | 0.86 | 0.00 | 5.00 | 680 | 20 | = | 180 | : | : | : | | HANDERSON NOT
HANDERSON NOT
HANDERSON NAT | PH | MacHail Section of these included in ordinary 1 | 1.01
1.39 | -146
-086 | 0.88
-626
-633 | 0.00 | 6.00
6.00 | 0.00
0.00 | 0 | | | 320 | 200 | = | | HANGED COVERS TO A | W MC | WIRE With respect and ECCITion containing 2 Cities after
12.75 studies and the finity if white 1 Manual Andrews Except of
ASSE activate most
light factor analysis Manual Andrews exception
13.000 activate most light factor analysis | 43
43
43 | -0.00
-0.00
-1.00
11.0 | -631
-687
6.37
-687 | 0.00 | 500 | 600
600
600 | | | n
n | 120
07 | 100
84 | - | | FRANCISCO TAC | MOR. | ARCIE D'A Selaring conscion de set la comber E Quiplant Response MANCE manuschard plan des SC comber E Quiplant Response MANCE de commandant plan des SC comber E Quiplant Response SC SA | 1.01 | 118
286
-130 | -180 | 0.00 | 500 | 600 | 20 | 17
16 | | : | - 1 | - | | HANGED CHARLES | UPL | 90 C3 N 90 C3 homeing A agent just does complex schants. Qu'applaces peptidente. 1975. hypothal enhance standig finder 1. Mari has branc dybborney dates. 1975. Mari Na Standard and Standard | 1.38 | -130
588
588 | -013
-184
0.38 | 0.00 | 5.00
5.00 | 600
600 | 200 | 32 | | 0 | 8 | 20 | | FRANCISCO COLORA
FRANCISCO COLORA | MILE
MACE | ADD 10 10 10 10 10 10 10 | 1.86
4.08 | -188 | -647 | 0.00 | - | 520 | 100 | | | 300 | 200 | - | | HANGED COUNTY
HANGED COUNTY
HANGED COUNTY | CHEE | DMMI welve Spinsoprodupte schrose 2 Grophom subpre- PRINTER PRINTER OF STATE CO. S. | 1.38
1.39
4.10 | -137
138
-138 | -628
0.70
0.80 | 0.00 | | 600 | 200 | 320 | | 122 | 0
20 | | | HAND COLD COM 2 | LIPLAL | 07902 0 elang at ke disebuah ke ar mita-banda di 2 Qilopham kunin kanng dalam
1594.5 kepahan pidipani
1594.5 Di Kanta da Maranda dalam manda da Gilopham manyar | 1.07
4.03
4.73 | 185
-138
-000 | 0.Mi
-627 | 0.00 | 600 | 620
620 | 0 | 320
0 | 2 | 320 | 200 | E | | I MICCORD CO MILE
I MICCORD CO WOLL | NAA
ATB | RAMA RAMA, mancher Mittanag me ib nity Qippiana suppre
ACTE at ib late Question state: | 422 | -040
-047 | 0.72
-0.18
-0.67 | 0.00 | 500 | 600 | : | | | 1 | 97
94 | | | FREEDERS AND A STREET CO. | PING
PING | CEDCHR coded-cal dura to come trange to Citie other STANS. que attention, one replacação 3 Plante attentame attent CEPCHR communication to Cities Communication attention to Central Communication attention attention. | 1.07 | -036
335
306 | -644
0.38 | 0.00 | 680
680 | 600 | 200 | 320 | | 120
0 | 0 | 27 | | I MICCECURES
I MICCECURES | KIM KIMPA | PLMR Filantin R Graphium alber
SCAMPA secretary construction are proteined. Quaption after | 1.00 | 137
-08
138 | 0.0a
-613 | 0.00 | 5.00
5.00 | 626
621 | 200 | 100 | | 120 | 97 | × × | | HAND GEORGIA TO 1 | 1817
1160 | 1907 United Total State of the Committee | 1.33
1.38
1.39 | 139
097 | 0.85
1.32
0.80
0.71 | 0.00 | 500 | 600
600
600 | 20 | - | 100 | : | | | | FRANCISCO PAR
FRANCISCO PAR
FRANCISCO PAR | M MD | PEG Interferon belond proteined Optoplesm other MMCO managers in managing of the status manifeld Plannes tentione linear 1973 managers (plannes) treafferone Colleges | 1.0 | -0.00
-0.00 | 0.71
-GEB
-G2B | 0.00 | 648
648 | 600 | 0 | 3 | | 320 | 17
73
87 | 10
10 | | FREE CERTS AND A | MGA
APRO | NCIS BerfCII/Impleme B APEL adapt or richt beforden eine Z digno 1 niberft Griphen Verschieber APEL adapt or richt beforden eine Z digno 1 niberft Griphen Versporter | 439 | -0.00
-0.00
-0.00 | -048
-028
-038
-081
-018 | 0.00 | 5.00
5.00 | 620
620
620 | | | 2 2 | 120 | 200
97 | 27 | | HAND GEOLOGY | 86313
CNS | HI33 HI3 lie 1 Graphon Sunyariw
CH3 decreases og og sten 11 le Halma Fançariw | 4.18
1.38 | -131 | -637 | 1.0 | 68
68 | 600 | 200 | | - 1 | 100 | 200 | | | FREE CECTO THE
FREE CECTO CONTR
FREE CECTO CONTR | AMERICAN AMERICAN | #ELIA ADPrincipleton factor life ETF mon M. Cities minyre VMSE VMS, 10C2+1 calculate CCCSS company (C. propieson benegative CCCSS company (C. propieson benegative) | 1.38
1.30 | -125
582
134 | -641
0.80 | 0.00 | 640
640 | 600 | 200
200 | er
20 | - : | 0
0 | 100
8
0 | | | I MICCECU VIII I | ATMEC
HACCE | A79.9CC A79.co/det respecting VCodeoit c Qioplani Sesporte NA-DDB region bits competitely complex, cle. 8, DD bate Manina M endoare a respective | 4.00 | -086
-188 | -640
0.67 | 0.00 | 5.00
5.00 | 600
600 | : | : | n
n | 320
M | 100
97 | n
N | | | ### 1995 | Services of the content conte | 1.07
4.11
4.07 | 110
-140
-140 | -cao
-cas | 0.00 | 620
620 | 660
660 | 0 0 | | : | 120 | 200 | | | HAND COD COD MAZO | HMETS
LACIN | HIBETT: be para conflicte to Conflict and reserve. Places to embrace entry to MCSS in demand less Quaptum other | 430 | -18
-18
-18 | 0.85
0.85
-G48 | 0.00 | - | 000
000
000 | | : | | 120 | 20 | | | HERETERS I | COMMONA
MENANTA | UNICOTE testine this repertors thing OTE Quiptions after
GRANDOM CRIM district containing M. Britaninin Types after
MC-NTR ATP quibour C when it Quiption Employers | 1.30 | 585
-678 | -641 | 0.00 | 5.00
5.00 | 600
600 | 20 | = | | 120 | 14 | = | | | NEGAT
NEGAT | MCAP. MCAP wells place a seat of C1. Places Membrane abov. MCAP with a curve in right or other 7. Places Membrane brancher MCAPS subsection 100. Nation. Description. | 1.07 | 118 | 0.00 | 1.0 | | | 20 | - | 100 | | | | | HANGED COLOR | PO-MILL
MIPT | FIRST profes to pundage on to Other other | 1.60 | 121 | 0.88
0.88
-CAR | 0.00
0.00
0.00 | 640 | 660
660
660 | 20 | 100 | | | | n
n | | HANGED CLYCKS | THE MENT | ESST Intervals topped Consistent Plane of Employee a manufacture recepts TMS MICE Commenture protein 20 Quiplom Anniverse company TMS MICE Lanconnecture protein 25 Quiplom Anniverse | 4.30 | -0.00
-0.00 | -633
1.86 | 0.00 | EAST
EAST | 520
520 | 0 | | - | 120 | 200 | | | FRANCISCO CONTROL O CONTRO | PAUR
PAUR | ECRES SE degradat considerating a lyte examinable on the pret. Optoplaces encapses. PARE forth and degrations. PERC 1. Mail on the Constitution of | 1.01 | 218
272 | -681
0.M
0.46 | 0.00 | 6.00
6.00 | G4 (42) | 20 | - | - : | | 14 | | | PROCEEDINGS | 1761 | Total Color Colo | 1.66 | 128
118 | 0.86 | 0.00 | 640
640 | 600
600 | 20 | er
se | E E | | - 1 | • | | FRANCISCO CON NOTE OF THE PROPERTY PROP | OCA
ATRIACOS | 200 DC - Into Stage MEXTupe containing d - Madines - other -
ICCS - go mainti - Opposium - other -
AT MEXICOS - AT world-to-mapped big Vitrodocali di - Opposium - bampun ter
- bampun ter | 48 | -2.58
-2.58 | -630
0.40
0.38 | 0.00 | 540
540 | 600
600
600 | | | 38
28 | 10 | 20 | 2 2 | | HAROCOCKION? | PR
R.R.S | PSE PE diese besetztet geschieften eine in der men i für Gesphan in der Scharften und der ges Gesphan in dem Applichen der Scharften und der gestellen Gesphan im dem Applichen Gesphan gescharften Gesphan mengen GROSS Chief die Metsward und gesphan mengen | 1.30 | -08
-05
111 | 0.40
0.34
0.36
0.48 | | = | 600 | 200 | - | 100 | 100 | | : | | I MARIO CELCAL DALA I MARIO CELCAL STOTA I MARIO CELCAL STOTA I MARIO CELCAL STAIA | # 160
10091 | CHICA CHICA SE SEASE SE CONTROL CONTRO | 1.00
1.00
1.07 | -com
118 | -618
6.80 | 0.00 | 5.00 | 528
520 | 0 107 | e
17 | | 122 | 200 | я. | | HANDERS RES | PLIENCE. | | 48 | -0.00
-0.05
-0.07 | 0.61
-634
0.61
0.62 | 0.00 | 5.00
5.00 | 620
620 | : | : | 27 | 32 | 20 | - | | | MCM7
MARK | MCMT mits divanisame na blane nac complex component? Mai ma mayora MCMS contra modera plane this pilota pilota C. Mai ma state MCMS — sente modera pilota modera na 2. Mai ma monora | 1.30 | 129 | 0.40 | 1.0 | - | 600 | 20 | - | - | : | : | - 1 | | HANDER COLUMN | MIMITE
HIMBAT
OPTEA
BLODNER | PRIMES providing the methylanderse 2 Mains mayor
HMMAS laghmelding-properties 3 Mains been glober glober
CPTS condition-publiship to selve 2 Mains mayor perhed the
NCDAS solds coming Smith 2 member 23 Optopium beaugants | 6 M
6 M | -1.07
-0.00 | -601
0.35
0.62 | 0.00 | 5.00
5.00 | EAS
EAS | 0 | | | = | 90
97
73 | - | | PROCEEDINGS PROCEEDINGS PROCEEDINGS PROCEEDINGS PROCEEDINGS PROCEEDINGS | GATE
CARCE | SCEACS value corter family 20 member 25 Qrisplann baseporter
GMCS optionible transmitter and mility component 3 Marines. State dystering sistem | 4.38
4.36
1.34
1.34 | -CIR
CR2
CR7 | 0.70
0.70 | 0.00 | 646
646 | 683
660
660 | 200
200 | U U | 10.
107 | | 75
1 | : | | I MAND CENTRO MAN CENTR | TD0 CT | LDCCS. brustninger downing derfor cases the Other sher
AMIRS angel benefig 3 Malina sher | 4.27 | 114
117 | 0.01
0.02
0.08
| 0.00 | 640
640 | 524
520
520 | 0
200
200 | - | | 320
0 | 83. | * | | HANGED COMMAN | AMERICA
STANDA
EMAL
SONDA
PELA
LEPAR
PERIO | Assess and benefit to the Assessment of Asse | 1.35
1.30
4.35
1.38
1.38 | -0.00 | -671
-622 | 0.00
0.00
0.00
0.00 | 500 | 601 | 200 | 100 | 1 | 320 | 200 | | | FREEDOM OUT | USP CO. | PCES Chip pier range new, of dylat nakust. Opiquian surject dae, is stradenjen. USS dayses quant is yearbe SE. Recent Membrane profitse. PSS SE version of the second se | 1.30
1.34
4.85 | 118
682
-188 | 1.38
0.30
-628 | | 640
640 | 600
600 | 200
200 | ur
er | 100 | : | | - : | | FRANCISCO CO CA S | CTRANCULA
MPTP2 | March Marc | 1.36
1.88 | 108
108
-107 | 0.30
0.80
1.35
1.37 | 0.00 | 640 | 600
600 | 200 | 100 | 100 | : | : | | | HANCOTON SET | DAJARI | CREATION and an internated region 2. Opposition to the collect of | 1.00
1.00
4.30
1.07
4.00 | -6.8 | -628 | 0.00 | 646
646 | 650 | 200 | 320 | 100 | 0 320 | 0
200 | | | HANGED COUNTY OF THE CO | MARK. | PCEEZ Michigane a fabrill. Mains mayor PPTEE promits product fabrill Michigan PPTEE product product fabrill Michigan Quiple Michigan Angele Might might proper EX Michigan Quiple Michigan Angele Might might proper EX Michigan Angele Michigan Angele Might might proper EX Michigan Angele | 1.0 | -0.00
0.07
3.12 | 0.00
0.07
0.00
-0.00
-0.00 | 0.00 | 5.00
5.00 | 600
600
601 | 200 | | - | | 92
8 | : | | HANGED CLUBS | CHOIL | URSTM drings the companing or opine ST M Opine State Marine CHOS characteristics of CHASTAN parameters. National entrying | 1.38
4.33
1.37 | -CMI | -019 | 0.00 | 500 | 600 | 0
20 | | | 320
0 | 97 | 3 | | PRICE CE CE SE | 192 | NTSMC probled siffer homes a finish number 2 Quiplant problem TSC1 takens salesh 1 Quiplant siler TSC1 takens salesh 1 Quiplant siler MMCS1 salesh 1 Steps of methods problem 12 Quiplant MCS1 probled silfer homes a finish number 2 Quiplant problem | 1.30
1.38
4.86 | 126
589
-677
-586 | 0.48
0.48
0.52
-607 | 0.00 | 600
600
600 | 520
520
580 | 200
200
0 | | | 300 | 87 | - : | | I MILECOLOU VEA
I MILECOLOU VAA
I MILECOLOU CON ACIO | MARIETTA
TARRE | MTMIC All prices with specified Opinionis Prices | 4.86
4.08
1.39
4.98 | -030
-030
-030 | 1.39
-681 | 0.00 | 600
600
600 | 628
620
620 | 200 | 300 | 100 | 1 | 20 | | | FREE CECENTRY | EU/ED
MASS | TUM Labelinian bis 1 La | 420 | -046
-046 | 0.39
1.39
-G19 | 0.00
0.00
0.00 | 6.00
6.00 | 614
600
600 | | | 300
300 | 320
M
320 | 20
20 | | | HAND GEOGRAPHS | TABLE
HEADYZ | MALS installment til staget programs game 1 Gelephinn stiper. TURES 1 Michine politick 1 MICHAEL START STAR | 1.81 | 108 | 0.78 | 0.00 | | | 20 | 100 | | : | | | | HAND GEOGRAPHS | AUPATS
NADIVES | CIPIL suberdese Star of open tals 2 like Grapison other MCCRIS MACQUERE AL Quarter August Au | 1.0
1.0
1.0
4.0
1.0 | 138
-146
670 | -114
0.73 | | 600
600
600 | 600
600
600 | 0
200 | | - : | 120 | 200 | U I | | FREEDERS WIT
FREEDERS WIT | MIDAD-AG
MAAA | Matter M | 1.00 | 142
-238
-187 | 1.26
0.86
-CAR | 0.00 | 640
640 | 600
600 | 0 | 87
0 | | 120 | 200 | 2 | | I MICCECU THE
I MICCECU TO 4 | MENCH
MENCH | WIDSS WD repeal does in 24 Cliev other
MESSS on the toc appeal or 2 Quipeloon Sungarior | 1.00 | CAL . | | 0.00 | - | | 200 | M | | | | | | I MEGICINAL | BIPT
MY-NOR | COUNT COUN | 2.00
6.00
6.00
1.00 | -0.00
-0.00 | -618
-685
-687 | 0.00
0.00
0.00 | 600
600 | 600
600 | | ÷ | - | 12 | 97 | 20
EL | | FREE CECTS CO. 4 | MARKET HE
MARKET HE
MARKET | THE STATE IS ASSESSED TO THE STATE OF ST | 1.38
1.38 | 128 | -631
6.87 | 0.00 | 5.00 | 676 | 20
20
20 | 320
87 | | | 0
8 | | | FRANCISCO CO C | MENT
MENT | Martin | 1.37
1.36
1.88 | 581
119 | 0.75 | 0.00 | | 600 | 20 | 120
17 | 100 | : | : | : | | HANGE COLUMN | NEEDEL
NEEDEL | WILLIAM MOTORAL MANNES STATE I TOMBAN | 1.80 | 580
312 | 1.00 | 0.00 | 680
680 | | 200 | 20 | 100 | : | | | | FREE CECETARY | HATEN | EXEC entirelit evopro tele. National Molecules and or retail to compensation of the state | 1.0 | 107
-CIB | 0.62
1.67 | 0.00 | 600 | 600 | 30
30 | 20 | 100 | | 83 | : | | I MANO CORDO COMO A
I MANO CORDO COMO A | CHARGE AND | SET AMERICAN STATE OF THE | 4.0 | -0.0
-0.0 | 0.E
0.E
0.B | 1.00 | 640
640 | 620
644
620 | : | : | 1 | = | 97
300
83 | | | FREE CECTA MARK | COM A | BS. BS, park-oringen, 99-th short blains bean dybring date. 2040ES in long ADD providing E Clier aller CIDBA opticions can discounted SA Quipleon maying | 4.00
4.00 | -68
-68 | 6.39
-612
-618 | 0.00 | 640
640 | 620
623 | | : | 27 | 12 | 81
90
97 | - | | FREE CECTO COLORS | MIZ
MIZ | CCDIA optimizario del disensistichi (populario mirgine Aldele Ald | 4.00
6.00
1.30
1.31
1.40 | 589
128
571 | 1.00
0.00
1.00
0.00 | 0.00
0.00
0.00 | 600
600
600 | 600
600
600 | 20 | 320
320 | 100
100
107 | | 0 | : | | FRANCISCO NO. A
FRANCISCO COL 1870
FRANCISCO COL 1870 | PFE. | 16ALCI Mr. Family of Brogorous And only 20 rounder A. Clier other . 1972. Family on Pyllor Calculus . Marina. Marina mayor . 2.599. galadeless account bely promit. Marina. National Service Spherony details. | 1.00
1.00
1.00 | 275
225
228 | 1.01 | | 680
680 | 683
680
680 | 20
20 | 120 | 100 | : | : | | | HANDGE CO. ST. 2 | HMG. | U.S. speaker in manus or practice. In the case of | 1.30
1.30
1.30 | 181 | 1.00 | 0.00 | 620
620 | 620
620 | 20
20
20 | | 100 | 120 | 87 | | | FRANCISCO STATE STAT | MERCE
METER
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
MERCE
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER
METER | MINES EMbhailig naif praint 2 Maí na dher
MERC MEY (No Mandy) saint a bri ly nambe 2 Maí na mayor
ME SE SE calculation control brill prainted F Manual Manhales Emprairie
AREL SAIN and San control brill 1, I search than it no brill and Embarra Saint dybrang datar | 1.00 | 128
-646
677 | 1.33
-0.09
0.75 | 0.00 | 600 | 600 | 300 | 1 | 100
6
100 | 320 | 62 | | | I MICCECCIONA
I MICCECCIONA | BECT STORY | MCD MCC - And on the charge of the controller of the charge charg | 1.0
4.0 | -CAS
-CAS
-CAS | -0.09
0.76
0.88
0.88 | 0.00
0.00 | | 600
600
600 | 100
0 | 11 | | 10 | | | | HEREGE CU AVI | HEISTON | CDES (qui sin predesti mer 18 Qippinon binne
RLI2 RDJ, quiptan i qui de Qippinon braquiter et alumini, fin claim
METSERS is directione 2 ISS limity remine o Ball ma. other | 4.0 | -136
-037 | -628 | 0.00 | 600 | 618 | 0 | : | 2 | 220
U | 300
84 | 3 | | FRANCISCO SAFE
FRANCISCO SAFE
FRANCISCO SAFE | MANA
MANA
MENSA | CDCID code-cal dorst incode big 10 Optigion after
MAR (22 product after 1 Maria Minister Incode and American | 1.0
4.0
1.0
4.0
4.0
4.0
1.0
1.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4 | -138
671 | 0.E
-613
1.33 | 0.00 | 646
646 | 601
601 | 200 | 107 | 20
E0 | | | | | I MICCECURET | TRAIL | TOTAL | 1.00 | 130
119
-630
-687
-138 | -618 | 0.00 | 0.00
0.00 | 666 | 100
0 | | : | 100 | 200 | E. | | HAND COLOR WILL
HAND COLOR WILL | APM/S
#HIAPA | ATHER ATTENDED AND ADDRESS OF A STATE AND ADDRESS OF A STATE O | G ME
G ME
1.82 | -120
CA1
CA1 | -618
-682
0.02 | 0.00
0.00
0.00 | 648
648
648 | 0.00
0.00
0.00 | | | - | - | 100
100
14
11 | e e | | I MICCECLION?
I MICCECLION? | HARD ALL
HARD
HARD | T-120 | 1.00
4.00
1.07
1.00 | - CAS
- CAS
- CAS | 0.m
0.M | 0.00
0.00
0.00 | 640
640 | 600 | 0
0
200 | | | 120 | 11
100 | | | FRANCISCO COLORS 1 | OPEL
CHES | 1991 GOO, consider to telestrate graph for marginar 1 Florina Marriagone y protein coupled a copia 1991 GOO, consideration and the condition public in 1886 A label and the condition of the condition public in 1886 A POD II ship product companies on ARTON complex 2 Quiplom other companies and conditions in 1887 RECENT REPORT of the product condition of the condition of the condition of the conditions are conditions or conditions and conditions of the conditions are conditions and are conditions and conditions are conditions and conditions are conditions are conditions and conditions are conditionally as a condition of conditions are conditions are conditionally as a condition of conditions are conditionally as a condition of conditions are conditions are conditions are conditionally as a condition of c | 1.0 | 101 | 0.00 | 0.00 | | 660 | 300
300 | - | 100 | | 20 | | | HANGED CO-407 | BETOR
DHR | MT Market in Aur Market | 1.8
4.0
1.0
1.0
1.0
4.0
1.0 | 100 | 0.00
0.00 | 0.00 | 600 | GA1
GD0 | 200 | 96
86 | - | | : | | | FREE CECECOCY | CMP98.1
HDAGSD | OAZ urstille des buyle a stryez Geplane aller
CMP181 CMP181, od op de socied (I, ponke) Clier aller
MCCCO is d'acrefessifice TO Naina Vanca Spissor agrido relinado (, prisantel
MCCCO is d'acrefessifice TO | 1.M
1.M | -0.00
33.0
32.0 | 0.00 | 0.00 | 680
680 | 670 | 300
300 | 300
07 | | : | | : | | I MICCECTI MAN
I MICCECTI MAN
I MICCECTI MAN | PO NESE
DI RES. | POCCO I sear-develope D Nation See different place in one different place in one by the control payment of the Control | GM
GM | -138
-68
130 | 0.00
-035
0.70 | 0.00 | 0.00
0.00 | 620
620 | : | : | 3 | = | 200 | 2 2 | | | HGG J HGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGG | March Marc | 6 M
6 M
1.21
1.32
1.33
1.34
4.31 | 126 | 0.00
1.08
0.08
0.00 | 0.00 | 640
640 | 600
600 | 200
200
200
0 | = | 100 | : | : | : | | FRANCISCO SMA | MADE
MACY | COMMar membranes aust selecting Chilgie flager S. Ophylaum maywe
RASCE RASC bindly sember 2. Ophylaum maywe
ARSCY admiciglamospetistus Ophylaum maywe with ophwech A,1 | 1.00
4.00 | 128
128
-08 | 0.00
-633
-689 | 0.00 | 646
646 | 620
620
620 | 0 0 | - | - | 10 | 14 | | | | | | | | | | | | | | | | | | | HANDGE CO. SHA
HANDGE CO. FEET | CARD
AMPG | MASO MADIFICIAl de la la majora de la majora promoto de comples de la majora | Optoplesm mayore
Marine stiler | 1.38
1.30
1.88 | 585
592
381 | 0.80 | 0.00
0.00
0.00 | 6.00
6.00 | 0.00 | 20 | = | e | | | • | |--|--|--
--|--------------------------------------|----------------------------|---------------------------------------|------------------------------|--------------------------------------|--------------------------|------------------|------------------|------------------|-----------|------------------|-----------| | NAME OF CO. FOR Y NAME OF CO. ANY | BOOK STATE | MARCS analysis primating complex schedul. 1008-119. Sed denied received to the S _i endoped to A.S. per- MARCS reg of his mode; MARCS Sed Search and denied to LYBERS LITERATE containing S. LYBERS LITERATE containing S. | Mains aller | 1.00
1.00 | 181
-180
682 | -028 | | 620
620
620 | 525 | 0 | - 1 | | - | 17 | | | HANDERCOMP | 17861
107-01 | 178341 178344 (ostatog 1
80448 (ostal julgisapis to 0 picquistant type 88
6081 — gi porqitaqisale tar plaqisale tarase 1 | Optoplace after
Optoplace phosphatuse | 1.00
1.00 | -08 | -018 | 0.00 | | 661 | 200 | | | 100 | 200 | - | | HAND GEORGE 7
HAND GEORGE 74.7
HAND GEORGE 74.802 | NA
NA | ICO1 gyangkapkabén plagkabénna 1 MICCI faniya k egene éni aty Minester G | Graphin Marie Salar Sala | 1.07 | 111
-681 | -011
-025
0.40 | 0.00 | 6.00
6.00 | 600
600 | 200 | 100 | | | 83
0 | : | | NAME OF COLUMN | MARINETS
MATTER | MINTO protect the disease New highway in the sale | Optoplace scapes
Malma scapes | 1.66 | 100 | 1.0 | 0.00 | 600 | 0.00 | 200 | 10 | | | | я | | HANGED CO. CO. C. | TAKEN
TAKEN
UNION | TACE In submitting and do no find and contacting protein 2
EMADERS. ETACERS because the
EPSAZ makeyaki to minimum betatom is also date. | Qualitate silver
Qualitate silver
Oddalare basis businesistan | 1.00
4.00
1.60 | -C-0
137 | -012
-028 | 0.00 | 640
640 | 500 | 200
0
200 | | | 120 | 92 | | | MICCECH 60
 MICCECT 86 | COUR | CMBC a title to a skewl grad hinds to family month CDB CDB release | Clie der
Henationism ausmissermpts | 4.07
1.08 | -128
-627 | -014
-141 | 0.00 | - | 500 | 200 | | * | 330 | 100 | E 20 | | HARMON CO. CO. | HEITEL
ACTOR | CSD Makes | Manual destrone phosphatose
Optophon mayne
Obtophon mayne | 6 M | 128
-686
182 | 1.98
-089 | 0.00 | 680
680 | 600 | 900
900 | - : | | 100 | 300 | = | | HANDSECTION 7 | P NO. | PRE Interferon gamma TEST Let at hop-yet bis as yes t domain ST | Estandiar Space options
Nation tiles | 4.00
1.07 | CAR
CA1 | 0.46 | 0.00 | - | 500 | 200 | | 2 | ML
0 | | n
n | | PRINCED CHES | 100 MISS | HALLS HALLS against be complex calcust to
TABLESS to commitme protein SS
SPACES against advertigation associated S the S | Qiquison after
Nation binchared | 1.0
4.38 | -1.61
-6.00 | 0.00 | 0.00 | 646
646 | 556 | 0 | 0 27 | 100 | 33 | 200 | | | I MINICESCHETTE | HEED
LEWIS | ECE moji Cut détai sare sur 2
LOSS LOS desarris sing 1 | Optoplace majore
Mail ma base dythologyaktor | 1.00 | 330
684 | 0.00 | 0.00 | 500 | | 200 | 100 | - | : | : | | | FRANCISCO CARRA | D by | DOT NE in called publish capital to the picture of COSEs, complete 2 COSES. confering in the income using ESS. | Optoplasm phosphatase
Optoplasm escapes | 1.07 | 000
000
-100 | 1.0 | 0.00 | = | 600 | 100
M | 2 | | : | | | | I MICCECUMA | E112 | ECS investigis de tos
EXQUA compresQUA | Optoplace after
Optoplace after | 1.0 | 388
388 | 1.37 | 0.00 | 600 | 000 | 200 | 100 | | | 0 | ' i | | 1 Marcate (12 M/1
1 Marcate (14 7 M/1 | 30 100 | TABLE 1 CONTROL OF THE SER | Graphon mayor
Manadi entrare diler | 1.07 | 338
685 | 1.00
0.00 | 0.00 | - | 500 | 200 | 120
17 | 1 m | : | . : | | | HANGE CE SAG | DATE | 1994 signal-toloand profession economic d.1
Desired class profes landy (topic) member (2
BATSA lytine are lytines for each | Optoplace after
Optoplace acquire | 6.07
1.32 | -000
0.76 | -017
0.38 | 0.00 | 6.0
6.0 | 681
681 | 200 | | - | | 87 | | | FRANCISCH MAC | 1863
19697 | SATEA Igains are igit read or one 2 A
UMSE USA disease counts trang 2
CHMP7 charged multimated at leady protein 7
in a legal 1.1
200726 cite forger protein 27% | Clie aller
Optopion kampater | 1.01 | 676
680 | 0.30
0.80
-0.03 | 0.00 | 680 | 500 | 20 | | 11 | | 14 | | | I MICCE CLIES | 20027 N
WENT 6 | | Naina aler
Naina aler | 1.0 | -125
338
687
376 | 0.36
0.38
1.48 | 0.00
0.00
0.00 | 680
680 | 6.00
6.00 | 200 | 100 | 30 | : | | | | FRANCODCU NO 1 | 1971L3 | 1773 ope pitt grant le 2
1804 d'auturi rettemme d'alconsomme 6
19032 interfero épis indutté prie 1127t le 2 | Optoplace steer
Marina transporter | 1.86 | 576
678 | 1.00 | 0.00 | 680 | 600 | 20 | 100 | 180 | : | | | | HANGED CO. SEC. | IZE-MET | GRIDO G palet recept after the 200 ACEP and open dependent TRI opinion paters. | Nematterizae printrapidença | 1.07 | 126 | -630
138
-688 | 0.00
0.00
0.00 | 500 | 500 | 17 | - | - | 1 12 | 200 | 11 | | I MICCOCCIO DE I | MACH
MACH | ADTEP and organization and the option option protects protecting to a support or any other medicine in the COMP. It is proported by the control of the complete option of the complete of the complete option o | Remarks after
Other after
Others more | 1.00 | 184 | 0.97
1.08 | 0.00 | 500 | 6.00
6.00 | 20 | - | 100
100 | | 97 | | | FRANCISCO VINT. | MARTE
COVE | PRACTI Favor to facility member 2 CDVS CDVS benedag POR probje-bylanojag | Optoplasm solver | 6 M | -1.86
-6.67 | 0.00
-048
-018 | 0.00
0.00
0.00 | 640
640 | 600
600
600 | | | - | ** | 87
200 | 32
32 | | FREEDERS STR | MCMA
MCMA | NO. public light spine when better
NO. white carrier frontly 1 member 5 | Optoplace surproter | 4.38 | -617
101 | -018
0.86
0.80 | 0.00 | 638
630 | 6.00
6.00 | 0 | | 34
36
100 | 120 | 84 | 34
0 | | HANDERSON 7 | RAPORE
SPEED | EPER Esp gartie recleable exhauge factor &
SPEE upodic perspingle 25 (subscens) recentle, black good | Name Maniero aller
Mane Maniero migra | 1.0 | -138 | -681
-682
-117 | 0.00 | 500 | 666 | 200 | | 1 | 100 | 10
07 | - | | HAROCECCA COLO | 1953A 2 | NCSE2 NCSE the hydronic operation component
NCSE After the ody, AAAA contract contract NCSE | Optoplasm transporter
Marina after | 1.0 | 188
677
148 | 0.48 | 0.00 | 680 | 600
600 | 20 | = | | | | | | PRINCED COTORS | AMPI | PPERS proteinhautete 1 regulatry substitit
MONTL MCL appears de de mateiles > lie (emi) | Qrapton aller
Qrapton phaptains | 4.00
1.00 | -187
130 | 1.88
-617
0.75
0.87 | 0.00 | 600 | 661
660 | 0
20 | | 6 | 120 | 200 | i (| | HAND GER CLU THE | MAN . | | Manual desirate after
Malina Mapendest nation rec | 1.31 | -080 | 0.00 | 0.00 | 500 | 500 | 100
11
0 | | | - | 12 | n | | I MINISTERNATION I | 2000 | Could charactered operating from 8 200001. 20000 Developitie POTEPS. Sphaphosphar phopheters 1 | Other other
Opposition phosphatase | 4.07
1.00 | -687 | -611
-611 | 0.00 | | 600 | 200 | * | : | 10 | 11 | | | HAND GEORGE CO. 2 | MAZIN
MACI | FORE FOR dense name trong 8 1001 character property dense fore 1 | Extraor Saler Space other
Optoplasm phosphatase | 687 | -ca | -017
-017 | 0.00 | 648
648 | 6.00
6.03 | | n
0 | 1
27 | 10 | 20 | | | PROGRAMMA
PROGRAMMA | HOPE
LONG | NEP2 NEP2 maleste protein | Nation there Organism position | 1.01
1.01 | 131
108 | -014
1.89
0.88 | 0.00 | 649
649 | 600
600 | 20 | = | 100 | 0 | | | | I MICCECCOMI
I MICCECCOMI | PT30 | 1972 Intelligets transpot 20 | Optoplace after
Optoplace phosphatase | 1.39 | 344
648 | 0.00 | 0.00 | 0.00
0.00 | 666 | 200 | - | | : | 14 | | | HANDERSON NO. | ANY
ANY | PSS pole-glos as a discrete depotes 1 PSS security prime extra chanding 6 | Maina aler
Grapium majne
Other aler | 1.0 | E85
E85
-138 | 0.80
0.37
0.39 | 0.00 | 6.00
6.00 | 600
600
648 | 200 | |
TI
UT | | 200 | | | | March Marc | DES. delete digital by a 1 | Called Annual Control of | 4.00 | 687 | 0.30
0.38 | 0.00 | 0.00 | 5.00
5.07 | 200 | | | 320
0 | | | | HANDSESSONS
HANDSESSONS | QMCHG. | PCSC1 PC imprepart contring 1
CRESC glaburate to b1 | Other after
Mains after
Mains areas | 1.0 | -08
011
040 | 0.00
0.00 | 0.00 | 68
68 | 620
620 | 20 | = | 100 | 120 | 87 | | | HAND GEORGE TALE | PENG.
MARKE | USS2 ship-th praish by self component recognit 2 PCMS periodicide reservi 1 MARIE mirrolables following bits a d | Original aler
Original lines | 1.00 | 585
586
-573 | 0.00 | 0.00 | 6.00
6.00 | 0.00
0.81 | 200 | ** | - | 120 | 87 | . : | | HANDODONALA
HANDODODONA | MA
DISCREA | DODGE DESCRIPTION OF THE PROPERTY. | Males aler | 1.30 | 278
226 | 0.8E
0.8D | 0.00 | 640
640 | 000 | 200 | - | 100 | | 11
0 | : | | HANGED CONTROL | VII. | VME VME, CD RVT complex sales of VC. should be sales of TO REA. Local of and y E member A. | Annual misus majos
Organism majos | 1.31
4.32
6.88 | -536
-639 | 0.00
0.00 | 0.00 | 646
646 | 621
621
620 | | | 100 | 120 | 20
20 | 1 | | PROGESTION | MINNS
IMES | MSPA protects were nines protein, and open indused 1
MSD2 proof and AT+tch interaction denote use of 2 | Manual entrare after
Nation transsplanning dater | CM
CM | -08
-00 | 0.00
0.00 | 0.00 | 600 | 600 | : | | 100 | 16
320 | 20 | : | | HANDER COOKS | 20 M2 | 2CRCB on Super CENTUpe containing 26
18972 and ICRC+th Sales 2
16082 methods collects 95 | Naina dier
Clie dier | 687 | 0.78
-1.09
-1.07 | -082
-086 | | 520 | 620
620 | 0 | | N
N | = | 87 | | | PROCEEDINGS | 1162 | TABLE Tred at batter that I have at batter or since | Optopleum aller | 1.0 | 087
-530 | 1.00 | | - | | 100 | | | | 20 | | | FRANCIECTIVASO | IMES. | MEEN seurgiaks
PRES Interferon eistedenei opnentel regulatur 1
APRES adaptur presen ja phagis objective in ding ur b PRES | Qisphon siler
Nai na siler
Nai na siler | 1.07 | 388 | 0.93
1.89
0.38 | | - | 600
600 | 20 | - | 100 | : | : | : | | HANGER CO 700 | PTE
APRIL | PTE PTH landing protein APPLS adoption protein, phospholyrodise to be a cling of the Pth d | Open Season of the Control Co | 1.0 | CAR
-CAR | -117
-018 | 0.00 | = | 500 | 200 | - | | 120 | 14
200 | 120 | | FRANCESCO 1 | PERS. | PERS. digitaritie option file PERS. protectionally with PERS. | Clier aller
Optopheum mulyme | 1.00 | 311 | 0.00 | 0.00 | 5.00 | 0.00 | 20 | - | 100 | : | | | | FRANCISCO AND F | MARCA
MARCA | 9 10 31 Luna pratei pallindadie pale in 1
19 10 3. malpianis intralegojaj terorede incorpetive
19 10 3. mai begal neskran pratei 31
1 33 P. specialis peticine (M. Baday pratei | Citie aler
Citie aler | 49 | -CAF
-CAF
-130 | 1.03
-028
-038 | 0.00 | 0.00
0.00
0.00 | 0.00
0.78
0.00 | | : | | - | 200 | - | | I MINICECTA CE S | PER | IPER coffiding protein tracked in CRA report | Optopless siler
Naina siler | 4.17 | -139 | -023
-023 | 0.00 | 600
600 | 617
630 | | | · | 100 | 20 | | | HAROTOCKO | MC. | TOTAL TOTAL STATE OF THE | Qtoplem after
Qtoplem after
Males base followers | 48 | 141
-688
678 | -028
-048 | 1.0 | 680
680 | 600
600 | | - 1 | 100 | - 12 | 87 | 10 | | NAME OF CITY OF S | PENS. | 1975. moder t sourpte Schot, Sha had of 1
1176. MPI Se translate makelow
PTOS production merupased 1 | Maine eller
Maine eller | 1.32 | E87 | 1.07
0.86
0.38 | 0.00 | 680 | 550 | 200 | 100
No. | 100 | | | | | HANGERGY FOR | LOZ
MARCAZ | ICE ICE perior-surgere, Se Sendy tyrostreitrase
MANSA2 manusaldured ple class 36 member 2 | Qtoplam blose straint, \$0.36303 | 1.00 | 181
679
107 | 1.01
-1.01
1.00 | 0.00 | 648
648 | 0.00
0.00
0.00 | 20 | 120
17 | 0 | | : | - | | B MAND CELCTON TO BE READ CELCTO | EM-CONT.ON LOC MANCAS ACTES LONG CONTROL | ACTES as to general
STAT shapeto the modifier a charleges over 1 | Grapton Inne stránt, 20-26/2023
Grapton entyre
Grapton eller
Grapton eller
Che sher | 6.86
1.38 | -68
681
143 | 1.00
-0.00
0.00
1.00 | 0.00 | 640 | 600
600 | 0
200
200 | u
u | 100 | 100 | | | | | | DRAM District class protein bridge (topic) member All | Optoplasm alber | 1.40 | 338 | -611 | 0.00 | | 500 | 20 | | | | | | | HANGED CUMBO
HANGED CUMBO | MPRING
2 PR.
HETSYS C
PERSO
MERSO | MANUAL mills for global and EP is the E protein 2015. 2015 alone E age protein METERS. In General St. In only manufact of MESS protein in an extension of | Naine time spherogener
Maine after | 6 M
4 M
1 M
6 M
1 M | -0.76
-0.76
100 | -617
-680
0.85 | 0.00 | 6.00
6.00
6.00
6.00
6.00 | 0.00
0.00 | | | | 120
M | 100
87 | | | I MINICOLON AND A | HARTS | TOPICS to faing protein pathies on piec 13. | Qtoplem after | 6.87
1.30 | -130
588 | 1.00 | 0.00 | 500 | 500 | 0 200 | | 100 | 120 | 100 | | | FRANCISCOS NO F | TRANCES
HIPS
THESE | 1992 fest chek transcriptor fictor 2
1995 theredon related transcention or projected
CORE COCI field moved | Maine base dyborny detar
Optoplasm majore | 1.00 | 108
-686
687 | -004
-010
0.60 | 0.00
0.00 | 6.00 | 601
600 | 200
0 | | - | 120 | 87 | M | | FREE CECETOR | THEE
CLEE
B SEC
COX SE
SERVE | DESIGN OF SHARE SH | Optoplace majore
Nation phopheton | 1.00
1.00
1.01
1.00
6.07 | 117 | | 0.00 | 628
628
628
628 | 6.00
6.00
6.01 | 200 | = | | | | | | PROCEEDINGS | MANUAL CONTRACT | TABLE CASE C
TO CORD. The Report CORD Agreement being
CORD. Coronary FOR Agree bog regulator 6. | Optopless siler
Estrateblar Space siler | 1.00
1.00 | 681
681 | 0.20
-680
0.88
-677 | | 680
680 | 620
620
620 | 200 | 10
100 | | 100 | 10 | - : | | FRANCIZECE IN T | MATERIAL SERVICES | | Naina aler | 1.86
1.86
1.28 | 328 | 1.28
1.33 | | | 0.00 | 200
81
200 | | 100 | : | : | 22 | | FRANCISCO 781 | RPII-METAN
MEPTAN
METAN
CANFEE
MARCINA | NUPSE sudespare IRE NUISAT subsecutive family IC mander? Claff27 sharesame 1 open reading from 27 NUMBA required for met all couleer distinct thomasing A | Otoplem temperte
Citie aller | 1.38 | 588
332 | 1.00 | 0.00
0.00
0.00
0.00 | 600
600
600
600 | 0.00 | 300 | 16.
17 | 100 | : | : | | | FRANCISCO TO TO F | MILE
UND | USE wetthen by home a first transfer of the tr | Mains ster
Mains scope
Quelon lines | 6.88
1.88
1.86 | 100
587 | -041
1.00
1.00 | 1.00 | 68 | 6.00
6.00 | 100
N7 | 20
107
144 | 100 | : | : | | | FRANCISCO CO FOR | THE MADE
CDCL 6A
2010.7
W.CDL
1970. | TOTAL CONTROL OF THE | Manual entrare after
Nation phophetore | 1.00
1.07
1.04 | 301
648 | 1.00
1.00
1.00
-0.09
1.00 | 0.00 | 0.00
0.00 | 620
620 | 20
20 | 100
E | 100 | : | 19 | - | | FREE CECTOCS | MIDS. | MEDI brondend needs ting 1 | Naina aler | 1.00 | 181
138
682 | 0.88
0.87 | 0.00 | 680
680 | 500 | 20 | 20 | 100
100
60 | | | | | I MANDOCCICIONER
I MANDOCCICIONER | MORA
MARKET | MERIA MER Maneralia te LA
MARCI MAR and RD danun containing decaysul and of the | Manual Ma | 1.00 | -0.00 | -626 | 0.00 | 6.00 | 000 | 200 | | h
27 | 900 | 200
89 | : | | PROCEEDINGS | MORA
MARCI
PARLI
AMPO
EMBC
FROM
FROM
FROM
FROM
FROM | SMERTS I de accessive partie for COCCAS del de la cere partie for COCCAS del de la cere partie for SMERTS de accessive de accessive qu'a SMERTS després de accessive qu'a SMERTS després de accessive qu'a SMERTS de accessive accessi | tane dher
Mal na mayne aquino, clabitane/qu
Mal na dher | 1.00
1.00
1.00
1.00
1.00 | 578
300
380 | 0.34
-0.05
0.00 | 0.00 | - | 600
600 | 20 | - | | | : | | | NAMES OF THE PARTY T | EMEC
FROM | and the same of th | Mailma moyee
Optopious moyee | 1.00 | 130
104 | | 0.00 | 6.00 | 0.00 | 200 | 32
32 | 100 | | | | | I MANGEMENT COLOR | METOS
TRAPES
FRAN
MO REI
DEAPS
TRAD
TALLES | MARCS to Foliag protein perfoles on ples 3 | Standard Same of | 1.0
1.0
1.0
1.0 | -088
-088 | -011
1.00 | 0.00 | 6.00
6.00 | 681
680
680 | 200 | | 38
1
100 | 320 | 14 | - | | HANDGE CHANA | MO MO
DEAPE | ESSAN ESSANDING most protein to
MCRNE MCRN repeal containing II
DCRES DCREs and CLASS second and factor III | Males aler
Other aler | 1.00 | 384 | 1.07 | 0.00 | 600 | 000 | 200 | 10 | 100 | : | | | | HANDSDOWNS | TALK | SAID To Educate continuing
SAIDC In regard to 2 | Original aler
Name aler | 1.01
6.00
1.00 | -CML
128 | 1.66
0.30
0.86 | 0.00 | 640
640 | 0.00
0.01
0.00 | 96
300 | 100 | 100
26
100 | 220 | 200 | 27 | | FREE CE CE CE CE 2 | MAPE
MAPE
MAPE
MAPE
MAPE
MAPE
PAGE | STRP1 ship to the waiting products DERPS2 deal specifiedly phosphates 22 PLOS 4-832 PLOS and are set \$8.83 | Other aller | 1.07 | 128
-120
139 | 0.86
-633
1.37 | 0.00 | 620
620 | 020
020 | 20 | | 100
36
100 | 200 | - 1 | | | HANGED CO. CO. 7 | UNIDA
UNIDA
UNIDA | PF DDC 450 PF DDC 3 and man SMAD 1000 pp 100 | Graphen kaspate
Graphen kaspate | 43 | -08
-08
-08 | -048
1.0
-048 | 0.00 | 600
600 | 0.00
0.00
0.00 | | | 100 | 10 | 100
84
300 | - | | HANDSTONESS | PRICE
STREE | PMP protespinates a Mg (Mac-dependent)
TM1 spepiperin1 | Qiquiam phaphatas | 4.07 | -136
-136
588
588 | -0.11
0.37
0.88 | 0.00
0.00
0.00 | 620
620
620 | 020
020 | 200 | | 2 8 | 320
0 | 200 | | | I MICODONA | STAL
HON
HOP-E
HOP-E
EXIZE | ITM1 que pis junto. PMI piut, dominante accestidad protein PMI piut, dominante accestidad protein PMIP4 forest als alleg proteins. PPE4((askude other placeber pre accepte a blevesting protein fundy ment |
Naina dier | 1.07
1.08
1.00
1.00 | CAD | 0.86
0.86
0.86 | 0.00 | 620
620
620 | 6.00
6.00
6.00 | 200 | = | 100 | | | : | | HAND GEOGRAPHS | ELEMAN
CLAPS | PROCESSAND AND ADMINISTRATING PROCESSAND AND ADMINISTRATING PROCESSAND AND ADMINISTRATING PROCESSAND AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION ADMI | Males mayre
Qriplem basyate | 1.00
1.00
1.00
1.00 | 538
582
585
580 | 0.00
-024 | 0.00 | 600
600
600 | 660
660
667
660 | 20
20
20 | 120
07 | | : | | | | PROGRAMMA
PROGRAMMA | CIMP2
CRINDS
COMF
P13-400000.3 | GARY optigions chier accepted protein 2
CMND1 optigione in dent containing 1 | City dier | 1.0 | 148
-188 | -024
0.60
1.67
-0.70 | 0.00
0.00
0.00 | 620
620
620 | 000
000 | 20 | 22 | 100 | 0 | 0
97 | 10
100 | | HANGED CHARA | #13-60 KB.3
RADISAKS | EASTS 433. EASTS 1 at the rise ENAS (head to be d) | Other stier | 1.20
4.38
1.88
1.34
6.98 | 337 | | 0.00 | | | 200 | - | | | | | | HAND GEORGE MAIL | 1005
17165 | 1905. sart op neds 1
1995. sphopshje die reparter 1 (paletne)
1495. le skopte a Accident remangl dautoi fier me par 1 | | 1.00 | -680
680
338 | -028
0.00
0.00 | 0.00 | 600
600 | 620
620 | 200 | | 2 | 0
0 | 100
0 | 27 | | HANDSDOWNS | TIN | LARI lesingles notified revengidadol forme plur 1
TR threedols | Rematterizare assumitare recepto
Optopion majore 89-32 | 411 | -137 | 0.00
0.00
0.00 | 0.00 | 620
620 | 020
029
020 | : | : | | 120 | 87
200 | 27 | | I MAN COLOR TO A
I MAN COLOR TO A | EARNISAID
NA
NGC
PINC
LARI
TIN
TRANSCE
NCICL
ACAME | LARS. In sharper a content remark that the respits 1 TSN Literature TREASE. I therefore TREASE. I therefore the remarks and in remarker of the | graphen kespate
Origina kespate
Manuali misuse pritikse | 1.0 | 125
118
-688 | 1.33
1.40 | 0.00 | 600 | 666 | 100
EF | 120
121 | 100
m.
100 | 120 | | | | HAND GEORGE | AFFECT. | ATT 20.1 ATT to Mary Extra reporting school late 2. FMM pater pan banding (Droughtle) | Plantationicase traspater
Nation other | 1.60 | -120
121 | 0.00
0.00 | 0.00 | | 600
600 | 200 | - | × v | | 87 | | | HANGED COTTON | MAP 12
PARTO | PARTS pulgACP-class) polymerae family mention 33
20722 in Suger protein 20 | Maine aler
Extensión laure aler | 1.07
1.08
1.40 | 677
117 | 0.87 | 0.00 | 5.00
5.00 | 6.00 | 20
20
20 | | w | : | : | | | HAND GER CO. 175 A | ACRES
DRD SHA | AGE1 as piCoA optivious long date fundy member 1 | Graphon majore
Malma majore | 1.27 | -526 | 1.00 | 0.00 | 0.00 | 6.00 | 200 | | 100 | u u | 200 | | | FRANCISCO 783 | CPR
DPMA | 2018 in fige princips | Maine eller
Maine eller | 4.86 | -137
588
335 | 1.0 | 0.00 | 646
646 | 500 | 0
200
200 | u | | 330
0 | 100 | | | HAND GE CHARLE | AZA
VPER | POIDCS performed dependent de cortex place demants contenting ADA administrative des et team. VERSE, NOTE complex subsets AT VERSE, NOTE complex subsets AT VERSE problements administrative administrat | Opphers stayes Stylisterals, dennis
Opphers bases are | 1.00
1.00
1.00
1.00 | CAS
CAT | 0.37
0.32 | 0.00 | 600 | 624
620 | 87
300 | | = | : | : | | | HAND CERTAINS | PERM | APTEA APE or phospholytic transporting TEA (paint or) PROBLE professional transporting to the Communication or colour C | Remaild enforce transporter
Optoplasm other | 1.0 | 142 | 0.00 | 0.00 | 6.00 | 520 | 20 | - | 180 | | | | | HAND GEORGE THE I
HAND GEORGE THE I | UNIDE | URIDE SENSON OF THE PROPERTY O | Oppion ster | 1.3
6 E | -5.00
-5.07 | -0.71
0.00
0.00 | 0.00 | 68
68 | 619 | 0 0 | | | 120 | 100
100 |
 | | FREE CECCOM4 | PER
PERF | PRISE gi prographosphorylane S
PRISEP (Suchament and Alexandral Analysis | Originan majore
Originan lines | 1.37 | CAR | -683
0.36 | 0.00 | 600 | 000 | 200 | 120 | - 1 | | : | u
N | | HANDSCOPENS | 0074
0074 | EMPLI IN describing potent lied
and gold to traffic protein. | Other siler
Opposion siler
Males siler | 1.0 | -188
124 | 0.39 | 0.00 | 6.00 | 620 | 200 | | | 0 0 | 200 | | | I MICCOCKENO | 1991971
1991 | Destroy Destroyment | Clier aller
Unter Ster
Extraction Space grade between deleterops | 1.0
6 M
6.00 | -030 | -014
-014 | | 620
620
646 | 681
683 | : | | : | 120
U | 12 | E . | | HAROTON DA | MAIAG
MO1 | MARCI Est accepts 1
2801 march 1 | Qiquian aler
Naina tanpale eco, 545, ispany
i Naina | 1.00 | -ca | -011
0.00
0.30 | 0.00 | 0.00
0.00 | 0.00 | 20 | | 10
100 | 0 | 1 | : | | HAND GEORGE THE | RAPORTS
THE | ERCE RCC michin repair 3,1780 con complex le home in
EAPRES Exp garden recinstité mahangellatur 1
TRE TRESpraise ibn m | Opplem aller
Opplem brase | 1.00
6.00
1.01 | 106
-081
648 | | 0.00 | 6.00
6.00 | 6,00
6,00
6,00 | 20
20 | | er
e | 320
0 | 100
10 | <u>:</u> | | FRANCISCO CONTRACTOR | CEAR1
HEEDIA | CCARS cell of the origina relapsystets regulater S.
HRESSA HRES Syperial reducible damate for day member SA. | Maine tracelyborregulator
Qroplasm after | 1.01
1.01
1.00 | -08 | -129
0.86
-0.03 | 0.00 | 6.00
6.00 | 0.00
0.00 | 100
0 | - 1 | 100 | 120 | 200 | | | FRANCISCO COMO
FRANCISCO COMO | ARAPS
DES | ALBER ACTION (state between the action of a problem). ACT SECURITIES accommodate problem. | t Optoplesm after
Malma after | 616
618
1.38 | -CM
-CM
318 | -081
-003
1.m | | 680
680 | 626
628 | 87 | | 100 | 100 | 200 | * | | The control of | ### ### ### ### ### ### ### ### ### ## | MCC SECENT AND accordant to protein VMCD VMCD, CCRUE T/MCDF core valued SECS II; medit come tanget: UMSSA UT change and contributions and JETES II the finger and MCD decrease containing St. | Company Comp | 1.00
1.00
1.00 | CAS | 1.85
1.85
0.88 | 0.00 | 6.00
6.00 | 000
000 | 20 | 67
67 | 100
100 | | : | | | FINE CERCUTARY
FINE CERCUTARY | SERVA
BEM | UMA Ur cland to deal'hid petern A
2003 He frege and 00 deman containing 2A
828 he to correspond to | dates dier
Nates trestjörregder
Paratitedrare annedrare respisaled draufverde | 1.M
6.M
6.M | -GM
-127 | -633 | 0.00 | 68
68 | 500 | 200
200
1 | | | | 11 | 2 0 | | | | | | | | | | | | | | | | | | | I MICCELETA MOS
I MICCELETA MOS
I MICCELETA MOS | 140
190 | N/D
1830 | in didigit 4000 combinations 3, instruction disal
boson benyl-Co. Adolphin agentore
1- box binding protein 1. | Cytoplasm manyme Cytoplasm manyme cytoplasm | | 1.00
1.00
6.00 | 130
181
-698 | -628 | 0.00 | 620
620 | 620 | 200 | | 77
27 | - | 200 | | |--
--|---|---|--|---------------------------|---|---|--------------------------------------|------------------------------|----------------------|--------------------------|-------------------|-------------------|-----------------------|-----------------|-----------------|----------------| | | MATE MATE | EMCHESO
MATE
MADERAL | methylmal onyl-CoA made or | Otopion atler
Otopion mayre
Hematimirae tempate | man halo mito, nya mana b | 1.M
6/B
4.D
1.D
4.D | -100 | -621 | 1.00 | | | 200 | | - | | 100 | 1 | | I
MAND CELEGRAPHIE
I MAND CELEGRAPHIE
I MAND CELEGRAPHIE
I MAND CELEGRAPHIE
I MAND CELEGRAPHIE
I MAND CELEGRAPHIE | ALL PARTY. | reases
com judades als | is giomeistry groupius I
ero <mark>fortistrativiti Para dienato, anisy tempest and Pri de</mark> | Malea aler
Olier aler | | 0.38
1.83
1.39
0.88 | -GEL
119
GRE | 0.36
1.05
0.00 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 20 | 120 | | | 0 | | | B MAND CERCITA MET 7 B MAND CERCITA MET 8 B MAND CERCITA MET 8 B MAND CERCITA CERT 7 | HARRES ANAM NA FRANC HARR MP-COS HARRE LIDER LIDER COS LIDER LIDER LIDER LIDER LIDER LIDER LIDER LIDER | MARIE
MPC
MPCOR | problem explaint beta 4
peptidise 0
optich one coal diset II | Otohjen koltajen
Otohjen leitzjen
Otohjen leitzjen | | 4.07 | -087
-088 | -047
-048 | 0.00 | 6.00
6.00 | 650 | 0 0 | : | 100 | = | 87
89 | | | NAME OF CASE OF T
NAME OF CASE OF T
NAME OF CASE OF T | UMPAL
CO CO CO | LINESA
CHCHG | nonimpi de din Prader Wi li/Negrina nopali orer 3
skinjulin oper lis peptike e 31
sa tegenjuli orer skramanore region, sa nd date 3 | Optoplace states
Optoplace population
Estratelists Space encycle | VLIDA ID | 1.0
6 M | -000
041
-137 | 0.M
-0.77 | 0.00 | 600
600 | 620
620 | 20 | 14.
0 | - | | 20 | N N | | I MANUSCACIONES I MONISCACIONES MONI | 0HDC
27ML
UZ11 | 29 M | EDIT demain contributing
200 Mining Fagor protein | Mariam tampa ber and a salar collect c | | 4.35
6.86
1.37 | -130
-639
871 | -0.1
0.36
0.80 | 0.00 | 644
646 | 686
686
688 | 100 | 0 | 20 | 120
07 | 10
11 | : | | I MANOGERCE TO S
I MANOGERCE TO S
I MANOGERCE TO 7 | INDIA MARKET INAMAC INAMA ARAP PRANCIA HARE CHARE ARAP ARAP ARAP 375.33 375.33 375.33 ARAP ARAP ARAP ARAP ARAP ARAP ARAP AR | PARKET
CAREA
AART | family of the openion during the member C | Name of the color | | 1.0 | 137
530 | 0.00
-0.04
0.01
1.00 | 0.00
0.00
0.00
0.00 | 680
680 | 634
620
620 | 200 | 10 | | | 71
0
0 | ÷ | | B MAN CORPORATES
B MAN CORPORATES
B MAN CORPORATES | HMHSAS
HMKS
CHMCS | MART ALL
HARTS
CHEAGE | ger in ser son, que management a bast ames :
magin acceste del magnetory cell protein
family el de argue cue dend artig 15 member 15.
fin gle 2 membel relaridation 1
channe lin accestà dity complex 1 | Other aller
Originam translationing al
Marina mayore | | 1.02
G.87 | E82
E87
-E88 | 1.00
0.00
-610 | 0.00 | 636
636 | 600
601 | 200 | 120 | | - | 0
200 | : | | E MANIC COMPOSITION OF THE PERSON T | MP-CD 2
TPS-EP 3 | MICELL | Option of the second se | Estrachier Space opisit ne
Optopion mayne
Males brook phonesy | | 1.M
6.W
1.02 | -685
382 | -680
120 | 0.00 | 680
680 | 600 | 0
0
200 | 11 | 100 | - | | | | FREEDERSCHEN
FREEDERSCHEN | MADON
MADON | BARTA
MARIA | cyce pints genish in 1
SPC damet noministing SA
shippin law dumats containing 2 | Qtoplam majne
Qtoplam aller
Qtoplam majne | | 0.87
G.85 | 547
548
-128 | 0.86
-0.65
0.33 | 0.00 | 680
680 | 600
600 | 20
20 | : | 11 | : | 11
| | | HAND CODE COLUMN TO A MAND CODE COLUMN TO A MAND CODE COLUMN TO A MAND CODE CODE CODE CODE CODE CODE CODE COD | PEL-BERSEA
SCHOOL
CRUFFE
CRUFFE
CRUFFE | CHPS | CAMP to ette ti stlymentera
Sedt transcontera colonii | Otopiam translationing at
Otopiam translation | | 1.0 | 128
676
-686 | 0.44 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 550 | 200 | | = | | : | 3 | | D MAND COMPOSITION A
D MAND COMPOSITION TO
D MAND COMPOSITION TO | CM-FM
ECTOM
QB | ETELS II | | Otopion afer
Naina tonhanel
Naina afer | | 1.37 | - CES | 0.00
0.00
-007 | 0.00 | 630
640 | 600
600
600 | 200 | ** | - | 100 | 14
0
200 | u
u | | HAND CONTROL OF THE PARTY TH | QE
QE
RAPOL
SPINTE | MAPCH
2001 KM
RIZES | pulsation classed Minimer to the density could step !
QUI, EX density could be providing projection, minimers to providing the column to the projection of t | Otopion populare
Other aller | | 1.00 | 133
-CM | 0.00
0.36
0.38 | 0.00 | 640
640 | 000
000 | 200 | = | - | : | : | 1 | | I MONTH COME IN THE TH | CA1 | EV.
COM | StudyVorp the
CDM recipies
and annual | Hamationicus siler
Hamationicus siler | - | 1.00 | CAS
-CR | -0.04
0.20 | 0.00 | 600 | 560
560 | 200 | N. | | - | 200 | - | | PROCEEDINGS | MARTA
MARTA | BANES
BLVMA | | Naina aler | | 1.00
1.00
4.30 | -645 | 0.00
0.00 | | 600
600 | 600 | 200 | | 2 | - | 12 | | | HANDERCOM | SET
URICIS | BT
URFOL
RAPID | te rier to act also by retain factor 1
is here it are dust in A
10 T mades spirite strong mer
strops the firm of planets containing 1 | Otopion majore
Naina phopistose
Oties aller | | 4.9
4.9
1.0
4.9 | -536
-686
676 | -0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 620
620 | 620
620 | 0 00 | 100 | | 22 | 200 | 27 | | PRINCED COLORS PRINCED COLORS | APIGA
NA | APRIA | aph Thomasy A, gorma-service subset | Other phaphane
Quaphan pagables | | 48 | -036
-036
-036 | -015
-002 | 0.00 | 680
680 | 600
600 | 0 0 | | | = | 94
97
94 | - | | HANDGE CO. 872 V
HANDGE CO. 872 V | MIDC
TICRL | PRICE
TICAL | systems and but blue risk damat recent tring 1
protet mich aus, 1964 within ted, catalytic polype pitch
bedomin beto-propeller report contesting 1 | Other after
Marina bhase
Otopion after | PERCONAMICANA | 1.0 | 139
584
540 | 0.86
-630 | 0.00 | 620
620 | 600
600 | 20
20 | | = = | | 11 | - 1 | | PRICEDOMS O | MP1
SPTH
Sefections | PERSONAL LINE RESIDENCE AND ADDRESS OF THE SECONDARIA COMMANDE COMMAND ADDRESS OF THE SECONDARIA COMMANDE AND ADDRESS OF THE SECONDARIA COMMANDE AND ADDRESS OF THE SECONDARIA COMMANDE AND ADDRESS OF THE SECONDARIA COMMAND ADDRESS OF THE SECONDARIA COMMAND ADDRE | PCC and SME Interesting protein 3
SPTS haveing CSP elegation is characterist
LECT to 2, pre-mESA sphing featur
opticity are a continue to the subsettles. | Maina tons dyborrego
Maina tons dyborrego
Other aller | | 1.00 | 540
584
102 | -041
0.86
0.52
-047 | 0.00 | 620
620 | 000
000 | 200
67
200 | 60
67
320 | - | : | : | : | | FREEDERSTAND | TABLE UNI | THEOLOGICAL LABORATERY I | to remembrate protein 2003 (security eve.) | Otopian mayre
Other after | | 0.80
0.80
1.31
0.80
1.38 | -676
687 | -647
-687 | 0.00 | - | 600 | 200 | | | - | 0 | | | I MICCECCCC | CHAIR
MACE | OFFE
MPG
PCE | is to endocement/forcement adoption; MAJPE and METER as
content distributed.
METE, opposite and medition and
Prosperate recognise, APPE transcription factor action to | Pleasa Membrane Inches
Optopion mayore | | 1.0
1.0
6.0 | -68 | -639 | 0.00 | | 650 | 20 | | - | | 10 | - 1 | | FRANCESCA GOT | MINE | MANAGEMENT STATES | III and rector SM and bry factor 1
the flager and TS domain containing 42
then CO anythrough row 1 | Maina aler
Maina aler | | 1.00 | E#1
E79
E## | 0.00 | 0.00 | 600 | 000 | 200 | | - | | | | | HANGED CHANG | NCORD. 11X GDA1 ARCH MADDA1 M | WAR TO | Militarian biolylensky typeskyne
Militarian Militarian medicania com- | Quiplem mayor Naina transfiphorego Naina transfiphorego Naina aber Naina aber Quiplem mayor Quiplem aber Naina aber | | 1.00
1.00
0.00 | 100
114 | 1.06
0.06
0.06 | 1.0 | 600
600 | 620
620 | 20 | w
100 | 100 | | i | | | HANGED COLORS | SALETS
SALETS | CHEP
GALRETS
SMEL | chanding the factor pulppe plaint weight data countryls and more 1 special expellence upd offer CVMCCC dates in contacting 1 | Optoplace engine
Optoplace engine | -40 Melanyaha an | 48 | -187
-686
-181 | -018
-028
-027 | 0.00 | 620
620 | 554
554 | | | • | 22 | 14
20 | #
| | FRANCISCOLOMOS
FRANCISCOLOMOS
FRANCISCOLOMOS | CHOPES
PLESSE
SOUPPORTS |
NEW
MEM
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
MEMORI
M | optints c)/HCRC done to contain g 1
function materiales
seeps is only 8 member 8
HCP3/ban HOA methyltransfera er fant ly member 8 pa | Other alter
Optoplace ecopies
Optoplace alter | | 48 | -68
-58
-53 | -0.07
-0.07
0.00 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | | | 4 | 10
10 | 20
20 | ÷ | | HANGERSON IN | PODDA | PERSON | Contract description (A) | Other after
Other after
Others engine | | 1.00 | E81
E76
-138 | 0.00
0.00
-014 | 0.00 | 6.00
6.00 | 500 | 20 | 107
0 | | 320 | 20 | 2 | | FREEDOMES
FREEDOMES | MILITA
MILITA
MAGINA | CRESP
GPRES
ARLESS/ARLESS
MARCHINA | skingste conjugating engine E2 P (public or)
II protein conjugating conjugating
ADP vilacijatina betar tike IEP one 27E
Family of henge one deal and to 20E one miles A
or kinan/sational-like dependent protein intersections of | Manual tembrane graden copied as
Other diler
Males assess | ospa | 6.86
1.37
1.80 | -686
331
341 | -610
0.80
1.30 | 0.00 | 6.00
6.00 | 620
620
620 | 10
200 | M
M | | 1 | 84
8 | : | | STREET, TABLE ST | PECE
PECE
PELITA
PARCIBA
CAMBI
CYCM I
CYCM | CHARL
CYTHE
CPTN | ca bitan/calmadulin dependent paster nitraser bitaser 1
syde ter rish taramente ann makin contact og 1
sydematin | Section Sect | | 4.10 | -130
-130
648 | 0.00
0.00
-0.00 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600
600 | | : | 100 | 100 | 100
84 | | | HANDERSON DATE: | ALIBHA
STREAM | ALBINA
STREAM
CHEANACTS | op in ear in
al lithomolog 5, 230, demet bylane
III Sal plante on please amonths alpho-2, in calciff rands
character for call the the only galancies on spits rather as: | Nation stops
Original stops
Original | | 678
698 | -0.30
-1.37
-1.88 | -011
1.00
-017 | 0.00
0.00
0.00 | 640
640 | 680
687 | 0 | | | 33 | 20 | | | FRANCISCOTORINA 4 | TARIA | THRE | THE dense containing 4
chapter in containing TES saluel 18 pendage or 1 | Established aler | | 1.00 | 618
-680
132 | -382
-618
1.38 | 0.00 | 60 | 600
600 | 200 | | i | - | 17 | = | | I MAND CERCIT NOTO
I MAND CERCIT NOTO | OPT AL | OFFIA
PETE
CACER | N-antiglicazante 1 și așia le traderan ajiu ar | Other other
Optoplace accycle
Optoplace other | | 1.0 | 187
-188 | 1.61 | 0.00 | | 660 | * | u
u | e . | | | : | | HANDERCONS
HANDERCONS | MAKE
MAKE | MANAGE. | cacle, quine come C complex calcus! EAS protectes that the S SATE beneation 1 | Otopian aler
Haina kanadphorego | | 1.00
0.00 | 128
117
688 | 0.00
0.30
-0.74
0.00 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 680
680 | 100
100
100 | er
= | | : | #
11 | | | FRANCISCO COMO A
FRANCISCO COMO A
FRANCISCO COMO A | Man . | MANG
MAG | pistelet activiting their acetyl hydrol are 2
East beneding weathed token to
protet ophosphatics diregulatory subsect 1. He (peoch | Otopiaco mayre
Otopiaco mayre
Otier diler | | 1.01 | - 181
- 688
- 581 | 0.30 | 0.00 | 620
620 | 600
600 | 1
20 | | | | 100 | . M | | I MAIO CECTO ANA
I MAIO CECTO ACEA
I ACEA | ALBINS TERMANUTE TERMANUTE TERMANUTE TERMANUTE TERMANUTE FIRE FORE MANUE TERMANUTE TER | VOPPL | is to exclude 1 MR landy member is
unlab contact approximate to disappear of | Opinphon dier Nal na dier Opinphon dier Mal na ber die Mal na ber die Mal na ber die Mal na geben mayer Opinphon mayer Chier dier Opinphon peptiken Chier dier Mal na peptiken Chier dier | | 48 | -CAE
-CAE
-137 | -015
-015
0.30 | 0.00
0.00
0.00 | 620
620 | 666 | | | 27
0
N3 | 12
12 | 20
200 | - | | FRANCIZECTA MICO | EMSA
EMSA | MAPS.
EVELA | the Bage point of the BEAL access the dipole of a company of the parties of the SA. | Mains populare | ** | 4.00 | -1.23
-0.27 | 0.00
-0.78
0.00 | 0.00 | 68
68 | GA 8
GG 0
GG 0 | 0 100 | | 100 | - | 200 | - | | B MARIO CERCIA MARIO B MARIO CERCIA MARIO B MARIO CERCIA MATO T B MARIO CERCIA MATO T B MARIO CERCIA MATO B MARIO CERCIA MARIO | TRACE ISSA | THE SA | El protein perfesse suppressor 1. La reforming growth for twister regulator 6. Family at the expense denti artig 350 member A. MAX protein forming accounted with actin, gaing mem | Otophen aller
Males aller | | 1.00 | 6272
6272 | 0.07
0.00
-0.01 | 0.00
0.00
0.00 | | 600
600
600 | 20 | | 100 | | | - 1 | | HANDSECTION OF | WAC
MORE | MAKE | streets type is erreduce to rest associated cale &
mar-1930, laiding that ly member C | Otopiem after
Otopiem after | | 1.00 | 67 6
-G87 | -040 | 0.00 | 620
620 | 000 | 20 | | | 120 | 200 | - | | NAME OF COLUMN 1
NAME OF COLUMN 1 | HATEL
MARKET | 10%
10%
10% | mentrane board to nor letter beter profition, 4 to 1
1956, it agreems of hymometric grand as complex 3 as
18660 upon the Ethologist operates by me 1 | Optoplace polyte
Optoplace states
Optoplace states | Empilianali. | 1.01
1.00
0.00 | 0.7%
0.7%
1.80 | 0.80
0.87
1.33 | 0.00 | 6.00
6.00 | 600
600 | 300
300
84 | = | - | : | : | : | | FRANCISCOS ACT
FRANCISCOS ACT | CTM
DOIN | CTM
CHOST | phophophorate line e 1
cade paint
CRANNon below e 16 | Otopian jayas
Otopian jayas
Otopian | | 6 M
6 M | -0.07
-0.00
0.01 | -017
0.00
0.07 | 1.0 | 68
68 | 628
628 | 20 | 200 | | | 94
73 | | | B MANICE COLOMBA COL | OMES TORNE T | T MODE
PLANA | Harris A | Tomorbina (pase) Graphica Graph | | 1.0
6.0
6.78 | 6.77
6.74
-1.98 | 0.87
0.86
-089 | 0.00 | 620
620 | 600
600 | 20 | - | | | 44 | : | | I MINORECE CEA
I MINORECE CEA
I MINORECE CEA | WALL
MAD | WAS
WAS | refits 8 specific EX signifing an ingress 1 related EXEs that relationing were borneding 2 SEES Contents thing STP products 2 | Optoplasm after
Plasma Mandrase enzyme
Optoplasm after | | 676
670
670 | -0.00
-0.00
-0.00 | -0.70
-0.03
0.30 | 0.00 | 6.00
6.00 | 600
600
697
603 | 0 0 | 2 | | 32
32 | 73 | * | | | HERE
TEXAS | HERE
HERE | ecologanis M
et calin 1
MC1 diseases family member is | Majos tensorie | | 1.00 | -122 | -639 | 0.00 | ca
ca | 600 | 20
20 | - | 100 | | 100 | | | HAND GEORGE CO. C. | PCTRLIS
DOORST | HTE G
DOOR
HEE
GAM
PTHU | First related typicales into a Silg and
diship of this sales has been as a sole of the second at | Extraorbiler Space cybit ne
Optoplane mayore | | 1.8
6E
1.3
6M
1.0
6.7
6.7 | -0.78
3.10 | -117
-610
0.88 | 0.00 | 6.00
6.00 | 000
000
000
000 | 20
0 | 1 | 0
27 | - | 87 | 70 | | NAME OF COLUMN | CAPS
PORU | OM. | HB1, GDE upper the figure is only member
along life cycle as associated protein 1
proteinly and replacification, receptor type 2 | Hamationisme siler
Hamationisme piopietae | | 6.8
6.8 | -0.0 | -625
-627 | | 500 | 550 | | - | 27 | 120 | 200
81 | 71
M | | PRICED CHARA | PROPS
REMIS |
MIP1
DONG | ta membrae pulat 29
M2 homelas identi gyrakis
A daus sabete ektel 1 | Maine transplanter
Manufacture dier | | 0.88
0.88
0.86
1.82
4.07 | -138
078
131
588 | -640 | 0.00 | 50 | 650 | 20 | - | = | | : | = | | HEREGISTAN | HICE
THE MEDIA | HOE MEETE | terrateing tode and neurological expressed 1.
Language for the 100 | Males dier
Olie tespale | | 410 | -0.00
-0.00
0.00 | 0.00
0.00
1.00 | 0.00 | - | 628
600
600 | : | | 100 | = | 20 | | | FRANCIZECTA 76 A
FRANCIZECTA 267 1
FRANCIZECTA CONC | TYME
BCKMS | MIN MEN
HIT
THIS
NO MA | he matching tool a not receiving tool in operated 1
to numerobrane protein 200
heartington
1980-yill spot desiring prode to it
unite course to bring 10 member 2
shapping time 40. | Qtoplem transipleorego
Qtoplem mayor
Plematemirare transporter | | G 87 | -049 | 0.00 | 0.00 | 680
680 | 000 | 100
107 | 16 | 100
100 | - | 200 | : | | FRANCISCOS 78-4
FRANCISCOS CIA 78-4
FRANCISCOS CIA 68-8 | H. HEST
HA | MACE | | Otopian atter | | 1.00 | -115
549
-586 | -003
0.36 | 0.00 | 620
620 | 661
661 | 0
N7 | 0
11 | | 1 | 20 | 10
10
20 | | I MANOGERCA COM A
I MANOGERCA COM A
I MANOGERCA COM | HOES
HOESE | 10000
10000
FERS | net the CRA glycogi are 1.
EXMANUTES madf protein 34
and up made 30. | Maina mayre
Maina kunadphorego
Qopian kunpake | | 1.0 | 111 | 1.00
0.00
0.30 | 0.00 | 6.00
6.00 | 600 | 20 | 120 | 100 | 15.
0
16. | 6
200 | Ė | | I MINICEE CLASS CLAS | MARIA
TUPSA | EARA
TIPTLA
CLAUP | not like CRAL glycosyl and 1
REALINAING could protein 3d
out up seeks 32
Seeks been as in glycosymol pass in his 2
REALIN commisse Mild coung one through
THE PRINCES. | Optoplasm after
Optoplasm engine
Nationa after | | CB
CB
CB
0.86 | -1.00
-1.00
-6.00
12.0
68.7 | 0.33
0.35
0.39
-607
1.00 | 0.00 | - | 647
656
638
668 | 0 | | - | 32 | 200 | | | FREE CERCITOR OF THE | CLAMP
MARKED
ATRIBL | APRI | CLES associating servey's gitteen in probin
place of activating their a coupling the ser I heat of the
After any incrementary and COV transporting 1 | Mains afer
Oppion major
Manual majore beauty | | 0.M
4 M | 587
-670
-690 | 1.36 | 0.00 | 680
680 | 600
600
600 | 200 | | 100
20
100 | | 100
97 | - | | FRANCISCOTION NO. 9
FRANCISCOTION NO. 1 | HELPIN
STREET | OT PIECE | CLES manufalling seringing tenerish protein place has been placed by the conflict of ATH or places manufaces CLES tempor Ling 2 MATHAE agreement and markets on one school SE prove of tempor been for the CLESSES prove of tempor been placed to the classes a placed of temporal of the temporal to the contract of the conflict of the contract cont | Otopian mayre
Males tressphorego | | 6.00
6.00
1.11 | 528
682
685 | 0.M
0.M
-0.09 | 1.00 | 68
68 | 620
620
620 | 200 | | - | : | : | - : | | HANDSECTORS I | COMMON
GLAZIS | COMMON | phosps of opinional C, Coppense of I have us to the
CDMM denses containing 8
group to color accounted og 2
let listens, family 10, provide me 6
family of the openion deal or by 120 member A. | Maina aler
Oliv aler | | 48 | -ca
-ca | 0.40 | 0.00 | 620
620 | 000 | | | 2 | = | 200 | 2 2 | | I MICCOLOGO NO
I MICCOLOGO NO
I MICCOLOGO NO | 107 | MARTIN
TACES
TEST | Family of the opening and only 120 member A.
Landburning and the collect of combining problem 1.
Landburning below 7 th and streetly below has | Other sites
Nation sites
Nation beautiful | | 0.8
4.0
6.8
6.8
6.8
6.8
6.8
6.0
6.0
6.0
6.0
6.0
6.0 | -0.75
-0.78
-0.18
-0.07 | -028
-032
0.05
-136
0.05 | 1.0 | EID
EID | 600
600
600 | 20
0 | 12 | | 120 | 72 | E. | | S MANOGERONA TO S | THEODER
AVE | | NO report dura in CM
THE I down the first provider 100
are little among any annual or 100 | Clier aller Florattenieue mayer | | GE
GE | -CAF
-CAR
-CAR | 0.37
0.37 | 0.00 | 68
68
68 | 681
681 | : | : | | = | 92
96 | 2 | | PROCEEDINGS | MITT
DYMETE | APD
APD
NOTE: | Action temporal and 21 incorporations 1
Action by the fact that age 1 | Males tempore
Organism after | | 1.0 | -048
671
-188 | -018 | 0.00 | 500 | 681 | 200 | - | 27 | | 92
14 | 2 | | I MEGREGIAN | MEN
MEN | MAN | Early of the appears in Christ Tail consider A
to acknowledge of the Christ Ch | Please after
Optoplean mayor | | CE
CE
CE | -138
-138
-138
-138 | -en
-en
-en | 1.0 | 6.00
6.00 | 600
600 | | | | = | 14
20 | - | | PROCEEDINGS | CO HOUSE
AND MAI | DIRECTA
ATICNES | CHROLiferratio contacting 2A
Autoping print to 28 Mar 1 | Name and star
Plantable after
Opinion stayes | | 6.80
6.80
6.87
6.82 | -0.00
-0.00
0.04
0.00 | -010
0.35
0.86 | 0.00 | 620
620 | 600
600 | 20 | 100 | 2 | = | 200 | 2 | | I MICCECUACI | 365C | | | Manual Ambron dier | | GM
GM | -131
-688
101 | 6.00
-631
-634 | 0.00 | 6.00
6.00 | 600
600
600 | | | 100
E0
20
21 | = | 200
200 | | | B MAND COLD COLD MAY 7
B MAND COLD COLD MAY 7
B MAND COLD COLD MAY 2 | ANII
MARII | MAC
MAC
MAP 303
HLSMA
PMPCA | es to 1 place to million 1
APS associated bisser 1
milliogram other bid protein biss or bissure 1 | Optoplace tracks being di
Optoplace blease
Optoplace blease | | 6 M
6 M
1 M
1 M | -089 | 0.39 | 0.00 | 620
620 | 666 | 200 | | n
= | = | 200 | n | | HEREGECE ON A
HEREGECE AND A
HEREGECE AND A | RIPCA
VIIII | PARCA
VPRIM | mericals 21 stantolphic
population, introduced of processing alpha subant
VMSRS, later rationary and bycomer associated | Tabaselidar Space spiki se
Optoplasm pepitibas
Optoplasm kamparte | | 1.30
0.88
1.38
1.30
1.30 | 284
288
131 | -080
0.81
0.81
-3.12 | 0.00 | 6.00
6.00 | 600
600
600 | 20 | 12
12 | 87
100 | : | | : | | I MANGEMENT MALE
I MANGEMENT MALE | MEMORY
MEMORY
MEMORY | COMMENT
FOLIS
MITHOS | CTP aus, 1967 is nily member?
CMA polymerose genera 2, accessory subsett
MTMCC | Optoplace accycle
Optoplace accycle
Optoplace accycle | | 1.00
1.00
6.00
1.00 | -606
-606
110 | -048 | 0.00 | EAS
CUED | 600
600 | 20
20 | er
u | | | 1 | | | FREEDERSON | CHICO
CHICO
CHICO | CONTR | and finger of \$1.000 1 specific population discuss
specific product if man 10
seeps to only 8 marrier 9 | Other after
Marina Mose
Optopless after | and the | 1.30 | -03 | 0.00 | 0.00 | 600
600 | | 300 | 120
E | | 120 | | : | | NAME OF COLUMN 1
NAME OF COLUMN 2 | MIES
MIES | APP
COME
B FROM
ZHOUS
THECO
MILE
CHELT
CHELT | makes and angle of year profess On the fight as a solition 1 In the fight as a solition 1 on the grant and laws 1 ON the fight and laws and laws 1 ON the fight and laws and explained glybra laws 1 VIRES, bit and laws are an implement and laws 1 ON the fight la | Males expre
Other siter
Others expre- | | 4.00
1.00
4.00
1.01 | 125
125 | 0.86
-0.77
1.88 | | 6.00
6.00
6.00 | 600
600
600 | 200 | 120
107
120 | 100 | = | | 100
100 | | HANGE GEORGE | CHIA.7
CHIA | CHA | copieral landing protein ble 7
optimite the artifylane colours 12
opinions transcription factor 2 | Otopiem temporer
Otopiem alter | | 1.36 | 147
148
128 | 1.0
0.86
1.36
0.35 | 1.0 | 000
000 | 666 | 20 | = | | : | : | : | | HAROGEOMAN
HAROGEOMAN | MULTERS | MPCDIA MPCDIA MPCDIA MPCDIA UNNO PRIMINA MPCD AND I MPCRI MRCALL | mysin 2/EA
mash 2
CLML ballenin | Optoplasm stiler
Manual Contract State Optoplasm | | 0.61
1.28
6.79
1.27
0.86 | -138
-138 | 0.75
0.36
0.00 | 0.00 | 6.00
6.00 | 600
600
600
600 | 1 | | 100
er
100 | 17 | 20 | | | I MINE CERCES ME I | LIDROY
PARK MA | LURCY | skip the specific population of
family of the species and only the member A | Qrapton peptitus
Qrapton alter | | 610 | -140 | 1.0 | 0.00 | 6.00
6.00 | 600
600
600 | 200 | | 100 | - | 200 | | | FREE CECCUCES | PCR
MCRS | APCH
MORE | apolipopolica
managinig cambatile glassoline | Quantum tempater
Estate Salar Space Susquater
Quantum mayor | | 1.86
1.86
1.86
0.81 | -CAS | 0.83
1.87 | 0.00 | 60 | 600
600 | 20 | | | | | | | HECTORS I | MARIA
MARIA | MARCALL
MARCAL
MARCAL | entrollation a bird of moreon general, or justine of a
EAR-27A, remiter EAR consigned analy
196A methyla solvine of horizing A | Optoplasm enzyme
Oblawia ilinase | | 1.0 | -C.36 | -0.70
0.88 | 0.00
0.00 | 6.00
6.00 | 000 | D 200 | M
E | 100
0
67 | == | 11 | 100 | | I MAN COR COL MAN
I MAN COR COL MAN
I MAN COR COL MAN | MYLISA
PYRM
PIRA |
EMEZIA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MINITA
MI | Assign the country by graduate of
forming of the signs and collecting. Streamline A
will be greated as a streamline of
production of the collection of
production of the collection of
SECOTA, consider that consequent relative
SECOTA, consider that consequent relative
section confession of the Thomasign A
country belonging to the collection of
groups and production of the collection of
groups and production of
groups and production of
groups and production of
groups and groups and
production of
SECOTA and Consequent and
SECOTA and SECOTA and
SECOTA | Optoplasm after
Optoplasm assymm
Optoplasm bitman | | GB | -130
EFE
E7E | -087
0.80
0.88 | 0.00 | 600 | 666 | 20 | | : | : | 100 | | | FREEDERSTE
FREEDERSTERT | MERZII
LANG
MER | METH
WINES
WINES | EMplyment Essive 122 alleston pole incopied exeptor 13 acula | Clie transdyterrego
Rematteritrae protei capiel a
Optoplam postilee | opt . | 1.00
1.00
1.00
1.00
0.07 | 541 | | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 20 | er
m | n. | | 17 | | | I MICCECUSA 2
I MICCECUSA 2 | MATERIC
HANNE
DOTE | ACRES HELM MARKEDIC HEREDIC DICES E.M ARRE MARKE | administration is problem coupled in couples 13. In claim and tage not than the diprolate labor sees than their proteins labor to providing prosporation council brinking disease of. CREAN to Archive 276 Interior data 77 many plan and to a street of property or coupled and to a street of protein to 276 And 277 many plan and to a street of protein to 276 And 277 many plan and to a street of protein to 276 And 277 many plan and to a street of protein to 276 And 277 many plan and to a street 27 | Nation literary
Nation after
Nation | IIC phosphateur (D.) | 0.87
6.72
6.97
0.88 | -638
680 | 0.36
-026
-086
0.37 | 0.00 | 600
600
600 | G68 | | | | 10 | 17
18
100 | | | I MEGGEGGGGG | AUC4 | ARRE | | Pleasablemiser a sameniser re
Qrigitum alter
Origina | eptektusthurus tilete | 0.88
0.88
0.88
1.07
0.87 | 629
-68
620 | 0.37
-182
-025
-029 | 1.0 | 640
640
640 | 600
600
600
601 | 100 | 1 | 6 | 120 | 19
92
22 | - | | PROCEEDINGS | MEGALE
UPLI | | RAL (II) province and value of
sucher receptor subdently digroups, member II
19901 quartic ligane 1
by paste behalter factor 1 a lyte subcett biblister | Nation Hopendon nation | *** | G.87
0.88 | EAS
EAS | 1.31 | 0.00 | 6.00
6.00 | 650
650 | 20 | | - | | 14
11 | 1 2 | | HANGE COLORS | POS
MODE | HPSAN
APRO
MPCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA
MARCHA | | Nation mayor
Optophon transporter
Manual Ambrone albert | MOLES | 0.M
0.M
1.3s
6.00
1.3s
1.3s
1.3s | 181
-686 | 1.0 | | 6.00
6.00 | 600
600
600 | 20 | 1 | 100 | - | 87 | : | | HAROGEGENES DA | MAPS
potentiams
mounty | WARCI | mydioldifferents temprinary repose EX
EXP a of thystolelands containing 1
MACH complex solute 1
MACH at options and a whole a complex sounding to | Malma diler
Optopion diler
Optopion scayes | | 1.01
1.00
1.07 | 101
682
677 | 1.0 | 0.00 | 6.00
6.00 | | 20 | 10
10
10 | 100 | | : | : | | Table Tabl | NOTE | CAMMP1
UPED
TEMBERIDA
WILL
DOWN | or breaklining do bet question and despression 1
UP 21, and industry processors component
to monotone protein 1250.
Sit is exceptational component the 1
angle by a minopoptible of | SAME AND | | 6.80
0.86
4.88
1.31 | -can
126
-186 | 0.M
0.M
0.M | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 200 | | 30
100
60 | | 100
8
87 | | | 1 Michigan (St. 1982) | DPIP | CHORP | mperiyle minepolitik e | Optopien projekter | _ | 1.0 | 241 | 0.0 | 0.00 | cos | 600 | 20 | NE. | w | ı : | | • | I MICCECULARE
I MICCECULARE | MOC1 | ENCE | EXALIDATE a pro (NPT, EXIS) contribute 1 | Naina dier | 1.00 | EAS 100 | 0.M
0.M | 0.00
0.00 | 540 | 500 | 200 | E 10 | 70
100 | l : | | |
--|---|--|--
---|--|--|--|--------------------------------------|----------------------|---------------------------------|-----------------|-------------------|------------|------------|----------------|----------| | F MARIO COD COD MATE | HTEA | META | m angel complex companied II
regards light shade II | Manuald enlarge transporter
Optoplasm after | 1.07
0.00
1.37
0.00 | 120
EAS | 0.87
0.87
0.86
0.87 | 0.00 | 5.00
5.00 | 620
620
620
620 | 100
100 | 100 | - | : | : | : | | HANDSESSEEL NO. 1 | MOAR . | MCIE
MCIE | phospholyses C be to 2
Lie mortyl town adapt or 20 | Qrapton score
Naina pojitime | 6.00 | 641
-686 | -672 | 0.00
0.00 | 640 | 600 | 0 | | | - | 14 | - 12 | | HAND CERCHARY | MPED
MPED | HPM/MHM
HPM | mysain tight chain to
phospholysour C he to 2
to many town a class to 20
10 to the effective or the 10.
PMO frage or pastes 10.
modes a factor of activated 7-value to | Nation after | 0.80 | -040
047 | 0.86 | 0.00 | 520 | 000 | 200 | Ė | - | | 11 | n | | FRANCISCO CO C | 200C3 | 20012
781391 | the finger DOOC Approximating 2
to make take the 12-brief coupler 1 | Maine mayor
Maine transferencesidos | 6.83
6.85 | -0.00
-0.00
0.00 | 0.00
-0.01
0.00
-0.04
0.00 | 0.00
0.00
0.00 | 500 | 600
600 | 200 | | | = | 200 | | | FRANCIZION 7091
FRANCIZION 2702 | DPS1 | 20020 | DATA stocking or disma to contacting 2A
stockings problem 23.3 | Maine transdythorogolder
Maine transdythorogolder | CB
CB | -630 | -624 | 0.00 | 600 | 500 | | | | = | 20 | | | FRANCISCO MES
FRANCISCO COMO S
FRANCISCO COMO S | EDAMS
COMES | EAMS
CIDES | the large protes (23.1) Interpretation 2 providence) Interest has reflected mission in the condition of | Optoplem popisione Planna M embrare in remembrare recepts Optoplem alter | 6.8 | -C.15
-C.15 | -CAS | 0.00 | 6.00
6.00 | 626
620
620
620 | 8 | 0 | | = | 200 | e e | | FRANCISCO TARA
FRANCISCO CHARA | HCHAN.
CAUM | CODES
NEEDYS.
CASH
EDIS
COGES | Mitracol dedynamics lie
copiest | Originan ster
Originan politikan | 48 | -CAS
-CAS
-CAS | -C19
0.88
-C29 | 0.00
0.00
0.00 | 500 | 000 | | - 1 | | = | 97
97 | : | | FRANCISCO CANONIA | CDC 28 | CDCS | trach Hegrath beter Treopter
orl distancy (e21 | Macratteriese insummirase reception 23, 60%, dalature.
Nationa ecopie | 0.86
1.00 | 584 | | 0.00 | | 581 | 200 | v | M. | : | | - | | HANGED COURT | VMM | CONTRA | copperate the dense body market 20 | Qrapton ater | 1.00 | -686 | 6.TL | 0.00 | | 618 | 200 | | | | 97 | | | HANDER CLICK | 3607
CD95 | TOHER
THREET
CTEMPS
MOVED
POLICE | tion frager CDC-type containing it. In numericase p2 (In Ething protein 7 CTD and placephates) Impropherication (Entry 20 EMApplymers or Exchant 12 and growth regulator with ring flager domain 1 | Origina temperar
Nation physicians | CM
CM | -075
-138 | -643
-683 | 0.00 | 500 | 0.00
0.00
0.04 | | | : | = | 300
97 | | | NAME OF COLUMN T | MOPZO
PCLEZE | MO LICE | mysopherde son factor 20
EMApsignera e Essivat II | Maine transference description | 68 | -0.0 | -612 | 0.00 | 600 | 681
688 | : | n
m | - | = | 23
23 | | | FRANCISCO COM 2
FRANCISCO COM 400-0 | NCS
CORNEL | CHRPS. | ord growth regulater with ring flager distracts 1
undertorment distracts 12.00 | Maina alter | 48 | -630
-630
672 | -018 | 0.00 | 600 | 661
687
683 | : | : | | - | 7%
97 | * | | HANGGEGERANS F | MARI | | Managha annin in golde co | Graphon alter
Graphon mayor | 0.8E
4.07
1.31 | -CME
1,03 | -018
-028
0.8
-027
0.8
0.79 | 0.00 | 5.00
5.00 | 683
680 | 0 200 | | a
100 | = | 200 | | | FRANCISCO CA MAIS | PARED | DAILS
PRECO | To make place or motive to quick one of a might prove the part of the last provide in this most of the first provide in this most of the first formation constraining 1 this most formation constraining 2 this most part of the first fir | Manual entrare entyre
Optoplem bloom togens/metable | 6.00 | -0.00 | 0.79
0.78 | 0.00 | 500 | 000 | 200 | 1 | 100 | - | 97 | | | HANGE COLOR CO. 2 | CHARL | 100 20 DE | Maiot I duran containing 1
characters to specimeling forms 20 | Other after | 18
13
13
18 | -137
-138 | 0.00 | | - | 083 | | - : | 10 | = | 200 | | | PRICE CHARLE | BA3BE
PD 4 760 84 | PORTE
SALE SEE | EWNE. | Clier aller | 1.0 | 081
-086 | 1.87
0.88
-049 | 0.00 | 500 | 000
000
000 | 200 | | - | : | 97 | 2 | | 1 Marcon Co. 177 B
1 Marcon Co. 200 7 | TICM
COMPER | CHARGE | Intertropoptible aspect domain 32
charged multi-moted as leady protein 38 | Other after
Optighen after | 1.11
6.80 | -636 | -621 | 0.00 | 500 | ces | 200 | 64.
0 | | - | 200 | | | FRANCISCO MAD | CORNET | COM. | gen title | Mailes blese stejpstorritt, MXXXI
Optoplane transdytterregister | 0.00
6.00
6.00
0.00 | -18 | -043
0.36
-087 | | 100 | 000
000
000
000 | 200 | 100 | 180 | | | | | FRANCISCO CONTRA | VIOLE
MANA | COMB ECHAL CHARL CHARL VARC MANA 20101 MACHOS MACHO | Making with a per Marian 31 I de Archagelik apar Marian 32 | Other mayor
Plantable other | 6.90
0.80 | -138
584 | -0.00 | 0.00 | 5.00 | 500 | 200 | 12 | | 67
0 | | 70 | | HANGE CO THE | 2011 | MACHES. | the logic protected a
stratural matters are of dramasones fleckly hinge | Males after
Males after | 0.87 | EA4
EAH | 0.87 | 0.00
0.00
0.00
0.00
0.00 | 5.00 | 620
620
620
620 | 200 | | 100 | | : | : | | FRANCISCO WAS | CTIC | C1E | or Begins
lying | Optoplem problem
Nation phaspletone | 1.30
6.73
0.80 | -122
-122 | -126
-638
-639 | 0.00 | CAS
CAS | 500 | | - | | = | 100 | - 5 | | FRANCISCO COMO 2 | CHOCKA | DRINKOW. | CHING districts containing M.
or fragge pit does D | Qisplan üler
Estarelder ipse peptikse | 68 | -146
-640 | 0.48
0.39 | 0.00 | 500 | 686 | | n
n | 20 | = | 20 | 26 | | HALLOTT CHICAG | K1170124 | 1272 | uture the dull 2 handing (neural) | Original aler | 1.0 | 1.7 E
0.77 | 0.00 | 0.00 | 500 | 000 | 200 | 120
M | | : | : | : | | FRANCISCO COM S | MARIE
BZ TRA | EARS
EARS | EACH, member MA array ore Sortly
Interleatin 27 eroptor salurat alpha | Optigation after
Manual tentrare is committate receptor | 6.77
0.85 | -C.00
622 | 0.M
0.M
-0.02 | 0.00
0.00
0.00 | 600 | 600
600 | 200 | n
n | | - | 23 | 12 | | HAND CERTAINS | CITALIS
201819 | 20101 | OT U declarations it
size linger protein IET | Qiaplam prjitike
Naina über | 0.M
1.00 | 588
589 | 0.86 | 0.00 | 500 | 600 | 20 | 120 | - | : . | : | м | | FREE CECKERS | PIGAGE
ITRO | CTADE JOHN CTAM PARES FING SEMAP-ACI CTAM PERES FING PERES FING FING FING FING FING FING FING FING | provinces to 2
interested to 2 | Qdoplam prystike sheurejferablande
Qdoplam prystike sheurejferablande
Qdoplam siter | 1.38
-0.86 | -025
-025 | -132
-038
130 | 0.00 | 5.00
5.00 | 620
620 | 0 200 | | 100 | = | 200 | - | | I MINE CERCENTA N | GLIN | SHOWN ACT | SI MANY arthurum
1904.3
do-d-wed influence data homolog | Chier sher
Orsphan kanin barrey datar | 0.86
1.80
1.80 | 337
683 | 1.00 | | 540
540 | 600
600
600 | 200 | 100 | 100 | | | | | HAROCECTURES
HAROCECTURES | PED N | PER S | 972 demands containing 1
RE, action emodeling projects | Other after
Males after | 0.07 | -138 | 0.87 | 1.0 | 5.00
5.00 | 600 | 200 | | 100 | | 200 | : | | HAROGEOGRAPA | TABLE TA | | Amount in Section 2 and a second section of the Section 2 and a second section 2 and a | Cities after | CH
CH | -CIB
-CID | 0.0
0.3
0.3
0.3 | 0.00 | 6.00
6.00 | 626
676
681 | | 2 | | = | 215
215 | | | NAME OF CASTO | M011
MC11 | HAG.S | mediator complex subsett 12
3 fgdis specif CaA fpace 2 | Males after
Optoplem engine | 4.80
1.32 | -6.07
-5.06
6.00 | 0.22
0.75
0.86 | 0.00
0.00 | 5.00
5.00 | 684
680 | 300 | - | 70
100 | 100 | 100 | : | | I MAN COLOR ON A | LIE | LISTS
LIST
M MC
CAMBON
SMRP 28 | skings the speed for projection or the
hypothysis or maintenful spaperson to recomplant
most ball standards to be a benefit or the con- | Optopious peptides
Marina transdipturing dator
Optopious transdipturing | 4.12 | 187 | CAR
-CAR | 0.00 | 5.00
5.00 | 600 | 1 | 22 | | | : | Ü | | HERECEDIANE | OMICS
SERVE | CAMON
DRIPS | mediator complex subset 13. 2 hydroxymyl Carl Igent 1 3 hydroxymyl Carl Igent 1 4 hydroxym Lawr 1 4 hydroxym Lawr 1 4 hydroxym 1 5 hydr | Optoplace librare
Nations after | 0.88
4.37 | -0.00 | 0.30
0.34 | 0.00
0.00
0.00
0.00 | 5.00
5.00 | 600
617 | 200 | n n | : | 120 | | | | NAME OF CALLS OF STREET | ECM
NA | CIDI | epited | Clie aller | 6.77
0.86 | -0.00
-0.00
0.00 | -cao
o.m | 0.00 | 5.00
5.00 | 617
600
600 | 200 | · | 100 | | 100 | | | I MICCECULORY
I MICCECULORY | DRM1 | UMPAS
BERAS | carpaner moral broad domain family on other '20
small make or the make operates polypoptal of a
salate carrier to make the monale of CI
service.
Symphosphes object '80. | otter ater
Maina ater
Otopion tennate | 1.00 | -0.00
0.00
-0.00 | 0.00
0.00
-CA16 | 1.0 | 500
500 | 645
620
620
620 | 200 | 700
100
100 | | | 110 | | | FREE CECTS CARP | 18384
1796 | MEMBER
UNION | junipanijas alīkas ar | Extraction type aller
Rematterions assembles respin | 0.86 | -248 | -CAS
-CAS | 0.00
0.00
0.00
0.00 | 500 | 500 | M.
0 | | 27 | - | 14
200 | n
n | | | 1905 | ACTIGIE | Improved an Age on March 27 and the color of product 1 has making 8, were and halved also finding product 1 has making 8, were and halved as finding product 1 March 27 and an Age of the color of 1 March 27 and an Age of the color of 1 March 27 and an Age of the color of 1 March 27 and an Age of the color of 1 March 27 and an Age of the color of 1 March 27 and an Age of 1 March 27 and and 2 March 27 and and 2 March 27 and and 2 March 27 Marc | Manus | 0.88
4.98 | -128 | -683 | 0.00 | 5.00 | 550 | 0 | | : | - | 32 | - | | FRANCISCO CALON 2 | PERES. | PEREZ. | Pylospietrodkie dependenty mistelikaar 1
1988/1982 Inscheel de dykonjie te litere 2 | Option these | 1.00
G.E. | -0.9 | 0.0 | 0.00 | 500 | 500 | : | : | | 120 | 200 | n
n | | FRANCIZIONADA
FRANCIZIO DE TRANS | PRINT. | MIDRA
PHILID | phaphated blot theory do by salust to
interferio general mepter 1 | Optopion imase
Plannati emirase in sumemirase receptorise feron parene Sa | 0.8
0.9 | -538
595
-538 | -041
0.07
0.08 | 0.00
0.00
0.00
0.00 | 600 | 660
660
660
660 | 300
0 | 320
0 | | - | 200 | : | | FREE CECTOR CONTROL | BHPC
AND | BHF2 | granteed splenkett
RG2 Healty print 2
short is released. | Origina mayor mgtal
Origina ater
Estavolder have ater | 0.85
4.86 | -CMI | 0.30
-081 | 0.00 | 5.00
5.00 | 600
600 | 0 100 | 0 | | = | 200 | 32
31 | | I MANGE COM COM | CTEWNS MARS | PAGE | BLCC-1 mistals on pine scient 7
parcents 1 | Optoplasm after
Plasmatt entrare transporter | CH. | -0.00
-0.00
-0.14 | 0.M
-0.24
-0.08
0.08
-0.27 | 1.00 | 500 | 600
600
684
684 | : | : | | - | 100
14 | TO
UT | | FRANCISCOS CONTRACTO | PRINCE
PPE | 200M
LC27/C
100G
100G
100G
100G
100G
100G
100G
100 | NICC1 where the content content the process of 1 Plan and 10 report depart content the process of 1 Plan and 10 report depart content the 2 Richtery should provide the 1 Richtery should be a fine of the 1 Richtery should be found on any part of 1 Richtery should be found to the property of the 1 Richtery should be found to be found to a should be reading at the 1 Richtery should be found to be found to a should be reading at the 1 Richtery should be found to be found to a should be a should be found to the 1 Richtery should be found to be found to a should be a should be found to the 1 Richtery | Option majore
Option majore | 6.8 | 684
-677 | 0.00
-037 | 0.00
0.00
0.00
0.00 | 600 | 000 | 8 | | | | 97 | e
E | | FRANCISCONOMIA FRANCISCONOMIA | TO-DOTHER IN | TO ACT. | Refrege excellent de la
La mina bio assais la dimentrana pertan 1
mento 1 | Other alter
Others after
Males benefits and a | 1.8
680 | -CM
CAS | -CAB
-G11 | 0.00 | 500 | 500 | 8 | | : | 120 | 200 | 120 | | I MANO COD COM TALLA | TOTAL TREATMENT | 1102301 | replication bining regulatory factor 1
TOCO decembrandy resolver 2 | Maine dier
Maine beschlerrgiber | 0.M
0.M
6.E | 142 | 0.38
0.38
-607 | 120 | 500 | 500 | 100
er | e
e | 2 | | | n
n | | I MANUSCO COLANA 7
I MANUSCO COLANA R | CRECH | CHECK | also dinger protected.
Also arts, aphabe into instructed to a of 12 to 4 mercent og 9 | Mai na trans dyborreg deter
Quaphon bhase | 0.86 | -0.00 | -111 | 0.00 | 600 | 0.00
0.00
0.00
0.00 | 200 | ÷ | | | 17 | - | | HAND CERTAIN NAME OF THE PARTY T | 2010 S | 20 MG | should, sphale belt to broad to sell like der selling it
the flage profession (III)
the flage and III dismate containing 25
toler apparts (III)
AGP through the factor interacting protein 2
13Thmill containing 2
1950 de products author allowed contains containing 3
1950 de products author allowed contains containing 3 | Marina transdytterregulatur
Qdayların alber | 0.85
0.85
4.78 | 118
644
-687 | -011 | 0.00 | 600 | | 200 | | | - | 200 | | | HANGED COURSE | ARIOS
LYMES | AMP 2
LINKS | ACP despites between the protein 2
LTE-mail customing 2 | Qisplam after
Qisplam after | 6.00 | -047
0.71
-047 | -081
0.31
0.80 | 1.0 | 68 | 620
628
688 | 300 | 100 | | - | 87 | 10 | | HAROTECH ON A | 1993
1993 | PERSONAL PROPERTY AND ADMINISTRATION OF THE | MAD de percent confered actions dismatic containing 1
located 1, 4,6 th sphosphe to except or type 1
store forger left hat type containing 4. | Qiquison after
Qiquison tonshamel
Malas after | 68 | 110
-120
644 | 0.00
0.30 | 1.0 | - | 500 | 1 | | 100 | - | 200 | : | | HAND GEOGRAPHY | MAC WAS | MAKE IS | 100 Professioners
ACP-Sacyleton Satur grant remained devaluage & | Nation there Qualitate Qualitate | 1.0 | 584 | 0.00 | 0.00 | | 000 | 20 | | | | | i | | HANDSESSONA
HANDSESSONA | MICC
(3/3/4 | MAC
ARMEN
BRICE
CREM | ADP riscopation felter guest on nativité de exchange fa
regulatur of cell cycle
C C C mail followed the receptor d | Qisplam aller
Manualdenizare protein copied ecopi; MIRION, B. 4040; 17 | 0.M
6.76 | 338 | 1.71 | 12 | 68 | 620
620
621
621
620 | | * | 100 | - | 81 | | | NAME OF COLUMN TO A STREET ST | HEID | PERSON | stratural na totara ne al skramanne. 1A
P-las putetos
La namentame puteto SI | Malea tempoter
Malea mayor
Manadimbare dier | 4.11 | -628
678
-628 | 0.86
0.86 | 1.0 | 68 | 500 | | - | | - | | : | | FREE CENTRES | CLERCIA | CLERCIA | deal e2i
ceister/almalde dependespesie situaret dels | Manual entrare after
Ottopion itsue | 1.38 | 084
-109 | -049 | 0.00 | 5.00
5.00 | 000 | 300 | | | 1 | 200 | | | F MAND CERTIFICATION OF THE PARTY | AME
PRECIN | A-IX
PRINCE | and belocarbon months | Malina Majorabit nator rec
Qiqulam majore | 6.76
1.75
1.71
6.80 | -1.66
EAR | 0.91
-004 | 0.00
0.00
0.00
0.00 | 68 | 650
637 | 200 | | | | 200 | s
sr | | HAROGEOGRAPI | MPG. | DATE
DATE | Price proteins
opticing 2004, quite de
introduced la japrante carrier
3.
Igrophophetide and moptor 8. | Optophore states
Optophore states
Manual Ambana states consist access | 48 | 110
-cas | -630
-640 | 0.00 | - | 600
600 | 200 | | 4 | - | 200 | - | | PROCEEDINGS | Mars
ascas | PAIPS
RESIDENCE
LTM | M30 and M37 landing protein 1
stor larger of thEMB and SCAN demans 8 | Mains after
Mains transdythorogulater | 0.60 | 101
679 | 0.85
0.86 | 0.00 | 500 | 0.00 | 200 | 120 | : | | | h
H | | FRANCISCO CO MOR | Lanes. | ETROR. | ETE and prof fire bonds dur 2
Industries Eterospher | Naina transsphorregular
Permattenbrue protein capiel ecept estati
Permattenbrue siter sal, floristaph 72, fi | 0.00 | -0.27
CAR | -614
0.6 | 0.00
0.00
0.00 | 5.00 | 0.00
0.00 | 200 | NT NT | | 0 | 100 | n | | I MANICOLE CEL 2007
I MANICOLE CEL 2007
I MANICOLE CEL 2007 | RPYS | APP
RPR
CRP-AC | amphobbets presurer protein ELRs and PVV domain containing II CRUP authorize RNA 1 | Plantationicase after tal, Existing 1995, for
Plantationicase after
Other after | 6 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M | -0.00
-0.00
0.01 | -C11
0.02
0.07 | 1.0 | | 600
600 | | - : | | - | 20 | : | | 1 Mario CED (CE 7 NO. 2
1 Mario CED (CED 401 7 | MOMB
UNA | | | Origina tempete
Nation majore | 0.87 | 689 | 0.39 | 0.00 | 648
648 | 000 | 200 | | 100 | 107
0 | 83 | : | | HANGGEGEGEGE | H MESA | HP GIA
CHROS | ship to praint type self components recognit to
be medicated interesting probint tens if
phosphat dybroatist phosphate is timen type 2 a lyba
cycl a and CRI dena include at most catton transports | Maries imase
Optopleon imase | CH | -C46
-C39 | 0.37
-CB4 | 0.00
0.00
0.00
0.00
0.00 | 5.00
5.00 | 620
620
620
620 | | | 100 | = | 92
92 | U | | I MANAGEMENT NEED | MOU
APPART | (100)
(F30) | transaffer cluster accoming engine
education refer to department counting 2 mg 3 colored to | Qtoplem after
Qtoplem traspore | 0.m
6.77 | -040 | -E84
0.8
0.34
-G44 | 0.00 | 500 | 600
600 | 300 | 320 | n n | - | 100 | | | HANGED COURT | KARL | ACADS
BASE | ESMAnding real (ESPS, ESM) protein E
at place dripping real p. C-2 to 0 Estat data
(Second parts of 2.7) | Qisplan aler
Qisplan myre | 1.00 | -680
333 | -614 | | 646
646 | | 200 | | • | | 200 | | | FRANCISCOS CALCADO
FRANCISCOS CALCADO | MAIN
MAIN | MAIS
MAIS | MACO attacky sepressive to | Original ster
Original suggests | C.88
C.86 | -630
682 | -028
-043
0.38 | 0.00 | 5.00
5.00 | 520
520 | 900
9 | | 2 | 300 | 43
300 | E 2 | | HANGED CLUMB 2 | HOME
MAG | 1000
1000
1000 | Harmonia protein (17) HARTS and hasting warpine columb? 1977 the ESAM complex gamma columb. Podit protein congress, AP-11 concertpline for the columb. Reducer of code 2 polysical in represente complex 2 columb. To columb | Mai na trans dy Bonney skiete
Mai na trans dy Bonney skiete 1873, 678-385 1875, CM | 0.86 | 104 | 1.60 | 0.00 | 6.00 | 500 | 200 | 107 | 100 | | : | : | | FREE CENTERS | GAMED AME | MANUFECT SHOPE IN | ULI molectile enchange factor
East protein sporting control not extile eries ang factor
methyl-sporting down to protein 1 | Oppisation Services Control of the Control of o | 0.80
4.00
1.00 | -180 | -04% | 1.0 | | 600 | 300
300 | | | | 200 | w . | | HAROGEOUGH | URCD
CT0-1 DEW-1 | UNDD | are perphysical and an experience | Qiqian myre | 0.86
0.86 | CAR
CAR | -632 | 0.00 | 5.00
5.00
5.00 | 000 | 200 | ** | 22 | | | 3 | | S MANDOED COLUMNS
S MANDOED COLUMNS | TPA
EXTENS
MEMORY
MEMORY
MARCE
MEMORY
MARCE
APPENS | 19A
83.008 | TAP bismating protein with further december delen-
trate with 20 explorations to to
establish informal protein 126. | Oler aller
Rematterizer assembler respin | 0.86
6.79
6.96
0.86
6.87
1.86 | -146 | -CA E | 0.00 | 600 | 548 | : | : | ÷ | 320
320 | 300
300 | er
er | | I MINISTERNA I | MIRACI
SURVI | HAPPER
PERSON
SHAPPE | mit school to i rissome i protein 12h
progederase eroptor membra secomposest 1
unuli maleur rissomie oprotein polypeptile 10 | Spenier dier
Manatheniere anneniere respis
Naina dier | 0.00
0.00 | -18
-18 | -048 | 1.0 | 0.00
0.00 | 600 | 100
0
100 | | | 100 | 300 | : | | NAME OF CASE AND A | TARE
AR MAS | | | Naina ster | 1.39
0.86 | 118
E85 | 1.00
0.07 | 0.00 | 5.00 | 600
600 | 200 | = | | : | | : | | I MANDERSON TO A | MALTED
DIFFE
20962
MACES
MITA
LPS
139 | MELTES
OPHE
2018
EARD
SITA
EPE
30 | mystotympicki sr mtod broug eleckents į tarobus
dipitiumile ktorytinos 7
sto. Boger protes nEX | optophon after
Optophon after
Optophon base debuggeredater | 1.39
0.86
1.30
0.87
4.37 | 670
-688 | 0.36
0.36 | 0.00 | 500
500 | 600 | 200 | 10 | | | 94 | M
M | | I MINICOLOGIA 7840
I MINICOLOGIA | MEN
MIA | NAME OF THE PERSON P | EACH, marrier Militarupene body
and glassee whitein trapoptie repeat contains | Manua M emisure enzyme
Optopieum alber | 687 | -0.00 | -601 | 1.0 | 100 | 064
008 | | • | - : | 12 | 10
17 | | | FRANCISCO CO SOLO | 19 | | ADP temperatus have the temperatus that they are not a productive | Naina tuna éptorregular
Labareliar Space optione plonansis/reducens | CM | -0.00 | 1.8 | 0.00 | 640 | 500 | 200 | 11 | 100 | N. | | : | | HANDERS OF THE | CIBADI
MINER | CORNECT | a the datas NAO lands; does not not up 1
the floys MTR-type contring E | Optoplace transporter
Marine transdiptorregulator | 0.80
0.80
0.80 | 672
683
684 | -180 | 0.00 | 6.00
6.00
6.00 | 0.00 | 20 | 120 | • | | | 10 | | HAROGEOGRAPH | PILI | MAIN
MAIN
MAIN
MAIN | onyi 930.cycletor
b phophoglucorolatore | Ottoban mayor
Ottoban mayor | 6.00 | -500 | 6.6
-641 | 1.0 | 640
640 | 600 | 200 | 10 | 1 | 100 | 97 | - 1 | | S MAND COLD COLD AND A | HARTOP
CHANGE
WAS
PERS
HARCE
ENGINE
CHANGE
TES
CORE
TES
CORE
HARS
HARS
HARS
HARS
HARS
HARS
HARS | ESPOR
ESPOR | on his refusit man MAD binding do not be consisted up 1 time. Bugs MEMO-type-continuing it surply at MEMO-type-continuing it surply at the continuing in | Qisplan bloom
Qisplan mayre
Manableniase mayre | 4.80
4.80
1.86
1.30 | -637 | 1.08
0.03
-GIB | 0.00 | 600 | 600 | | - | 100 | 120
15 | 97
78
92 | | | HEREGEGEGE | PERM
METERS | CAT | phosphat dylocated glycana retur blasynthess sizes H
mit calend to I hand at correlesse factor 3 | Optoplasm margine
Optoplasm translationing sides | 1.00 | -CAR
CAR
C/1 | 0.00 | 0.00 | 648
648
648 | 620 | 200 | 120
127 | - | | : | | | I MINICIDE CU 100 1
I MINICIDE CU 700 1 | 1178 | 33 | let medy industry disagrees at | Optophem scopre tanapade
Malina scopre | 4.00
4.77
1.38
1.02 | -0.00 | -686 | 1.0 | 600 | 549 | 1 | : | | 10 | 100 | n
U | | FRANCISCO CALADA
FRANCISCO CALADA
FRANCISCO CALADA | MAIL
MAIL | MARIE
MARIE | compared of algoriests gold complex 6
or graph 9300, quite to 0 3, million and fol
ACP risospicion factor like 127 and 60. | graphen temperer
Graphen mayor
Malma mayor | 1.00 | 676
684
-688 | 0.40 | 0.00 | 5.00
5.00 | 600 | 200 | - | w
| | 87 | : | | F MAND CED CES MANS | INTE | BATTER
BATTER | TATE OF THE PARTY | Other other
Mailes other | 6 M
6 M | -0.79 | -0.07 | 0.00
0.00 | 5.00 | 000 | 200 | 100 | 100 | 87
0 | 97 | | | 1 Macazana (n. 17) | ENCH
ENCH | PPH (Include of
COMP) | to begin the complex columns of
explanation para complex interesting problem for memb-
lystee disconsistance in
the force and \$70 decision contains \$10. | Naina aller
Naina miyre | 1.00
6.07 | -130 | 0.87 | 0.00 | 5.00
5.00 | 682 | 0 | 0 | - | | 200 | - : | | FREE CECTO TO 1
FREE CECTO TO 1 | MARCI
INTE
MOVE
COATS
2T MA
T MACO
INCO
INCO
INCO
INCO
INCO
INCO
INCO
IN | 3AB | the large and Till deman containing the
TOTATOL and strains death deman
ISSET landing protein | Macada Marin de Sandrian en respuis de graphico de la constitución en respuis | 6.77
1.00
1.30
6.78
1.09 | 604
604 | -017 | 0.00 | 638 | 600 | 200 | : | : | : | 62 | | | PROCEEDED NO. | 879
879 | | terino estas base | Malma transdyttorregister | 6.78
1.09 | -CM | -628
1.71 | 0.00
0.00 | 648
648 | 626
686 | | 27 | 100 | 10 | | : | | PROCEEDINGS | DAARDS. | LINCTE COMMON | unde a dested LOCIE 20 13
gothern transmitten fiche family member 3 | Mari na Vent dybring dalar
Che dher
Che | 678 | 114
-087
-188 | 0.48
-03.6
2.73 | 0.00 | 648
648 | 000 | 200
8
33 | | 100
100 | M | 97 | - | | PROGRESSONS
PROGRESSONS | AMPLIA
AMPLIA
N- IP (EMPLIA) 7 | AMPIG A
HCIE 7 | ESAD, Eas rels tedgi polyots tehiblar andos lotum chan
at this nuclear phosphage de to 22 family member A
HLA complex group 27 (non-protein coding) | Other after | 1.0
1.0
1.0
4.0 | -0.00
-0.07
0.77 | 1.0
-017 | | 680
640 | 600 | 20 | | 100 | - | 200 | | | HAND CED CEP TAIN | TRACE | 7000 | MAX complete groups 27 (non-year seen contrag.) It is part to recent from the reg. 32 It parts to recent enter experience 32.35 phosphoto cycl dylytranski ocers, challes, alpha phosphoto cycl dylytranski ocers, challes, alpha phosphoto dylytranski ocers, challes, alpha phosphoto dylytranski ocers, challes, alpha | Qtoplem after
Memattenbase after | 1.00 | -ca | 0.30 | 0.00 | 600 | 610 | 200 | м | 2 | = | | 27 | | HANGED CO. 10.7
HANGED CO. 10.5 | HERESA
AMPLIO | POTEA
PERSON | phosphate opt dylytranch a se 1, chal te, alpha
phosphat dylmatics i Cybosphate 9-litene catalytic cala
argitime and glal amate cich 1 | Optophore street | 0.80
0.87 | 105
588 | 0.86
0.86
0.87 | 0.00 | 5.00
5.00 | 600
600 | 20 | 67 | er
10 | | ; | | |
HANGED CHARLE | MARKET THE SHELD | Marine | MARIE WITH A STREET | Naine mayor | 0.87
0.88
0.79
0.87 | 3.7%
6.77 | 0.87
1.88
0.50 | | 5.00
5.00
5.00 | 600
600 | 10
200 | er
M | | | í | | | NAME OF CUITY | TRACE | M OKTS | managi (siple-1,6) gi paprami lete-1,6 the origin
Markle mail controls 20 | Optoplace accepts
Marine transdythorogulator | 0.07 | -0.00
0.04 | -cos | 0.00 | 500 | 623 | 200 | 120 | | | 200 | | | PROCEEDINGS PROCEEDINGS | M TAT | SECON
SECON | corting main 26
retacl observe
family of the expense deal or by diamenton A. | Quantum ster
Quantum suyre
Other ster | 1.35 | -181
128
-661 | -649 | 0.00 | 5.00
5.00
5.00 | 500 | 200 | 100
100 | | 0 | D 99 | м | | I MICCIE CLERK | PRINTS
MPSLE | PRINCE | family of the operate distinctly distinction is
produced and total continue 2
most reproductions of the 2 | Optopious transitytioneguistar
Other siber | 120 | 671
102 | 0.00 | 120 | 68 | 600 | 200 | 120
17 | 2 | : | : | 20 | | HAROCOCCUCTORA | PIRES
BEST | PMG 1 | principalitate sheet 1 plateable less 1 | Optophon after
Optophon mayore | 48 | -007
-130 | -016
-016 | 0.00 | 680
680 | 600 | : | : | | ** | 100 | | | HAROGEOGRAPO | UMCH
CHES | MARCO E
CRISCO | Desthed shak protein landy (topic) member C.1
small singuistic the modifier it
CRE (AT LOT to morphise factor | Mains after
Mains tres dyborregister | 1.08
0.08
1.00
0.07 | C/R
-CAR
CAR | - CAN
- CAN | 0.00
0.00
0.00 | 5.00
5.00 | 603
600
600 | 200 | | - | 120 | 100
11 | 10 | | NAME OF COURT OF | HPR
HILL | MODELS. | nucleoparin III.
nucleolar protein II | Males tempoter
Males after | 1.33
0.87 | 549 | | 0.00 | | 600 | 20 | 100 | w | | | | | | THINGS SPECIAL RETTIA ARRIVA ARRIVA DO INTERNAT METER | 10 FOE
10 F1
20 F100 | minrysteri og at arfatter 2 it mer
itnare appresser ef rat 1
ster Beger proteiniskt | Manus Mariane | 1.09
6.10
0.07 | -08 | 0.07
0.78 | 0.00 | 500
500 | 600 | 0
0 | y
m | 100 | 100 | 21 | : | | I MICCECCIOCE | THE SEEDLE | 792304
0993 | Ti CD dometriantly member 6 | Maine transdyttorregister
Manual Mentrum siber | 0.87
-0.80
-0.86
-0.85 | -CAR
-CAR
-CAR
-CAR
-CAR
-CAR | -611 | 0.00
0.00
0.00
0.00 | 500 | 620
620
620
620 | : | : | 1 | 87 | 84
200 | | | I MICCECULOTS
I MICCECULOTS | MATE CONTRACT | COMPANY
COMPANY
MAKES
PRINCES | metalises press 2
MAZZaber dramatiko bekonfator
Pias prieto 2 | Optophon bloade
Males after
Optophon | 0.85
0.80 | 676
675 | 0.00
0.00 | 0.00 | 500 | 500
505 | 20 | = | 7 | : | | 2 | | | | | | ., | | | - | - | | | | | - | | - | | | | | | | _ | | | | | | | | | _ | | | |--|--|--
--|--|--------------------------------------|--------------------------------|---------------------------------------|--------------------------------------|--|--------------------------|------------------------------|------------------|------------|------------------|-----------------| | D MAND COR COLUMNS OF THE CORP COLUMNS OF THE CORP COLUMNS OF THE CORP COLUMNS OF THE T | HEATSAN
HEATS
CWIZZ | NC32 CM314/s | v is mily 12 member it | ona Mentrare bassporte
Malina bassi djelovreg delaryris, kelinada i, pyrias
Malina dher
Malina dher | 0.86
0.86 | 124
124
587 | 0.86
1.36
0.41 | 0.00 | 5.00
5.00
5.00 | 500
500 | 200 KI
200 KF
200 XE | - | : | : | : | | HAND COLOR PAR
HAND COLOR PAR
HAND COLOR PAR | API
API | PRE[Includes after specializer pare | complex bitwarding probinfundly memb | | 1.00
C.00
C.00 | 110
-046
108 | 0.76
-627
0.40 | 0.00 | 500 | 0.00
0.00 | | 1 | - | 200 | 1 | | HANDSESSAND | CARS. | CAPA STEA, GRANG | y to calcust of the object and engineering the series. He | Maria | 4.0 | -1.00 | 0.00 | 0.00 | 520 | 000 | 20 0 | e
e | is a | 97 | | | HAND GEOGRAPHS
HAND GEOGRAPHS
HAND GEOGRAPHS | SHEET
SHEET
HERBYS | SCHOOL SCHOOL SE | pathod og 1
v patern1
nore optiveliste e ove schentV1 | Optoplasm transporter
Optoplasm after
Optoplasm majore | 6.76
0.86
0.80 | 628
628 | 0.82
0.84
0.30 | 0.00 | 5.00
5.00 | 500
500 | 20 W | 100
M | | | : | | HANGED CONTRACT | MACON I | MO-EM AT quitar | PC school E | Qiapton soyre
Oler ster | 6.78
0.80 | -636
325 | 1.0 | 0.00 | 520 | 600 | u v | 10 | | 10 | M
0 | | | SCALL SCHOOL SCH | THE Industry | et open melog fame 28
manag me ophystophen browning me
promoter region, mel eer beslet protein
mell protein 26 | Amount of Columbia | 0.80
-0.76
0.86 | 678
-686
681 | -631
0.60
0.66 | 0.00 | 5.00
5.00 | 504
500
500 | 1 0
20 0 | | er
e | 200 | | | PRICEE CHARA
PRICEE CHARA | AMERICA 2
PRECED | MED proteins | med prime 36
of demonsts
or their | Cities after Marina transitytioningsider Grigolom bloom minerty, typesi mela | 0.80
0.86
0.80 | 583
585 | 0.61
-118 | 0.00 | 5.00
5.00 | 500
500
500 | 20 M | | : | : - | 1 | | HAND CE CAME? | 10173
231436 | HDITS H-decorpt as
ZCHCB also finger CC
CDSD CDSD make | or and N-selfs transferance 3
SEM type containing 18
cuie Plan | Qisplam suyre
Naina ster | 1.30
0.86
0.88 | 185 | 0.ML
-080 | 1.0 | 440 | 600 | 20 20 | 18 | | | | | FREEDERCHES
FREEDERCHES | (2017
FEEE)
(2012 | CDE galacter | cule Plan
Belof times regula to y subset (1
destit mes 2
or phosphops de (n) 2 family mession (1 | Ora Manda se a sumenda se recepto. U telumana di
Oriopiem idrase
Marina idrase ali dili, Ali 03813, AS | G.88
1.38 | 601
601 | -641 | 0.00 | 5.00
5.00 | 0.00 | 1 10 10
10 10 | | er
0 | 80
0 | er | | FRANCISCOLARIA
FRANCISCOLARIA | EHAN
MARKE | MANUAL MA | er phosphoprobe to 8 of Amely one robust 8
Ingli o generacion poles Flanc proteste actual 8
a Inglicitise dismato Family oversities 36. | Griphem linase strilli, AN ESBEZZ, AN
Mail Ras diter
Chie diter
Griphem diter
Griphem diter
Griphem diter | 6.77
1.37
6.78 | -0.71
107
-0.08 | -CA16
C.00
-GA16 | 0.00 | 6.00
6.00 | 600
600 | 0 0
300 300 | 100
20 | - 1 | 100
8 | 1 | | FREE CECCOW7 | HAZIN
THE MINET | HALLE HALLES | inh becomples subset 18
are protein 307 | Orapiem alter
Orapiem alter | 0.M | -040 | -614
-619 | 0.00 | 500 | 600 | 20 0 | 2 2 | - | 12 | 3 | | HANDSESSANA
HANDSESSANA
HANDSESSANA | MC3
EVIL | ICARL for the contribut | Interprise the | Optoplace mayore | 0.81
6.71
1.87 | 681
-630
687 | 0.88
-CATE
1.33 | 0.00 | 6.00
6.00 | 0.00
0.00 | 0 0
20 10 | 100 | 320 | 200 | | | Marc CE CO 400 1 | MPRO
POLEM | NICEA EMploye | her dense 1
ree Tokus II.
et contrag 2
egence ded atty Monecher 2 | Optoplace mayor
Malina mayor | 0.80 | 681
668 | 0.3E
0.32 | 0.00 | 500 | 600
600 | 20 X0 | | : | : | | | I MEGEGERA | PERCEI
NAME AND SAME
SAME SAME
SECOND
SAME SAME
SAME
SAME
SAME
SAME
SAME
SAME
SAME | POLICE PO Impreper
PRINTE Family at the
CORT O personnel | equate defails Member II | Original ater
matteriese mayor | 4.07 | -137 | -633
-638
-629 | 0.00 | - | 683 | | | = | 200 | 2 | | FRANCISCO TRA
FRANCISCO TRA
FRANCISCO TRA | MHDSM
LIPRES
GLODE | ARMEL M. Allefolium
MRCL professioni
GLODE gipsal medi
UMPTREEL UMPTREAS | tions to 1. Per disease of the control contr | Other after Nation stoppe Option stoppe | 1.31 | 161
128
538 | 1.38
0.82
0.86
0.87 | 0.00 | 5.00
5.00 | 500
549
538 | 20 20 | 100
67 | | | : | | FRANCISCO TAC 7 | ACOA
ACOA | | ng parte in 2 like
Plan
de decel diamate containing 2 | Chiev sher
small entrare bookward
Original sher | 671
688 | -0.00
-0.07 | 6.07
-63.7 | 0.00 | 6.00
6.00 | 500
500 | 1 1 | - : | | 10 | 100 | | FRANCISCO DA 1
FRANCISCO DA 7812 | MPR
MDR | SPRP risemails
SPC prig model
SCRG Trail Innue | NA processing 7 hounding 8, paradispense
and PCZ and coded vot i most from the teng
are regalater 3, A.P. worth: Europea ting VCs. Plan | Other after
Oropium temporter | 1.38
0.80 | 584
588 | -015 | 0.00 | 5.00 | 0.00
0.00 | 20 20 | 100 | : | 11 | | | HANDERSON NO. | MIN. | M DEC. manufacturing | many parters. Interpretation | Clie mayor | 67
68 | -CM | 1.0
-687
-640 | 0.00 | 5.00 | 000 | | 1.0 | 320
320 | 20 | | | B MAND CET CRA MA 1 B MAND CET CRA 700 2 B MAND CET CRA 700 2 B MAND CET CRA 700 3 B MAND CET CRA 700 2 B MAND CET CRA 700 2 B MAND CET CRA 700 7 |
MTA
COMBA | MAX metabolism | none shedd
soulded1
endlessreen 1 | Naina time dybornychtor
Naina time dybornychtor
Naina more | 0.M
0.M | 011
011 | 0.33
0.36
-623 | 0.00 | 5.00
5.00 | 500
500 | 20 M | | : | : | | | FRANCISCO PRA | HERE | HEATES HEAT report
HERETH HEA complete | took the t
projet production to
wait 2 | Mains after
Oliv after | 1.38 | 128
688 | 0.71
1.00
0.38 | 0.00 | 500 | 0.00
0.00 | 20 6 | 100 | : | : | | | PROCESSION A | 00E1 | CHIC Internation
CHIC designs in
MAZER EAST Income | ine 1
ing 8, noticel tils mother reput protein | Naina ilnas (23522), ME 4776, S
Naina ilner | 1.00 | 102 | -can | 0.00 | - | 600 | 20 20 | | | ** | = | | FREE CE C | AMA
MARKETA | MET 1003 methyle net of
MEAP A Coll protect
20030 stee frage pr
100073 lamar se net | dag B, molestate eutotorrepair protein
ta hydrofate is delydrogenous (MCDP+day
counges, on trafferentis elitrace
role (MCB)
on lister superfiend y member 12 8 sis | Optophern inner Entylwersen bret, det
Displace über | 6.07
6.07 | -000
081
-000
-130 | 0.00
0.00
-043 | 0.00 | 5.00
5.00 | 633
666
660 | 20 30 | 10 | | 87
8
300 | : | | FRANCISCO NAT
FRANCISCO CARROL
FRANCISCO CARROL | MARIE
MARIE | MMIC E-phosphosi
LINK byl selledy | ox later uper land y menter 12 — Est
describe 1 'phoph coull de cysteur 1
presiden — He | Constitute contract Constitute Constitut | 40 | -530
-539
582 | 0.38
-082 | 0.00 | 6.00
6.00 | 600
603
600 | | 20 | = | 20 | | | HANGED CLAYDS | MCMA
20161 | | v b miy 21 member 1
nd 17 de mem certain 14 di
nording complex school 2 d | Optophen transporter dedicate and
Mailes after | 6.25
6.25 | -0.00
-0.00 | -641
0.87 | 0.00 | 500 | 600 | | | - | 92
29 | 1 | | HANGE COUNTY | HAZ
HAZ | MILE DISA believe | omaling complex schedill
Danal corepressor like 2
ell | Malma other
Malma other
Malma moyen spant tees, cyclopius | 0.85
0.89 | -CAD
G42 | -676
-684 | 120 | - | 0.00 | 20 H | . : | : | 11 | U | | HANDOEDCE ROA
HANDOEDCE TALK | PUM
DINDEC | 20'27 in top fa | entrember 20, prodese
perdendas la
recollès C | Other other
racefular Space phosphatase
Octophom other | 0.37
0.38 | 548
338 | -CA 9
0.87 | 0.00 | 60 | 500 | 20 M | n
e | | : = | | | I MICHERICANA
I MICHERICANA | MAPS | MED relative
MED methyl-gard
VMMOS VMM danade
MARKET EARlanding | in contribute C
subapposters
landing diene topic total
contributing 1
protein 1 | Qiquian ater
Nales trespiningstor | 62 | -0.00 | 0.m
-611 | 0.00 | 630
630 | 600 | | | 100 | 200 | : | | HANGE COLUMN | APWEL | MARKET EAST-SHIP ATTENDED TO THE STATE OF TH | promit
respecting Visualization | Males sher
Qraplem besporter | 0.M
0.M
6.70 | 681
689
-680 | 0.00
0.00
-0.04 | 1.0 | 6.00
6.00 | 600
674
600 | 200 Mi
200 XE | ** | 120 | 94 | | | | Services of the th | PERS polygrands
PER He leaving
SEE on to / See
MISS mile about to | respecting Viculated at
the tract landing protein 2
(2)
(the bit same 23
at decays then faster 1 | Olyahom employee File of the control contro | 0.86
0.86
0.86 | 678
681
687 | 0.71
0.30
0.40 | 0.00 | 6.00
6.00 | 500
500 | 200 NF 200 NE | 100 | | | | | I MICCECCOIS
I MICCECCO 3074
I MICCECCO 704 | EIZE
MARTE | CONTRACTOR CONTRACTOR MATTE INSPERIOR | eletings timefactor 1
og 8, vanishis protection thinking and lange
transporter 1 His | Optopleon other
Optopleon other
ona Membrase exigns | 1.00 | -0.76
100
-0.86 | -681 | 0.00 | 640
640 | 000 | 200 300 | | 10 | 97
0
300 | 10 | | HANDERS OF STREET | EPI > TECLA
DE HODIA | | | Naina ater | 2.80
0.85 | 234
588
-638 | 0.0 | 120 | 0.00
0.00
0.00 | 500 | M W | 180 | : | : | | | HANDERCOMS | MILES
MILES | MERCAL CONTRACTOR | are p2 (to fishing protein bird y member
is existed protein).
Digital devices long clustic best colours 2 | Males other
Other other
Optoplass phaphaton
Optoplass excyrne | 0.88
6.78 | 631
-686 | 0.42
-668 | 0.00 | 5.00
5.00 | 500 | 200 | | 120 | 11
20 | 11 | | HAND GEOGRAPH
HAND GEOGRAPH | 20187
20187 | nous no loge p | rates 2 | Naina dier
Naina dier | 6 M
6 M | -0.07
-0.07 | -GAS
-G17
-G61 | 0.00 | 638
639 | 500
500 | 1 : : | 2 | | 27
200
97 | - | | HAND GEOLOGIA | DELL
WAREF | DESCRIPT WARRANT | Embluming 2 life | Cities after | 0.87 | CAR
CA7 | 0.09 | 0.00 | 5.00
5.00 | 500 | U 20 U | 180
Ma | : | 11 | : | | HAND GEORGE | POINT
HOME | HTS HTS, larger | ents of bycomes argued as complex 2 as | Mains after
Qisplam after | 48 | -128
-029 | 0.00
0.00
-63.7 | 0.00 | 520 | 500 | | 100 | 320
07 | 900
97 | | | FRANCESCO NAT
FRANCESCO NATA | METS
METS
PROPS | PRES. Initial series PRES. properties PRES. Properties | math the big member 2
e trees normalis top booking factor 2 | Maina tima dybinnygátor
Qesplan mayre
Maina siler | 6.77
1.32
1.86 | 107
EAR | -633 | 0.00 | 68
68 | 0.00 | 20 0 | | | | M | | FRANCISCO NO.1
FRANCISCO NA.4 | NUMBER OF STREET | SPECIF IN THE P | nue RA. 1
role (25), perulopro-
role (25), perulopro-
ronale containing 2 Fin | Cities after
Cities after | 0.87
6.80 | 647
-136 | 0.87
-1.68
-688 | 0.00 | 500 | 600
600 | 20 10 | 100 | : | | = | | 1900 (E00) 404
1900 (E00) (E00) | LIPER
AMERIJA | AMBERN MINISTER | laman costantig 1 Ma
of dura h1M Ma
are profes 100.0 | onattenione der
onattenione der | 0.80
6.71
6.88 | -046 | 0.33
0.38
-681 | 120 | 648
648
648 | 628
660
660 | M W | e | | 20 | : | | FREE CE CA SES | HARFE
DIRECT | MRFC madeur man | are prises to graden 2
d blace who | Other diter Mains transdythorogulatur Optoplasm bloase | 1.02 | -0.00 | -611 | 0.00 | | 600 | 20 0 | | : | | | | HANGERGE STATE | DECEMBER
PERSON | EIRIS EGZ Ne 18
DEC despedin
EMBS EXEMPED | resel cardinana 2
Methit danana 2 | Organics | 68
68 | -130
-130
-130 | -617
1.8
-601 | 0.00 | 620
620
620 | 000
000 | | 100 | 20 | 20 | | | HANGED CHARLES | *** | MARIE EASTE, COM | ther Mitanagere betty
date to stop posters | Males after
Qualitan mayor | 4.00 | -0.38 | -634
-634 | 0.00 | 5.00 | 600
600 | 0 2 | 2 | ÷ | 75 | - | | | 1892 | ULIP2 ULS landing | aling problem social alfaiter 2 | Maine transfelterregulator | 1.20
0.80 | 187
691
678 | 0.79 | 1.0 | 68 | 500 | 20 20 | 180 | | | | | I MERCETCH ON I
I MERCETCH IN I | MALE HOWATE SECTION | | clience ((partie)
tractici (phaple to bitme cately) code | Clier dier
Grapism linux
Grapism linux
Grapism dier
Grapism dier
Grapism dier | 0.00 | 547
518 | 0.35
0.85
0.38 | 0.00 | 5.00
5.00 | 500 | 20 U | 10 | | 23 | : | | I MANGE COLUMN | HUASI
HUASI | PPE phosphalius
HPES best desk pr
NOM NOS bereit | taktom, har type
rule to family & (Ny-35) manifer 12
by A, melopianot cret culan expert fictor | Optopleon bloase Optopleon siter Optopleon phosphatase | 0.70
0.70 | -628
-638
537 | 0.38
1.85
-cao
0.85 | 0.00 | 500
500 | 500
500 | 0 0
0 0 | 100
0
100 | - | 100 | - | | PRODUCTOR STATE | MAGE: | BARL BILL MARK | tel attempre 1 | Qrapion other
Other other
Other other
Malina majore | 1.00 | 128 | 0.07
-0.11 | 0.00 | 60 | 661
660 | 20 0 | n
8 | 100 | 20 | 1 | | NAMES OF THE PARTY | TOTAL
UNIADZ
PCNA
17902
B78022 | | nde ombielig 3
oml nuder attgre
omlidt g23 | Males major
Other transsplanningshow | 0.85
0.80
0.80
0.80 | 138
670
131 | 0.00 | 0.00
0.00
0.00 | 620
620
620
620
620 | 600
601 | 20 W | 1 | | : | 22
E0
120 | | FRANCESCO CARET | COCOL | CHARM disasting | | | 1.00 | 288
688 | -128
-588 | 0.00 | 6.00 | 600 | 20 8 | : | | 17 | | | FREE CECCOSA
FREE CECCOSA
FREE CECCOSA | ECZNA
EDTE
ETHIG
HICK
HICK
MINERE | DOTS. DOTS like las
DOTS. DOTS like las
DTMS. Incoming plan
HOS. Farmeylines. | r Semig 25 mandarit
Lisse lycke methylkunsferase
saphate synthese 1 | Completion to Season of Contract and o | 6.76
6.76
1.28
6.80 | -602
-605
335 | -63%
0.86
1.27 | 0.00
0.00
0.00
0.00 | 68
68
68
68 | 0.00
0.00 | | 100 | = | 94
78
0 | | | HANDSESSANS | MINERE | | de a un CAS has, elpha
o ly monde d'ANSPO de que une uniformétat
opéraple hon dimet nomin hang S
un AS group V | Ottophon mayor loofands
Ottor after | 4.0 | -040 | -683
-682 | 0.00 | 5.00 | 000 | 11 3 | | : | 72 | 22 | | FINESCENSOR | RAZIA
ATME | PLATE phopholyse
ATMS strapegra
EARC EARC, man | unAlgerup V
da bel Ci cycleton popi dese
dan Milanagene di esty | Qisplan suyre gitarise
Qisplan peptike | 6.78
0.88
6.87
4.38
6.88 | -0.00
GHG
GHG | -031
0.86
0.86 | 0.00
0.00
0.00
0.00
0.00 | 600
600
600
600
600
600 | 0.00
0.00 | 20 W | 10 | - : | ï | | | HAND GEOLOGY ZBA | MARCINA
MARCINA | MARISON family of the | eneme and wife TO remier A | Cities after | 48 | -111
-111 | 0.80
0.80
0.80 | 0.00 | 5.00 | 614
641 | | | = | 100
87 | e
G | | HANGED CHART
HANGED CHART | SCHOOL SC | | opinionals to
make the d (Droughlie)
ST Non-departs and the de- | Orapion ster
Nates ster | 0.87
0.87 | -538 | -538
0.8 | 1.00 | | 600 | 300 MI
300 | | | ** | = | | FREE CE CACO | CONT. | PORM phophode COM opinion | miding (the C. Strauspillar)
CT Place diamain, an ingrisorapset and Phi dia
build garanna 2 Plac
Lerann M. | onatteniase mayre
Qrapium mayre | 671
127
678 | -00 | -648 | 0.00 | | 000 | 20 | | | 75 | | | PROGRAMMA
PROGRAMMA | EHB
RMCOP | POST phaghales | ipingmant (MDH)beta
iman Chimaling pulsis | Original major
Original
major | 0.80 | CAN | 0.8
-0.8
0.8 | 0.00 | 6.00
6.00 | 600 | 200 MF | | : | ï | 1 | | I MICCECCO MA
I MICCECCO MIC | 18000
18000
1800 | METE and plan | regfinger 1
the richteta biographie repeat containts | Qiquion soyre
Clier ster | 0.00
0.00
0.00 | -0.7
614 | 0.00
0.00
-3.31 | 0.00 | 6.00
6.00 | 500 | | 12 | : | 17 | : | | HAND GER CON THE F | MICH
MAPE | | ED type containing to | Maine after | 1.0 | 121 | -118
0.88
0.99 | | 0.00
0.00 | 600 | 20 10 | e
e
2 | : | | 1 | | HANGED CONTRACT | THE COL | DECEA of make at the
PATE formula and
EDMA bytine do make | rain 2
pur took hing EA
aud | Males after
Oropium mayre | 0.00 | -0.55
0.89
-0.05
0.88 | -0.37
0.38
0.37
0.80 | 0.00
0.00
0.00 | 6.00
6.00 | 601
601 | 20 W | 20 | - | 97
8
300 | 27 | | I MICHEGIANA | HEPPE
LIPPEC | HERPE Bullet Sonly
LEAVE Bullet Sonly | ha und hybrat S. y Maria | Optophen after
Optophen after | 0.00
0.00
0.00
0.00 | 681
681 | -CEE | 0.00
0.00 | | 617
600
600
600 | 20 A | | - : | | 100 | | HANGED COMES | MPIS
MPIS | MOPE bedet bede
MOPE bedeening
MORE on high an
MORE on high and
MORES analysis on | remain containing the | Option store
Males alter | 0.88 | G84
G79 | -011
0.0
-018
0.3
0.3 | 0.00 | 600 | 600 | 20 M | E 2 | : | : | 2
2 | | HANDSTON FOR F | 973 D3
CLMB | MDC males of 1
9783 973 km on
CM contribute | DRAdamage cleriqui et 1
containing 2
activati, reuroni II, lateraliselle, va dast | Males other
Qesplan other
Qesplan other | 6.8
6.8 | -046
-130 | 6.37
-637 | 0.00 | 680
680 | 600
600 | 200 W | 2 | 320 | 97
300 | #
| | HARDEST MAD | VAPE
SEE1 | Marie walcome | Labelmentranspartens Ma
nd 17 Marcato containing 13
Declared according 13 | unablembrare trasporter | 6.76
0.86 | -676 | -028 | 0.00 | 600 | 629 | | | 10 | 9.7 | 16
26 | | HANCOTONION 7 | COR | DECED Interferon 61 LERCED Inches the | activatin, nor use 16, list to blank on, not and Machinerium area pain in 3. Machinerium area pain in 3. Machinerium area pain in 3. In pain to call to blank on green 30. In pain to call to blank on green 30. In pain to call to blank on bellin ger allen 1. Bellin stal 20. Bellin stal 30. 30 | Naina üler
Naina üler | 678
678 | -528
-528 | -601
0.68
-612 | 0.00 | 6.00
6.00
6.00 | 611
600
601 | 0 M
300 M | | e
er | 82
82 | n
n | | HANDERSON NO. | 100 M/V 2 | OR OR, makele
SPS - Standard or
FRS: rise and year
1997 - Inches ope
FRS: probables | ements
of medicar form | Option other
Males other | 6.76
6.86
1.30
6.80 | -046
5.8 8
65.2 | -611
-607
0.76
1.86
-1.88 | 0.00
0.00
0.00 | | 649
600
600 | 500 500
500 500
500 70 | 100 | : | 0 0 18 | | | HANDERS CONTRACTOR CONTR | MARIA
MARIA
POLIFIZ | entree entreine th | ecuple
hamelari | Optoplace in in an a Lebrae callege and the second | 6.00
6.00 | -186 | 0.33 | 0.00 | 600 | 683
684 | 300 73
0 0 | 21 | 320
No. | 28
200
200 | n
e | | HAROTECH 201 | ADG. | ACC attribute | e teator I death 1
ed suggester 1
comply fator 1 school A | Qisplan sher
Nales mayor
Nales sher | 6.00
6.00
6.00
6.00
1.00 | -129
617
678 | -631
-632
6.38
-634
-648 | 0.00 | 600
600 | 600
600 | 300 M | | 0 | 19 | er
== | | I MICCECUMOS | RENG
PERMICE | ECRG ing Expris | nd CCO specianus 1
Institutor pasternenium essas 1 | Optoplace majors
Optoplace majors | 0.00 | -640 | -034
-041 | 0.00 | 670 | 600 | 20 8 | 1 2 | 320 | 6
47 | 2 | | FRANCIZZONIALA | DIG: | TAD I Interests | oming man i banan
haafal tande pade nambanea saa t
athelig probint
dimane 3
mic onjin silant s | Qraptem after
Qraptem after
Qraptem after | 1.00 | 128
043
-086 | 1.30
-0.70
0.62
0.71 | 0.00
0.00
0.00 | 600 | 600
600 | 200 M | 100 | 100 | 11 | | | PROCEEDINGS | DEAT
DEAT | DESCRIPTION OF THE PROPERTY | rets emples actuard to
clocker S
CEM-type and Orpotals done translating
one protein ISB Ma
Allows with lower bring a specificity | Malma other
Malma base sphorregular
Ottoshon other | 0.37
1.67 | 642
680 | 0.82
0.71 | 0.00 | 0.00
0.00
0.00 | 000 | 20 8 | 100
87
100 | : | 11
0 | : | | FRANCISCO DA E
FRANCISCO CO CO C | THE SECUR | | ove protein SSE No.
Allows with loose linking expect fully | Graphon popular | 0.M
0.M
0.M | 106
-061
084
114 | 1.01
-087
0.00 | 1.0 | 6.00
6.00
6.00 | 600
600
600 | 100 NO | 100
31
07 | = | 10
10 | | | NAME OF COLUMN 2 | MING
MADIA | MINIST Plan and less | ng 2
I na low par-nESM diamain containing SA East
color dich repeat protein 3
pilosa protein 3 | Naina moyee
rankiin tyse sher | 1.00 | 683 | 1.80 | 0.00 | 640 | | 200 220
20 220 | | | : | | | NAME OF COLUMN ASSESSMENT OF STREET | POS
AP3 | 1933 Fin and in
1938 Important
AUS Institution | other in brogest protein to | Optoplasm entyree
Optoplasm kinesporter
Optoplasm sitter | 6.73
0.86
0.86 | -030
689
681 | -CIA
0.00
0.00 | 0.00 | 6.00
6.00 | 600
671
600 | 200 20 | 100 | 320
0 | 0 | 60
60 | | I MICCECULAR I | NA
NCMA | SOR skewin | r bright menter t | matteriore tempote | 6 M | -08
-08
-08 | -637
0.88
-641 | 1.0 | 640
640 | 600
600 | | 100 | 30 | 100
100
87 | | | HAND COLOR OF A | HEE
EPI | MARI sederate
ACAM Arthropic | 13
coled-col, anisytroped and PH danates | Optoplasm after
Mail ma base dyborregulator | 671
678
688
688 | -127 | -cas | 0.00 | 600 | 000 | 20 10 | - | 320 | 97
97
19 | er
n | | HANDERSON THE STREET | PTUS
LIMITE | PEC RESIDENCE PEC Maple pe | ngins salamit 14
Hytransferans handing 1 (k. cell)
Leto hyp selft components recognis 4 | Mari ma buna dythorregulator
Cytoplaum minyme
Mari ma minyme | 0.86 | 678
687
330 | 0.38
0.38
1.31
0.48
-0.80 | 0.00 | 6.00 | 600 | 20 W | | : | | : | | HAND COLORED TO A | D CAADI | COMOS COM de la | ir Sondy to remain in | onablembrase trockered
Qdoplarn after | 0.00
0.00
0.00
6.70
6.00 | 637 | 0.MI
-080 | 0.00 | 0.00
0.00
0.00 | 600
600 | V E | | : | 17 | = | | HANDERSON IN | LIBS
GIPO | OR depte to
OR function
OF NO inter- | usphate deleptinger are
rating products accounted factor 3.
or in only 10 member 198.
Language 202. | Optoplace mayor
Optoplace mayor | 6.00
6.00
6.00 | -510
-610
-610 | -648
-619
0.68
0.86 | 0.00
0.00
0.00
0.00
0.00 | 610
610
610
610 | 6.00
6.00
6.00 | | | 22 | 87
87 | 20 | | NAME OF CALCULATION NAME OF CALCULATION NAME OF CALCULATION | MATERIAL TRANSPORT | SCORE Side carte
TRATES INV. melaji | eng premi suddelfalle 1
v brilg 16 menle (16
La nikrae 158 | Option after
Option ster | 6.76
1.62 | -0.5 | -016 | 0.00
0.00 | 680 | 600
600
600 | 0 0
100 M | 10
3 | - | 100
0
17 | M
M | | PROCEEDINGS PROCEEDINGS PROCEEDINGS | MARCH
MG | TODO TO Shiph ma
MANACON DAN/SOP (4) A
MIS SPENSION PS | idity group has fundy member 2
de d, ma tris accesta te d, a clin dependent re | Marina buna dythorregulator
Marina buna dythorregulator
Optoplann litraan | 676
132
638
432
638 | -038
-048
633 | -011
0.38
-011 | 0.00 | 610
610
610 | 600 | 10 H | | | 67
67 | N
N | | PRINCED COMMA | LAMEDIC | HANCOS SING SING ON A SING SING SING SING SING SING SING SING | naj/gracens i adaptor, MAPE and MEER a | Optoplasm ather
Malma mayne
Optoplasm ather | 4.00 | -129 | -611 | 0.00 | | 520 | 1 1 | | | 84 | - | | HANDERSON NO. | NATES
RECORD | MATERIA BART GARGE | quifate 2 | Males temporer
Males other | 1.00
6.71
6.80
6.87 | -040
675 | 0.M
0.M | 0.00
0.00
0.00 | 5.00
5.00
5.00 | 583
583 | 20 20 | | | 200 | : | | I MICHECE COMA
I MICEE COMA
I MICEE COMA | MARCIE
ACIAA | COMPA discussion
FUTE phospholysis
ACSEM acts for M. | idding geographica Kanding commisso 2 de die un to ta sound his die uit de diegenhaltet er indifferententel adaptes, MAME and METER a indifferententel adaptes, MAME and METER a idde mitt ing product formelle intende view 2 specification 2 specification 2 to the mitter of | contair Space other
Other phosphotone
Maless other | 1.M
G M | CAN
-CAN | 0.07 | 0.00
0.00 | 600 | 660 | 200 MI
0 33
200 MI | w | 120 | 20 | | | Telescond | Marie Mari | ACTEM as to like to. ODE OD complete COMPS CTD content SPORTS contained resident VPROC VPROC, MARY EPHAN in agogine to | iphaghalean
albanit himsing
member phaghelean 1 8 ob
is 1994 had gree 11
YOMPE complex salests | Section Sect | 1.00
6.71
6.78
1.00 | -CAR
-CAR | -can | 0.00 | 6.00
6.00 | 0.00 | | : | 320
320 | 100
84 | 100 | | PRICEE COMME | COCSO | VMCC VMCC, MASS
EMMA la spojent co | to 1990, had grow 11
VISEPE complex subsets
subsets alpha 11 | Qraphum after
Qraphum after | 1.00 | CAN | -628 | 0.00 | 68 | 881 | 20
20
20 | - | : | | - | | | | | | | | | | | | | | | | | | | NAME OF CUI AND NAME OF THE OFFICE | ACTES
MORE | ACTES
MORE | immediate and y response 31 stems ding posterior. ANY to other risk ted protein 5 homolog. MC report done in 1 | Optoplace
National
Extraordale Space | ater
ater | 1.01
0.00 | -040
3318
-040 | -040
0.78
0.78 | 0.00
0.00 | 5.00
5.00
5.00 | 600
600
611 | 200 | 100 | 100 | - | 97 | |
--|---|--|---
--|--|--|-------------------------|-----------------------|--------------------------------------|----------------------|--------------------------|-----------------|----------|----------------|------------|----------------|----------| | | ACTES
MEANS
ACTES
NA
HATES
COMPS | ACRES | MCP 3/Loc MAX methyla a silva ar first ly member to
apoptatic chroma to confensa to nindan r 1 | Nai na
Nai na | ater
ater
ater | 0.86
0.85
1.88 | 676
686 | 0.33 | 0.00 | 60
60 | 628 | 20 | 10 | 20 | - : | : | • | | HAND CERCIT COMMAN
HAND CERCIT COMMAN | HATEL
CORRE | MPTS. | facylanter 11 | | | 1.88
4.88
0.88 | -628
681 | -02%
0.38 | 0.00 | 600 | 618
681 | | - | 4 | - | 83 | : | | HAND CERCIC PER 2
HAND CERCIT CERCIT
HAND CERCIT HAND IN | MPR
CDE | CDI. | No me that partice CREA, glycomal one
CDE make cale | Nation | majore
micros recepto | 68 | -528
-628 | -048 | 0.00 | 6.00
6.00 | 020 | | : | | 500
67 | 97
200 | M | | I MINISTERNATI | DAG
TAGE | DAMES
DAMES
TRADVED | EMES, discusse lagreeds betw
debthylybachde manusyltu referee scient 3, reg;
T cell ecoptor garana sarbble 10 (nor-functional) | Maina
Optoplasm
Chier | ater
mayor | 1.00 | 585
586 | -627
-616 | 12 | | 600
600 | 20 | = | 100 | | | - | | I MINORECURORS | PERSONAL PROPERTY AND | PORTS
LINEAGE | MRTs down dhanding 2
should not be for MR | Qtoplam
Qtoplam | ater | 0.88 | 588
588 | 0.40 | 0.00 | 6.00
6.00 | 000 | 20 | = | 100 | : | | : | | HANDERCHINES
HANDERCHINES
HANDERCHINGS | CORPAGE | EMC
CORMS
SMARCCS
SEMAN | ribuphed ell
spill ode pendentid seur 2 mouste tell protein 2
Stat/SDF rel de d, ma tits accesse tell, a clin dependent re | Optoplace
Mains
Mains Ires | aler
Utorregular | 6.73
1.06
0.06 | -CAR
148
074 | -617
0.78
0.86 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 200 | 330 | | | 0 | : | | I MINORECENSIA
I MINORECENSIA | MPS CSI SMG CSI SMG TROYS TROYS SPG CSCAR SPG SMARCT TAR PTO TAR | 10.000 | contrate de ligid o greate complex a serviciry forther 1
contrate. | Optoplace
Mailes | Michael Control Contro | 1.0 | -638
625 | -604
0.00 | 1.0 | 6.00 | 669 | 200 | - | - | | 87 | | | PROCEEDINGS | PITT DI | PTES. | problemly and sephesphatane, non-receptor type &
forly-two-three domain containing 1
along 4500, cyclosis on | Optoplace ph
Stationa
Optoplace | aler
major | 6.00
1.00
6.00 | -1.00
-6.77 | -618 | 0.00 | | 600 | 200 | | - | = | 20 | 20 | | I MINICED COMES | VII | AT . | if any 4300 symbols on
the numericans protein 325
of the the
characterised open reading frame 42 | Optoplasm
Optoplasm
Optoplasm | aler
aler | 1.00 | -186 | -612 | 0.00 | | GE1 | 300 | | | | 20 | • | | I MINICEL COLORS | MA.
MPI M | RIPSER | chammand open melog time as
poly Bay propries and it, more some
poly Bay propries and it, more some
poly Bay propries and it, more some
poly Bay Bay propries and it
is a start of propries and it
is a start of propries and it
is post or being a propriet and it
is post or being a propriet and
in the propriet and it
is a start or being a propriet and
is a propriet and it is a
in the | Qtoplan | | 5.86
5.86
6.86
6.85 | 842 | 13 | 0.00
0.00 | - | 600 | 20 | | | - : | | - | | FRANCISCO SALS | DIFFE 1 | PAPD7
DHR.1
PCIPS
ACTIC | poly(k) 1904 polymerase DT, monta mental
destact | Otopiam
Otopiam | ater | 0.85
6.80 | -0.09 | 0.00 | 1.0
1.0
1.0 | 840 | 650
650
650 | | | | = | 87 | : | | HAND GEORGE CO. S. | ACING
DERCE | ACTICS
MICHCI
MICHCI | m bit od ple 1
m dame compare il 2 | Optoplam transit
Malma | the sequence | 0.80
0.86
6.88 | 543
576
-676 | -012
1.00
-016 | 0.00 | 6.00 | 600
600 | 200 | 20 | 2 | : | 22 | 2 | | FRANCISCO CALACA | 100013
COP 133
COP 133
COP
133
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PR | DEMISS
DEMISS
PRIMS | number fator, entired 21 fe 1
or yeard lasting protein the 13 | Males tende
Optoplan | ther makes | 6.00 | -68 | -038
037
138 | 120 | 600 | 600
600 | | | - | - | 100
117 | 12
14 | | I MAN COR CO. GO. F | MARCA
LINE ZAS | MINE. | phosphat delta activit (,C) to haphosphate dependent from
although to page to general CE | Qtoplam
Qtoplam | aler
major | CM
CM | 603
-636 | -0.00 | 0.00 | ca
ca | 600
600 | : | | - | 100 | 47 | - | | HANGED CRACK
HANGED CRACK
HANGED CRACK | MANAZ
LIPEL
MEXANIZ | LEPS.
HELLINE | tynd or I manang ou op'tystophen benanang ou
LIPS, EMANING or and ATT on
MANANAN out or and a relich or orbital ET | Optoplasm
Mailes
Optoplasm | entre. | 6.73
0.76
6.87 | 671
678
-680 | -038
-038 | 0.00 | 6.00
6.00 | 600
600 | 300 | 10 | | | 73
8 | 1 | | N MAND COST COST NAME OF THE PARTY COST COST COST COST COST COST COST COST | O-MA
BLOCKE | (710E | cytopi acet c pri yade nylo tao ele mest landing protein d
la upe nech di lycocoma la upe nel les compi es 1 schoolt 1 | Macma M emirane
Qropieum | ater | 4.00 | -0.0 | -001 | 0.00 | 68 | 583 | | | 10 | er
100 | ** | : | | HANDERSON NO. 7 | PTORA
MER
MAZO | MIS
MIS | produgi antitot receptor 6
MPC class tyckgomptide related congresse B
ring tingerprotein 20 | Heratemizer print | coupled ecops prochaglands 11, del
misroe recepto | 0.80
0.87 | -CIN | -621
-626
0.86 | 0.00 | 60
60 | 600
600 | | 1 | : | 32
32 | 17 | - | | HANDSECURES
HANDSECTION | MACIA | MACH
MACH | olecte t.
program tunkcama and abdinato 18 beneing | Pennationizae grain Pennationizae anne Nation Remationizae anne Optopion Optopion Nation | aller | 1.80 | -138
338 | -528
0.82 | 0.00 | 600 | 000 | 200 | 100 | - | - | 200
0 | 10 | | D MANAGER COLUMN S. | MAGE AND | eus. | phospholyses Citie 1
ULES, RMA expert medicitor | Optopolacies
Naciona | aler | 0.00 | CAS
CAS | -181
0.87
0.88 | 0.00 | 60 | 600
600 | 77 | - | 2 2 | | 22 | 22 | | HAND GET CON NO. 2 | NIPLS
PTROSP | MM1
FIRESP | spiritigad on 3-pinaphatoha un 1
problemia ad impinaphatoha, respirit lipo Consula la
prometto enhance persona secretamentalea. | Optopiose
Manuald entrare
Manuald entrare | aler | 621 | -66
-68 | -028
-028 | 0.00 | 600 | 628 | | | | 100
107 | 87 | - | | HANDER CONTY | AMINES
MINES | MI HON | | Qteplan | | 4.00
4.00
0.00 | -678
680
-575 | -015
-015 | 0.00 | 600 | 550
550
545 | 200 | | | - | 200 | | | FRANCISCO SAR | MAYS
MAKE | PAGE
1964 | nt abody i prononation resource of 1
we part to relate the what of fator 1
what yet to relate states is to 4.86 | Optoplace
Maine tone of
Maine | in the same of | 0.79 | 510
138
544 | 0.83 | | 60 | 645
686
680 | 120
14 | - | 12 | | | : | | FREE CECENTRY | 2017 | 2017
2017
2018
C100 | d psychipi psychon 7
doc hogo pode n377
doc hogo pode n36
dolpenia 2 | Originan p
Oliw
Malma
Originan
Malma kansa
Originan
Malma kansa | ater | 0.86
0.86
6.88 | CA4 | 6.38
-081 | 0.00
0.00
0.00 | | 663 | 300
87 | | | | | | | I MICCOTOL SEA | 2002
2004
8000 | 2000
2000
2000
2000 | columns2
stor foger protected.d
localin televal gene 1 | Otopiem
Malma time (| aller
Albert medicar | 1.00 | -645
587
-685 | -081 | 0.00 | 6.00
6.00 | 600 | 200 | n
| | | | | | PROCEEDS NO. | AMENAS | MC1
AMCM1
DML | | Malma tone o
Quaptum | phorograps
major the relative title | 6.00
6.70
6.00 | -671 | 0.00 | 1.0 | | 549 | 300
B | | | 100 | ** | | | PROGRAMMA
PROGRAMMA | IZTRE
SHEETS | 127 SH | disservegister of transcription.)
In some appearance fundy member it
that disservand between transport in repeat 1 | Quantum
Quantum
Estanolistripum | aler
aler | C.00 | -CAR
C49
-136 | -081
-007
0.88 | 0.00 | 6.00
6.00 | 638
620 | 200 | ET . | | | 87
87 | * | | I MICCECO CALL | AREAL
DIG
LITER
BHECL
BHECL
SE
SE
SE | MATE AND ADDRESS OF THE PARTY O | phospholocistics phospholocis = 1
17 920 bile bissue
takete carrier fe mily 57 member 2 | Optoplace ph
Malma
Optoplace | in plates | 4.38
4.86
0.86 | -635
-687 | -028
-029 | 0.00 | C00 | 683 | | | * | 120 | 92
94 | | | PROCEEDS WES | INCODESA. | 1941 (IL.)
1961 (IL.) | column conter forming EFF member E
SHE dense recents tang EFFE like 5, endopted to A.2
TRCS densets forming recentary SEA | Question
Remailment | aler
aler | 6.76 | -086 | 0.37
-028 | 0.00 | 6.00
6.00 | 600 | 200 | - | 2 | = | 97 | n
n | | PRINCIPOLETA
PRINCIPOLETA
PRINCIPOLETA | TH MED
STREET | THE MACE | ld per lie medi constraing 23
centre/direction blooms 60
80 membro reprodutes complex school 10 | Optoplace
Optoplace
Optoplace | there are | 0.37
-C.59
-C.58 | -1/2
-08 | 0.86
-043 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600 | 0 | | e
e | = | 200 | | | I MINICODOCCION I
I MINICODOCCIO TO 4 | MEA
MECS | FARA
FARES | EARTH, member Millioning one facility
poly(t) landing protein cylindermic 1 like | Qtoplam
Qtoplam | aber | 1.00 | -686
681 | -681 | 0.00 | 6.00
6.00 | 000 | | | | | ** | | | | THAND STORE BACE BACE BACE BACE BACE BACE BACE BAC | 147.00 | mings on the belgrates him or know?
mings on the belgrates him or know know it
to commisse plates failing protein 20 | | And the second of o | 0.70 | EAS
EAS | -640
-640 | 0.00 | 5.00
5.00 | 666 | 300 | 300 | 100 | 100 | 0 100 | | | HANDGE CU 2015 | MPIS
MARKET | RIPUS
RAMES | ring Engerproduct 126 EAS gavery of mode product 1 EAS gavery of mode product 1 EAS gavery of mode product 1 EAS gavery mode 12 | Qtoplasm
Qtoplasm | aler | 6.78
0.39
0.37 | 336
668 | -016
-016 | 0.00
0.00
0.00 | 6.0 | 600
600 | 200 | 10 | | : | 67 | | | FREE CONTRACTOR NO. 1
FREE CONTRACTOR NO. 1 | PERSONAL PROPERTY OF THE | PERMIT
PERMIT
EMPSES
BOPPE | and principles distributed in the Company of Co | Other
Otherism | mayor
mayor | 0.88
4.87
4.73 | -cas | 0.38
-0.08 | 0.00 | 6.00
6.00 | 600
600 | 0 | | - 1 | - | 200 | | | HANGED COURSE | MP101 | PRESIDE | nc barade abile pyrophosphe bony) knapk ade derson ()
problesphenybe ber 2 regish boy sakuri (2) | Qtoplem | ater | 671
688
1.02
0.38 | -G89
G83 | -081
-072 | 0.00
0.00 | 68 | 650 | 200 | | • | - | 87 | | | HANDERSON TO S
HANDERSON TO S
HANDERSON CON | DUP'E
PPER | HDACY
DUMPED
PRPHEN | is done de autylane 7
doa's specifielly place betwee 10
pre-stilled proceeding factor 1000 | Marina base ph
Other | h borreg datar yris, belinade (, pyras
kaplatare
diler | 0.80
0.80
0.80 | -611
678 | 0.00
0.00
1.03 | 0.00
0.00
0.00 | 6.00
6.00 | 000
000
000 | 200 | | 100 | es. | 32
84 | | | 8 Mais GEO CE 1 176 7 | MADES A | CHAPT. | CRA methylamskrane Ediple
SERE hand og SERA sampe som amples samponet
sydette and serter (thinsales) protein 3. | Mai ma
Mai ma | eroles
eroles | 0.80 | 114
120 | -648
1.00
0.00 | 0.00 | 6.00 | 600
600 | 300
87 | 100 | 100 | : | | : | | S MANDO CELC CAL MOST S MANDO CELC CAL CAL M S MANDO CELC CAL TATO 2 S MANDO CELC CAL MOST MO | MACTOR C
 LING | agent popular popular i to 2A
Internst Sulagett operation by one 1 | Manual I miras p | in it person | 0.00 | -cae | 0.37 | 0.00 | 60 | 661
660 | 200 | - 1 | | = | 17 | M
M | | HANDSTONES
HANDSTONES
HANDSTONES | PANOT
REM
OPD | anvior
airo | the large PTM-type containing 27 | Planta Ministra | aler | 0.00 | 130
130 | 0.36 | 0.00 | 60
60 | 600 | 200 | = | 100 | | | : | | 1 MICCE CL 26 7
1 MICCE CL 25 R5 1 | METAD
WATER | APTE | Breef CLL/fundame 30
A 70 or phospholyt diss reporting 320 (put of | Optoplam transit
Manual Amirana b | the sequence | G.76
0.77 | -6M
671 | 0.00 | 0.00 | 600 | 676
660 | 300 | e
M | | 100 | 200 | | | IN NOTICE TO ANA IN THE PROPERTY OF PROPER | APPLE PROS LIMB THANK GRAM FA-603232 MG TEXES GAC GRAM GRAM EXTERN EXTER | 200
34 792 | raft price occigent, AP-1 (record) for the solution to committee 7 superferring member 2 | Maina tana (
Optopiaum
Optopiaum | phonographs suppose suppose | 0.86
6.38
1.39 | -CAR
129 | -103 | 1.0 | 620
620 | 600 | * | | | 15. | ** | 10 | | 1 Mario GE CO 750 8
1 Mario GE CO 739 3 | COME
EN-EXELU | GEOPE. | g yangle to and hydrosypprosite reductions | Qtoplaum | | 4.28 | -0.00
-0.07 | 0.00 | 0.00 | 6.00
6.00 | 020
038 | : | : | = | = | 97
200 | | | I MICCECTONOS
I MICCECTONOS | THETES | METERS
METERS | MC dynamic lett? se 2
TCC danate land y member 2
print opiors at dee | Mai na
Grophum
Grophum
Grophum
Mai na Yana d | en injene
dalari
en injene
dalari
dalari
en injene
en injene
en injene
en injene | 6.00
6.00 | -136
-536 | 0.37
0.80
-0.20 | 1.0 | 6.00
6.00 | 600
600 | 0 | | n
n | | 87
200 | 1 2 | | FREE CECUMOS | CERWAP2
STATIA | DATE COME | CDD registry where we the dynamical standards and the standards and a first or of the marketine M. | Qtoplam
Malea tens | aler
hiborogulau | 0.00 | 586
307 | 0.00
0.00 | 0.00 | 60 | 600
600 | 300
300 | 12 | 100
07 | : | : | : | | HANDED COMES
HANDED COMES
HANDED COMES | MENGS
MENGS | WORSE
MPWIS | toppreser of opinion 4 gas ing 5
MC report does in 1.3
South in 150, below as | Batan fider Space
Mail ea
Optoplasm
Optoplasm
Optoplasm | aler
major | 6.72
6.83
0.76 | -640
-637
107 | -040
-014
0.00 | 0.00
0.00 | 6.00
6.00 | 601
601 | 200 | : | 100 | 320
320 | 92
97
0 | 70 | | S MAND CEC CEL MAN 1 S MAND CEC CEL TIMO S MAND CEC CEL TIMO S MAND CEC CEL MAC 2 S MAND CEC CEL MAC 2 S MAND CEC CEL MAC 3 S MAND CEC CEL TIMO S S MAND CEC CEL TIMO S S MAND CEC CEL TIMO S | MENGE
MENGE
MACK
MECKENIA
MECKENIA
MECKENIA
MECKENIA | 1000 | is facilities application of the state th | Qtoplann
Qtoplann | ater | 0.87 | 580 | 0.36
-0.12 | 0.00 | 6.00 | 0.00 | 200 | Ė | | | 200 | - : | | I MAND COMPOSE COMPANY | CDELE | CD438 | PATT is now distract to 2
CDID ligated | Extrace bias Space | ater
optice | 0.00 | 679
-630 | -180 | 0.00
0.00 | 600 | 600
600 | 20 | | | | 200 | 1 | | HANGE CONTROLS HANG H | MEMB1
20020
RP13(230023-2
H2000 | 200 | profits proving falls II.
the logs protect | Qtoplam | aler | 0.09 | 0.78
0.78
1.08 | 0.6 | 0.00 | 6.0
6.0 | 000 | 200 | | | : | | | | HAND COLUMN AND A
HAND COLUMN AND A
HAND COLUMN AND A | MINDO | PO SEE | forther than IST
chartest dang north Hing I | Clier | there are | 0.80
0.80
0.80
0.80
1.00
0.70 | -52F
67B | -688 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 600 | 200 | - | • | - | 200 | - | | FRANCESCO NO 2
FRANCESCO NO 2 | HOMENIA
MIS | MARCHA | CCC male cale
ICCC learning A, 1862-186Cts on piec component | Mai na | entrane recepto al elecept, cipi tarmati
atter | 0.86 | 582
128 | -178
0.82
0.33 | 0.00 | 600
600 | 620
620 | 20 | * | - | | | | | I MICCOECUEUS | ENAME OF THE PERSON | TPOP1
EMAL | is to endinamed/figuration indeptor, MAPE and METER a
TERF a most attributed in 1
is egupted modernit alpite 1 | Qroplam
Qroplam
Rafes b
Rafes | dler | 0.00
0.00
0.00
0.00 | -127
128
281 | 1.07
0.07 | 0.00
0.00
0.00 | 60
60
60 | 600
600
600 | er
 | = | 100 | : | 87 | | | PROCESS AND | MIC
LAMPONE
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS
BRANS | 1996.6
1986
1983 | opiete Soules de la constitución | Malma
Qtopiom | aler
major | GM
GM | -ca | -644 | 1.0 | | 000 | : | | | = | 92
94 | | | I MINORECE COMO | CGC000 | | confedent i desprise to complete a 1986 | Mai ma
Mai ma | major
Major
Maso ADR78, V2470 | 0.00 | 676
688
688 | -011
0.00
0.00 | 1.0 | 6.00
6.00 | 600
600
600 | 20
20 | | | | | | | I MINISTERNA P | COCHE
AND
TAMBEC
SUPPL
NACE SAA
SUPL
COMMENT
LIN
COMMENT
SAN
OF
TAMBE
VAL
AND
VAL
AND
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARKE
PARK | ATR
TAMBACI
SHRPS
MACHIM | ATE centre filtrander line or
TABEL induction that it and contain accominity and mates
corum response factor landing protein 3 | Optoplasm
Nation | maps
alter | 0.8
0.9
1.8
6.8
0.0 | -607 | 0.00 | 0.00
0.00
0.00 | can | CAS | 200 | | : | 120 | 87 | | | HANDSESSON 1 | MACINA
MPS | MARSHA
MPS
CTROMPS | family of the operate doctority 100 member A
Mit is adopted to
common toward by protein 1 | Optoplasm
Plasma M. emirane pin
Optoplasm | ater
impleme | 0.00
0.00 | 582
538
-688 | 0.00
-0.02 | 0.00 | 5.00
5.00
5.00 | 678
600
600 | 200 | | | | : | - | | N MANIO CERCENTO AND IN | 110 | 628
628
84275 | Spegmen special and market from the
CESTON places upon the Exchangest experience by one
Feature 2 | Mains
Qtopiem | eroles
eroles | 0.00 | EAR
EA7 | 0.0
0.0
0.0 | | 6.00 | 600
600
600
600 | 20 | : | 25 | : | 11
11 | | | HANDER COURTS | DAPA
THE DI | DURNE. | districtive properties | Name of the Part o | aplates | 40
40 | -130
-681
-688 | 0.30
0.39 | 0.00 | 6.00
6.00 | 601
604
609 | | n
n | | | 25 | | | HANDSTONES
HANDSTONES | WASEP
GPSs | WARRED P
CHP 2000
VML
NATE
ARRE | WAX protein to may be making 2 pre-valuages as
continuous al cristian 200 | Cities
Mail ma | aler | 0.80 | 676
688 | -626 | 0.00 | 6.00 | 620 | 500
500 | 10 | | : | : | • | | HANGED COURSE HANGED COURSE | MATE
AME | MATE
AND | uintippe this action coppesses
que mittel que mine MT ace bita acha a e fa mig men
aque agine equit her aj dant re-byé obje agi
problemente achaste si desti 3
fencis hemá ag 8 | Marina banka
Manualdenisus
Qtopiem | moles
deposal reco | 6.00
1.33 | -6.88
-6.88 | 0.00
0.00 | 1.0 | 0.00
0.00 | 600
600 | ** | | 100 | = | 83 | : | | HANDGECHANT R | PERM | POLICE
POLICE | protes in meather reduct it
fent hand og 8 | Qisplam p
Naina kasad | e plates
patrony dese | G RF | -030
-031
-039 | -028
-072
-028 | 0.00 | 6.00 | 661
660 | | : | | | 97
200 | - | | PROCEEDINGS | ECHEM
MICAP | ECHCM
IMEDAR
COM | the Roger CDIC-type containing 3d
informer wine NESA landing protein | Chier
Malma | ater | 0.00
0.00 | 540
578
549 | 1.88
-587 | 1.0 | 0.00
0.00
0.00 | | 200
E | 12 | 100 | : | | - 1 | | FRANCISCO CORRES
FRANCISCO CORRES | COMO
ECPON
BCCEAG | NC CPROM | COM world day protein
work and to delptings more (publishe)
white content is only 20 manular 2 | Qtoplam
Qtoplam
Manual emirase 8 | aler | 0.00
0.00
0.00 | 617 | -084 | 0.00 | cm. | 600
600 | 8 | 2 | | | n | - | | PRINCES CARROL
PRINCES CARROL | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 11/2 (M.)
(2 1660)
19 6872
19 617
19 617 | calcine carrier founds 20 member 2
committee 1
externation to make an extension for all to ming prode
by pass where ploughest conference 1 | Mains toned
Opposes toned
Opposes | hitoregular MHM
Storegular
Mayer Namber orienter | C.III
C.III
C.III | -CM
-CM
-CM | 6.8
-618
-619 | 0.00
0.00
0.00 | 628
628
628 | 600
600
600 | | | 100
0
31 | 320 | 20 | 120 | | I MINORECUMEN
I MINORECULANA | 046
8932 | MENTES
MENTES | mentrate a sax ble dring CH1 (pe finger E
16000) landing protein 23 to 2
mary BMA 67:2 | Qtopiem
Naina kensi | major
National data | 0.00 | -G89
G49 | -028
0.39 | 0.00 | 6.00
6.00 | 660 | 200 | | 20 | - | 87 | n
2 | | HAND COLOUR TO SEC | PROPERTY OF THE T | DRAFT. | HALF any most be complex subset 13.
DRAFS, transmiption factor | Grigorium Sandra | allare district and an analysis of the analysi | 0.36
0.86
4.31
0.36 | -63E
624 | -687
-689 | 0.00 | 6.00
6.00 | 0.00
0.00 | 300
8
300 | | 2 | 320 | 84
22 | 3 22 | | 1 March CD CD 707 B | REED
REED | RIC . | EMAINING multi-protein III
Immunity related ST Pane Q
In uniter thire pun too disting II family member A | Mai na
Citier | aler | C.M. | -ca | 0.0 | 0.00
0.00
0.00 | | 600
600 | 0
ML | | - | | 86 | N N | | PROCEEDINGS
PROCEDESIANS | EMER
EMQ
URIGA
OHA
EPTEH
MOCUL
EMR | CD CD | PTE land at WM consist compared | Remail entrare
Nation | dler
dler | 0.00 | -689
-688
640 | -648
-647 | 0.00 | 68
68 | 666 | 200 | | | 120 | 97
97
33 | 100 | | I MINISTERNA DE CANTO | RECTU | MODISE. | mediator complex subsett 18 like
Eas and Eak Internation II | Maina
Qrapison | dler | GE | -100 | -018 | 0.00 | 68 | 614
600
600
600 | : | : | n | 120
N | 97
200 | * | | PRINCEPOS NO.4 | CDCTR
CDCTR | CDCFE | sel divisions yele 78 | Nai na | ater | 1.08
6.86
0.39 | 103
-CAT
CAS | -683
-683 | 0.00
0.00
0.00 | 6.00
6.00 | 681 | 200 | - | 1
10 | 120 | 94 | E . | | HANDSECTIONS HANDSECTIONS | Chief Tith | CHART DA | demand permits for 12 | Otopiam p
Otopiam | epides separet idday
aller | 6 M | -cm | -044 | 0.00 | 6.00
6.00 | 600 | : | : | | = | 87
17 | | | HANDSECURE 4 | HARTSA
HARAZ
CSIFM | Carlo | family of the species and only 200 member A
1990 in Materials on day fact the 2
characterists open medity from 100 | Other Color | aler | 6.20
6.70
6.70
6.89 | -617
-616
-618 | -016
-026 | 0.00
0.00
0.00 | 645
646 | 660
660 | | : | : | - | 100
87 | | | HANGED COMMON
HANGED COMMON | MARKEZ
MART
MAZ
MAANGZ | TARES
PAS
PAS
BACKES | through 1900, spoket med the 2
problem to man, 7 declarity perceing over
properties flager absolute hyper 2 | Cylopiaus p Chiw Chiw Cylopiaus Chiw Chiw Chiw Chiw Chiw Chiw Mail na Mail na Cylopiaus Mail na Cylopiaus Mail na Mail na | Any over the first of the control | 0.00 | -641 | -644 | 0.00 | 60 | 600 | 300
m | | | | 97 | v | | PROCEEDINGS | MARCO
MERCO
MODE | MACKEE
MERCE
MORE | propring Enger simpation gave 2
III AMR 22
Inches receptor core present 2 | Maine trace | aler
Utoregiden | 6.00
6.00
4.00 | - CAE
- CAE
- CAE | -028
-028 | 1.0 | 6.00
6.00
6.00 | 628
628
628 | 200 | er . | • | 100 | 11 | : | | PROCEEDINGS | ERRAT
THES | EDMAN: | the flage protection. EST in displaces relation professer bedinner per larity are metable to societal? It only menter 2 | Optoplace B
Marina | and an | 6.78 | -030
-030
089 | -016
-026 | 0.00 | 640
640 | 660
661 | 200 | 11
0 | | 32 | 20 | E ST | | PRICEE OF THE | MIN
COOMO.SI
POM | 1963
1873.3 | metable is control? It may marrier it protein a Michiganese is may a marrier it | | | 0.85
0.85
0.80 | CAR
-CAR | E.M
-GA2 | 0.00 | 5.00 | 600 | 200 | | | | | | | FRANCISCO CANADO
FRANCISCO CANADO | EGEA
EGEA
EGEA | MINA
MIN
MIN | EAR related cryban arceptor A
Eas cappressor protects 1 | Marina Mopera
Optoplane | dest nation rec | 0.37
0.87
0.86 | -132 | -685
-537 |
0.00 | 68 | 000 | 20 | | : | | 87
8
87 | = | | PRINCIPOLERY | DUMPS | CALMERS | | Ottopion
Otto | aler
aler | 6 M
1.80
6 M | -010
188 | 0.00
0.00
-0.04 | 1.0
1.0
1.0 | 600
600 | 684
680
680 | 200 | | | | 92
8 | я
с | | PROCEEDINGS | OLIMPI
CMMD
MRCI
MPTOG | BARCO
BARCO
BARCO | SCC2, seal or this report as faile practice
or breakles? providing me 2
dy display any along as (NOT report south bing
any bine and writer this called out 2
SF3 branding SSF elangation is disresshed.) | Clie
Naine trees | ater
bearquies | 0.75
G III | -C20
-C20 | 0.80
-027 | 0.00 | 6.00 | 020 | 200 | 300
0 | 100 | 1 12 | 200 | | | PRINCIPAL STREET | SCHARL
SPI
ZHOLIT
MELCI
SATISTR
SAACHA
FRANK | 191 | Million below and Million and American | | | 6.78
0.76 | -6/8
682
675 | -029
0.00 | 1.0 | | 681
688
688 | 20 | | | 0 | 73 | u
u | | PRINCIPOLATIC | MECS
MECS | MICE S | the Regio DONC type contribute 17
methylocal conjects or Angle or 2
the Regio MYTO type contribute 18 | Optoplasm
Manual Combiner | aler | 1.38 | EAS | 0.33 | 1.0 | 6.00
6.00 | 822 | 20 | | 20 | | | 2 | | PRINCEPOS ON 1
PRINCEPOS ON 2 | PRIMIA
PRIMIA | WARES
MILLIAN
IN PRINC | proteinment to depend on the Propository sales | Optoplace
Optoplace
Optoplace | dier
diese | 6.70
6.70 | 676
610
-686 | 0.%
-628 | 0.00 | 6.00
6.00
6.00 | 000 | 0 | er
ea | | 320 | 10 | 1
E | | I MINICIPALITY THE | MF30A
MF3A | PHODA | sergio Scorily Scorenier 1
protet ophosphete e 2 sooffichischust (Auly he
236AT (errotes) phosphete system | Optophen ph
Malma | en apre | 0.07 | -0.00 | -625
-626
1-6 | 0.00
0.00 | 600 | 687
684
680 | 200 | - | | ** | 200 | | | PROCEEDS TO A | POLICE
PARTIES
COAS | POLICE
PARTIE
COAR | EMprigrams - Exchant III
family of the operate distinctly Missensium III
opticitizate a call disease with factor 5 | Gyriphinn Staf Rai Gyriphinn Staf Rai Staf Rai Staf Rai Gyriphinn | aler
aler | 0.37
0.37 | 628
680 | - CETS
- CETS | 0.00 | 6.00
6.00 | 600
600
683 | 100
200 | 2 | 100
8
87 | : | n | e e | | PRINCED COURSE | LINESA | | Initia to of nuclear thicky to ppe III these schools beta
URE departs projects 26. | Optopoleum
Cities | linese their relative arms | 0.87
6.88 | -6.38 | 0.86
-087 | 0.00
0.00
0.00
0.00
0.00 | | 600
600
600 | 200 | * | 100 | = | | | | PROCEEDINGS | 1000
1000
1000
1000
1000 | 1960
19603 | 1864 yer quitesting protest hanning
to nominate pit the fishing protest 2
to notioning growth be to late receptor a noticed pa-
mal gas of florax includence a replif of sequence 1 | Otopiem b
Otopiem | angarier
alter | 6.00
6.70
6.70
6.00 | -048
-040 | -01E
-022
-04E | 0.00
0.00 | 620
620
620 | 600
600
600 | | : | 0 20 | | 97
92 | 22 | | FRANCISCO NO. | MP4 | THE | | Qrisplam Clier Clier Grisplam Qrisplam Qrisplam Qrisplam Qrisplam Qrisplam | ater
mayor | 0.00 | -2.61
Eas | 0.88 | 0.00 | | 660 | er
er | | 2 | | 17 | n | | | PCLUS MARINE COAR 1998 URSIGN 1996 | | using correct program and arming services of
solute correct forming 20 member 42
adaptor related protein complex 1 betw 1 schools | Qrapton . | other Maryin Mar | 0.80
0.80
0.70 | -638
53.1 | 0.00 | 0.00
0.00
0.00 | 500 | 600 | 200 | 27 | 180 | - | | | | PROCEEDINGS | DHAWS | DIMANU. | MCE family member 4, placetin
decays facine leave 3, bycomine (| Optopoleum
Optopoleum | ater
major | 410 | -131 | -007
-008 | 0.00 | 600 | 600
60% | | | : | 16 | 200 | W W | B MAND CED CTJ CASH II
B MAND CED CTJ CASH II
B MAND CED CTJ CASH II
B MAND CED CTJ CASH II Y | TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL | TEM
THREE TR
CTP | I complex 1
La commissae projets 3278
us te pas? | Optoplasm stile Other stile Optoplasm peptil Maxima stile Extraoribles Space growth Optoplasm known | | 0.98
6.96
1.09 | -630 | -619 | 0.00 | 5.00 | 500 | 200
0
67 | | 100 | = | 200 | • | |--
---|--|---
---|--|--|----------------------------|---------------------------------|--|--------------------------|--|----------------|------------|--------------------------|--------------|-----------------|----------| | | 20227
HOSP
10023
EARLEP1
EP11472822.2 | THREETH THE
CTOP
SHOWN
HOMP
WOOD | the Bage protestor
leptons deterfying between the con-
cort openin 32 | Other alle
Oppless pepti
Rains alle
Extraolidar Space greats
Optopless benga | | 6 M
6 M
6 M
6 M | -0.0 | -012
-021 | 0.00 | 62
62 | 0.00
0.00 | | : ' | - 1 | | 97
97 | | | NAME OF COLUMN ASSESSMENT ASSES | EMINES
EPISHTMINI | EQWI | | | | 1.61 | 180 | 0.80
0.80 | 0.00 | 600 | 600
600 | 200 | 200 | - | 0 | | : | | PROCEEDINGS | SECONAL
SECONAT
MALTED
LINEL
CLES | MALTED
LINEL | salute carrier to mity the member II
value carrier to mity 12 member 77
mysticitymyticat or mitod through to skenia; tai salau
unkernyt to mity the structing or
CDCI field name II. | Maine temple | -quies | 0.00 | 566
561 | -029 | 0.00 | 500 | 0.00
0.00 | 20 | | | | 18 | | | | 642-20101-10
CIN | CLUB | CDCI Sell mort
shapito specific popilities 13. | Maine Inc | | 0.36 | 078
188 | 0.85
0.80
0.38 | 0.00
0.00
0.00
0.00 | = | 600
600 | 20
M | = | 100 | | : | : | | HAND CODE CO. CO. C. | CCD COM
CCD COM
BCDMCT | CENTER IN | coded-call and C2 demain containing 19
residen on green person moduluter 1
19 C22 demain fundy meriker 2 | Maine transdytes
Optopion alle | regular or | 1.35
0.81
6.92 | CA10
-CA10 | 0.70
0.80
-637 | 0.00 | 680
680 | 500
500 | 20 | er
M | 100 | 0 | : | - : | | | (COMP.) (COMP. | THE SEE | Tittl demonstrate, render 1
melator complex solunit 15
register of chromosom condens ton 2 | Males Sans die | · · · · · · · · · · · · · · · · · · · | 0.00
0.00 | -6.00
129
-6.71 | 0.30
0.80
0.40 | 0.00 | 000
000 | 669
660 | 20 | 12 | | 0 | 97
8 | | | FRANCISCOCIONO 9 | VIET | DCA1 | COST and CLEAS assisted factor 1
in university report to the time 18 | Males line
Qrapton atte | | 0.8
G M | -CAR | -028 | 0.00 | | 610
610 | 200 | M.
0 | 180 | 120 | 200 | i | | PROCEEDED TO S
PROCEEDED TO S | MIMI
MIMI
MIMI | ACALS
FIGURE | adapter refered protein complex 2 alpho 2 colorest
acress Cost anystransis acres
Mr. danut nandle ustnerstin er perspecte nybospie tre | Otopiam tranp
Otopiam may
Otopiam may | : | 0.00
G.87 | -040
-040 | 0.03
-034
0.38 | 0.00 | 6.00
6.00 | 600
601
600 | 0 | n
n | - | 120
120 | | | | I MANOGERCU 798 II
I MANOGERCU 200 7 | MMG.
UMIGNO | PHENT.
UNION 2 | H or Spicitic congerts, certain the months the ar-
shings the conjugating engine ES ES
SE LS. ERAD ES tigate adopter value ES
to quipted exclaims alpha E | Optoplace Man
Optoplace story
Optoplace story | . 137%, ATO-3208, LIBH | CH CH | -527
-638 | 0.M
0.M | 1.00 | 60 | 660
667 | : | : | | 100 | 20 | | | FREE CECTA NA. 1 | DELLA . | EPIGE
LIGHT | la gophe i nadavit sipla II
le attectipe praeto 1 | Maine temp | - | 0.86
6.86
6.89 | -66
611 | 0.M
-038
-081 | 0.00 | 60 | 0.00
0.00
0.00 | 0
33 | | 1 31 | | 12 | - | | PROCEEDED AND
PROCEEDED AND | 00001
20002 | DMEE1
200000
270.70 | Checking detay of errect is ruling to moriphise factor 3
Directlies 3
and fings protein 862 | Estantidor Space dile
Chier dile | | 6.62
0.86
0.86 | -08 | 0.34 | 0.00
0.00
0.00
0.00 | 68 | 634 | 0 200 | | 3 | 120 | 200 | * | | I MANIE CERCER COM A
I MANIE CERCER COM A
I MANIE CERCER COM A | 17129
C36/75
PPE-98/233 | CNE | the Representation 18
sector/free the black 18
character 2 open making frame 28 | Other sile | | 0.MI
6.77
1.68 | 112
-086
182 | 1.33
-677 | 0.00 | 68
68 | 600 | 200
100 | 1 | 100 | ** | 97 | - | | FRANCISCO CON MIST
FRANCISCO CON MIST 2 | HAMBE
TETA | HARRY
TETA
GALFETO | family at the operate and arty. Emember C
Treal lecterist translesses are the ed
polypopt deliferate by also country from the are. 30 | Chier size | - | 6.00
6.77 | -0.0 | 0.07
-126
-0.73 | 0.00 | 00
00 | 600
600 | : | | | 120 | 20 | Ė | | HAND COLOR CO. | DATE: | MARKET | the large MTMT percentaining 2
for exects brackers in large member 2 | Malma die
Malma line | | 0.00 | 529
-520 | 0.86 | 0.00 | | 000 | 200 | er
0 | 180 | i | 20 | | | HANGED CHANG | MAX
MAXA
THRONG | PHAR
SPATALE
THE SAID | phosphorylated digitar for 1500, especially
upo mategiese de a socialed 2 file
to comembrane protein 52 | Other man | : | 68
68 | -636 | -072
0.36
0.86 | 1.0 | 60
60 | 600
600 | | 4 | 76 | | 87
88
73 | 2 | | HAND GEGENNY | 27 LTZ | 271.72 | probasimenturalitis probin
uping transferance 2 | Males die
Oropium may | - | 0.00 | -cas | 0.86
-038
0.85 | 0.00 | 000
000 | 500 | 200 | n
er | | 330
0 | | | | HAND COLORED | APS
PPE | APIS
PPE
PPEAN | felly any Cold reduction 3
ANA/MET Family marrier 3
Planned more Tylette reduced pitt | Maine transfelor
Maine may | -quies | 0.38
6.38
0.40 | -036
039 | 1.0 | 0.00 | 68 | 600
600
600 | n
wo | | - 1 | • | 200 | | | FRANCISCO COLARO
FRANCISCO COLARO
FRANCISCO COLARO | PELE E | PERSONAL PROPERTY AND PROPERTY AND PERSONAL PROPERTY AND PERSONAL PROPERTY PROPERTY PROPERTY PROPERTY PROPERTY PRO | clear family member to
DMA paigner race epiction 6, a concurry calamit
macratularies firstly regulating into a 2 | Malma die
Malma may
Odopium kina | re Sanay'nyana lanay'ilg ra
se ISC phosphelana (25.5- | 6.8 | -08
-03
011 | -081
-081 | 0.00 | 620
620 | 666 | 200 | | 34
100 | 100 | 97
97 | - | | FRANCISCO TO S | CDER
PLOTO | HITTE
HARM | COUNTY SHAPE OF THE PROPERTY OF THE SHAPE | Hamatteniane sile | : | 0.00
0.00 | -036
-036 | -62%
-62% | 0.00
0.00
0.00 | 6.00 | 000
000
000
000 | | | | | 30 | 10
17 | | I MANOGEROW TO 2
I MANOGEROW TO 7 | PM1
INDS | 1903 | gi yanayida nagbe biliyihnad bil anahar at ba abaran 1
de yingi sasasa i madan er and badar dismata can bintang 1 | Optoplace may
Malma may | | 620 | -646
-646 | -041 | 0.00 | 600 | 600 | | : | | 10 | 92 | - 1 | | HAND CED CET COLD
HAND CED CET COLD
HAND CED CED TOTAL | HARE
AUR | PEARS
MEAPA
ACE | proteinmids to of a chailed 19872
SEX Set by pyrin dans income long it
apartus intombriding iphonocoul factor | Maine tone spile
Manual Contrary professions
Maine alle | ing datar
led mosps | 1.00 | 137
675 | | 0.00 | 68
68 | 000 | 20 | 320
M | 100 | | | | | FRANCISCOPINSTS
FRANCISCOPINSTS | ACTES
MATERIAL | ACTRO
MICH
CON | APT auto wided probate forming
mediator complex subset &
CDI male cale | Mains transpler | | 0.36
0.36 | -642
687
-639 | -C48
0.8
-188 | 0.00 | 520
530 | 600 | 200 | w. | | 330
0 | 97 | | | I MAND COD COLUMN 7 | MANUS
CN/G | MPRS. | microbiales accident part in 17/18 is only member : | Optoplace alle | | 6.00 | -64 | -037
0.86 | 0.00 | 600 | 600
600 | | 1 | - | 100 | 100
11 | | | I MICCECO COL | SCHOOL
RECORDS
REMEDS
CMMM | MOMO
ROMA | ate lage CCEHype collabolg 6
sales carter budy 8 member 2
PCH and death = 901 denotes 1
CCEP (be MANY). Vacament in sedanate containing 1 | Mains sile
Pleasablemicase bases
Other sile | | 0.00 | 128
128 | 0.00
0.01
1.86 | 0.00 | 62
62 | 600
600 | 6. | e
e | 100
100 | | | : | | HANGED CLYCON I
HANGED CLC RATE | CM168
RP13039833.8 | CM THE | | Estrarellar Space cytal | - | 0.60 | 115 | 0.38 | 0.00 | co
| | 20 | ** | er | | | | | HAND COLOR CO. | DOM: | MARYS
ACPS | Durched shock protein landy (hopel) member 15.6
nucleotife is rategy now to 1
number to 10.01 is and group) | Optobers also | | 0.00
0.73
6.76 | 581
581
-586 | -GDB
0.48
0.33
-3.84 | 0.00
0.00
0.00
0.00 | | 600
601
600
600 | 200 | | 100 | - | 14 | : | | HAND COLOR OF THE | ACM SPEE | BCMMP | aquaparts 1 (10 1 bi and group)
since theger protes n 20 th
solute currier than dy Commister 1 adoptor protests | Oppion size | - | 6.80
6.86 | -0.37
-0.37 | -CA 9
0.30 | 0.00 | CED
CED | 555 | 100 | | | 0
17
0 | 97
0 | U | | HAROCOCCIONA
HAROCOCCIONO | 20775
TLAS | 2077A | one toge protection substitute the beginning to only 1 also place protect the larger protection TO except a security to district to the larger protection. | Other ale
Otherism may
Marine | | CM
CM | -530
-686
685 | 0.73
-638
0.63 | 0.00
0.00
0.00
0.00 | CED
CED | 628
600
600 | | | 28
38 | 100
100 | 200 | 3 | | | 973192021
1000000000000000000000000000000000 | DAME | the larger protests 2000
deals depter of phasphatymeter and 3 phasphanes 2 di
3 ray repair cross complementing 2 | March Marc | * | CM
CM | -3.07 | 0.85 | 0.00 | - | 500 | 20 | | 100 | 100 | 200 | | | FRANCESCOOKS
FRANCESCOOKS | UNC 129
TOPAR | LINES SH
THE MARKET | shad a shape of phasp hall protes and 3-phasp halos could be a proper of phasp and a country of phasp halos becoming me and phasp phasp halos becoming me and appear on the phasp halos country of phasp halos becoming me and phasp and the phasp phasp halos country of phasp phasp phasp halos country of phasp phasp phasp halos country of phasp phasp phasp halos country of phasp | Otopiem kansdyler
Otopiem kansdyler | · · | 0.36
0.36 | - CEN | 0.38
0.38
-G81 | 0.00
0.00
0.00
0.00 | | 625
620 | 20 | : | 100 | 1 10 | 84
200 | | | PROCEEDINGS
PROCEEDINGS | #301
8044 | API III.
MOPAL
I PINZ
COM | adapter related protein complex 1 genera 1 colorett
ring Engarprotein 6.6.1
Intelligenter transport 52 | Otopiam tempo
Otio die | | 0.70 | CA 6 | 0.86
0.38 | 0.00 | 6.00
6.00 | 600
601 | 20 | 120
M | 100
20 | | : | 2 | | PROCEEDINGS | WAC ALL | WAC-AND | CDM relacie WAC attorne RM 1(beaftshed) | Rematterious assemble
Oliv die | | 0.00
0.00 | -120 | -cm
-cm | 0.00 | 68 | 660
660 | 1 | | | n
er | 17 | n | | PROCEEDINGS
PROCEEDINGS | MICAL
MICAL | MICAD
ANDA | AT-dishipmental directors SCOL homolog D, COM soci complex comparent AT-limiting construction in the member 1 (for small object to down in containing EA | Qisplam base
Qisplam base
Rematteriore base | | 0.35
6.80
6.80
0.38 | -040
-138 | 0.0
0.0
30.0 | 0.00
0.00
0.00
0.00 | 6.00
6.00 | 600
600
643 | | | 100 | 220 | 94
200 | : | | PROCEEDINGS | HECH
HEPSE
WESTERN | HEXTA | Filtramed object I done to contact og SA
NCP Mir formules protets
10 CD landing protein 2 like
Landing filtramen og sjät 2 | Optoplace alle
Males moy | : | 0.30 | CAN
CAN | 0.30
0.87
0.62 | 0.00 | 600 | 561
520
587 | 20 | e | 100 | | | . : | | PROCEEDINGS | TIJ2
PURECI | BCRAFE
TATA
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HAR
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS
HARRIS | to reduct the entence of spit 2
PLNSS done income long 2 | Maine tracquie
Qualem ale | regulator
r | 6.M
6.M
6.M | -04 | -016
-016 | 0.00
0.00
0.00 | 60 | 600
600 | er
0 | | | | 17 | | | PRICED CHARL | THE SECOND | THE HIND | instructif containing 2
thrombopostimit
lemateparet is 90 domain containing | Estantidor Space dile
Optopion dile | | 0.83 | 540 | -681
1.0 | 0.00 | | 000 | 200
87 | 22 | 100 | | 28 | | | PROCEEDINGS
PROCEEDINGS | LIVING
MID17 | LIMAN
MODEL | manage & playful energia, calls algorism UV radiation while are associated mailstar complex sales 17 | Optoplasm transport
Marina dile
Marina transporter | eter elglocente elle | 68 | -0.00
-0.71 | 0.38
0.38 | 0.00 | 68
68 | 669
660 | | | m.
100 | | 20 | : | | HAND GE GE VEN | THEFTHE | MARINE
MARINE
THE PROPERTY | mediator complex colored 37
Unios & Ald Shoped case
1948/9 and come 1944. 1 | Other ale | | 0.00 | -CAE | -611
0.81 | 0.00 | 68 | 600
600 | 200 | ÷ | 100 | 107
0 | 97 | | | HEREGICA CASA | SPERE. | SHALL
SHALL
BROKE | gi percephopia te Desphundence
cule oferio:
BID done incontant qi 1 | Optoplace transport | - | 0.86
0.36
0.31 | CA1
CA1 | -108
-108 | 0.00 | 68 | 520
520
584 | E2. | u. | - : | : | : | = | | FRANCISCOUNTS FRANCISCOUNTS | PRINCE
MARTEL
PRESCUE |
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MARITA
MA | mentrane magnetism transporter 1
protein phosphature 1 regulatory subset 1132
sequestismen 1 | Optoplace transport | - | CM
CM | -08 | -G48
-G48
-G46
-G46 | 0.00
0.00
0.00 | 68
68 | 000
000 | 0 | : | | 10 | 96
300 | | | PROCEEDINGS | MICH T | PRINCE | organization 1
probe 4 sh13
PLACO archime \$284.1 (read to be d) | Optoplace to a spiker
Marina die | | CM | -e.m
-e.e. | -643 | 0.00 | 600 | 600 | | 1 | 100 | 100 | 7E
97 | | | B MAND COLD COM 121 1 B MAND COLD COLD MID 2 B MAND COLD COLD MID 8 B MAND COLD COLD MID 8 B MAND COLD COLD MID 1 B MAND COLD COLD MID 1 B MAND COLD COLD MID 8 B MAND COLD COLD MID 8 | KP1
DML1 | MARCH-AC
ACAPS
DYNELS
MARCH | Artist Published and, a deprinaped and PH dance in
dynamic lights bein 100 type 1
probation 201 tables, month week | Monatteniree die
Oppion die | | 0.40 | 130
130 | -CA1
0.M
0.37 | 0.00 | 680 | 620
620
620 | W. | 120 | | | : | n
n | | PRODUCTE CONTRACT PRODUCTE CONTRACT | HMS
PRES | PERMIT | probability #300 cyclintars
(a 616) #300 cyclintars
(a gapus list by #40 flag or 3 | Other die
Otherien may
Malma die | : | 0.00 | E87
E89 | 0.0
0.0
-628 | 0.00 | 68
68 | 600 | 20 | 120
120 | - | | : | - 1 | | PRINCIPAL NO. | MORE 2 | MORES
LICENSES | | Optoplasm may | | 0.99
0.86 | -CIE
CIN | -081
0.38
0.86 | 0.00 | 620
620 | 500
500 | 20 | H 10 | H . | 0 | 97
27
0 | - | | HAND CED CED AND IN HERE CED CED CED CED CED CED CED CED CED CE | CMMS | INCOMEST
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOMES
INCOM | MCRC is nily CNP species if age? 2
and an admitted LOCARCE
MCRC complex schamble
or providing and as a 2
death of the complex schamble
and | Marina alle
Other alle
Marina alle
Other enzy
Originam enzy
Originam enzy | - | 0.00
0.00
0.00
0.00 | 628
-686
688 | 0.38 | 0.00
0.00
0.00
0.00
0.00 | 680 | 600
600
600
600 | 0 | 2 | 2 | 120 | 97 | | | I MAN COR COME TO
I MAN COR COME TO
I MAN COR COME TO | Mac.
Machina | MATTER IS | Exist Personal and representative alpha calculated | Optigation may
Optigation also
Marina also | - | 6.86
0.75 | -CAD
037 | -615
-628
-640 | 0.00 | | 0.00 | 20 | - | • | 100 | 100
14 | - 1 | | FRANCISCOURS 700 2
FRANCISCOURS 700 2
FRANCISCOURS 700 1 | NA
HCDAE | MEDAN | ENAboding medi prateto 20
moleculare propter con cilo stor 3 | Maine terreptor | · · · · · · · · · · · · · · · · · · · | 0.75
0.79
0.88
0.80
0.80 | - CAE
- CAE | -CA1
-CA1 | 0.00 | 620
620 | 600
600
601
601 | 1 | | 100 | 17
220 | 92
97 | - | | FRANCISCO COLORS | THOMAS | 200 100 | LAST lies, the content has meet factor to connect one protect for Diffet has believe 28 ship the protect ligner 93 components recognis 3 (po | Males die
Otopien die | | 6.72 | -538 | 0.67
0.38
-0.14 | 0.00 | 600 | 601
600
600 | 8 | | | 100 | 200 | - | | F MARIO CODE COL CON 7
F MARIO CODE CO.7 200 1 | CHE | UMPER
CMG | skippiin pratric hysicelli componente-recognic li(pu
co-brogleterare) | Oliw may
Optoplace may | : | 0.3%
0.37
0.88 | 681
672 | 0.00 | 1.0 | | 600 | 200
200 | | | | 11 | | | PROCEEDED AND PARTY OF THE PROCEDURE OF THE PARTY | MAIN
MAIN | MAPA
MARS | It wetylglocounter-t-phosphodeder al pla the cetylg
Nijdyboly metyltranden or M., NaC and lary coloret
sking-tin like modifier a closing enzyme it | Optoplasm may
Optoplasm alle | : | 0.80
0.37
0.80
0.80 | CA1
CAR | 0.38
-0.14
0.38
0.43 | 0.00 | 0.00
0.00 | 007
007 | 20
20 | 520
M. | - | | | • | | FRANCISCOS DE PARA
FRANCISCOS DE CARDOS | 2001
2001 | 20014
20014 | skip to the maffer a charing mayre to
stock byer protein 24
EURE family stock oper 2 | Optoplace may
Marine translighter
Marine translighter | - | 0.36
0.36 | 682
682
681 | 1.07
-018
-087 | 0.00 | 0.00
0.00 | 667
660
660
660
660
660 | 100 | - | 100 | : | 14 | - | | PROCEEDINA | TPB
UPW1 | EST
TOTAL
LEAVES
CRCE | | Maine tensiphe
Mematterizae die | regular o | 0.70
0.00
0.00
0.00 | -C40
C49 | 1.08
-617 | 0.00 | 5.00
5.00 | 600 | | - | 100
36 | 100 | 16 | - 1 | | HAND CODE
COLUMNS | EII
MIRPI | MIRE. | ten man yanan matar Si.
ISB, rene piar riskandi pratana manakandi pratato 2
arigi teren quellin nasarpine mikusi 13
tahida tar of CONA, kanding 11, MEM pratana
MEMI tahina oling pratana 3 (1523 kalunikin) | Maine tone-plan | ·
···································· | 6.79
0.36 | 603
647 | 0.0 | 0.00 | CAD
CAD | 520
520 | *
* | 100 | - : | 100
0 | 80
0 | * | | HANGED COLORS | MATERIAL THEORY | ID LIBETE | observed. | Optopless also | | 6.78
6.78
6.38
6.38
6.00
6.00
6.00 | -007
-120
009 | 0.33
-CA1 | 0.00 | 600
600 | 500 | : | | 7 | 100 | 100 | E | | F MARIO COD COA COM S | 983
088 | 1902
1900
1900 | THESE attacks 1944.1
Immediate and y require 2
of for still y exposed in INCP 2 thanking
SAS (22 protein all later 45; providence
SAS, marsher 1941 congress for thylines | Optoplace alle | | 68 | -08 | -637
1.88 | | 600 | 600
600 | M
8 | * | 100 | | 11 | | | PROCEEDINGS | MAIA
TRACE | MAA
MAA
MAC
CHOM | E.M., member 10.1 amagene & milyt best
to minutenespior palential cation channel subfamily to | Otopion ale
Nonatteniros ina | | 0.36 | 633
670
687 | 0.0
0.0
-029 | 0.00 | 5.00
5.00
5.00 | 000 | 20 | | - | | ï | * | | FRANCISCO COMMIT
FRANCISCO COMMIT | CDG 3.1
MAPS | COOPIA
BANS
BOOK A | Les colors from plant plant on quarte suffering to
CISA MOTT removipition complex subsets it
and it all on plant Tibe 1.
MOST handles group the regulator of 1964 polymerate
DMO-bankelsa er 32. | Optoplace alle
Malma alle | | 0.85
0.35
0.35
0.39
0.39
0.39 | 641
-68
648 | -628
-628
-628 | | 0.00
0.00
0.00 | 600
604
600
637
600 | 100 | er
M | 1 | | | er
M | | PROCEEDED AND A PROCEDURANCE | EAR
HEPSIA | HIRFS 1 | coliDicachellus e 18
BC2 accele tel 3, apoptel cegale ter
leut check factor binding protein 1 the 1 | Marina may
Optoplasm transpo
Chier alle | - | 6.87
0.88 | -638
618 | -633 | 0.00 | 505 | 600
600 | 0
0
20 | 2 | 21 | 122
0 | 17
25 | | | PROCEEDINGS
PROCEEDINGS | CIMILD
APPEL | COMMON | NG2 months bed 3, que plus à cregide les
leurs clause fracture landing produit n. 2 like 1
M/NET desse land
cressitations of della
Ar MAP with PMI or produit 2 | Marina transdyter
Optoplam ima
Marina chi | regularo
or | 0.07
0.06
0.07
0.05 | -0.00
104
674 | 0.8
1.9 | 0.00 | 6.00
6.00 | 600
600 | er
M | 120 | 100 | : | 0 | 0 | | HAND COLD CO. ST. A. | OPUS
LW | CSPSIN | An Marchael protein 186
Implementaring on 9
EARTH, member Millioning one for thy
to marriphine elegation for the A St. + S. | Orașium ale
Plematicale ale | | 610 | 084
-580 | 0.00 | 1.0 | = | 600 | 300
34 | | 17
26 | - | 11 | | | HERECONDO NES | TO NO.E | TO ALL
TO ALL
TABLE & | to not just a daugater is stor A to ex
to more than a protein SC | Other sile | | 68
68
68 | -016
618
-016
688 | -637
-638
-688 | 0.0
0.0
0.0
0.0
0.0
0.0 | 600
600
600
600 | 600
601
600
600 | | E7 | - | 2 | 100
11 | | | HANGED COURSE | THESE S | THESE SE | In many take recognition to the A to a 1 to recommission protects (AC on primal binding protects the 2 fairner except file by 22 towns except file by 22 manuscraft and pile closes (A) manufact (3 FRID columns according file close (A) FRID columns according file close (A) | Optoplace transport
Optoplace transport
Optoplace | | 0.8
GM | -68 | -CAS
0.00
0.38
-GB2 | 0.00 | 6.00 | 520
520
940 | 1 | n | n
n | u | 211 | 2 | | PROCEEDINGS | MACA1
POMA | MARKAT
MARKAT
MINA
MINA | tour reason and the control of 12 mentured and the class 2A member 1 POSt submitte accidentifactor A gi yorophophode tor phophode torace danat score | Otopiam may
Maina dia | : | 0.36
0.36
0.36 | -044
EAR
EAR
EAR | -0.12
0.33
0.40
0.40 | 0.00 | 648
648
648 | 0.00
0.00
0.00 | 20 | | * | 0 | : | M
M | | PRINCED CO. TO. 4
PRINCED CO. 1887 | PT MA | CHEST | | Name tonspire | - mades | 0.18
0.38 | -CAN | -614
1.38 | 0.00 | 68 | 525
520 | 0 20 | 0 10 | 100 | 100 | 200 | | | I MICCOECU AFE
I MICCOECU MAN
I MICCOECU MA | VISE
VANCO | | vacable protein setting 33 hand og 8
sted besigte met fildensin containing 9 | March Marc | arter | 6.00 | EAS
-EAS | 0.61
-610 | | 00
00 | 600 | 20 | M. | a
a | | : | u
m | | PROCEEDINGS | MAPS. | VPCI III
SANCH
NAPE
M 2P1
VEPS | us cades y relatio sorting 33 homologiii
che file a lybe modificiament containing ill
NOP a Cardinover producting amore
empiricalisme il gardinover 2
containe il specification il specification il specification illustration il specification il specification il specification il specification il specification illustration illustrat | Optoplasm transport | | 0.76
1.28
6.18
6.18
6.77 | C87
-C88 | 0.77
-CA7 | 0.00 | | 555 | 20 | = | | : | 97 | | | PROCEEDINGS | LIDER
LIDE | VIOPI
UMB
ETM
TABLES CA
CAPER | skap tin specific popision. III
el estronta esfe l'improtein alpha salvati | Chier populari
Quapiem benga | | 6.18
6.77 | -ca
-ca | -649
-628 | 0.00 | 6.00
6.00 | 600
600 | | | | = | 97
200
73 | e
n | | I MAND COD COLUMN IN
I MAND COD COLUMN I
I MAND COD COLUMN I | CONTROL
CONTROL | COUNT.
COUNT. | explosition deport section medicine de deport delapore sous le particio me de contrata sobre l'aportico me delaportico me de debendoni 175 de DESI Indiano dela contrata 175 de DESI Indiano dela contrata 175 de DESI Indiano dela contrata del DESI Indiano dela contrata del DESI Indiano dela contrata del DESI Indiano della contrata del DESI Indiano della contrata della DESI INDIANO DELL'ADORDO DELL'ADORD | Otopiem stie
Otopiem stie
Otopiem seco | | GM
GM | -CR
-GF
-CR | -648
-638
-639
-576 | 0.00 | 648
648
648 | 600 | | | | - | ** | * | | I MINICIPELL NO. | TORS
MINES | | ECAN family member 2
of orginal
materials in large defendancements in the 2 | Clier ale
Maine transiples
Origina | | 0.00
0.07
0.00
1.00
0.00 | -619
-682
637 | -638 | 0.00
0.00
0.00
0.00 | COD | 600
600
600 | | : | | 15. | ** | | | PROCEEDINGS | MP28
CHECH | MAPON
CHECH | MO figur praise 29
or aglutura bishqil qorana | Malma alle
Qequium may | : | 0.00
6.70
6.80 | 631
-635
-636 | 0.%
-668
-648
-652 | 0.00 | 0.00
0.00
0.00 | 601
600
600 | 200 | n | n n | 100 | | | | FRANCISCO CO AND A | IMG
OPEN | MES HE HOSE COMMES MACI GIFFER MES | M. menhanopratricing in school 1
providencepton fator M. school 6 | Name to the State of | er e | 0.38
6.78 | 671
-686 | -0.12
0.38
-0.29
-0.61 | 0.00 | 0.00
0.00
0.00 | 600
600
600 | 200 | ÷ | u . | 100 | 92
97 | | | PROCEEDINGS
PROCEEDINGS | HEPE
HEPE
SAME | BLOPS
SAPE | nucleopers III
el orgation factor Thomsing
In IX accords tel protein III | Maine temp | - | 0.9
6.9
6.9
6.9 | -046
-045 | -648
0.30
0.31 | 0.00 | 0.00
0.00 | 628
633 | | | | 12
U | 97
28
94 | | | PRINCIPALITY | IPH2
MACHA | MAGE
PARTIES | Incharges to El do age der affect in handing Shift, most to My prides to graded hydrides or graded hydrides or graded hydrides or family of the squares and only the shift most time flow problemate despited upon the problemate despited upon the problemate despited upon the problemate graded to gr | Optoplasm may
Extraoristic Space alle | : | 6.70 | -0.96
321 | -071 | | 0.00 | 0.00 | 20 | | | e. | 97 | er . | | HAND COLUMN 2 | DOWN LINES | SPHE
UPPS
FOREZ
SMEAPS
COLOR
COLOR | the Region of the Parties Par | Marina dis
Origina pepti | | 0.71
0.88
6.80 | -68 | 0.00
0.00
-603 | 1.0 | 6.00
6.00 | 081
028
087 | 200 | a
e | 10
61 | 12 | | | | HAND CERCEASE A
HAND CERCEASE A | MARKET
MARKET
MARKET | PORTS
MAJES
DESCA | peranen hamaing 3 (Decembris)
SMAD open the Excellent represent by one 2
DMAD has below as 38 | Other sile
Optoplem may
Malms | - | 0.88 | 583
583 | 0.00
0.30
-0.37 | 0.00 | 6.00
6.00 | 0.00 | 20
20 | 22 | 100 | | | 8
38 | | HANGED COMES | GLOI
PHANG | CLLAN
PROFIZ
NTS | to the firm sight and beta receptor unband 2
tipe firm to the and beta receptor unband 2
tipe along the whole firm platting 3 means release as along | Nation the | | 0.00
0.37
6.73
0.00
0.00 | -1.00 | | 0.00 | 5.00
5.00 | 661
660
661
660
660 | 200 | | | 120 | 14 | M. | | HAND GEOGRAPH | PD-CHFELT
MPTE | | | Name of | | 0.00
0.00 | 128
-CIR
CAE | -0.00
-1.42
-0.18
0.21 | 0.00 | 680
680 | 600
600
600 | n
n | U | | | 10 | - | | I MICCECCION I
I MICCECCION I | SECON
MENNA | MOPLO
SEPH
WITH
WITH
MORE | one Begar Family manulus 200
gl star ryl-Cot. de hydrog one ar
NCC repost done bid to | Other sile
Optoplem every
Other colo | - | 1.0k
0.00 | CAN
CAN | 0.80 | 0.00 | CLED
CLED | 500 | 20 | | | : | 11 | 3
1 | | PROCEEDINGS
PROCEEDINGS |
MUNICE
MANUAL
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MUNICE
MU | 1000
1000 | NEP 20 charactery rate to
size they fund y member 200
gl do ryl Cost. de byte green as
MD report disease to 6.5
white currier is notify its number CD
1000(1) MDC 2 mode of aduly happen to binner 3.
pre-mitted, proceeding factor 8. | Optoplace transport
Optoplace the
Males of | - | 1.00
0.00
0.00
0.00 | -CML
-CML | -015
-018
0.00 | | 6.00
6.00 | 0.00
0.00
0.00 | 200
0 | | 27 | 10
10 | 200 | 20 | | HAND CODE CO. NO. 3
HAND CODE CO. 134.7 | courts
courts | 1001
1011
102
103 | estaryati ta mieta tetatan is dar da | Otopiam alle
Otopiam trasistica | - | 610 | 611
-680 | -110
0.00 | 1.0 | 60
60 | 600 | 300
0 | n | - | 120 | 41
13 | NA. | | | 1999 | MPROS.
DMM
SLCS-M7
PRINCIC
CARS | major de lite ter expe le miy domain containing 1
dy re-clin
salute corrier le miy 2h mandar 137
profite it choosied cat 1 X | March Marc | | 6.72
6.92
6.70
0.88
0.70 | -136
-071
-135 | 0.00
-G48
0.86
0.86 | 0.00 | 6.00
6.00 | 600
600
600
600 | : | | 100
100
100
100 | 320
81 | 20
20
1 | er
0 | | HANDSECTIONS | PRICE:
CARD
TORRO | CARD
CARD | probe d charled sal 32
system; 930, q stress o 3, st takend tid (painter)
to not jake ringston regulator 5 | Other alle
Optoplasm may
Malma base orbit | regulator | 0.00 | 621
628
641 | 0.0 | 0.00 | 6.00
6.00 | 520
520 | 20 | - | e
e | | | - : | | | | | - | | | | | | | | | | | | | | | | I MANIE COLD COLD ACCORD | 2002 | 232 in by ed33 and want 2 | Raina | aler | CM | -1.08 | -641 | 1.0 | 600 | 600 | 1: | • | * | м. | 200 | | |--
--|--|--|---|--|----------------------------------|--------------------------------|----------------------|----------------------|--------------------------|-----------------------|----------|-----------------------|-------------------|------------------|-----------------| | I MAGGIECE CHO
I MAGGIECE CHO
I MAGGIECH CHO
I MAGGIECH CO
I MAGGIECH CO
I MAGGIECH CO | 0014
0019
0019 | CDM CDM resinate (and anhinology copt
DMD 7 DMM-has helius at 37
MANCAS manusations of pin class 34 member 3 | Manus Marin | ster access of access of a state of access |
6.18
6.18
6.18 | -636
678
-646
338 | -018
036
-081 | 0.00
0.00
0.00 | 600
600
600 | 600
600 | 200 | - | 100 | | 0
14 | 100 | | HEREGE CHES | | 2CHCL the flage CDC-type containing 4
EXRS: rearrequester-femont boding protein 5
MARC confibile to characteristic IS | Cities to
Optophen | major
aller | 1.07
1.02
6.07
0.71 | 118
676
-68
687 | -618
0.38 | 0.00 | 60
60
60 | 601
600 | 20 | n
n | 300 | 320 | | 20 | | I MADORECCI CON A C | DENCE
CHARL
THE | NOTE on control to the mediants of the control t | Maine
Qreplem
Maine | major
major | 0.70
0.77
6.30 | 525
525
-576 | 0.60 | 0.00 | 6.00
6.00
6.00 | 000 | 200 | = | 100 | | | | | AND CONTROL OF THE PARTY | MINISTANCE I MINIS | \$100. See Temporate Foreign (1) and graphs | Other
Pleasable misses as
Optopless | other
sometime receptor | 68 | -car | -022
-022
-028 | 0.00
0.00
0.00 | 640
640 | 600
600 | 1 | 11 | ,
H | = | ** | 10
= | | FRANCESCUARDA
FRANCESCUARDO
FRANCESCUARDO | SMP 30-ACL
SMP 30
ADDR | MMPT 0431 MMP 26 at it was FERA 1 SMAP1 type placeme access to dynomic 29 ADDS adds in 8 | Cities
Quaptern
Quaptern | aler
tempeter
aler | 0.80
6.97
6.97 | -CAS
-CAS
-CAS | -019
-010
-010 | 0.00
0.00
0.00 | 0.00
0.00 | 6.00
6.00
6.00 | 0
0
0 | | : | 120 | 92
200
83 | = | | FRANCISCO CO ANNO
FRANCISCO CO ANNO
FRANCISCO CO ANNO | NOTE SERVICE | SECTION OF THE PROPERTY | Please Mileste
Optoplease
Optoplease | ater
tempeter | CM
CM | -can
-can
can | -617
-648
-611 | 0.00 | 648
648 | 681
680
680 | : | | | = | 20 | er . | | FREE CECENTER FREE CECENTER FREE CECENTER | MARRITA
VINCES | CARRECTA Shall provide and place of place to the CARRECTA Shall provide and place of | Estrace fider Space
Optopious
Optopious | major
aller | 0.00
G.M. | 670
-640 | 0.87
-668 | 0.00 | 648
648 | 600
604
600 | 20
0 | | 27 | - | 17 | | | HAND GEORGE COMME | CHEM
ISH122 | CHES characters to below a CHARACTER proteins. EMEZE behind to formly member 22 | Marina
Optoplasm | ater | 0.75
0.85 | -CMS
CAS
C.78
-C.78 | -641
0.30
0.30
-687 | 0.00 | 6.00
6.00 | 614
628 | 200
200 | | 2 2 | | - 1 | * | | FRANCISCO PER
FRANCISCO PE
FRANCISCO PE
FRANC | DESIGN TO SERVICE AND ADDRESS OF THE | PRESS permindiate to MESS MESS complex school: ELISES goign EST LISES LISES benedig Literal nation ESM-accused | Mai na
Qraptem
Mai na | ster
ster | 0.00
0.00 | -08
081
089 | 0.40
0.46
0.38 | 0.00 | 600
600 | 600
600
600 | 100
200 | | 100
er | | | | | HAND GEOGRAPH 4
HAND GEOGRAPH 4
HAND GEOGRAPH 2 | OMPS
OAC4
PTO-MOD J | CASE or now cases the first of the case | Qtopison
Qtopison | aler | 6.00
6.00 | -6/6
-6/6 | -623
-633 | 0.00 | 648
648 | 0.00
0.00 | : | | : | 100
07 | 200
200 | - | | I MANO CERCES TANKS I MANO CERCES TANKS I MANO CERCES TANKS | EZ | USE USE, and salest processes composed bareing
VARA VARS associated protein A |) Naine
Manufilmine | ater | GM
GM | -000
-000 | -617
-624
-631 | 0.00 | 648
648 | 600
600 | | | | = | 97
300 | Ë | | I MANO COD COS MAYO
I MANO COD COS MAYO
I MANO COD COS MAYO | CITAR
EX | IEE Mission or recovery i protein TREAK THE behave glocally in against place place programmer POCITI programmer disease 1 MOD MAXING total capitales 1 | Optopiaum
Optopiaum
Mari ma | ater
major
ater | 6.80
6.70
6.70 | -CAE
CAR
-CAT
CAR | 0.3
0.0 | 1.0 | 0.00
0.00 | 681
660 | 300
8
300 | | | 300 | 14
81 | - | | NAMEDICAL MAIR NAMEDI | MODE
MARK | MODI MAZdineriuskoprakini
1987: olg lesta nikidOMA landag prakin 1
PRECIA protesphopletice Zastalyti olandisipka | Marina to
Optoplasm
Optoplasm | ater
sheeten | 0.00
0.00 | -638
638
-639 | -026
-034 | 0.00 | 5.00
5.00
5.00 | 618
610 | 200 | e
U | | 10.
17 | 1 | | | I MICCOLONIC 7
I MICCOLONIC I
I MICCOLONIC IN IN | TORSA
PP 1011
USANIA | TORA toranismiy a member A PRESENT protection beginning to the second se | Ottoplace
Ottor | ster
ster | 6.76
0.80
0.73 | -667
624
672 | -018
038
038 | | 600
600 | 661
661 | 20 | | 27
M | | 23 | - | | HAND GEOGRAPT
HAND GEOGRAPT | THIS ARCA | USPS.4. US and invite RNA nat buy fator 11 be4 PMSD protenphages to a NGC 1/MSC 46 pendent D SMSCS toporte and conting at ARKS. at the intelligent SA complex colours is the CINCE Citype instindentals family 2 member 8 | Qtopison
Qtopison
Qtopison | phophstane
majore
stler | 6.M
6.M | -636
642
-630 | 0.00 | 0.00 | 600
600 | 000 | 200 | n
n | : | er
0 | 28 | | | HAND CERT OF THE PARTY P | GACE
MARCO
PREAD | MARIZ microtidule a flutty regulating idea or 2 | Qtoplam
Qtoplam | ites
Items | 610
610 | -630
-630 | 0.36
-0.01
-0.16
0.30 | 0.00
0.00
0.00 | 5.00
5.00 | 600
600
600 | | - | 22
26 | 10.
107
106 | 300
73
300 | 2 | | FRANCISCO CON AND 1
FRANCISCO CON CO. 7
FRANCISCO CO. CON C | UNICED IS. | CASE Copy Institutions being 7 years (1 mg) and | Other
Optoplasm
a Nailes | ater
mayre
ater | 0.87
6.77 | 628
689 | -681
0.38
-681 | 0.00 | 6.00
6.00 | 0.00
0.00 | 200 | 22
M | 3 | 120 | : | 2
U | | FRANCISCOS CONTROL
FRANCISCOS CONTROL
FRANCISCOS CONTROL | HOLDING
HOLDING
IP 30-300730.1 | IMIC Ipophopistik ald expto 2 REPAR MACHAEghner oddorekske complex somiliyil LDC2200000 Uh mali nader rhandegralets 20 kb tehner | Hemationism p
Graptom
p Other | ater
ater | 0.86
0.86 | EAT
EAT
-EAE | 0.38
0.33
0.35
-0.35 | 0.00 | 5.00
5.00 | 601
601
600 | 200
200
0 | = | 26
80
100 | | | 39 | | FRANCESCOUNT
FRANCESCOUNT
FRANCESCOUNT | DCTM
APDAMP | TER takete füllig offeter E
DCNR dynationkert II
NAS NADPHRESSON | Qtoplem
Qtoplem
Estarblis Que | major
major | 6.00
0.00
6.70 | 678
-680 | -071 | 0.00 | 640
640 | 661 | 300 | | a
a | 100
0
10 | 92
8 | - | | FRANCISCO CARRO
FRANCISCO CARRO
FRANCISCO CARRO 4 | ANDS
ANDS | 1985 Agentino durit | Optoplasm
Plasma M emisson
Optoplasm | populario
magne
alter | 0.87
0.88
6.87 | CA 9
-CAB | 0.0
0.0
0.0 | 0.00 | 0.00
0.00
0.00 | 0.00
0.00 | 200
87 | - | 100 | 1 20 | 11
97 | 0
0
38 | | FRANCISCOURSE?
FRANCISCOURSE
FRANCISCOURSE | PERSONAL SERVICE COMP | PDAS protein progles reference slights subset trapest contact
to PDAP to the subset of protein
CDAP cycle of production are 2 towarding protein | Marina
Marina | aler
aler | 6.73
6.93 | - CAR
- CAR | -028
-021
-031 | 0.00 | 0.00
0.00 | 550 | 200 | : | - | -
 | 17
100
100 | | | FRANCISCO MASS
FRANCISCO CONTRA
FRANCISCO CONTRA | LINEAU
LINEAU
NT ANS | HORSEPHCE between make or rise and represent a HCL
URBSIC skipped on page top a regime RC C
HORSEC to the remaining arrange as to the
SVAL SVAL SVAL species. Including factor | Mai ma
Mai ma
Mai ma | ater
majne
majne | 610
610 | -688
64.1
-686 | -048
0.07
-631 | 0.00 | 5.00
5.00 | 600
630
630 | 20 | er . | - | 67
6
86 | 100
8
87 | 6 | | FREE CERCUS CONTRACTOR STORY | PLEPS
ES | SVA1 SVA1apopton induing factor PLEPS rises and parts of 2 panding one 3 to take to a finish banding 1, NAI problem | Option of the control | about about a second | 6.87
0.72
0.86
6.87 | CA 9
- CA 9 | -031
0.08 | 1.0 | 640
640
640 | 600
618 | 200
N7 | 120 | | :
: | : | 2 | | S MICHEL CONTROL AND TO SERVICE CONTROL CONTRO | COUNTY CO | PESS proteins | Qtopiem | mayor arrado | 1.0
6.07
6.02 | 181
-68
-60 | 1.86
-048
0.33 | 0.00 | 5.00
5.00
5.00 | 6.00
6.00 | : | M
M | 100 | 10.
10. | | 0
M
22 | | HAND GEOGRAPH
HAND GEOGRAPH
HAND GEOGRAPH | 189
36629
036 | UEF spoken kinding kencripkon Scho, RM polymera
NO MCD in nomenbase protein 20
CTHS optimies 1 | ur Marina tr
Qingisum
Qingisum | aler
aler | 0.00
0.00 | -C88
C80 | -014
-107
-007 | 0.00 | 646
646 | 600
600 | 200 | 120
M | 27
0
68 | 320
0 | 92 | 25
320
M | | I MADORECTI CIDA
I MADORECCI MAN
I MADORECCI MAN
I MADORECCI STON
I MADORECCI MAN
I MADORECCI MAN
I MADORECCI MAN | THE MEN
CTHES
CTHES
HAVE
MAIS
TARK | CTMS.1 systeties and list little or sis 1. MEAS service leave any little dissipance phosphopotees mentione any little or at bigliocoping of TASS. In binding proteins associated factor 8. | Maine
Maine
ly Passellaniese | ater
ater | 0.72
0.72
0.80
0.80 | 585 | -137 | 1.0 | E 20 | 600 | 20
20 | - | | : | 47 | 10 | | I MICCECCIONO
I MICCECCIONA
I MICCECCIONA | CMPG
APAG | TANK TATA- has bridley probrous control factor in
CAPIC cylinkey's till an exemption below in a
AMIC salapter related protein complete to the 1 colonial | | A continue of the | 0.00
G.MI
0.20
1.01 | -030
-030 | -131
1.60 | 12 | 0.00
0.00 | 600
600 | 1 | | 100 | | 200 | | | I MARICELE COLONO C | CHIPCO AMEDIA AM | | Cities
Optopione | pojitikos
Strace + Ontighenou a Secti, da | 0.00 | 148
-636
618 | -cao | 0.00 | 6.00
6.00 | 600
600 | 200
1
200 | 200 | - : | 0
17
0 | 0
04
28 | 11 | | FRANCISCO INC.
FRANCISCO INC.
FRANCISCO INC. | MANU
MINUTA
MINUTA | ### CENTER Adaptive for advance consisting \$2. THE TO THE ADAPTIVE ADAPTIVE TO THE T | Other
Estrate hide of Space
Optopiosm | dier
dier
phaphase | 0.3E
0.3E | -131
638
-636 | -000
-000
-000 | 0.00
0.00 | 0.00
0.00 | 600
600 | 200 | | ÷ | 0
U | 100
10
04 | 10
10
100 |
 HAND COLORS SECTION SE | UMA
MEMPS | CRCs or given operations up be subset to
URAN skippite the modifier active to proving a
PERFS phosphotod blief filmen to be oring protect of
URANS south and SMI denotes to the protect of
URANS south and SMI denotes to the gift. | Optoplace
Optoplace | ater
major
ater | 0.80
0.87
0.86
0.36 | 085
080
038 | 0.8E
-3.0B | 0.00 | 648
648 | 500 | 20 | = | : | | 17 | | | | KAWIS
HODES | EASTER Changing age of a Particular S | Optoplasm
Mail ma
Optoplasm | aler | G III | -638
618
-686 | -CIS
0.48
0.38
-CIS | 0.00 | 638
639 | 600
600
604
600 | 1 0 | e . | | er
320 | | | | I MARCHECON MOTO
I MARCHECO MARI
I MARCHECO MARI
I MARCHECO MARI
I MARCHECO MARI
I MARCHECO MARI
I MARCHECO MOTO | TEAT
AMIEM | HOUSE beds into relative belowing point of a
Visible in a size makehold great finder it. 1997 — We every an exemple of later 7 40 HOUSE. She style decease to make the part of the ACAL or a picked to part of the style of the ACAL or a picked to part of the Style decease to the ACAL or a picked to part of the Style decease to the ACAL or and A | Optoplasm
Optoplasm
Optoplasm | majne
stler | CM
CM | -cas | -014
-019
-024
0.00 | 0.00 | 6.00
6.00 | 560
547 | : | n
2 | 3
6 | = | | - | | | MATERIAL S | Thinks Incommittee BAL to date and foods tong to | Qrapters
Qrapters
Nation | aler
aler | 6.00
6.00 | -6.73
-6.00 | -628 | 0.00 | 6.00
6.00 | 684
682
600 | 200 | ii. | - | 0
100 | 100
8
84 | G
G | | I MANGEMENT TO A
I MANGEMENT TO A
I MANGEMENT AND A | AFFECT. | MATER MATERIAL POWER APPEL APPROXIMATION PROPERTY TO P | Optoplace
Optoplace
Mailes St | respective shaw, delices, a
respective shaw, delices, a
respective dec | 0.M
0.M
0.M | 0.79
0.88
-1.00 | 0.86
0.85
-03.6 | 0.00
0.00 | 680
680 | 600
600 | 20 | * | 100
100 | | 100 | n
u | | I MADO CECTA TO A I MADO CECTA TO O I MADO CECTA CO | PRODUCT
AM | TOPS In maniphon featur Op-1 NATS the maniphone decrease it PPERED proof in phone plane or a region to you calcust 19 del to ARM superprises industrially and feature MELTE MELTE, super-viewport to conception columniti | Optoplace
Mail ma
Mail ma | phophetone
mayre | 0.86
0.36
0.38 | 618
-638 | -041
-044
0.38 | 0.00
0.00 | 6.00
6.00 | 600
600 | 20 | E. | | 0 | 19 | | | FRANCISCOTO COLORO
FRANCISCOTO COLORO
FRANCISCOTO COLORO | UNIC. | MELTS MELTS, upon strong becomples colored
LMCS been beredag 1
MMCS spit dag Setor Sh colored 1 | Other
Dail ma | ater
ater | 0.37
0.36
0.86 | 628
614
682 | -131E
-081
0.38 | 0.00
0.00 | 6.00
6.00 | 600
600 | 80
80 | | | : | 28 | = | | S MANIGUE COL TAKE I
S MANIGUE COL TAKE A
S A | GPM2
PMGB
HIER | CIPSE continued profession 20032 the fings PTM hypercentring 2 is 10052 MCC and NO department on the department in | Qtoplaum
Qtoplaum
d Qtoplaum | ater
ater
mayor | 0.75
0.75 | 585 | | 0.00 | 68 | | 20
20 | * | | : | : | | | NAME OF COLUMN 7
NAME OF COLUMN 7
NAME OF COLUMN 7 | MPTS 1
RMCS NA | 2072 In figure protect 2.1 ESPS EASP, excellent (polaristic contacting 3. | Mains
Manualdenicase
Other | aler
aler | 0.75 | CAR
CAR | -031
0.37
-039
1.38 | 0.00 | 6.00
6.00
6.00 | 6.00
6.00 | 200
200 | ** | 100 N | : | : | 1 | | I MANICOTTO CON | ACIL
TOURS | THERE THE Opinion of the con- | Estrace fide / Space
Optopiosm
Mail ma | atler
mayre
bloom | 0.87
6.73 | 521
531
-638 | -618 | 0.00 | 0.00
0.00 | 600
600 | 200 | 10
10 | 100 | | : | - | | HANDGE CECOM? | AMOSS
AMOSS
SMIRS | MPCL ship-th for orders dated 12 in (yest) APPCL ship-time-density containing 12 2010C stocking protection. | Optoplasm
Plasma M emissare
Mail ma | majne
ster | CM
CM | 670
-647
-648 | 0.00
0.00
-001 | 0.00 | 6.00
6.00 | 680
680 | | n | e
u | 320
320 | ** | - : | | S MINISTER MAN AND AND AND AND AND AND AND AND AND A | 1905
1905
2016
670
872-7843 | TABLESCO In numericans protein 201 19883. 1981 1984 is adoption of 5 2997101 cities (page 19714) (page containing 2 A7910 A7910 A7914 (box) to supporting anticidentific (P1, comp LOCKISCOS). Locker of the CATEGOR PD. | Nai na
Nai na | aler
aler
bloom | 0.80
0.87
0.88 | -CAR
0.79
0.80 | -676
6.80
6.40 | 0.00 | 648
648 | 600
600 | 10
200 | 120 | 100 | : | 0 | | | HANGED CONTRACTOR | #10-1041
#10-1041 | THE SECOND SECON | is Optoplace
Other
Marina to | aler
es description | 0.M
G M
G M
G M | -0.07
1,112
-0.08
-0.08 | -0.00
0.00
0.00
-0.01 | 1.0 | 600
600
600 | 600
600
600 | 0
M
33 | | 100 | | 10
10
10 | 13 | | | MAC
VARPS
INCOM
PACE
MACE
MACE
MACE
MACE
MACE
MACE
MACE
M | BFSR Interferor e-painting factor 2 landing protein like
URIOR 1 skingster company languagement 20 | Marina
Marina
Marina | aler
major | 610
610 | -C/6 | -cos | 0.00 | 680 | 6.00
6.00
6.00 | : | : | | e.
er | 200 | | | I MANGEMENT IN THE PROPERTY OF | HARES
ASSESSED | PREE protesphape to e, MgC y http://dependentst.
1989/25 or of mender that delt nee 1
ANDELS state 71 feet | Optoplasm
Optoplasm
Mailma ko | phophicus
items
ma deborragidas | 6.99 | 633
686
-686 | -617
-680
-623 | 1.0 | - | 660 | 200 | | 2
2
34 | : | 14
10 | ÷ | | PRODUCED TO THE
PRODUCED TO THE | EX
120 | MET IN CONTRACTOR OF THE PARTY | Other
Other born
Other born | idean
Magne | 0.10
0.10 | -CAS
-CAS
-CAS | -630 | 0.00
0.00
0.00 | 646
646
646 | 600
600 | 0
0
0 | 2 | n
n | 320
0
320 | 28
92 | - | | I MAND CED CES MES A
I MAND CED CES MES A
I MAND CED CES MES A | HART
HART
THE MOSE | 1072 m colonis glycon (transfer mer 2
MART Per l'Instantes a social del degli grane
1000 (1000) (1000) transfer de sigle agrès le bisson (1
1000 MARS) in montendeme protein (100
CLCNs debroite vellage que debuserel (| Optoplace
Cities | inas
aler | G M
G M
G M
G M
G M | - CAR
613
- CAR
CAR | -018
0.01
-015
1.00 | 0.00 | 600
600
600 | 6.76
6.70
6.00 | 200 | ÷ | 11
12
120 | | 92
18
200 | | | PRODUCTION S | DIST
RIENES | CLONE of the life walkage of an electric state PLEORS of making the focusing the mode state PLEORS of making department contacting \$2 SEPC stage in the mile CLONE, limiting protein 6 | Option Cities | major
aller | 610 | 631
-633
-646 | 1.60
0.30
0.30 | 0.00 | 600
600 | 620
621
620 | 20 | - | 100
76 | | i | | | HAND COLOR OF THE SECOND CO. | WHENCE
CHARGE | MHINES Shipter gueste nel esté entenye fictor LE
COMPS CONTRA de la composito de la | Optoplasm
Chier | aler
aler | 0.35
0.86 | 630 | -018 | 0.00
0.00 | | 000 | 20 | : | : | | | - | | FRANCISCO MAIL | BECO
MARTY
MARE
THE BELLIC
GLOBE
GLOBE
GLOBE
GLOBE
SERVE
APPROVED
THE
BELLIC
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
SERVE
S | PREFIG pulgiful visual pulger and unity merker 30 360 MSR to movember protein 28 390, spling later protein and glob retorish. REMAN. As reduced the leading A. PESSS processed largers to below 1.8 | Cities
National
Opening | ater
ater | 0.76
6.76
0.88 | -1.25
-1.72
-667 | 0.00
0.00
-0.00 | 1.0 | 5.00
5.00
5.00 | 618
618
600
601 | M
0
300 | | | : | 200
1 | | | HANGE COMM | PHILIDA
PHILIDAN
NAME | HEALIA Recreiced UTF leading A PERSON perceicement dispersed, follow 1.8 PERSON problemphone on 1 regular try subsett 1.00 1.0001. 100 feeling product like | Optoplasm
Flamma Millerina | temporer
pleopleton | 6M
6M | -68
-68
628
-68 | -011
0.01
-010 | 0.00 | 640
640
640 | 600
600 | | | | 6. | 100
28
97 | | | HERCECUSES | 28A38 | P123 protein lag each later 1.7 P7238 protein phospholae 1.74 pickey subset 1.8 17491 Mr leaking protein like 0922 de completing toppet like 2 T25028 blakeho jibo 2 NOOR MR | Optoplasm
Optoplasm | ater
ater | 610 | -630
-639
581 | -682
-625 | 0.00 | 68 | 000 | 9
34 | | | | 87
87 | 27 | | FRANCISCO CON ARTS
FRANCISCO CON ARTS | PERC POLICE | MODB 90 Ch browleg I, CDM cost complex component PRESC PROPER dates to complex component PRESC PROPER dates to a cost pick when II PRESC PROPER dates as it is not pick when II PRESC PROPER complex to a local pick when II PRESC PROPER complex pick was in the complex or I PRESC PROPER complex pick with pick pick with I PRESC PROPER complex pick with pick pick pick with I PRESC PROPER complex pick pick pick pick pick pick pick pick | Maine to
Maine
Maine | plantere
plantere
mayor | 0.75
6.38
6.38 | -6.38
64.8
-6.67 | 0.61
0.68 | 0.00
0.00
0.00 | 646
646
646 | 600
600 | 20
20 | - | 100 | 120
0
07 | 78
11
87 | | | HAND COLD CO. 78.7
HAND COLD CO. 78.7 | MINDER
MINDER | CREATE. CREATE, sphragelys dis cayabach regulator 1
10,950. suffide quinter relusioned in (year)
ARMS 38 shipfulnes durant containing 138 | Optopiaum
Optopiaum
Ottor | atter
majore
pojitične | C10
C30
C30 | -138
-586 | -016
-016 | 0.00
0.00
0.00 | 6.00
6.00
6.00 | 600
600
600 | 200 | | | 0
U7
320 | 22
200
87 | | | HERCEGO CO. I | PROCESS
PROCESS
TRANSCE | PREC profes planguiste in the big the state of
FEASTED Schildpartner or in Feaster in
CRMSCS, splanguiste or in section for
TRESS. Schildpartner or in Feaster or in
TRESS. Schildpartner or in Feaster or in
ASSECTION Schildpartner or in Feaster or in
PRESS. PRESS. Schildpartner or in
PRESS. PRESS. Schildpartner or in
TRESS. PRESS. Schildpartner or in
TRESS. PRESS. Schildpartner or in
TRESS. in | Optopiaces
Optopiaces
Optopiaces | atler
plasplatue
tempater | 6.07
6.06
6.00 | -03 | -140
-618
-624 | 0.00 | EM
GED
GED | 000
000 | * | | 0
h | = " | 83
83 | : | | | PPECHI
MARK
DISC
TERMS
SCORE
PPEC
POLICO
CHICCO
CHICCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO
MACCO | PARTIES Finding to be appeared and only 150 conciler II PTOM parties required to a "planty december II PTOMEST I have been seen in the state of a two related by a member one 25 SEC. not, 5 and of the wide to equation SEC. 1 Section 20 of two related by the state the state of two related by | Places Marie and
Estrate Mair Space
Maires St | aler
aler | 0.80
0.86
6.98 | -0.00
-0.00 | -018
-018
-014
-013 | 0.00
0.00
0.00 | 6.00
6.00
6.00 | 0.00
0.00 | 200
200
0
37 | = | 22 | 320 | 0
200
82 | 32
3
32 | | FRANCISCO CO POR
FRANCISCO CO POR | MATERIAL THESE | GERES GEOPHING were to red of all 1897/2007 EAPS INTO more other time product in 2 THOSE STATE AND | Graphen
Qraphen | ater
ater | 0.35
G.M
0.87 | -640 | 1.M
-GID | 0.00 | 646
646
646 | 613
600
600
600 | | - | 100 | #
H | 92
22
97 | | | FRANCISCO CO 2011
FRANCISCO CO 2011
FRANCISCO CO 2011 | MATERIAL THREE
TH | MATERIAL SEPTIMENT AND ADMINISTRATION OF PARTY | Madina
Madina
Optoplasm | aler
major | 0.00 | 681 | 0.86 | 1.0 | | | 200 | - | 100 | | | | | HAND COLOR NO. 7
HAND COLOR NO. 7
HAND COLOR NO. 8 | LIBERS
BEREAZ | 1967 T.E. metigito ratio or the E
1965 D. 1965 E.U. evel moder 1964 access tel
19 Ch SAZ Beritt transforms (she 2 when t | Mad ma
Mad ma
Optop laum | aler
temperer | 6.78 | -CAL
CAS | 0.00
-087
1.00 | 0.00 | 6.00
6.00
6.00 | 000
000 | 200
0
87 | 120 | 20
22
100
82 | 100 | 82 | 3. | | HAND GEORGE TARD
HAND GEORGE SEVI | MIRI
MIRI
DWARD | 10 CO.542 Service Instrumental place 2 schools 19 SEC Instrumental bit over 1 PRESS per cell relation 5 CO.666E CO.666 and per cell relation 5 CO.666E CO.666 and per cell relation 5 CO.666E CO.666 and per cell relation 5 | Otalina
Otapiaum
Otapiaum | Mare
major
after | 0.86
6.36
6.36
6.36 | -610
-636
-638 | 0.00
0.00
-0.00 | | 640
640
640 | 588
588
580 | | : | | 10
10 | 87
200 | | | HANGED CO. 6070 | APRIC AMBRIC | APMC adaptor related protein complete to a Lobust MENAL and protein complete to a Lobust MENAL and protein and a complete to a Lobust MENAL and protein and a complete to a Lobust MENAL and protein and a complete to a Lobust MENAL and protein and a complete to a Lobust MENAL and | Optoplace
Optoplace
Optoplace | aler
manytanogáso | 0.71 | 549
549
582
580 | 0.39
-G03
0.38 | 0.00 | 640
640
640 | G82 | 20 | - | | | 14 | | | HECTORNA
HECTORNA | DIRECT PARTY | COST DET STATEMENT A UNIT STATEMENT (AMERICAN TO AMERICAN THE | Marina
Quaptern | aler
aler | 0.75
0.87
0.87
0.80
0.76
0.76 | CAD
CAD | 0.00 | 120 | 6.00 | 600 | 20
20
M | 120 | - | | : | | | I MICCOCCU THE
I MICCOCCU THE | MICES
MICES
CODESSIV
MARKE | ECC SC deling counts such only A member 7
ECC sylved different at ornig delay factor 3
ECC SC counts on year 3, endered now non-catalytic of | Clier
Name | ater
maps | 0.M
6.7h | 611
-625 | 0.00
0.00
-0.00 | | 600
600 | 600
600
601 | M
20 | ** | | - | ** | 1 | | HAND COLUMN T | HAZE
METH | SECT MINISTER THE SECTION OF SEC | Qtopiem
Qtopiem | there exists | G.75
G.96
G.77
G.85
G.86 | -CMI
CM 4
CM 2
CM 2 | -022
0.38
-024
-020 | 0.00
0.00
0.00 | | 600
600
601
601 | M
20 | | | | 97
28
19 | | | I MARIC CELC COL ANY I MARIC CELCOL CON TO I MARIC CELCOL COL TO I MARIC CELCOL ZUA I MARIC CELCOL ZUA I MARIC CELCOL ZUA I MARIC CELCOL ZUA I MARIC CELCOL COL T I MARIC CELCOL MOTO I MARIC CELCOL MOTO I MARIC CELCOL MOTO | AMERICA
AMERICA | APIN as plantocopy app Merby drivine URLS shape the file I ANDRES assess INATE REPR. classified DRA proceeding II, and I sales to DRA proceed URLS assess to protein complex colorest are I URLS also pitches. | Queplan
Naina | aler
aler | 6.10 | -686 | -019 | 0.00 | 600
600
600 | 000 | 1 | | 100 | u
u | ** | | | HANDGE COLORS | GPZI
UBL7 | | Qraptum
Clier | temporer
alter | C 10
C 10
C 10
C 10
C 10
C 10
C 10 | CAR
CAR
CAR
CAR
CAR | -016
-016
-012
-016 | 12 | 640
640
640 | 600
600
600 | | | 100 | 320
M | 200
89 | er
er | | NECOTECH MATE | PROTEIN PROTEI | PETP palpople 3, trades a captar point of channel late. NATION MACHINE options colored to be colored. St. NATION COLORED COL | a Citier
Optoplasm | ater
mayor
ater | 0.72
6.98 | CAR
CAR | -011
0.80
-011 | | 500
500 | 600
600 | 20 | | | 100 | 13
13 | 2 | | FRANCISCO CON MARIA | MAPET | 2003 Into Supple to A 12 | Graphen
Graphen
Graphen | ranis berrapaken
litean
alber | 0.07
0.39 | 547
549
510 | 6.30
6.80
-GDE | 0.00 | 600
600 | 634
600
600 | 20
20
20 | = | 76
100
36 | | : | | | HECTORIAN
HECTORIAN | PLINETS
MARTS | MARCA selection (1) and an | Paratterizae ar
Estarbist type | phophstan | 6 M
1.00
0.07
0.06
6 M
6 M
6 M
6 M
6 M
6 M
6 M | -CAR
-CAR
-CAR | 0.M
-040 | 0.00 | 640
640
640 | 000 | | 2 | 100 | 12
320 | 78
84 | 1 | | I MICOTOL COL | HT PAGE | MEXICS microspherale protein 3 phospherale protein 5 are obey pater and plan 1990. MATERIA Starling dates become being 5 EARMA EARMA, member 803 among one faintly | Qraptom
Crier | temporer
alter | CM
CM | -CM
-CM
-CM | 0.00
0.07
-625
-636 | | 60 | 500
500
509 | i | : | 100 | | 81
82 | | | FREE CECCO WES | TARS
MIRCOS | PRINCIS Represent to dy and 3 | Clier
Chapters | mayor
alter | 0.00 | CAR
CAR
CAR | -627 | 0.00 | 600
600 | 000
000 | 200 | | 2 | 30 | 87 | - | | I MARIO CELCO COLA I MARIO CELCO MITTI I MARIO CELCO MITTI I MARIO CELCO MITTI I MARIO CELCO MARIO I MARIO CELCO CANA | M TO
GENTS | COST or grade one obtailed data? METER metals is COST optailed to mouts before one of EMMAL langulate content offer or one of EMMAL langulate content offer of APPER ONE obtailed one of the obtailed of the obtailed of COST description before great or each of the ording of the observations before of MALANTON problem. | Chier
Quaptern
States | ater
ater | 0.80
0.30
0.30 | 585
585
-68 | -016
0.35
-017 | 0.00 | 646
646
646 | 647
600
600
601 | 20
er | 70 | | | ** | | | | CM1
M 100
GLAP3
IMMA
APRIMS
CHOR
GENLS | | S Qraptom
Qraptom | aler
aler | 610
610 | -68
-68
-180 | -013
0.00
0.00
0.00 | 0.00
0.00 | | 600
600
600 | 20 | | 100 | | 11
17
200 | 0 0 | | NAME OF COLUMN TO SERVICE OF THE SER | CENTER
CHANCE
CONTROL
SENSES
MERKE | CB/D demand geredigters D | Marie Mari | | 6.00
0.78
6.00
0.76 | -136
-136
584
-581 | -0.00
-0.00
-0.00 | 0.00
0.00
0.00 | 600
600
600 | 600
600
600 | 17 | | - : | | 97
87 | | | HEREGISTERS | NEWS | CAMAX company of the protein of receils 2 fee alpha calcust 12
SDA25. SDA3 discuss containing 3
SDA56 multi-learning 8 | Nai na
Nai na | ater | 0.0 | 544 | 1.0 | 0.00 | | 600 | 20 | e | | : | F MAND COLD COM ZON 3 COMMON NOT | OMBOT pro-nai ne og serbe om oktelyndrot. Nai na | dler C.M. | -627 | -62% | 0.00 | E4B | 600 | | | | ш | н | | |--
--|--|--|---------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|---------------|------------------------|----------------|--------------------|------------| | B MINISTERIORES DECHOS
B MINISTERIORES AREA
B MINISTERIORES AREA
B MINISTERIORES PARA | OCHOZ codel-cal felte code do de bell a dana trocció bing 2 Qúaplaco
SOMM constany carrier menha ne probleta Qúaplaco
ARROME ACERTRACIÓN DE LA CETTRACE do la gradan E Qúaplaco | other CM therefore CM tempore CM tempore CM tempore CM tempore CM | -CM
CM4
CM9
-CM8 | -087
-026
0.06
0.00 | 0.00
0.00
0.00 | 600
600
600 | 620
620
620 | 300
300 | | 1 1 | | ï | | | PRODUCTION INC. | 1994 IPH respite AL Permit entrare 1880 until depute the modifier 2 Rainet Reines ATMS AT gettion, the sempering introduction to comple. Opinion | Manue C.M. Majore C.M. Language C.M. | 681
-68
-680 | -012
-028
-081 | 0.00 | 640
640
640 | 000 | 200 | | : | | 11
92 | | | PRODUCTION OF CP | 1970. IPV complex Ad. comp | strenture respts C.M. | -em | 0.75 | 0.00 | EAF | 0.00
0.00 | 200 | | 100 | 320
0 | | | | I RECOGNIZATE OCCUPANTO DE PROPERTO PRO | 1990 1990, OATE complex school: Extraor falor Space MESS make to despite press 2 Quiption TOPPICA Extraor parties parties complex 6A Quiption COMP | ather 0.20
majore 0.00
ather 0.00 | 68
68 | -011
-120
-021 | 120 | 600
600
600 | 600 | : | : | | - | 14 | = | | HANDERSHIPS CTORES HANDERSHIPS HERE | CRIME of AMP responsive denient liability protein 2 Nai na. Sie Clariffa. character 21 querre miligrar et M. Clair . LICH is grant de predestración e explor cose proteir . MUNI MUNICAGO de complex ciudad S. Quejaloni. | ater CM atter CM atter CM atter CM atter CM | -628
-625
534 | 0.36
0.03
-0.29 | 0.00 | 600
600
600
600 | 618
681
660 | 200 | 3 | | 320
M | 78.
23. | | | NAME | Similar Simi | na dythoreguidar C.M.
na dythoreguidar C.M.
ather C.M. | -640
687
678 | -075
-010
0.75 | 0.00 | 640
640 | 600
604
600 | 100
100 | | 100 | | 87 | - | | FREEDERSHARE FORUM
FREEDERSHARES FAMILIANISM
FREEDERSHARES FAMILIANISM | PORTO protect for decouple and excess 2 Grapham RPK riske for his own Common Common Grapham LIFES debytes quarity pagetisk = 26 Grapham RPM strand land debyte (Fastar & Grapham) | iteme CAT | 588
-580
566 | 0.60
-043 | 0.00 | 648
648 | 0.00
0.00 | 200 | | 100 | | 14 | | | I RECORDINATE POPUTO I RECORDINATE POPUTO I RECORDINATE POPUTO I RECORDINATE LIPER I RECORDINATE LIPER I RECORDINATE ACRES I RECORDINATE DI APPL | ICM channel of detections of Quiplion IRIS Operational Community of Quiplion IRIS bishit in ICM accorded protects Quiplion IRIS bishit in ICM accorded protects | peptime 0.00 citer 0.00 librarie librar | -CAS
CAS
-CM | 0.00
0.00
0.07
-0.18 | 0.00
0.00
0.00 | 5.00
5.00 | 0.00
0.00 | 300 | u | 100
27 | 16.
0 | 11 | | | FRANCISCO CARD | First | Engels C.S. Engels C.S. English or guider C.S. | CAR
CAR | 0.38
0.33 | 0.00 | 648
648 | COR
COR
CAR | 200 | 107
NA | | : | 97
2 | | | # MAND CED CES 277 # P FTS # MAND CED CES 277 # P FTS # MAND CED CES 282 CES 28 | PT BHD1 projekty* BMA hydral and domain containing 1 Quipliam PT1 Interferon takend practically be state apople region. Plannational page 1000 B DMD-hashelise at 30 Marina. | ater 6.73
ater 6.88
eague 6.88 | -000
-000
-000 | -018
-081
-034 | 0.00 | 6.00
6.00 | 6.00
6.00 | : | : | : | 67
66
66 | 92
92 | | | March Marc | CEUTS of an impetit AREA con field protein 1. Planna Milenia are
PEOS planial to and for There became being 6. Opposition
1988 to be recommittee or MIT sheld for most fine the being 6. Neal man
REAR ICS. Sent trapperson 70. | Manager C. Million | 548
581
-138
-638 | 0.00
-0.01
-0.10 | 0.00
0.00
0.00 | | GAS
GAS
GDD
GD2 | 100
HT | - | - | : | 11 200 | 9 | | FREEDERSCO SHEPT
FREEDERSCOTO SHEPT
FREEDERSCOTOTO | The parties are the parties of p | ather C.M. Inter Brakstylanderight C.M. C.M. | -cas
670
-cas | -0.10
0.30
0.30
-0.20 | 0.00
0.00 | 600
600 | 600
600 | 34
300 | 20 | 3
10 | | 81 | × | | HANCESTANDS INVOICE | BENDE Incomment and NEO report domain cost about 3. Other USFS shapeds upon the populate 26. Mail ma 37.3 Mail on the physical or disaggrave 2. Mail ma PERSONNEL production typical or disaggrave 2. Other | atler C.M.
peptiden C.M. | 582
578 | 0.83 | 0.00 | 5.00
5.00 | 500 | 200 | = | | 1 | : | 1 2 | | HANDERSHOP STATE | THE AND PROPERTY OF THE PROPER | C N
C N | - CAN
- CAN
- CAN | 0.07
0.38
0.30 | | 620
620
630 | 587
579
520 | | 11 | | | | • | | HANCOSCOPASION CONTRACTOR NAME | MCMR mit dramaume relities mer ongles conposet li Halles. CCS shapen in cotating SCF calcut IS Qriplam TADAS to morphism alignor S Mailes. Vir | states 0.00 cm | 681
-638
-640 | -080
-082
-081 | 0.00 | 6.00
6.00 | 0.00
0.00 | 200 | : | | 320
M | 82
84 | - | | I MANOGERICA MAN DN
I MANOGERICA MAN DA CON CONTROL
I MANOGERICA MAN DO CON CONTROL | 1860 la numembrare på til a fisking pratein 9. Optopken
MFC: v opt antomynkreptere tid vir al necept or henning. Mail ma. Vir
CROCO: opti når predestid mer i skilder 20. Optopken. Vir | tempole C.M. c.M. c.M. c.M. c.M. c.M. c.M. c.M. | -000
-0.76
-0.76 | -017
-081
-048
-010 | 120 | 500
500 | 600
600 | | | : | | 87
81
200 | - | | | MOT ring Engerscheide Z. Maines State auf der State aus Geschafte und der State auf auch der State a | major C.U. major C.U. major C.U. aber C.U. | -CAS
EA7
-CAS
-CAS | 0.38 | 0.00 | 6.00
6.00 | 600
611
607 | 200 | 107
0 | 20 20 | 32
0
32 | 87
8
300 | | | EMICOROLINE MAIN
EMICOROLINE MAIN
EMICOROLINE MICH | MAIN NG2 access bed at language to 1
PPRICA phosphat dybrodisin's phosphate to blasse type 2 a lybra Gytoplasm
FIEE PTM, ModRP and Mr. domain containing E Gytoplasm | C.12
 D.17
 D.17 | 641
649 | -082
0.60
0.00 | 0.00 | 640
640 | 520
520 | 200 | | | : | | : | | FRANCESCENISC ARE
FRANCESCENISC MAKE THE | CONTROL CONTROL COMPANY AND AN ANALYSIS OF THE CONTROL | ition C.M. | -6.38
EA1 | -631 | 0.00 | 540
540 | | 200 | E E | • | | | 120 | | FREEDERSTEE APE
FREEDERSTEET PARTITION
FREEDERSTEET MATERIA | MRN ADP Interplates State 4 Quipleon MACCINA (surject to separate And only 37 certifier A3 Other MACCINA poly(A) pil press segarate MACCINA (surject) poly(A) pil press segarate | saler C.M. | -CAT
101
CAD | 0.38
-014
-001 | 0.00 | 5.00
5.00 | 525
520
547 | 200 | 320
10 | 2 | | | 31 | | FRANCISCOTONING WITHOUT FRANCISCOTONING DOMOS | TYDC1 TH done broad and 1g2 Ophysican
DDRS DDRD done broad and 1g2 Ophysican
MERA methodes of books as A Ophysican
MERA pundle MA landing family member 1 Ophysican | magne 0.00
magne 0.07 | 047
049
-139 | 0.00
0.00
-0.00 | 0.00 | 5.00
5.00 | 583
583 | 200 | 10
10 | - : | | 20 | a
a | | FREGUESIAN RELL FREGUESIAN REC REPO | PAREL purchis MA landing family remains 1 Quiplaces MELS rai gas new exclusivals disease to not revisit or like 2 Quiplaces MAPI or Market parts NO ACTEA APP 1 of the related protein 1 homologia, centralizacjal Quiplaces | atler 0.00
ther 0.00
temporer 0.00 | 211
211
-23 | 0.87
-0.88
-0.05 | 0.00 | 640
640
640 | 600
600
600 | er
20 | | | | 11
11 | | | NECOTION C. TALL NECOTION NE | ACTES A APT a clin-value by praise 1 homology A, contractine by Opinpleon Thought numerous contributing 7 THAT this pursue breathpit readware Opinpleon PRECENT probleminate Collection in SECH Opinpleon | diller C.SI mayore deal actor mayore deal actor mayore construction c.SI mayore C.SI mayore C.SI mayore C.SI mayore C.SI | -0.00 | -625
-627
-627
-648 | 0.00 | = | 6.00
6.00
6.00 | | | | = | 14
17 | | | NOTICE N | PRICES protectioner column in ME H Grephon UMM shapes upon by particle M E shape filed rights PARCESA family at in openine and only 20 no miles A Cities SSON centre and opposite the particle of the ME A Cities | major 0.42
aber 0.42 | - CAR
- CAR
- CAR
- CAR | -628
0.00 | 0.00 | 680
680 | 500 | er
0
200 | 10
0
30 | 36
100 | 300 | 200 | | | B MANG CECCHOM-C SKIPS B MANG CECCHOM-C PHANCE B MANG CECCHOM-C ELC B MANG CECCHOM-C PHANCE B MANG CECCHOM-C CTAE | Section of the Control Contro | March Marc | 048
087
111 | 0.36
0.85
0.86 | 0.00 | 5.00
5.00
5.00 | 6.00
6.00 | 200
87
86 | e e | : | : | : | 24
24 | | PRODUCEDANT CTA | CTE cate part Opiques BACIC BACIC Quiples SEE inc top width denies containing I Nail au | popular spaint trickers, alone 0.00
alber 0.00
alber 0.00 | -04
-02 | 0.00
-034 | 0.00 | | 640
640 | 1 | : | u
2 | | 14
84 | e
E | | HANGEGERATH BAARMS HANGEGERATHS BOY HANGEGERATHS BOY HANGEGERATHS BY HANGEGERATHS BY HANGEGERATHS BY HANGEGERATHS BY HANGEGERATHS BY HANGEGERATHS BY HANGEGERATHS BARR HANGEGERATHS BARR HANGEGERATHS BARR | NEP9 NEP9 such in print Nation | ### 0.10 ### 0.00 ### 0.00 ### 0.00 #### 0.00 #### 0.00 ########## | 676
-685
688 | 0.87
0.89
-0.08 | 0.00
0.00 | 6.00
6.00 | 600
600
601 | 200
0
200 | 10 | 100
100 | 320 | 82
11 | 0 0 | | FREEDERS ARTS
FREEDERS ARTS
FREEDERS 327 MPSP 2 | 20100 in fage years 200 Had na. ARCED AP balling construids in by Consider 20 Had na. AND sufficient Security of the Consider 20 Had na. AND suffield a below-final or B. FENDS phosphorizing prophosphore consists to dye. Caller | aber 0.00
aber 0.00 | 081
087
042 | 0.00 | 0.00 | 640
640
640 | 600
604 | 20
20 | 120 | 100 | | | | | NAMES NAME | March Marc | ather 6.30
majore 6.31
mais barregulator 6.10 | -030
-030
-030 | 0.38
-675
-601 | 0.00
0.00 | 640
640 | 000
000 | : | | | == | 97
97 | 2
22 | | FREDERICK OF SOCIAL | ESEATS be to 4, by laruncept in sub-size 2 Optoplaces
VARE VARP accepts bed protein 8 and C Record Membrane
SCCSS suppressor of ophibite 4 yes big 5 Optoplaces | ather 0.00 phophstone 0.00 | -10 | -001
-001
-000 | 0.00 | 5.00 | 600
600 | 20 | - | | | 20 | - | | B RECORDED AND COPEL B RECORDED AND P P P P P P P P P P P P P P P P P P P | COPICS conductor praises conjunctable Spense 3 Optoplaces POPM printing and explorations, non-receptor type 6 Optoplaces ROSES — no contracting over 67 Maries ROSES — optoplaces ROSES — optoplaces | Employer C.S. phopheton C.S. mayine C.S. keepolie C.S. | 678
628
648 | -613 | 1.0 | 600
600
600 | 600
600 | 20 | | 2 | | | E. | | FRECODOS DE COMPOS
FRECODOS ESTA
FRECODOS DE COMPOS | 23.35 option 3 Quiplon 3 Quiplon DEST Quiplon DEST STORY STO | phophrane 4.30
aller 4.37 | -128
-627
583 | -015
0.07
-028 | 0.00 | 640
640
640 | 500
500 | : | | | | 200
88
16 | a
a | | I MINORECTIONIS DEN
I MINORECEDICIS PARTIN
I MINORECEDITATO 1 TUR. | DITM destin, adtrologispresting factor Optoplano MACINE phosphales and action against 6 Manual Ambrone TRI TAIS, classifier invited to of factor Male as | ater c.m. | 507
581
584 | -611
0.60 | 0.00 | 5.00 | 0.00
0.00 | 11
10 | = | | : | | : | | I HANCOEDE DE ACE INFORME | 1951 15.6, risease extendendaria Railea. WARP use of exceed the disease parts in 2. Please of exceed to the control of co | other C.M. majore C.M. c. other C.M. c. other C.M. | CAR
CAR | -02%
0.36
0.37 | 0.00
0.00 | 600
600
600 | 620
620 | 300
M | | M.
100 | | 87
8
0 | * | | FRANCESCHARD MY AS
FRANCESCHARDS MY AS
FRANCESCHARDS BAASED | MEP migra has and invasion to bid any protein Chier MERS metable to consisted it in improvember 2 Mail max to a CHART of its and fing also mentals and protein NY Chier EARCE SETS regulator y NEL complex subset 12 Mail max | atler C.M. c. Aybunragistar C.M. atler C.M. | 65 E | 0.8
0.8
-0.11 | 0.00 | 6.00
6.00 | 600
600 | 100
100 | 100 | | : | 44
0
200 | n
n | | NOTICE OF A 1 1 1 1 1 1 1 1 1 | EAREZ IA. To regulatory NEL complex subset 12 Mail eas. M.ZSA bronnedsman ned june to the finger denset n.SA. Had eas. | aler 0.00
d.10
aler 0.00 | 6.77
-6.00
6.8.8 | -000
0.00 | 0.00 | 645
645 | 636
636
638 | 200
200 | u
u | 4 | - | | ÷ | | HERCEGISHS CC) | Che CCE characters operating Earls 33 Qriplem CCS characters strong ECT-closes to Qriplem ECS Bullets SC States and SCS Bullets SC States State | alter 0.37 alter 0.37 alter 0.39 alter 0.30 alter 0.30 | -C38
-C38
-C31
-C48 | -028
0.82
-047
0.86 | 0.00 | 646
646 | 618
620
620 | 0 | n | 120
11 | 220 | 2.0
9.7 | | | | | | -000
083 | 136 | 0.00 | 500
500 | 600
600 | | × | n | | | | | FREEDERFEET COME
FREEDERFEET COME
FREEDERFEET STR. IL. HA | | major C.M. | -CAE
-CAE
-CAE | -018
-018
-007 | 0.00 | 648
648 | 660
648
660 | 200 | | | | 20 | | | THE CONTROL OF | 2002 into Bage 1950 qui nomb bing 1 Spinglam Naria 1950 qui nomb bing 1 Spinglam Naria 1950 qui nomb bing 19 | manyon C. Mi saher D. Mi pegishina C. Mi nen Aplaneragishina D. Mi saher C. Mi saher C. Mi saher C. Mi | -000
-000
-018 | -016
0.38
-027
-021 | 0.00
0.00
0.00 | 640
640
640 | 600
600 | 300
1
300 | er
E | M
M | | - | | | FRANCISCO CON PROCESSOR STATES | ESPC1 riscoul excellenging entrol Miller 1 Graphon EST 26 verter/frechte et land 16 Graphon | ther 0.30
0.30
0.30 | -CM
-CAD
CA1 | -081
0.25
-008
0.60 | 0.00 | 600
600
600 | 0.00
0.00
0.00 | 200 | | E. | 15.
17 | 87
14 | | | FREEDERSCHARTS CAPE
FREEDERSCHART TOTAL
FREEDERSCHARTS FREE | CASPS carports Optopless TRC Harridge Optopless PHC pulphore-city burning 8 Mail no. You | lines C C C C C C C C C C C C C C C C C C C | -607
-607 | -CAD
-CAD | 0.00 | 68
68 | 611
600
600 | M.
0
300 | E
M | - : | = | 19
21
19 | 6 | | FREEDERST METERS IN THE DE FEMORE COLUMN 7 MAY 1 | Prince proportion in coming in the contract of | temporter 0.00 diler 0.00 | -0.07
-0.02
-0.08
-0.09 | -0.1
0.3
0.40 | 1.0 | 600
600
600 | 600
600
601 | 100 | 1
18 | 1 2 | | 87
88 | 2 | | HANDGEGLAND AND
HANDGEGLAND VICE |
876. by dain be Nai na ACR2 Artistar with scaled cod, a skystersport and PH denotes Nai na VERS VERSE, RCCF 4 skandi PPERS proble ophosphe to 2 reg da tary subsett 127 Cither | ater CM | -00
-00
-00
071 | 0.38
-012
0.38 | 0.00 | 640
640
640 | 629
633
660 | | | | - | 27
81 | | | I MICCOECHICA GRACII | ACM Antiform Antiform Control of the | aller C.S. | CAD | | 0.00 | | | 200 | - | - : | i | : | - | | FRANCESCHARM CATAN
FRANCESCHARM MCCHA
FRANCESCHARM MAI | CLERG subpress 1 Result relate FECULE MECHANIC report 61 les 2 TO TO THE CONTROL PRODUCT OF | aller 0.35
major 0.46 | -000
118
681
680 | -028
0.00
-014
0.30 | 0.00
0.00
0.00
0.00 | 640
640
640 | 000
000
000 | 100
200 | | ur
M | | | | | HANGED STATE OF THE CALL C | 190. 100 probate product manifested Mitch brokes protein. Malman. MICO section of swap of finate of the region factor 2 Malman. MICO section of swap of finate of 1 Malman. MICO section of swap of finate of 1 Malman. MICO 1979 of ong InC probating on 20 Claw. | Executive C.25 on dythorographic C.56 other 1.50 | -640
340 | 0.36
-0.29
-0.65
1.06 | 0.00 | 600
600
600 | 600
600
600 | 200 | 2 | 1 | 120 | ** | | | B MANG CRECKS 2700 MCC NA.2 B MANG CRECKS AREA ARE | NACE AND CONTROL OF THE PROPERTY PROPER | aller C. S. | -040
640 | 0.86
-181
-680 | 0.00 | - | 600
600 | 30
31
M | 10
10 | 0
27 | + | 200 | 100
21 | | FREE CECTOR IN SERVICE FREE CECTOR IN SERVICE FREE CECTOR II | BACOM BACOM BACOM COMMENT OF THE STATE TH | atler 0.00
tiler 1.02
migne 0.02 | -611
126
688
627 | 0.M
0.M
-617
-587 | 0.00
0.00
0.00 | 6.00
6.00
6.00 | 620
620
620 | 20 | 22
12 | 10
17
38
0 | | | | | HANDERSON PROPERTY OF | CCSRS confederal center dispersion S Chieve Commission of the Commission Commission S Commission Commission APP PS completely or control protects belong protects S Optopheno WEST control control from p 2 National | milyon 0.00 ciber | 627
628
638
-687 | -614 | 0.00
0.00
0.00
0.00
0.00 | 60
60 | 618
600
600 | er
20 | | 21 | | 14
11 | 27 | | PHILOGEOGRAPH PHILOGEOGRAPH PHILOGEOGRAPH PHILOGEOGRAPH | MAC section related blue 2 Had no. MAR major lab.comps Milly complex, do a.1, 8 Planna Membrane and CRECI CONTROL security descript. 2002 dis finger product ACE Mail no. Sec | states recepts c. to | -030 | 0.00
-643 | 0.00 | EST
EST
EST
EST | 500 | | | 1 2 | | 75
200 | | | FREE CECTOR AS NOTE AND FREE CECTOR AND ADDRESS OF THE ADDRESS OF THE CECTOR AND ADDRESS OF THE CECTOR | 2012 in top point 22 Name to N | ater 0.00 | -628
637
-628
640
641 | -018
-120
-087 | 0.00
0.00
0.00 | 600
600 | 600
600 | M | | : | | ** | 120 | | FRANCESCO MEP
FRANCESCO MET BRANCESCO MED 1
FRANCESCO MET GAR | ADDF Technological Control Con | these 0.39 the three 0.40 three 0.30 | EA1
EA1
-64
-646
-646
682 | -018
-022 | 0.00 | 620
620
620
620 | 620
620 | 10
10
1 | | 1 | | 17
1
100 | | | PROCEEDINGS 1971
PROCEEDINGS 1971
PROCEEDINGS CR2 | PRINTER providing enough manifement per trademit beta. Optoplasmi 1975. 1975 has brieflig meletina ensisted film 1975. National beta. 1975. CRES. combile for degeneral enrel defenden 2. Optoplasmi 1975. Maria Manifement 2. Optoplasmi 1975. Maria defenden 1. I sin auch faller Space. | magner C.M. C.M. C.M. C.M. C.M. C.M. C.M. C.M. | -630
682
631 | -026
0.38
-129
0.30 | 0.00 | 600 | 613
600
600 | 200 | n
e
n | | | 21
2
19 | - | | E MANDESCO MAIN SCAPE
E MANDESCO DAN 7 SPANSE E
E MANDESCO DAN 7 SE SPANSE
E MANDESCO DAN 7 SE SPANSE | TOTAL 10-5-bit belong prima excidentate 11. Marina se
COSS 1 seried and page and red deplayate 2. Option
10-75 Seried and page and red deplayate 2. Option
10-75 Seried and COS asset the Classic 1. In the Dark Page
10-75 Seried and red deplayate 2. Page 10-75 Seried and
10-75 Seried and 10-75 10- | An | 631
646
646
-686 | 0.00
-048
0.07 | 0.00
0.00
0.00 | 600
600
600 | 600
600 | 200 | E . | - | | 87
87 | m
n | | HAROTECHEN BANK | SCAME In the expline A manufact protein to the E.E. Extraordistriques MARICE MARICANISM submit 6. Quiples PMRS protein adjuste to project product 12. Quiples | aler c.m | -cos | -019
1.00
0.01 | 0.00
0.00
0.00
0.00 | 580
580 | 620
620 | 20 | | 100 | | | | | PROCEEDS ON BANK
PROCEEDS NOT MARKS | Proc. | diler 1.56 diler 1.57 diler 1.57 diler 1.57 diler 1.57 diler 2.57 diler 2.57 diler 2.57 diler 1.57 | 681
638
640 | -088
-111 | 1.0 | 600
600
600 | 000 | 200 | - | | 120 | 87
66
82 | e e | | PRODUCTIONS TRANSAP
PRODUCTIONS TRANSAP | 1998 exteryots to edition block to block II Quiplion 1:
1994/1997 1994 on except to 1a cut to dynamic 1: Mail no
MAPS 14 exchapped 224 Mail no | asia taong aktor 0.30
aktor 0.35
kempater 0.35 | -687
643
646 | -0.00
0.00
0.00 | 0.00
0.00
0.00 | 600
600
600 | 600
604
600 | 20
20 | - | m
M
100 | : | 11 | : | | E MINICERCES 1725 CHARLE
E MINICERCES 2008 MANO 2
E MINICERCES AND 2 MINAMEN | TREATED TO THE LABORATION THE LABORATION TO THE LABORATION TO THE LABORATION THE LABORATION TO THE LABORATION TO THE LABORATION THE LABORATION THE LABORATIO | aber 0.00
aber 0.00
aber 0.00 | -C-08
0.70 | -627
-628 | 0.00 | 600
600
600 | 6.00
6.00 | | 12
12 | * | : | 81
0
22 | - | | FRANCIZZONARIA MEDIA
FRANCIZZONARIA MEDIA
FRANCIZZONARIA MEDIA | MRCTU mediator complex calculat 32 Mail ma Su
MAID MCLECA maint are dynamic mile 1 Quinplaces
20/201 also finger provid mile 1 | ater 0.00 | 0.70
0.14
0.17
0.24 | 1.00
-0.09 | 0.00 | 600 | 600 | 20
20 | 1 | 100 | : | 11 | ÷ | | B MADIC COLORS COLORS COLORS BANGE COLORS CO | DROSS CO. The Shape or price in Co. T. Marie And C. O. 2017 and Marie Alland Co. C. O. | ather 0.32 ather 0.37 ather 0.37 ather 0.37 bloom spit doe 0.30 | 626
663
662
668 | -CIS
C.O. | 0.00
0.00
0.00
0.00 | 68
68
68
68 | 620
620
643 | 200
200
200
200 | = | 12 | | 1 | | | F MANDESCRIPTION CAPACITY F MANDESCRIPTION TO THE CAPACITY CAPACIT | MAPTEL stringer mei der beforste bestellt auf 200 geforste in 180 | aber 0.00 | 648
681
603
671 | 0.00
0.00
-0.10 | 0.00 | 620
620
620
620 | 643
660
647
660 | no
no | | | | | n
e | | PROCEEDING BOTH | 1975 100 Hos skyl glasse miter gergelengken plant 1 1982 die dem ble oppress palen 1 protein 2 1984 per 1 1984 die dem ble oppress palen 1 protein 2 1984 per 1 1983 die dem ble oberingen 1 proper 1 1983 die dem ble oberingen 1 protein 1 1983 die dem ble oberingen 1 protein besteht 2 1984 des dem ble oberingen 1 o | aber 0.31
printing 0.45 | E21
E44
E44
E47
-676 | | 0.00
0.00
0.00 | GEE | 620
620 | 10
20 | - | | | 17 | : | | E MANGEMENTALE TAMASTY E MANGEMENTALE COLUMN 1 DATE | ECC - Eas come the CCAR motion probe the 2 - Opinions ECC - as the thing value or obligation is complex when 3 - Color TMMA 7 - Interspects 27 - Color ECC - drags of the 3 tyling ball or ECC - drags of the 3 tyling ball or ECC - drags of the 3 tyling ball or ECC - drags of the 3 tyling of the 3 tyling of the ball of 17 comple Opinion | # 10 TA TA | 637 | 0.E
-628
-637
-628 | 0.00
0.00
0.00 | 600
600
600 | 600
600 | M | n
n | | | 20
28 | E . | | March Marc | AT FIRE AT speciase, No temporting mitadeads in FI. comple Optopleon. SCOR. solido carrier family to render At Pleasand minute. TABRICANA La numericane protein SEA Cities CCCS or file damagine is No. No. No. No. No. | ### 250 | 640
643
648 | -031
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 640
640
640 | 676
661
688 | 100
100 | E E | 22
M
M | | | : | | PROCEEDINGS ONEMA
PROCEEDINGS OFFI
PROCEEDINGS OFFI
PROCEEDINGS | DHOLD DAMAN India e G Clar
AREM A7-6 horeathe does both Maries to
CAREAL as paging oth protein of must a7-few sliphe calcust 13 Quiplace. | magner 0.40
on dylanory dator 0.40
other 0.40 | CAS
CAS
CAS | 0.38
0.38
0.36 | 0.00 | 5.00
5.00
5.00 | 628
620 | 200
200 | e e | 100 | : | : | 6 | | FINE COLORS FLORAL PLANT FOR THE PARTY FLORAL PLANT FLORA | PLE DREPT : pl micrat in harmal age; and REM districts constanting NET par Clave PORT : per harder in PERMAL : ribus must prove out to the | aller 0.00 cm | 130
-60
631 | 0.76
0.80
0.82
-0.18
0.83 | 0.00
0.00
0.00 | 600
600
600 | 000
000
000 | 20 | - | 100
07
00
10. | | 0
0
84
11 | | | HANGE CECTARIS VARPY HANGE CECTARIS VARPY HANGE CECTARIS ANNI | A19.01 A 79 or 8 mily, AAAA danaks containing 1 Cities 19.867 or 84 is account the dimension or prote to 7 Optioplace PO INC For three drive NCI Marines A086 jargent homelog 1 Optioplace | tanpole CS7
dier CS6 | -647
-649
-638 | -CAE
-CAE
-CAE
-CATE | 0.00 | 620
627
628 | 6.00
6.00
6.00 | : | | | 120
EL | 97
84
200 | 120
120 | | March Marc | The color of | 1999
1999 | -6.0
-6.6
581 | 0.00 | 0.00
0.00
0.00
0.00 | 600
600 | 661
680 | 20 | M
8 | | 10
10 | 15
14 | | | FRANCISCOTO COMPANY FRANCI | CRMCD3 CORM down income being 2 Other
WIDES NO repent down incid. Open place
MIDES nuclear acceptor subdemity 2 group C member 2 Mail max. More | diller 0.00 peptition 0.00 peptition 0.00 0.00 0.00 | 641 | 1.0 | 0.00 | 600 | 600
601 | 20
20
20
20 | * | n
n | : | : | 2 | | F MADICIPECTY 788.8 MEX.T 2 MADICIPECTY 788.1 MEX.T 2 E MADICIPECTY 788.1 MEX.T 2 E MADICIPECTY 788.0 TAYRS | MATTES studio hydrósi er 22 Nasi ma
1975 1975 hab histog praktos ancaktelifat er 25 Mai ma
1978 1978 (minte chekpatoprote n Nasi ma | aller 0.00 | 514
518
513
-538 | 0.0
0.0
0.0 | 0.00 | 600
600
600 | 681
600
600 | 20 | | | B
B7 | 11 | 11 | | THE RESERVE THE | - com man, man desputations Hales | | E/I | | 1.0 | - | CAR. | | | • | | • | • | | I MANGEMENT I | ARCE | VACSE VacSE, MEMORS complex companient Optoplesm states AMES AT in interesting dates to State and State of Optoplesm states AMES AT in interesting dates and State of Optoplesm states and Optoplesm states and Optoplesm states are set of are set of Optoplesm states and Optoplesm states are set of se | 0.88
0.38
0.38 | 582
586
-585 | 0.3
0.3
0.4 | 0.00
0.00 | C.CD
C.CD | 620
623
620 | Mo
Mo | 107
104 | | : | : | 34
38 | |--|--|--|--|-------------------------|--------------------------------|----------------------|----------------------|----------------------|-------------------|------------|-----------------|---------------|----------------|-----------| | HANDERCHAN
HANDERCHAN
HANDERCHON | ARCE
PARE
CONCE
ACCE
WORKE
PARE | All the Content of the American Content of the Co | 0.00
0.01
0.07
0.00 | -040
646
647 | | 1.0 | 68
68 | 600 | 300
87 | - : | | : | 17
17
0 | | | HANDOECH MAN
HANDOECH MAN
HANDOECH MAN | ACI
WORK | MCCI on the tig signal contemptor 1 complex is band it. Questions minyme WCRIII WC report doctors in 15 and the contemptor of contempt | 0.80
0.80
6.58 | 541
548
-617 | | 0.00 | 600 | 679
677
688 | 20 | 12
17 | : | | - | | | HANGER COMMA | ATTEMAT | PTS. adapter relabel/protein complex S best 5 stated. Percental methods besporter
1982/2073. king interprets recognish to coding ENR 3 15%. Cliber of her
1913/25. 1912/20 benefit of which trafficking protein. Qipplican other | 0.M
0.M | -617
641
587 | -011
0.0 | 0.00 | 6.00
6.00 | 663
660 | 200 | | | 0 | 72
14 | - | | HANGER COVERS
HANGER COVERS
HANGER COVERS
HANGER COVERS | PARTIES
DRAWES | 1862 2019 Inglieb genit compact handing 186, 138 (the aller 1862) 187, 188 (the aller 1862) 187, 187, 187, 187, 187, 187, 187, 187, | 0.7E | -137 | 0.33
-003 | 1.0 | | 508 | 20 | | | ÷ | 92 | • | | FRANCISCO CO PER 7
FRANCISCO CO SEPS | SCHIR
CARE | CAME uskun/usknatulan dependen perten kinase | 0.86
0.96
0.86 | -638 | -588 | 0.00 | 6.00
6.00 | 000 | 100
100
107 | | | | 11 | - | | I MARCOLLOS
JONS I MARCOLLOS GAIS | ACT SHALL SCANE AND ACT SHALL | An | 0.88
6.30
0.87 | 676
628
682 | 0.80
-029
0.30 | 0.00 | 6.00
6.00 | 000
008
000 | 200 | - | er
e. | - N | 83 | ÷ | | F MANGEMENTS NO. 1 | UNIFE
DTDS | MMM-1 Mitterfament nacht dag 16 eils gelich probint igen 1 Graphen entgen
DTD1 D-graph-Stitchmayland Q | 0.ML
G.30 | -68 | -082
-083 | 1.0 | 600 | 600 | 20 | | | 17 | 10 | - | | HANDERS OF STREET | DATES
DOG 4 | MACLES MACLES COMMANDER CO | 0.87
0.30 | 583
583 | -028
0.07
0.35 | 0.00 | 620
620 | 000
000 | 20 | 17
18 | E. | | | 2 | | HANGER CO. 191
HANGER CO. FACE II | 100 LHZ | PARES problem con-25 tabutat, restrict years (prigition surpress TREATS thing gift with problem (1 the prigition state) TREATS thing gift were part to continuously and the problem (1 the price of | 6.12
6.17 | -040
-146 | 0.35
-021
0.89 | 0.00 | 600 | 000 | | | - | 220 | 200 | er
1 | | I MICCELLED WAS | 1000 INCO | NCSP2 states of explaining profess school 2 NAME STATES S | 0.80
0.90
0.76 | -086 | 0.80
-620 | 0.00
0.00
0.00 | | 600 | 0
0 | - | * | - | 71 | 2 | | HANGED COURSE | AARA | PDD1 betweedser*fement (Endysphies 1 Clar aller PPP) PPD1 betweedser*fement (Endysphies 1 Clar aller PPP) PPD1 publisher*fement (Endysphies and Femilia) on Select 1 Clar aller aller aller Annold aller and engeneers ship betweeds present Clark and Endysphies (Clark and PCA hip Series, Series) and Endysphies (Clark and PCA hip Series, Series) and Endysphies (Clark and PCA hip Series, Series) and Endysphies (Clark and PCA hip | 0.8
6.86
6.78 | -607 | 1.00
0.30
-0.11
-0.04 | 0.00
0.00
0.00 | 640 | 000
000 | | - | 100 | 20 | 87 | | | HEREGISTANIA | MARKET SERVICE | ARIAN d yie - sigumma digin bindag yaran (yayabin alav
KINE migi Caliglid an, darishin 1 (yayabin aniyara
MANATOS MANATOSIN dariya darishin 2 (the alav
SISTEN DI Balang darish yaran da Cile alav
COST (bindag darish yaran da | 0.70
0.70 | -628 | -004 | :
: | 671
600
600 | 680
600 | 200 | - | | | ** | 10 | | S MINISTER CAN MAN S MINISTER CAN ZON S MINISTER CAN AND S MINISTER CAN AND S MINISTER CAN AND | V13
V13
COM1 | AMM # pipe or digenome spin being prome of the control con | 0.75
6.95
0.86 | - CET | -0.04
0.00 | 1.0 | 68
68 | 600
600 | 100 | | a
u | ÷ | 71. | ÷ | | HAND CONTRACTOR | COPUR | NCMP of the code speciment to the protein Optiquism other CCMPS CCMP application school TS NCCS regulated of chronouse condens No.1 Optiquism other NCCS regulated of chronouse condens No.1 Optiquism other | 0.86
0.76 | 617
516 | -128
0.88 | 0.00 | 68 | 000
000 | 20 | er
er | 100 | : | | - | | HANGED CLIMAT
HANGED CLIMAT | MILES
ANNERS | ECCS regulater of thromason condensation 1. Opinion when
MEDIP MIChamaig 2, of enables produced updates compared 1. Cities after
AMMAPIS She ITHER activities products 2. Opinion after | 0.00
0.00 | -038
03.7
-038 | -040
0.00
-0.18 | 0.00 | 6.00
6.00 | 600 | 200 | - | 100 | | 0
18 | - 1 | | I MINICOTO COLADO | N MALE. | MENTS we've and any token of the planty the fair S. Mad max other
ATMEN, atmin 15 fee Med max other
CODES S. DENDO-fee below or ME. Chipe maybe | 0.87
0.86
0.36 | EAT
EAT | 0.00
0.00 | 1.0 | 6.00
6.00 | 000
000 | 20
20 | | 100 | | - | | | HEROTOPINA
HEROTOPINA | 2002
61200 | 2092 the large OPP-type containing 2 Other other
8.2393 to be leaded to emptor colored be to 1 Manual Americans assumed leave receptor | 0.50
-C.60 | 0.7%
-G46 | -618
-670 | 0.00 | 6.00
6.00 | 550 | | n
n | 20 | | | 20 | | I MARCOLLOT (1997) I MARCOLLOT (1998) I MARCOLLOT (1998) I MARCOLLOT (1997) | ORCE
BUG | ATTICLE AND ADMINISTRATION OF THE | 0.ML
0.ML | CAC
-CAR | -648 | 0.00 | 6.00
6.00 | 660 | 20 | | | : | 11 100 | | | FRANCISCO DA A
FRANCISCO DO DO A | NUS
NORT
MER | HET H.S. (Threatylate faits Helman Vana dylatory idea: 2002). He hope protein 1873 : Clar diler: 1864. ediler: 186 | G.10
G.12 | -can
618 | 0.34 | 1.0 | 640 | 6.00 | 11 | 2 | | | 87
28 | | | HANDERCONS
HANDERCONS
HANDERCONS
HANDERCONS | AMCTES
OPE
NA
GAMPIE | AND FI A7-back-containing transsipation faster 3 Mail ma transl alphanory allers
C100: cheshpate with further dendring frager dendring. Mail ma margine | 0.60
0.60
0.60 | EAST
CAS | 0.37
0.87
1.37 | 0.00 | 68 | 650
650
650 | 100
200 | = | 100 | | : | | | HANDERSCHAFT
HANDERSCHAFT | R SPE
MRSP
MRSP
GLAA | ERT.FE : rise and past int. o passing me is the other the other than th | 6.16
6.71
0.87 | -648
-628
6278 | 0.48
-0.88
0.36 | 0.00 | 628
628 | 600
600 | 1 20 | 2 | | - | 88
87 | - | | SHOOTE CLASS HAD CEECH MY 2 HAD CEECH MY 2 HAD CEECH MY 2 HAD CEECH MY 3 | GRAA
HIPEXP2 | 1879 On Antichical in Chancel prises TO Quiplant other CLLAS calls 64 Marian PAPELOT PAPELONG are prises TO Quiplant income CLLCOM calls 64 Marian cannot be part or T CLLCOM calls 64 Marian cannot be part or T CLLCOM calls 64 Marian cannot be part or T CLLCOM calls 64 Marian cannot be part or T | 0.60
6.60
0.86 | -038
-030
641 | 0.33
-048
0.38 | 0.00
0.00 | 640
640 | 631
660
660 | 200 | | | 200 | 28 | 10 | | HERECONSTRUCTS | HUPESUP 2
CODEM
SP SED
MATERIA
SECUP 3
SEC. ARC
MARKE | CDC08 oxided all district states (1965) 18 Mail AA diller
1910 1920 mail own (oxidy positric
MATELES MATE is used commissed. Quipplace aller | 0.85
0.85 | -CMI | 0.38 | 0.00 | 6.00 | 000 | * | | E | #I | 97 | , | | FRANCISCO NAS
FRANCISCO COMOS 2 | MODEL
MICAN | 18 CDP. Shaashna etialise Claimandayalasine paradagese 1. Clair other
25 CDMI in Mayer of Schill and CCM dominant. Mail na. Sans dysteropiator
18 CDI. phany blank 9 CDMING below bit a subset. Gyraphan mayer
mayer | 0.M7 | -686 | 0.36
-0.17 | 0.00 | 600 | 667
660 | 200 | | 2 | 300 | 87 | n
n | | D MARCOTTON AND D
D MARCOTTON AND A
D MARCOTTON AND A
D MARCOTTON AND A
D MARCOTTON AND A | III MAT
VIMAN
OPIGIO
Chiefo | MESS plans (sin gli Michageli kota bira subati Galajahan mayar
ISERE) i kerkebah (paguahar kerseba andapa pada 1.
Galajahan YARIS Kerseb gayaraha, qara kemis kedi palah) Manusi Keribawa dalam
GESS TERBA KERSEB (garan), qara kemis kedi palah Manusi Keribawa dalam
GESS TERBA KERSEB (garan), pada Kersebah Galajah Andalah Manusia pada napak
Manusia Michaga ke Maranga pada Manusia Manusia dalam | 0.00
0.00 | EAS
EAS
EAS | -182 | 1.00 | 620
620 | 660 | 10
20 | W. U | • | : | | 10 | | FREE CECESTAL
FREE CECESTAL
FREE CECESTAL | | IDP-232 II parké noccipi edve ceptra 232 Planta Mieroka ne protein cospiel exepta MINDE BIN complem historia edito protein MICOS 22 salate certra frança nemen 23 Qinplanta Sengarare Proposer | 0.30
0.30 | -611
586 | 0.37
1.36 | 0.00 | 6.00 | 600 | M 200 | | : | 27 | | : | | I MANO CERCIA STATO I MANO CERCIA STATA | 8942
8942 | PECF ingulatory facility and and played in State and Asset Sta | 0.87
G.80 | -on | -624 | 0.00 | | 620 | 200 | * | 27 | u u | н | 2 | | FRANCISCO NO. | ACHE
MORES
MORES | ### regulatory lates it is consisted projection. Real lass. Based places gained and gained and places gained g | 0.80
0.80 | -0.00
-0.00 | -628
-680
0.83 | 1.00 | 6.00
6.00 | 660
660 | 20 | | | | 92 | | | PRICEDIANO | ETVL
ETVL | Section 2 - Committee of the Committee of Co | D.ME | 584
528 | 0.00 | 0.00 | 6.00
6.00 | 000
000 | 200 | | M.
NT | : | 14
17 | 1 | | B MARIC CELL (M.1.) | 3071 | 201 in the best birthing investors. National transportation of the control | 0.39
0.37
6.71
0.39 | 001 | 6.21
6.32 | 0.00
0.00
0.00 | GAT
GAT | 0.03
0.68 | 200 | | n
W | 27 | 10 | 27 | | HAND GEORGE OF T | MAG. | 19 102 deg di official în CET battle, dont di nocio bate; 2 Rad nat minyme Filipit. Rad nat minyme Filipit. Rad nat minyme Rad nat | 0.76 | 687
682
681 | -020
0.30 | 0.00 | 68
68 | 000
000 | 20 | e e | 27 | | | n
N | | HANDSCORES | # 1942 | ACCORD | 0.82
0.88
0.88 | 547
549 | 0.0
0.0
0.0
0.0 | 120 | 6.00
6.00 | 600
604
600 | 20 | 0 | 2 | | | : | | HANDER COLUMN
HANDER COLUMN
HANDER COLUMN
HANDER COLUMN | API. | ATL abstict Theol. Green State Communication | 6.10
0.36 | -68
611 | -618
-682 | 0.00 | 60 | 000 | | 11 | | ů. | 11 | - | | PRODUCTION AND A | 18 MG | ACCESS. Adhesion if you to not copied or opport to Planna Manual Manual or opport on copied or opport
TABAS I faye to entir containing 12 Clier albert
MERIA introducing to information products. Quantum albert
albert. | 6.10
0.36
0.40 | DAT DAT | 0.30 | 0.00 | | 000 | 30
300
300 | * | | 77
0 | | | | Main COD COD 4004
 Main COD COD 2001 | MAP2
SESPE | MAPE 2 pubplich-fissed polymorane2 Maries minyme (k. 1916), APE-7
1919 on the mining bloom in sphing bride it. Maries states
1911 - Maries the market bride bride is dead to the Copylighton of the Copylighton and Copylighto | 0.85
0.86 | CAT
CAD | 0.86 | 0.00 | 6.00
6.00 | 000 | 200 | er
er | 100
100 | | - 1 | : | | I MARIC CELCUMA. CELC | APE. | 1991. Audaryaki kandidan kelelan kake E nikuti L. Qiqilani diber
AARAH. Adinawa sahiri garabasi bib. Malana diber
TARINCES Lamandawa pida 158 talambiar Igan diber
EPRIDE ERMyandiarah bis quthan danah sagi C. Qiqibian diber | 0.ML
0.ML
0.ML | CAN
CAN | -0.10
0.36
0.36 | 0.00 | 68
68 | 600
600 | 20 | = | M.
100 | | | - | | HAND CERTAIN S | MARKE
MARKE | ADDRIL A disease where appropriate like National address of the National State of the National State of the National State of the National State of the NATION NATIONAL STATE OF | 0.60 | E87 | 0.40 | 0.00 | 68 | 660 | 100
107 | u | | : | | : | | I MANCOETCH MAI I PHINCOETCH | EMP2
EMP2 | MET MET MET MET
MET | 0.8E
-0.16
0.87 | -G40
G48 | 0.00
0.00
-0.01 | 0.00 | 6.00
6.00 | 600
687
688 | 100
100 | 17
18 | 10
10 | M | | | | FREE CECURAL T | UNION . | RECO SECT orange sile place 2 Option deliver Companies of the | 6.10
0.86
0.87 | GAS CAS | -028
0.33
0.86 | 0.00 | 600 | 604
638
600 | 200 | - | | : | 11 | | | FREE COLOR COLO | THE COURS | NECOSIA SECTION OF SEC | 6 M | -680 | -682
0.37 | 0.00 | 600 | 666 | - : | - : | 2 | | 97
200 | | | HECTORS I | PER
PER | O SEC con and designation of Option Designation of Section Sec | 0.85
0.87 | CAN
CAN | 1.0
1.0
1.0 | 0.00 | 620
620 | 000
000 | | ÷ | 100 | 1 31 | 0 | | | HAND COURT AND A SHARE A | 2001
2001 | MERALS seurdamakhilikus Optoplaan diber
2002 in begin parkas St. Malana kana phaningidan
2008 in begin parkas St. St. Ciber diber
MICIN besikhanningi, nada onjoh kompaned Optoplaan kanparbe | 0.M
6.M
0.M | -0.00
-0.00 | 0.25
-648
-614 | 0.00 | 6.00
6.00
6.00 | 600
600 | 200 | - 1 | 1 | 120 | 17 | | | PROCESSAND | O MA
MANG
PRIS
MINAZ
2000A
2000A
3003A
MOTORS
WORLS
300G
FRANC
PCRS
PCRS
PCRS | WCDS WCD bearing, code on your Encapeared Coppeared Sequence Sequence Code Code Code Code Code Code Code Cod | 0.00
0.00 | 101 | 0.E
0.E
-0.0 | 1.0 | 6.77
G/D | 000 | W 200 | 20 | 20 | | 67
0 | 2 | | HANDERS TO STATE HANDER | SMBG
RBGG
RCBG | \(\sigma \) \(\sig | 0.86
0.76 | 679
688 | -CA1
0.07 | 0.00 | 600 | 550 | 20 | 200 | 100 | | | | | DESCRIPTION TO 2 | MAG
DOM:N | PRATE PRATE, WIST opening prisons regulator Optophore other SHEELINE SHEELINE SHEELINE SHEELINE SHEELINE OTHER OPENING SHEELINE S | 0.80
0.80
0.80 | -can
679 | -617 | 0.00 | 600 | 6.00 | 11 | ÷ | * | - | 84 | 2 | | FRANCESCURE?
FRANCESCURE?
FRANCESCURE? | MATE
MATE | ECR2 ICO the paradistre or 2 Optoplants other 256/22 into tage under region 2 National other 256/22 into tage under region 2 National other 256/22 into tage under the S National other 256/22 into tage under the S National other 256/22 into tage under the S National Optop 258/22 ta | 6.10
0.30 | -CMI | -018
-028 | 0.00 | 6.00
6.00 | 600
600 | 20 | 1 | | 0
U7 | 97 | 20 | | HANDSTECHNET
HANDSTECHNES
HANDSTECHNES
HANDSTECHNES | MATE
MATE
MATEA | 2007.2 Des Sept modelings 2 Marie of the Part | 0.73 | 679 | -082
138
0.8 | 0.00 | 620 | 000 | | | | 27 | 75
10 | - 1 | | FRANCISCOURSES
FRANCISCOURSES
FRANCISCOURSES | VIIIIN
DISCRE
PREZ | PRET profes sid-7, sympts Cities sides | 0.00
0.00 | -68 | 0.00 | 0.00 | C/B | 600
600 | 200
200 | 0 | - | | i | | | HAND CONTRACTOR AND ADDRESS OF THE C | MIRT
UNMG
PORT
SMITS
POR | USD Adaptive quality agents of a State paginise Adaptive quality quali | 0.88
0.80
6.88
0.88
0.87 | 628
621 | -649
-53 | 0.00
0.00
0.00 | 66
66 | 687
660
660 | 20 | | 1 | : | 62 | | | HAROGEOGRAPH
HAROGEOGRAPHO | PCR | SPECS upoda propinga 25 (pubanomi recentrin) Quiplem difer
POS topordo S Natina Europerior | 0.88 | -08 | 0.30
0.30 | 0.00 | can | 600 | M
200 | | | : | 17 | | | HAND COLUMN 1
HAND COLUMN 2
HAND COLUMN 2 | LIB 2.1 ACTION 1 TEXTS TRANCI TRANCI MINITA MINITA MINITA MINITA LIBRO PERSON LIBRO | Section of the companying regional to a section of the companying region region of the companying region of the companying region | 0.00
0.00
0.00
0.00
0.00
0.00 | 040
018 | -617
0.00
-627
1.00 | 1.00 | 68
68 | 683
660 | 200 | | M
0
100 | : | 14 | | | PROCEEDINGS | TRAFCS
SHIFTS | 127.79 signal transitions and an loss of its annual base for the complete | 0.80 | CAR
CAR | 0.00
0.00 | 0.00
0.00
0.00 | 6.00
6.00 | 687
687 | 80
20
20 | * | 100
81
78 | | | | | I MINICOLONI GENE
I MINICOLONI GIMO | MERCE
HELPES | METRICS instructional to influence by protein 128 Quippleon other
1997/200 METRIC approximation of the state SED Quippleon engine
1909/19 principleon by providence 1 Other other | 6.12
6.12
1.40 | -68
-68 | -644
-687
130 | 1.0 | 6.00
6.00 | 000
000 | -: | : | | 10.
10. | 84
87 | | | HANGE CONTRACT | DIFES
LIBERS | MCD071 | 0.00
6.00
6.07 | -625 | 0.33
-0.18
-0.14 | | 660 | 000 | 20 | = | | : | 83 | n
H | | HAROGEOGRAFI
HAROGEOGRAFI
HAROGEOGRAFI | 80135
CTIMES | METHOD Material prices and review in the SE Street | 0.80
0.80 | -CAE
617
-CAE | -014
-048
-041 | 0.00
0.00 | 6.00
6.00 | 6.01
6.00
6.00 | 300
0 | 72 | : | | 28 | - 3 | | FRANCISCO CALLOR | 0901
1970 | DOTAL (ing Equippedia) and proposed property of the Company | 0.86 | 637 | 0.30
0.35 | 0.00 | 6.00 | 622 | 900
M | 100 | 12 | : | 64 | : | | PRODUCE CO 2774 | IMBIT
TANK
HOR
CHARTS
EM13-68033 | Million | 0.85 | 140
670 | 120 | 0.00 | EM
EM
EMB | 650 | 200
87 | 320
107 | | | : | - 1 | | HANGED COMES
HANGED COMES | CDAIN | IE[CE3] skippind optaloune credicts at complete trabulat 1. Optaphon surpre-
CEASY Complete A quibble. Optaphon Stone
SMOT complete A quibble optaphon CEASY complete optaphon stone | -0.10
0.86 | -0.71 | -049
0.38 | 0.00 | 6.00 | 0.00
0.00 | 20 | : | M
M | 0 | 11 | | | I MANCOTT COMMON | 9007
900
000
2076
QQB | SMOOT until stab destricts had prov? Other other TEXES Integrate up and destrict 1 Manual Kindowse beschansed DEST 9 seasons Control money 1 Specialism minyee SMOOTS on Stap provide STR Other other CEXES COntrol reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destrict one of the STR CEXES CONTROL reports for destricts for the STR CEXES CONTROL reports | 0.86
0.86
0.86
0.90 | -047
649
-070 | 0.30
0.30
0.30
-0.24 | 1.0 | | 600
600
638 | 100
67
86 | n
u | | : | | 2 | | HAROCECCANES | COCH
MERALD
HUMAT | 200700 its frage product 275 (The after CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 0.00
0.00
0.00 | -0.00
-0.00
-0.00 | -014
0.0
-015
0.00 | 1.0 | 6.00
6.00
6.00 | 620
620
620 | er
e | | | 1 10 | 20 | n
e | | HANDGE CLAVE I | CON. | HOUSES began neighing becamt side the confirmation - Option - emission - emission - COMP - Albert CO | 0.86
0.86
6.98
0.98 | 54 H
507 | 0.39 | 0.00 | COR. | 600
600
600 | 200 | E | | | 11
8 | | | FREEDOM NO. | HICH
EDAMES | TITRE to called in privacy hear in this sor E. Oping beam bloom. NECES SECT AND | 0.86
0.86
6.37 | 544
607
587 | -01E
0.40
-110 | 0.00
0.00 | 630
630 | 600
600 | 200 | | 0
07
33 | | | 1 | | HAND CE COMES
HAND CE COMES | HMEX | Compare | G.M. | -642
682 | -040
0.m | 0.00 | 640 | 000 | 200 | e
u | | W7 | : | | | FREE CECENTRA
FREE CECENTRA
FREE CECENTRA | EMOSE
EARS SE
DRAFT
DIVA
PIOR
ATPLE
TOTAL | #MITS regulation of make you with distance containing 28 Maries of the Committee Com | 6.50
6.50 | 672
-646
688 | 0.81
-0.17
0.80 | 0.00 | 6.00
6.00 | 0.00
0.00 | 100
100 | | 20
100 | | 94 | E | | I MICCECO NAS
I MICCECO NA 7 | 100 A | OPE dipositifying takes 6 Manual Menterane pagatake bijding (pin, sh
PLB personani lang mendulatur 6 Qripsion mayor
APEL APP quidway (14 king and administrative comple Qripsion kempunter | 0.70
0.70 | -08 | -613 | 0.00 | | | 20
M | | | : | | | | HANDERS THA | THE APPAI | APSE AP-quitan, He kampurtag mitadandra i Porcumpi Gyinpinon kumpurter
APSE APSENDE, Arts on sporting admini diplos Monta Manda denirane kumpurter ne, elberynis ar | 0.00
0.00
0.00 | Cate | -612 | 1.0 | cas | 620 | 87
87 | er . | | : | | | | HANDER CONTRACTOR | AFFAS
GERCI
VWEN
AMOUNT
CCDCGE | A7931 A79 of lar ji-ta ngaring shant djis 1 Mana Minisa Esspair is et district in 1800 (Mary than 1800) (Mar | 0.00
0.00
0.00
0.00 | 238
238 | 0.00 | 0.00 | 6.00
6.00 | 681
688 | 200 | - | : | : | 17
0 | n
n | | FREEDOM TO THE | COCO | 1800 worker indeed tolse and the second seco | 0.00
0.00
0.00
0.00 | 528
676
-528 | 1.0
-011 | 1.0 | 68
68 | 600
600 | 200 | | 100 | - | 82 | | | HAND GEOLEGY ENG | DNAE1
MAPSE | MRDP MRDP, seamons or advant of mRD stocking Faster Optiophen share CRASCI. CRASCI. So Links their participation from Springling-controls CI. Options share PARTIS. published residently sensitive 32. CRASCI. SINGLIFE Control polymorance from State 32. CRASCI. SINGLIFE CONTROL | 6.00
6.00
6.00 | -08 | 0.86
1.25 | 0.00 | 6.00
6.00 | 600 | | | 76
100 | | 92
88 | | | HAND GEORGIA
HAND GEORGIA
HAND GEOLOGY | GASE SHAPE SHAPE SHAPE SHAPE SHAPE SHOP SHOP SHOP SHAPE | PRETE, price from the present only proportion to the proposal service of the price | 0.62
0.67 | 545
546 | 1.0 | 1.00 | 6.00 | 629 | 20 | u. | w
w | : | | : | | I MICCECLERA
I MICCECLERA | MATERIAL COMPANY | NCSSAES salve carrier is mig 30 member 65 Cpapison Swapper to
MANDO. Family all segment during 700 member A. Ciber abler
CAMPS salpen 57 Optopion payments | C.10 | -028
-028 | 0.40
-0.10
-0.18 | 1.0 | 680
680 | 600
600 | 107
100 | N N | 100 | M. | 0
15
22 | 100 | | HEREGE CLYMS | ET MOT
DIAM | CART usipin 7 Gippinen peptiken
11 MOT 18 Ar rela tel hjelte mikr danst noombring 7 Gippinen diler
DRP1 DR1 man kedpentet n.1 Had man Fann dyberreg skilor | G 100
G 100
G 100 | -637
-636 | -681
-628 | 0.00 | 6.00
6.00 | 000 | : | y . | | 86
85 | 83
92 | 8 | | HANDGEGENATO
HANDGEGENERA
HANDGEGENERA | NUMBER OF THE PERSON NAMED IN COLUMN |
Color | 0.86 | -6.00
68.7
-1.11 | -028
0.30
-031 | 0.00 | 6.00
6.00 | 661
660 | 200 | | a
3 | M
0 | 72
8
300 | 2 | | HAND GEORGE | MARIE MAPER | 102 may find data time out 1 PARCE proteome 2021 to be of your find out 1 SAME PARCE proteome 2021 to be of your find out 1 SAME PARCE to the green of the ord of you do find out 1 SAME PARCE to the green of the ord of you do find out 1 SAME PARCE TO | 676
0.00
0.00
6.00
6.00 | 683
681 | 0.00 | | | 000 | 16
200 | H 10 | : | : | : | | | FREE CECENCE
FREE CECENCE | TIMA
API | 1937: 1935 linding prints 2 Graphian statyre
2016: Laufin dylae Entrachdur Spine syldi se | 6.60
6.66
0.78 | -636 | 0.00
0.00
1.07 | 0.00 | 638 | 000
000 | 27 | 2 | 100
100 | - | 88
72 | | | FREE CECUTORA | 2022 | 128.87 IZ a 60° annated 120° dera troops being Nai na dher
20'03 into Supe punks 322 Nai na Shen a Shen a Shen a
PAMS pundh MS kindag (andy number 2 Nai na dher
10'733 cannat (all dera 64'data 21'dat) | 0.39
0.36
6.30 | -68 | -613 | 1.0 | 0.00
0.00 | 600
600
601 | M 300 | | n
M | 100 | 92 | 2 2 | | HANGE CLUET | 1073.1
1907 | SEPEL strong led detections the Land Street | G.10
G.86
G.16
G.36
G.39 | -040
044
048 | -039
0.39
0.07 | 0.00 | 68
68
68 | 650
650
650 | 200 | - | 2 | er. | 83 | n
n | | HANGED COURS
HANGED COURS
HANGED COURS | 1176
1176
16 1003 | | -C.16
0.36 | -CIR
-CIR | -CAS
-347 | 0.00 | 6.00
6.00 | 000
000 | 300
* | 2 2 | : | *1 | 7E | n
er | | FREE CECURAL | TERE | URBAN skipp Stratter Setar MA Grapton mayor
TORS to refer of SERIE, 2 National other
MANN STRAINS (F. 1977) | 0.00
0.00
0.00 | 581
140 | 0.00 | 1.0 | 6.00 | 62%
620 | = | - | n. | | : | : | | FREE CECUTARY
FREE CECUTARY | PAR NE
COLARE | MEMBER EMblanding useff protein GE Cliev skier
FARTIER femily de negemen end sit Monandow E Nationa skier
CCEMAZ stalignetige V Jahra Claim Estates Main Space skier me on skiel blanc | 6.17 | -CIB
147 | -024
-031 | 0.00 | 620
620 | 663 | 0
M | 2
2 | : | ** | | M
U | | | CTI of S | COMAS collagration of place to the collection of | 0.88
0.89
-0.50
0.80 | 607
671
-678 | -048 | 1.0 | 630
640 | 000 | 200 | E 10 | 1 11 | | 21 | | | HAND GE GET TATA | TREE
SPENS | AECE AP healing conset each bridge consists 1 Manual Members Unsupertur
1982 I tilder paradition and 2
97-9351 Geold School, some replacingle 1 Manual Members of other | 0.40
0.40
0.47 | -640
670 | -67%
-677 | 1.0 | 680
680 | 600
600 | 20 | | : | : | 92 | 120
17 | | HAROGE CLASS | 296G
296G | 2022 25 role held 2 Planta Miller Steel Mill | 610 | -016
320
688 | -075
-019 | 1.0 | 620
620 | 000
000 | 20
20 | | | - | 21
27 | | | HANDSESS NESS | RCI PARCI PA | CETM crebs 2 Nation regree | 0.88
6.76
0.88
6.10
0.80 | -cas | -029
-025 | 0.00 | CAM
CAD | 681
668 | 1
200
20 | | | 87
0
77 | : | | | HAND GEOGRAPA
HAND GEOGRAPA
HAND GEOGRAPA | HIERT
HIERTON
HIERT | TREMENT tuner protein philindeshie supries 2 Madina sher
1988 PALIS he beginness sake or filested apartic AST file 2 Other sher
PICCS AT DC contible protein Service Service Service sher | 0.60
0.60
0.71 | 214
214 | 0.07 | 12 | 6.00
6.00 | 638 | 20 | : | | | 11 | | | | | | | | ' | | | | | | | | | | | HANGED CLARKS | RPM
AMG | MEMA suckeyprin M: AMM1 spop and indusing factor induction disc a social of 1 20013 size thege CODH year containing 32 | Marina temperar
Optoplace majora | 0.88
0.37 | 0.68 0.00
0.77
0.40 0.00 | 0.00
0.00
0.00 | C.E
C.E | 6.00 | A.
200 | e a | | : | : | n | |--|--|--
--|--------------------------------------|---|------------------------------|--------------------------|------------------------------|---------------------------------------|--|---|------------|-------------------|----------------------| | I MINICEPCE MEN
I MINICEPCE MEN
I MINICEPCE MEN
I MINICEPCE MEN
I MINICEPCE MEN | COLOREST
COLOREST | COMMON COMMISSION CONTROL I | Extraoridar Space after
Cities after
Extraoridar Space after | 0.M
0.M
0.M | 540 0.00
-6.00 -6.19 | 0.00 | | 6.00
6.00 | 1 | y 8 | | No. | | * | | HANGED CARDS
HANGED CARDS | ENDS
WORK | EDIES | Optoplace after
Males ecopie
Estate fider face after | 0.80
0.86
0.80 | C38 -C48
C38 0.60
C81 0.68 | 0.00 | | 000
000 | 200 | E 0 | | : | 10 | - 1 | | HAND COLORS IN HER H | EATHE.
WEPG | MORE to be be to regular test MORE MO report and PTM danat no relating 2 CMS2 CMSP No vite to rely manuar 2 | Otoplam star
Otoplam star | 0.75 | 581 128 | 0.00 | 6.00 | 000 | 300
M | er 100 | | | ÷ , | | | HAND COLORS PART | MPRT1 | ESSET: ring Experient SET domain containing 5. ESSE beared and containing 5. | Clier aller
Halma benscheberregister | 0.40 | 670 0.38
672 0.45 | 0.00 | | 520 | 20 | | | | : | - : | | HANDOZOGI KOZY
HANDOZOGI KOZY
HANDOZOGI KOZYN | EATP
AT IS 4 | CHEP 2 CHEP'd population 2 (installings) blace bit 2 for only land became object of 2 folion to make pit on factor ATRIA or an example on factor and the bit of 25 folion became land protein 256 | Qiquison peptitase
Nation transdiction
Qiquison after | 0.86
0.76
0.86 | -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 | 0.00
0.00
0.00 | 6.00 | 000
001
000 | 12 E | 2 1 | | | 72. | | | PRINCES CHARLES
PRINCES CHARLES | 760 MEZ 4
2017ED
COMMUNI | 760 MCM in monomics protein 254
20720 in fings part on 50
000 MCM CT may 1600 for by monitor 5
78 200 in the symmetric 5 | Estraction Spice other
Other other
Optophon other | 0.86
0.80 | -627 0.36
014 -628
-640 -1318 | 0.00
0.00
0.00 | 6.00 | 633 | 200 | | | : | 81
88 | | | HAROCECTURES
HAROCECTURES | TO THE COURT OF TH | | Nation other
Qualities staying | 0.60 | 5A5 0.86 | 0.00 | | 660
660 | 20 | | | | : | : | | FRANCISCO CO MES | MAA3
PRICE | TO DESCRIPTION OF A STATE OF THE TH | Organism after
Cities after | 0.ME | GA1 -GR4
GAR G.37 | 0.00 | 600 | 000 | 20 | | | | | | | NAME OF COLUMN TO A STATE OF THE TH | EMA
MOM | FORM Inter-play blamples complex class 2 EDMA Inter-players A MEMI Inter-players in the part on the complex | Nation other
Nation scope
I Nation scope | 0.00 | 0.00
0.00 | 0.00 | 640
640 | 603 | 200 | | | | : | 27 | | FRANCISCO CON ANNA
FRANCISCO CON ANNA
FRANCISCO CON ANNA | HERENT
STREET | NOTE NOT A STATE OF THE O | Originam engree
Naina alter
Fernald entree a superiore results | 0.40
6.90 | -639 -631
-639 -638 | 1.0 | 600
600
600 | 600
608
603 | 200
10 | 2 2 | | | 7E | 27 | | FRANCIZZON APT 1
FRANCIZZON 2001 | 100% | CLICCO C type institutionals lead y 2 member D
MAPCIS mapper other tripicals into as 31
1899 MARCI, for the specific popular in
1801 maps realized enables 1
1802 MARCI, for the specific popular in
1802 MARCI, for the specific popular in | Originum istane talma jamad
Originum pejäälene | 0.00 | -025 -025
-025 -025
-036 -036 | 0.00 | 6.00 | 0.01
0.00
0.00 | 200 | B 18 | | | 11 | | | FRANCISCOLARY | DESCRIPTION | INCOME | Cities after
Nation stoppe | 0.02
0.36
0.86
0.86 | 548 -521
514 0.00 | 0.00
0.00
0.00 | | ESE
ESE | 20 | | | | | | | HANGE COM | CRIC | OTT: di gear scheryt a rath a se comp he non-catalyt is sale. POLI NO. POLI and Life disease 2 | Oppose ster | 610 | -CAR -CAR
-CAR -CAR | 0.00 | 648 | 000 | : | | | 15.
16. | 17
28 | - | | HAND COLORS | AMERICA
COP | MHCDH Mighe o phosphogration 1 MEDC arrest before containing 2 CDT code rule 283. tog 12 or before the property datase SCOM RD SCOM register | Maine transplanter
Other aller
Manual tenience aller | 0.87
0.88
0.88 | -038 -038
-030 0.39
-039 -038 | 0.00 | E37 | 680
681
680 | 62
62 | 10 11
10 10 | | : - | | - 1 | | FRANCISCO COM CANA | NCMAN | 201 age 12 e biteloe l'opi e regulator
NCSARI NCSARI qui to | Other scopes
Optophers transdiptioning dates
Manual Ambress albert | 0.00
0.00 | 648 -678
618 -672
618 -678 | 0.00 | 6.00
6.00 | 600
600 | - | 2 | | : | | = | | HAND GEOGRAPH | 1736
1736 | IMCS systematics repose to band CS
TEMES (Michaeligia rates e di band og (S. cerebbe)
TEM optimis 6 | Color aller
Manual militare baspater | 0.88 | 0.00 0.00
0.00 1.00 | 0.00 | 6.00 | 600 | 200 | er 18 | | n | 11 | | | FRANCISCOLORS | 1911 | TOP NO.C. Its numericane protein SC. 1995. Up demands is only member 5 1009. Up demands is only member 5 1009. Up to min SP. 1009. Up to min SP. 1009. Up to min SP. | Qraplam after
Qraplam temporie | 0.86
0.82
0.80 | - CAS - CAS | 0.00
0.00
0.00 | CAT . | 000
000 | 100 | - a | | | 11
81 | : | | HAROTONIA | CERTA | TOTAL | Graphon aller
Graphon alter | 610 | -cm -c11 | 0.00 | 6.00 | 681
680 | : | | | 16
15 | 12
18 | = = | | HANDODOCUTANA
HANDODOCUTANA
HANDODOCUTANA | 1003
1003 | | Naine alter
Naine tens dyborraj detar
Naine tens dyborraj detar | 0.00
0.00 | -138 -178
E81
E80 0.38 | 0.00 | 680 | 600 | 200
200 | 320
G M | | : | 0 | | | FRANCESCO COMO 1
FRANCESCO COMO 1
FRANCESCO COMO 1 | MACTER 2
MICHAEL
MICHAEL | PDM protects and replaceholders, non-receptor type 7 NOT NOT protected by the CO processor of proce | Origina phophetae
Manualdenicus traspore anclantic, quaethon
Originae phophetae | 630
630 | - 625
- 625
- 626 | 0.00 | | 500
581
500 | : | | | 1
10 | 17
| : | | HAND GEOGRAPH 1 | AP | PTRETT protein just en phasphataus, mit selendris i 1. 1886 A taleiten jules to pp jule aus leen energier televaring protein MACORA great en energier televaring protein MACORA great en en engles televaring protein MACORA great en | Qiqilan dier producenjimador
Naina bensiphoregidar | 0.00 | -0.00 -0.00
0.01 0.00
0.02 -0.03
0.03 0.33 | 0.00 | 6.00 | 000
003 | 20 | | | | : 1 | | | HAND COLOR FOR | AME MARCH | | e Naina more
Quelon ater | 0.40
0.40
0.70 | 548 0.30 | 0.00 | | 628
628 | 200 | u 2 | | | i | | | HAND COLUMNS | DESTA
DESTA
DESTA | BECTES DECTES, and estation and who as to cau. DECTES Impropriate the highlights in a right and in some of DECTES and the propriate of Section 1. LINES In a part Section Section respect 1 Company Section 1. LINES In a part Section Section respect 1 COPy at 1. | Optoplasm analyse
Optoplasm analyse
Optoplasm analyse | 0.80
0.86 | -000 -048
044
033 -048 | 0.00 | | 000 | 14
200 | | | | 19 | | | NAME CONTRACTOR NO. 7
NAME CONTRACTOR NO. 6
NAME CONTRACTOR NO. 4 | DATE SAME | EFF: receive tracted and wanterful transaction | Qiqison mayre
Males benshiringskir | C.M
C.M | -0.00 -0.15
-0.15 -0.15
-0.17 | 0.00 | 600
600 | 000 | 100
M | 22 U | | M. | 72
17 | | | NAME CODE COLORES COLORES NAME COLORES NAME CODE COLORES NAME COLORES NAME CODE COLORES NAME COLORES NAME COLORES N | HEHES
PEHES
CHET | NORD NO POLICIANO COLORES, CLASS COLORES CO. | Maina dier
Manadianicae dier
Qiopian dier | 0.86
0.86
0.86 | CAR 0.39
CAR 0.39
CAR -CAR | 0.00
0.00
0.00 | 680 | 000
000 | 200 | 10 H | | | : 1 | n
e | | B MAND COLORS TO A | CHAST
CHAST | CET content to be seen of the content conten | Optoplace peptidese
Optoplace after
Malina base debrooming | 1.0 | 647 0.0
647 0.30 | 0.00 | 600 | 000
000 | = | 1 1 | | 0
0 | : | M
M | | | DARS REP REP ROMO POMO CHET LUP DESC EXPL TOO 10042728 EXX.91 ZUMC1 GLCD | TEXT Intercompatible agent information ID | Care | 0.8E | 6.8E 6.37
6.33 -608 | 0.00 | cas
cas | 628
633 | 20
20 | : : | | | 11 | 27 | | NAME OF COLUMN 7
NAME OF COLUMN 179 2 | ERF1
ERF1 | MPAGES multipleants 1 peutigene 18 MESS riseanus peutinis 2 peutigene 1 ZCHC1 site finger CHC4 great site (§ 1 | Other after
Other after
Nation after | 0.36
0.36 | 105
604 -633
687 0.38 | 0.00 | | 660
661 | 200 | | | 10. | | | | I MICCECCIONE N
I MICCECCIONE 7
I MICCECCION 746 7 | MORSE | MERCEL INCOME AND ADDRESS OF THE PARTY TH | Qtoplem after
Qtoplem after
Extraorbider Space after | 6.07
6.28 | -685 -611
-631 -680 | 0.00 | 600
600 | 001
000 | 100
10 | : : | | 17
22 | 92
92 | 20
10 | | HANGED COLUMN
HANGED COLUMN
HANGED COLUMN | SME MORTS MAY PERSON HAND CHARGE MANGE | ESSEN ES laiding protein i, histori-juin-methyla sub-se
MARP inches preionin A rangellan fator
PERASIS proteinin-methyl-dependent juon mydaton sch | n Marina mayre
Marina mayre
se Qilaylam litrase | 0.86
0.86
0.87 | 071 0.38
0.8 0.98
0.08 -139 | 0.00
0.00
0.00 | | 000
000 | 107
103
200 | W U | | : | | | | I MICCOCCI MAR | Keep
Christ | SMM BCS Hermiting protein S
FORC phospholesterum CD
Chaffic characterist operateding State IC | Optophore alter
Optophore excepte de ₁ of andest ₁ militare
Other alter | 0.37
0.36 | CAR -CAR
CAR -CAR
CAT CAR | | 600 | 000
000 | 300
M | | | : | * | er
12 | | HAND GEORGIA | WAS THE STATE OF | MR2 I yes (48% systems 2
168624C in numerican protein 26C | Other alter | 0.86 | GA 6 0.38
GA 8 | 0.00 | 640 | CCR | 200 | | | | 14 | - | | FRANCISCO CO AGO
FRANCISCO CO AGO
FRANCISCO CO AGO | MINE OF | PRINCIPAL Prime proteins, bell cases, 1.8. MEMOR MEMOR founds you make 1, 8.8. report for clair | Males sugre
Qiqilan texpate | 0.80
0.86 | - COS | 0.00 | 670 | EAS
ED1 | 62
500 | | | : | ÷ | | | FRANCISCO CONTRA | ADAMED | MERC Will down in ding protein 6 ADM TO ADM real log-pitches dans n 20 | Optoplann after
Planna Mandrane populates
Optoplann after | 0.76
0.76 | 025 0.00
028 0.00 | 0.00 | 645
646 | 000
000 | 20
U | 2 10 | | | : | | | HAND GEOGRAPH
HAND GEOGRAPH | 0A99
360 MSH4 | IR 22 for in our expected? - In lead 21 CAMPS carpains 2 THE MITCH. It is numerically produce 286 DOTTO: Do and STITE domains contacting | Quantum protinue | 0.36
0.36
0.38 | CAS -CAS
CAS CAS
CAS CAS | 0.00 | 600 | 604
600
647 | M.
200 | | | | | 27 | | PROGRAMA | Chap | CTANTE character 20 queres degla es 10 CTANTE character 20 queres degla es 20 PERAL pyriste delping es a filpantal si ple 1 | Oler aler | 0.86 | 628 -628
647 -628
648 0.67 | 0.00 | | 520
520 | M 200 | | | | | E . | | HAND GE COMES
HAND GE COMES | PENA
PERA
PERA | | Qiaptern engre
Qiaptern phasphater
Males benschtborregister | 0.86
0.87 | 540 -55% | 0.00 | 5.00
5.00 | 601
618 | 20 | v 4 | | | : | ÷ | | | CTU-ON FORAT PERS EPES MEST AND CONCER DOTS 1007 1007 1007 1007 1007 1007 1007 100 | ETPEN grown is an output of factor Et calcott in EARCI MASS, monther Microscopers Sondy Falls Investor band protein MASS MASS is only Change also Expert | Originam stayre
Originam after
Nation after | 0.00 | 0.37
0.86 0.36
-0.38 -0.10 | 0.00
0.00
0.00 | | 680
680 | 17
17
20 | , , , , , , , , , , , , , , , , , , , | | : | 17
8
73 | 27
0
MA | | I MANDOECU JOLS I MANDOECU MOJ I MANDOECU MOJ I MANDOECU MOJ I MANDOECU ADA | COCOM | THE IN THE PARTY HAVE BEEN AND | Males trestphoregister Other alter | 0.80 | -0.00 -0.00
-0.00 -0.00 | 0.00 | EAST
EAST | 000
000 | - 1 | a . | | : | 32
88 | - : | | FREE CECUSORS | 18071 | TABLE 11 Likeling among complex a special of personal | Mains mayre
Quelon ster | 0.60 | 0.07 0.37 | 0.00 | = | 600 | 16
200 | | | | 14 | 2 | | I MARCOLLECTO SUPE
I SUCA | LANCIS
THROUGH | IRPE riferenti ESA promotog 8, mršej kredimas, kan
LARCES LarCille 1
TABIBES Lin numericane protein IEI
CREELS cracked mick pometistupi king Scilor 1 | d Nation expre
Flexibilities after
Other after | 0.86 | 548
630 -676
657 -540
657 0.37 | 0.00
0.00
0.00 | 0.00
0.00 | 000 | 200
81
200 | | | | | 320
M | | I MINICEPEL THE I
I MINICEPEL THE I
I MINICEPEL THE I | MOR. | TABLESC La numericane protein SC CRESS or unincidence per cathologistics Scient S PROT Figure protein SC PROT S PROTEIN Per cathologistics S | Maina ater
Maina mayre
Qisplam mayre | 0.M
0.M
6.M | EAT 0.27
EAO 0.M
-CAE -125 | 0.00 | 6.00
6.00 | 600
600 | m
m | | | : | 12 | : | | | MAP
MARTI
MOMB | MIP MAPIES landing history protein 1
MIRES Surviview th four missionates 2
MESSARS solute curve forming 26 member 93 | | 0.M
0.M
6.M | 63% -627
-62% 6.32
-62% 6.38 | 0.00 | CAR
CAR | 000
000 | 100
M
M | a 1 | | | 17
81
88 | 2 2 | | HAND COD COL TOTAL | CONTRACT | COOK added the backing EX | Optoplasm after
Marina after | 0.82
0.86
0.80 | 638 -641
648 632
648 -630 | 0.00 | 5.00 | 660
647
660 | 200
200
200 | | | | | | | HANGED COVERS | EMAGE MEMALS TEMBOOD MEMA TAV PEN MEMALS MEM | MORAL surface of billing pposition profess. THE SACE SERVICE SERVICES SERV | Graphics Sale Sal | 0.MI | 048 0.M
049 -009 | 1.0 | 620
620
620
620 | 600
687 | 20 | | | | : ' | 11 | | HAND GER GER GER
HAND GER GER GER
HAND GER GER SALA | PER
TOTAL | 1609 160 report does in 1
TAC take an
PRIS PTR productioning one, to its mily typic and once
TRUE Typic decaying factor increasing it, commission to fills | Nation majore Planta Minister (mattel), 90 d MESIC It Optoplasm after | 0.88
0.38 | 002 0.30
039 -034
-132 -037
-038 0.36 | 0.00 | ELEE
ELEE | 0.00
0.00 | 10.
20. | 0 0
0 0 | | 77 | 11 | 120
RE | | FREE CECTOR THE
FREE CECTOR THE | THEN
COMPRE | 1978 1 pl derat of fator bondo (), centrole toffic
AMOD shipking down control to
1970 on to fire control time 23
Chaffil shows and specially fator 12
297729 inchapper PTA Specializing 19 | Qripton inue
Qripton inue
Nation alter | 6.76
6.80
0.M
0.M | -C28 0.28
0.23 0.29
0.64 0.28 | 0.00 | 625
625
626 | 600
618
600 | 10
100
100 | 2 2 | | | 23 | e
n | | FRANCISCO COMO CO
FRANCISCO COMO CO
FRANCISCO COMO CO | COMPANY NAMED OF THE PARK NAME | MARIES Pine presents EARNASS BESCHOOL MICHAEL Assemble resolver 3 | Optoplasm after
Mannatal entrane after
Mailma after | 0.86
0.85
6.50
0.88 | -EM -EA7 | 0.00
0.00
0.00 | 600 | 000
085 | 11
11 | | | | 81
18 | | | HAND GEORGE PARK | CEARS ID | UNCLED used. Sharing D
DCAR DDRI and CLUL's sector of factor is
DRADYS used consumpressed. | Optoplace after
Marine benedyborragister | 0.02
0.00
0.07 | 5.5 0.25
5.47 0.28
5.48 0.22 | 0.00 | 6.00
6.00 | 000
001
000 | # UT | | | | 17 | 2 | | I MINOGEROU ZA Z
I MINOGEROU ZA A | RMEGA | ENDOL END AND LOCATION OF | Other aller
Malma aller | 0.87 | -00 -019
071 0.99 | 0.00 | 68 | 500 | 300 | 1 1 | | M. | 92 | | | FREE CECTO NO. | MARIE
MARIE | MEDIC MESSE herming, regulator of endocenne to thing I so
MATE. Into stude to account of our ton-fiber case of times I for
AARDH annio coding to considerable deleging general | Original State Origin | 0.00
0.00
0.00 | 638 0.34 | 0.00 | | 663 | 10
200
10 | | | | 10 | 27 | | FRANCISCO CO NO. 2
FRANCISCO CO NO. 2 | MA1
18:203
20027 | AND community in contral region designing many and a series and all Alian 1 SCIDIS SCI design from your property of the SCI PROST P | Other after
Other after
Other after | 0.88
0.86
0.86
4.82 | 580 0.M
586 0.0
101 -508
-582 -581 | 0.00
0.00
0.00
0.00 | 608
608
608 | 000
000
014 | 200
M.
200 | | | | 22 | : | | FRANCISCO COLORO
Y
FRANCISCO COLORO A
FRANCISCO COLORO A | MORE 7
MILES
MICH. | PERF HET-primer reading force NO. NO. House assembly gaster restrict the exchange THOS NOT glasses 40 delight stace | Option after
e Naina after
Estaceliar Space mayore | 0.86 | -020 -038
030 -038 | 0.00 | = | 600 | W 200 | - : | | : | | 120
M | | FREEDRICKS | | NOTES AND INCOME AND | Optoplasm salver
Marina konsulptunengulatur
Marina konsulptunengulatur | 0.80
0.86
0.80 | 534 5.M | 0.00 | 6.00 | 000 | 200 | e e | | : | | | | HANDER CONTRA | TATZ
AMERIS
BTS-GUPAN
GATS | GARS glocal SNA contletions | Optoplasm analyses | 0.60 | 0.80
0.87 0.86
0.86 | 0.00 | 6.0
6.0 | 000 | 100 | | | : | : | : | | PRINCES TO S | HELDAY
BOXES | PROBE publishapha to 2 rg datay abust 15 eta
1000 MACHAR quae adareketa adarek 17
DDD - datakar eta ata | Qtoplam engre
Males alter | 0.00
0.00 | 647 -601
638 633 | | 6.00 | 028
028 | 20
20 | | | : | : | : | | HAND COLOR DIES | PURS
THE MESO
ADMIN
THE MESO | PARCE probleman 28 colons, A79 or 5 TO RECO In money law part 30 ADMIT In money law problem do A ADMIT and law pathon done all TO RECO In made and and and all TO RECO IN made and and and all TO RECO IN MADE AND | Quaptum atter Plant attention position | 0.81
6.70
6.58
0.81 | 0.00 0.00 -0.01 -0.01 -0.01 -0.00 0.00 0 | 0.00
0.00
0.00 | 6.00 | 000
000 | 20 | 30 H
31 3
3 10
8 M | 1 | 12
27 | 215
213
213 | | | HEREE COMP | ATTERNS
EAR | DCAM DDB1 and CULta sociated at a | Other aller | 0.85
0.87
0.87 | -CAM 0.86
630 0.87 | 0.00 | 680 | 000
000 | 1 20 | M 60 | | er
0 | 11 | : | | HANGE COLUMNS IN THE | EAR
BEAR
BEAR
BEAR
BEAR
BEAR
BEAR
BEAR
B | MADE und nate or risenate sproten Ut sakust (40) MADE nation dust find one, dyne neuropies register | Quaglacin after
Quaglacin after
Placina Mandeane binase | 0.87 | CAE 0.31
CAE 0.38 | 0.00 | 6.00 | 000
000 | | | | | 11 | | | HANDERCOMED
HANDERCOMED
HANDERCOMED | MODEL
URCE
ECHTE | MC 901 male per deal receiving 1 | Other other
Optophon engine
Malina other | 6.00 | -cas -cas
-cas -cas | 0.00 | 6.00 | 000
000 | 200 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | er
er | 28
92
28 | - | | I MINICEDE CECTOR I
I MINICEDE CECTOR I
I MINICEDE CECTOR I | PARIS
FRENC
FRENCAD | ECTRS ECT and Et Educate containing protein 1 FUNC purche RN leading fundy member 2 FUNCE pulphy leading protein codes 1 FUNCE pulphy leading protein codes 1 FUNCE AND TOTAL TOTAL REPORT OF THE AND | Optophorn sitter
Mail ma excepte
Other siter | 0.80
0.80
0.81 | 619 0.00
641 0.00 | 1.0 | 680 | 674
680 | 300
300 | H 10 | 1 | | 13 | | | | ROPE
PARA
PARA
FIRE-ALL
MPTERA
CONCER
PARTED | PROPERTY IN CONTROL OF STATE O | Companies American America | 0.60
6.56
0.87
0.88 | -CER -C11
-COR -C18
-C18 -C04
-C18 -128 | 0.00
0.00
0.00 | 68
68
68 | 000
000
004
000 | # # # # # # # # # # # # # # # # # # # | 7 a | | 1 | 23
0
73 | | | HANDON CONTROL | MP25
PUEZMA | | Mains tons deborre date | 0.80
0.80
0.80 | 687 0.38
682 -641 | 0.00 | 640 | 687
680 | 200
200
200
84 | | | | : | | | HAND COLUMNS | MPDS PRESMA PRESMA PRESMA PRES PRES PRES PRES PRES PRES PRES PRES | 1990 by droggradingle oil nob by the general 1 (1990)
1940 St. Nathing protein p80 | Optophon margine
Marina alter | 0.02
0.00 | -138
080 0.33
088 0.36 | 0.00 | 5.00
5.00 | 684
684 | 200 | - | | : | ï | | | HANDERSCHIP
HANDERSCHIP
HANDERSCHIP | MPCI
MPCIII
M/3/9/28 | UPC1 UPCPDI dans incode bing family member 1
MMDD1 major for the for super frontly domain containing 13
SCINCE value contact frontly the member 8 28 | Other after
Other after
Other after | 0.00 | CAN CAN
CAN CAN
CAN CAN | 0.00
0.00
0.00
0.00 | 600
600 | 000
800
000 | 20
20
20
27 | 20 X | | 0
0 | n
0 | 2
2 | | I MICCECCIONA
I MICCECCIONA
I MICCECCIONA | IMENC
MASAJ
URLA | METAL proof destroyability to
METAL producted by sealing to solve to | Nation expre
Optopless expre
Optopless siles | 0.83
0.73 | DAR 0.00
DAR | 0.00 | 6.0
6.0 | 000 | 200 | E 12 | | : | : ' | : | | HAROTECH PART | MAGE
MIT
MIT | UNIX skipp the No. 3 TO ALC to manipulate the operator is clare A bit and MCG2 phospholeterant duct after earling protein 2 NCC2 NCC2 NCC2-NO excelete fill all or NCC2 NCC2 NCC2-NO excelete fill all or NCC2 NCC2 NCC2-NO excelete fill all or NCC2 NCC2-NCC2-NCC2-NCC2-NCC2-NCC2-NCC2- | Other alter
Optophon alter
Optophon alter | 0.00
G.MI
0.MI | -632 -622
682 -607 | 0.00 | 625
625
625 | 0.00
0.00
0.04
0.00 | 100
100
200 | 1 X | | 0 | 17 | 3 4 | | HAND COLUMN TO SEE | MILES
MANUEL | MONEY to coverience protein 130 | Optopolom diber
Nail ma mojore Sangloja e langlilig ra
Other diber | 0.80
0.80
0.80
0.80 | 037 0.8
031 -081 | 0.00
0.00
0.00
0.00 | 640
645 | 000 | 20
20
87 | 100 100
100 100 | | | | 0
0
120
120 | | HANGED COLORS | DRING
BPR1
BRIP4 | DICES Differ projections of that legistrape Sec. 2
2071.5 Install polyphopie to phophetase (Se. 5
2020.5 rises and posteriol pseudopres C. | Option phopheton
Other after | 0.82 | 618 -688
648 1.37
604 -689 | 0.00 | 600 | 000
000 | - | n 100 | | M | 81
18
66 | | | S MANIE CERCITA MANIE
S MANIE CERCITA MANIE
S MANIE CERCITA 2077 | 201
201
18 MGE | DDC2.2 Distinctly equipment of that might gener? 2011.1 Strongly equipment of that might general for 1 101.00 Common and the size of the size of 1 2010.2 Strongly exists AS production of 1 2010.1 Strongly exists AS 3011.1 e | Naina Yana dyborny dita
Naina Yana dyborny dita
Naina Yana dyborny dita | 0.80
0.80
0.80
0.86
0.86 | 581 0.86 | 0.00
0.00
0.00 | CASE | 6.00 | 200 | | | | : | | | HAROTECENSI
HAROTECENSI | CARD | THE TAX-bashed green CACE representation dente body menter 8 The language and the S | Maine tree spheropador
Maine aller
Maine tree debrooks | 0.88
0.87 | GHR 0.32
G1R 0.45 | 0.00 | | 636 | 200
81 | | | : | | | | I MICCIECA PEL | ern
ern | 1930 Lane prints (M. 1930) 1970 Arrive part of the Control | Maina bine dyborogulatorom, (IMCN), lentri
Che dher
Graphon moyre ndefront and
Graphon dher binebron/strokite, | 0.86
0.86
0.86
0.85 | an -an | 0.00
0.00
0.00 | | 000
000 | 20
20
20 | | | | 11 | 100 | | HANDOZDOWANA
HANDOZDOWANA
HANDOZDOWANA | 2001
2001 | TARREA Industrial SA do not be 20000 to the Superpose (ASE 19000) To oil or oppose the sandales (A 1700 to 170 | Qisplan dier bischessykholdise,
Mains dier
Olier dier | 0.85
0.85
6.88 | 148 0.51
-EM -132 | 0.00
0.00
0.00 | | | 200
200 | | | 9
0 | 92 | | | HANDGE COMPT
HANDGE COMPT
HANDGE COMPT | MIT AFT. | | Optoplasm anayea
Optoplasm prystilasm
Malina gilor | 0.88 | -CAR -CAR
E47 0.33
-CAR -CA2 | 0.00 | 680 | 000
000
000 | 200 | y 1 | 1 | 0 | | | | B MEDICE COL 2019 I MEDICE COL 2019 I MEDICE COL 2019 I MEDICE COL 2019 I MEDICE COL 2010 I MEDICE COL 2010 I MEDICE COL 2010 I MEDICE COL 2010 I MEDICE COL 2017 | THE NATURE CONCERNS AND ASSESSMENT ASSESSMEN | 2000 the flow part of the section 1.20 1200-1 To descript the section 1.20 1200-1 To descript the section 1.20 1200-1 To descript the section 1.20 1200-1 | Marie | 0.10
0.86
0.81 | GRO -G11 | 0.00
0.00
0.00
0.00 | | 661
660 | 20
U | U 10 | | : | | | | HANDERSON TO THE PARTY OF P | CERN
PHO | PEP phosphaladron, picket | Optoplasm manyre Nebbinsky certicum
Optoplasm bitmase | 0.85
0.87 | CAS -C19 | 0.00 | 500 | 003 | 200 | | | | 14 | er
Ti | | B MAND CET COL BING
B MAND CET CET ME 1
B MAND CET CET ME 4
B MAND CET CET ME 5
B MAND CET CET ME 5
B MAND CET CET ME 5
B MAND CET CET ME 8
B MAND CET CET ME 1
B MAND CET CET CON 1 | MEDS.
SHARE | men named at the c | Manual Andrew Mayor | 0.ME
0.ME
0.ME | -CAS -CAS | 0.00
0.00
0.00 | 680 | 687
663
660 | M.
U | | | : | 80
87 | | | HAND GEODEOLES
HAND GEODEOLES
HAND GEODEOLES | PHP PCM PCD GMAQ GMAQ HVL GAG SPGS LIP2 HETHOR BRSL PCDG GGGL | MA. maker V.P. lie | Gregorium and an article and a | 0.70 | 0.00 0.00
0.00 -0.37 | 1.0 | | 000 | 200
200
87 | # # | | | : 1 | | | HANDER OF THE PARTY T | HETSKI S
BEN | tion flags print ASIA 1972 1972 register of measure presenting free 1972 register of measure presenting free 1973 TOP III to describe the line in present file benefit green 1973 prints of ASIA 1973 prints of ASIA 1973 prints of ASIA 1973 prints of ASIA 1974 prints of ASIA 1975 | 4) Qeoplam alter
Marina alter
Other alter | 0.36
0.36
4.38
4.32 | CAS 0.88
-CAS -CSS
CAS 0.87 | 0.00 | 0.00
0.00 | 0.00
0.01
0.13 | er
E | 8 10
8 4
5 4 | 1 | 1 | 14
87 | | | HAROCOCCIONIS | MICH
MICH | 1933. Immediate only require 3 like
1932 public dub.25
DUB. DUB like ensure E-V-curlic nations | Other after
Option majore | 0.00
0.00 | 500 -500
500 -500 | 1.0 | EME
EME | 000
000 | 200 | | | | 18
62
17 | 120
E | | | | | | | | | | | | | | | | | | HANDER COURSE
HANDER COURSE
HANDER COURSE | DESIGNA
MEMBERS | DESCRIPTION ASSESSMENT | LE Millere Incode bing II
CRAD has below a "SIA
millerhend in I kans dydanter mind has factor d | Mari Ma
Mari Ma
Mari Mari Mari Mari
Mari Mari Mari Mari
Mari Mari
Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari
Mari Mari
Mari Mari
Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari Mari
Mari
Mari
Mari
Mari Mari
Mari
Mari Mari
Mari Mari Mari
Mari Mari
Mari Mari
Mari Mari Mari
Mari Mari Mari
Mari Mari Mari
Mari Mari Mari Mari
Mari Mari Mari Mari Mari
Mari Mari Mari Mari Mari
Mari Mari Mari Mari Mari
Mari Mari Mari Mari Mari Mari Mari
Mari Mari
Mari Mari Mari Mari Mari Mari Mari Mari | ater
maps
ater | 0.62
0.62
0.62 | 640
635
628 | 0.30
0.00
-0.00 | 0.00
0.00 | 6.00
6.00 | 681
681 | 200 | 10
20
20 | E . | : | | 2 | |--|--|---
--|---|--|--------------------------------------|-----------------------|-------------------------------|------------------------------|----------------------|-------------------|---------------------------------------|----------------|-----------------|------------|-------------------|-----------------| | HANGED CONTRACT HANGED CONTRACT HANGED CONTRACT | MED
DOX | MATERIAL DESIGNATION OF THE PARTY NAMED PART | salute carrier family 7 member 1
sale reposite to 0
di carbonyl and t-uplal carred at to e | Macma MI embrane
Extrace fluior Space
Optoplace | AND STATE OF THE PARTY P | 0.00
0.00 | 63.7
63.3 | 1.0 | 0.00 | 68
68 | 0.00
0.00 | = = | - | 100 | 11 | 11 | | | HANGED COLUMN 1
HANGED COLUMN 1
HANGED COLUMN 1
HANGED COLUMN 1 | WEST
MEDIAN
TAKEN | VET
MEDINI
TALN
TALN
TALN | era Di, alleren jastion tananenira repotetr
manipin 1
Langetin
Ulymain leta 4, 2 bisedpe alignesi | Planna M emirane
Qrapiaum
Qrapiaum | ater
techand
ater | 0.80
0.80 | 682
684
680 | 0.86
1.30
-687 | 0.00 | 620
620
620 | 600
600
600 | 500
ML | | 100 | : | 10 | | | I MICCECCI 76 I
I MICCECCI 70 A | PHYSICAL
GRANI | PERSONAL SANAR | Hymain lets 4, 3 bite dipendigene 2
problephople to e-1/19 de try subset 133A
GATA linding protein 2 | Other
Other
Males b | phophstane
prophstane
tone dyboring dator | 0.50
0.50 | CAS
CAS | -087
030
-088 | 0.00 | 5.00
5.00 | 600
600 | 500
M | * | | 0 | #
11 | | | PARECECTOR MAR
PARECECTOR MAR
PARECECTOR MAR | COMES
COMES | EHLM
EHLM | Operation lets to
lebble family member 20 | Rematterious
Question | etter | 0.80
0.80 | 613
685
601 | -082
0.38
-084 | 0.00 | 646
646 | 0.00
0.00 | 67
200 | 72
EL | | | 28
28
67 | N C | | HANDERSON TO A
HANDERSON TO A
HANDERSON TO A REAL | NOT 100 100 100 100 100 100 100 100 100 10 | GATE
COPIE
SECIES | ACT Mercall opposition
of the modelline and the section is C
COPP of the boson or black is
constrained at the section in | Optoplasm
Mail ma
Mail ma | ater
maps
ater | 0.38
0.39
0.87 | CAR
CAR
CAR | | 0.00 | 640
640 | 628 | 200 | 20 | | | 28
22 | | | FREEDOCKENS FREEDOCKENS | MACANI
MAIDUS
DPMI | | | Qtopiem | major
major | 6.12
6.12 | 681
-686
-680 | -001
-001
-015 | 0.00
0.00 | 620
620
620 | 636
666
660 | : | : | | 1
17 | 92
92 | 10
10 | | PRICEE CERTS 7 PRICEE CERTS 7 | MECHANI
MECHANI
MERICO |
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAEL
MICHAE | deletylykaptate mannagha adense schaft 1
dagsin 4
sakete carter fendy 21 manter 2
mit alsoni is i rissone i protein LOI | Qtoplam
Hamatteniran
Qtoplam | aler
temperer | 0.00
0.00 | -628
635
637 | -012
0.30
-018 | 0.00 | 638
639 | 600
600
600 | 87
300 | 3 0 | - | 10 | 23.
22
8 | 10
10 | | HANGED CO. 70-4
HANGED CO. 70-4
HANGED CO. 70-7 | MAN MUC | 1940 | mitage on this brilly state the critical ideas in one through
minages receptor binding it be a social of, antigen, it
makes to | Qtoplem
Qtoplem
Manualtenisme | itrace senara bed, dibarbe
alter | 0.80
0.80 | 621
621 | 0.87
0.38
0.32 | 0.00 | 68
68 | 639
639 | 120
17 | #
| 100
20
20 | | | 0
27
27 | | HANGER CONTROL | MADTRALI | MADE THE S | militiges rea office to dig or also later on life month in mon this man
militiges recognitive basiling of the a calculated, settings o, the
make takes can have to midglitts recommended.
sealth lighthelia and 20 liter 3.
de highting personnyl reductions 32. | Optoplace
Optoplace | der
der | 0.80 | 514
514 | -618 | 0.00 | 640 | 672
660 | 20 | - | | | 14 | - | | HANGED CONTROL | DE FORMA NEL COD | #10P213 | | | | 0.80
0.86
0.80 | 683
648
618 | 6.31
-631 | 0.00 | 620
620
620 | 600
600 | 20 | | 100 | | 11 | | | HANGER CONTRACT | MACE
MACE
MACE | MATE
MATE
LIMPS | ring Engerprotein 133. opunmas or Eustinama artigen recognised by Toold motels disable chanded break formation protein 3 upoteens binding protein 1 (EEP-2a) | t Nation | aler
aler | 0.80
0.87
0.86 | 618
618 | 12 | 0.00
0.00 | 68
68 | 600 | 20 | M
72 | | | | = | | PROCEEDINGS PROCEEDINGS | CHMOL2
HAZIN | CHMOL3
HALIE
ATR | CEMES, spiragolys dis copulator regulator 2
PALES and mind be complex subset 12
A TV channel accomplex subset 12 | Qtopiem
Qtopiem | aler
aler | 6.10
0.80
0.80 | -0.00
GA 4
G3 7 | 0.D
0.D | 0.00 | 620
620 | 568
550
533 | | n
er | | | : | = | | HANGED CO. SELECTION SELEC | DOMES . | DIES | d anylphored blace spation
material of the production in other to 1 | Optoplasm
Malma b | inas
rans delinerações | 0.80 | cas | 1.3 | 0.00 | | 528 | W | | | | : | | | HAROTECCOS | 1110 | CHANGES
TOTAL | chancement open realing from 126
MD report and EDCS has code bing 1
House quells: Exemples at the extige open 50
SASP-1, EDC has drop complex ESA hindry colored. | Qtoplam
Remattenisse | major
major | 0.00
0.00 | - CAT | 0.00
0.00
0.00 | 0.00
0.00 | 68
68 | 600
600
637 | 11
10 | u
u | 100 | | | | | HANDERCUENT
HANDERCUENT | MADA
CILOTA | MARINA
MARIA
MARIA
CIDA FIRA | EACH checkpated ampacement A
characters 12 commended for the Mi | Mai ma
Mai ma | mayor
mayor
aller | 0.30
0.30 | CAN
CAN | 0.dl
-675 | 0.00 | 6.00
6.00 | 600 | w
w | - | | | : | | | I MICCECCIANA I MICCECCIANA | APA
HTC
WHICH | ACPA
HTTSC | or hiphosphate or 3, for to be existent If , If received the or, optocols sucher receptor is adog 10.7 demate protects 2 | Qtopiem
Qtopiem
Nai na | phophstan
phophstan | 6.00
6.00 | -120
-610
613 | 0.61
-601 | 0.00 | 679 | 000
000 | 11 | ÷ | 100 | 77
m | 100
81 | : | | FREE CECTO CONTROL IN | PP MES
DE MES
COMPAS | PRODUCTION OF THE PERSON TH | protesphaphs to a long detay subset 1
londs typical green
sharecasted open making frame 326
systems 27 | Qtopiem
Clie | aler
aler | 0.00 | 647
641 | | 0.00 | 625
625
620 | 600 | | - | | : | 11
8 | : | | PRICEE COMPA | 17307
1603003 | 1937 | sale to corrie thirdy 20 member \$1. | Manual entrare | tanpater
dler | 0.80
0.86
0.87 | 628
687 | 0.61
-610 | 0.00 | 5.00 | 500 | 200
EL | | 3 7 | | 47 | - | | HANGE CLASS | CBM/NR | caute
caute | Masse D I de a cling substrate 33 D
sharensame Experimeting Same 39
sharensame Experimeting Same 320 | Maine b
Other | time dyborregister
alter | 0.85
0.88
0.86 | 681
688
607 | 0.M
-0.M | 0.00 | 620
620 | 600
600 | 100
200
200 | - | - | : | 17 | × | | | TEMORIA
LANS
MAISS | MANU
MANU
MANU | T cell exceptor beta variable 291
tod except 8300, quidescord, establicadotal
MASSE terrolasi ble panalogene | Mari de la | Angue An | 0.00
0.00 | 617
617 | -028
-028
-022 | 0.00 | 680
680 | 600
600 | 200
83 | | | : | 22
81
11 | | | PRICE CONTRACTOR A | UNI
UNI
HATE | F.F.501 | ESSE hanning. SSA polymerane i tumoriyatan fastar
skinyilin upat hi paytika a 2
1984 - a part kanda king 2 | Maina b
Qropium
Chiw | population
delec | 0.00
0.00 | 634
634 | -0.00 | | | 000
049
000 | - | : | 10 | | 17 | | | PRICE CONTROL OF THE | THE REAL PROPERTY. | HATE
DESC
HEED
AMOUNT | the figer and ETS domain containing 45
from respond werkenset is obliggen bein?
abligdes less domain containing 32 | Maine II
Oropium
Oropium | t and delivering sleet or
t made to every sleet or
margine | 0.00
0.00 | 618
618 | 0.86
0.86
-630
-631 | 0.00
0.00 | 680
680 | 600
600 | | 32
3 | 100 | | 0
28
28 | | | PRINCES OF THE | HENGE
TAN | MAN HEREIN | grangiter landing proteins
bester (faster C) angli der 3
30 mayter monte te d'auter 2 | Marina
Malina
Otopion | atter
major | 0.00
6.00
0.00 | -0.78
-0.75 | 0.00
0.00
-017 | 0.00 | 680
680 | 600
681 | | | a u | E U | 12 | 1 | | D MAN COR COVERNA
D MAN COR COVERNA
D MAN COR COVERNA | MATEL WHI HATE HATE HERE ARTHUR HERE ARTHUR HERE ARTHUR HERE | 11.00 | No ecopiar annala bell'ador 2
gi praspisted hymanist mentium se protein | | tions dybnorogalicar | 6.00
6.00 | -0.00
-0.00 | -617
0.86
-617 | | 600
600 | 600 | 1 | Ĩ | | - | 92
96 | ¥ | | HANGED COMMITTEE | EPIS-GREAT
ET MAI | FIAG. | Noting Senior associated settings 1
automat Seniorius Senior | Males
Males
Males | aler
Innerte | 0.71
0.87 | 618
628
630 | -181
-627
-628 | 0.00 | 640
640
640 | 600
600 | 20
20
20 | 3 | ÷ | | 22
28 | 20 | | PROCEEDING | ENDARA
SORE | EMPSALA
IMPALS
IMPALS | interest to rely the figure
ring figures which the
the figure protection.
The and profession, different at one of cost of 3. | Haina
Haina
Haina b
Latanhir Ipan | major
man de la completar | 0.60
0.60
0.60 | EA1
139 | 120 | 0.00
0.00 | - | 600 | m. | = | 18 | | : | | | HAROGEOUSES | TRACE | THEORY | to whome of two mitschandral reminuse 18
Doublest shall protein body (https://member CS | Qtoplam
Qtoplam
Qtoplam | temporar
aller | 6.00
6.00 | -CMB
621
628 | -011 | | 680
680 | 600 | | 2 | • | N. | 92
28 | E | | RECOGNICATION RE | PET-CHALL TOTAL TO | PMC
BEC
ARMON
BECR | Hit Scheming 3, of anatologue's sydemic orquests
Bit poster obsents 2
arms (file e-per too state og 34 tokel 5
38 Tokon to bilder ode (1) | Qiquison
Nai na
Qiquison
Ciler
Nai na
Ciler
Qiquison
Fisona M entrare | callers The stage of
the The stage of the Control of the stage of the Control Cont | 0.88
0.87
0.80 | CH4
C28
C49 | 1.0 | 0.00 | 620
620
620 | 600 | | er
E | 100 | | | | | HANGED COMMO | PUPA | 1003 | ribeand paid (13) pandig or 3)
malplants estatum addreshribe 1 heb
in american prints 33. | Cities
Optoplem | aller
majore | 0.00 | EA 6 | 1.8
-38 | 0.00 | COD | | - | | | | | - : | | HAND COLOR ON A | GAMEST
HAVES | GARRIS
HARRIS
TRANS | to name to see protein 26. genne or endudyste actifyse it explor salanti 1 lamant resundelst teap who type to the nor shadle to raises or of team mischaed to remiscore thomas | Manual minus p
q Hains b
d Qippian | rater
rate copied ecoptoid, otocides, but
rate dyborregister | 0.88
0.82
6.87 | -128
627
-28 | - CAR
- CAR
- CAR | 0.00 | 640
640 | 000
000 | | - | 100 | - | 97 | | | HANGED COMPA | MA
CIS | CIS
TACON | | | | 127
0.86
0.86 | 681
687
681 | 1.00 | | 68
68 | 534 | | 2 | | * | 17 | • | | HANGED COUNTY
HANGED COUNTY | BARG
EIHOZ | MARC
E-ROCH | Tel 2 deman containing II
ILAN matifiendly member 1
behindurum containing II | Other
Color
Color
Other
Other | ater | 0.80 | 617
688 | -011
-011
0.00 | 0.00 | 600
600 | 600 | | | | | 11 | = = | | PRINCIPAL SEA | ADHIMI
MEMI | ADKING.
WIRE | d disple displayment 'Mandy menter A1
MD reped done his!
A'3 hieraring protein
characters 1 open mility frame 350 | Qisplam
Nai na
Nai na
Nai na
Qisplam
Qisplam
Qisplam | ater | 0.88
0.88
0.87 | 126
681
628 | 0.88 | 0.00 | 600 | 600 | 77 | = | ÷ | : | 14 | : | | HANGERCHAND
HANGERCHAND | CSM/SR
SMR | CWIN
CWIN
MA
MAN | to reporter 1, ATP is ruling as earlier subforming it members | Males
Males
La Optoplace | dler
tempeler | 0.86 | 601
600
608 | 0.00
0.00 | 0.00
0.00 | 680
680 | 526
526
588 | - | - 1 | | | 11 | | | PRINCIPOLONIA
PRINCIPOLONIA
PRINCIPOLONIA | O'NE
PHENNES | CTHE | entraducid to i ribaco mai protein 130.
cytolwania | Optobram | aler | 0.80
0.87 | -CAT | -611
1.0 | 0.00 | 600 | 000
000 | m
20 | n | | я | 29 | • | | PRICEE CHICAL
PRICEE CHICAL | MAMPOR
ALBRID | ALIBHI | servings a Ty defined colonication and give 1
of bonal way 10 subsett 15
at 120 consing 1, alphe het ogt de arte depressivet discage | Naina
P Naina | major
major | 0.00 | 618
641 | 0.00 | 0.00 | 680 | 687
680 | - | | | 2 | ï | - | | HANGED CONCY
HANGED CONCEY | MEDIC
MEDICAL
SEPARE | MAKEUA
MCMP1 | al disco, fundor-is phosphate C
family at the species disclusing 20 member A
solute carrier family 7 member is passing on 3 | Optoplasm Nati ma P Nati ma Optoplasm Other Other Other I stransful or Space P Hants M mile are Optoplasm | and the second s | 0.36
0.88 | 238
238 | 0.00
1.00 | 0.00 | | 600 | 20
E | 300
67 | 100 | : | : | : | | HANCOTO CO WEST
HANCOTO CO 1776
HANCOTO CO 7866 | 78A/2
78A/2
78B/69/1 | THE THIC THE SELECT | lacks specific across blace 6
T cell acceptor of pia sacrable 2
La numerale use protein SS.
major habitosepa Shifty complex, class 1, 14 (iveralloge | Optoplasm
Chier
Estrate falor Space | aler
aler | 0.82
0.37
0.86 | 60 H
62 H | -0318
0.00
0.00 | 0.00 | 648
648
649 | 500 | 200
M | u
m | 100 | | 18
67
18 | 100 | | HANGED COMMA | MA. | BECH | major bibliomija Billig complex, cla iz (, H ji ar ubiga
no E ng main 38 | Qtoplam | tempole | 0.M7
0.M8 | 629
642 | 0.00 | 0.00 | 640
640 | CAR | | | - | | 14
11 | = | | HANDERS CO. | Chiffs
Chiffs
All sect | CSM/NO
LOCASES SM | characime I operating flame IC
contracted high operate complex Flam protein school
or oil net-colorabilities france com | cale cale | ater | 0.80
0.80 | CEE. | 0.00 | 0.00 | CAD | 679 | 200
87 | | : | | 17 | - | | PRINCED CLASS | MAPRITS.
ANGASE
MICHE | MART
MOVE
MOVE | mentalisation plants | Optoplace
Macros M embrane
Optoplace | aller
expre | 0.87
0.86
0.72 | -627
587 | -CAD | 0.00 | EM
EM | 600 | 20
20
20
20 | | | 0 | : | | | HANCOTOCH GOVE
HANCOTOCH GOVE | 1179G
1179G
1714
779G | ETTING
STEE
PTINA
TO NO. | general transciption factor the subsett 1
open place general lest
protet object explosophational type (VA, member 3
tections family one miles 8 | Qtoplam
Plantableminase | aller
phaphatase | 0.80
0.80
0.83 | CAD | 0.34 | 0.00
0.00
0.00 | CAR | 614 | 20
20
14 | | - | : | • | : | | HANDERSON PT
HANDERSON PT
HANDERSON PROT | MEMBER
MINES
MINES | HARRIE
HARRIE
HARRIE | family of the operate doubt by Monatolor S
Filtrato No. 1 | Oppose
Remail entrare
Nation | aler
aler | 0.80 | 628
641
618 | -018
-012
0.89 | 0.00 | 680
680 | 600
600 | | n
n | | n
n | 28
28 | : | | HANGER COURSE
HANGER COURSE
HANGER COURSE | CODEM | COUR | mit school to I class me I protein 130
WANH complex school II
CDISC make de | Qtoplam
Qtoplam
Manu M enicase | aler
tempeler | 0.85
0.86
0.86 | EAS
EAS | 0.00
-0.18 | 1.00 | 680
680 | 687
687 | e. | | - 1 | : | 14 | n
n | | PROCEEDINGS
PROCEEDINGS | TICH
PING | TICH
FITE
SPEE | of transifing else access ted protein dis
tell of rising epit de expect demain 38
pt his lary transact resultant og 1. | Chier
Maine b | aller
aller
man dyborregulatur | 0.07
0.06
6.02 | -64E
621E | -628 | 0.00 | - | 600
600 | 200
21 | 34
35 | 2 | : | | | | NAME CONTROL OF THE PARTY TH | PETEL
SECTIONS
HALL
HALL | MATE | size they protein 22
solute control bindy IX members
four and a be FEEM demand 2
flash advisted and notific quites as 2 | Maries 6
Manual Centrare
Optoplasm | tempole
they are | 0.80
0.85
0.80
0.80 | 681
-135
680 | 0.37
0.36
-1.33
0.30 | 0.00 | 68
68
68
68 | 600
600
600 | 200
200
200 | er
• | 100 | : | 22
1
200 | 30
100
27 | | I MICCE CO TOS
I MICCE CO TOS | PHI
CHAR
PHINEZALII | OPILI
CHATE
MECHANI | The barried and with quite in 1
the flags protection 1
characters approved by Euro 18 | Qtoplace
Other | aler
aler | 0.85 | E18
E37
-EW | 0.30
0.30
-Ch7 | 0.00 | 68
68
68 | 620 | 200
M | e
= | | : | 11 | n
n | | PHILOGEOGRAPH
PHILOGEOGRAPH | MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
MERCEL
ME | MERC | mit sale out to I ribaco me I protein LCL
mit sale out to I Boton regulator 2/16e | Qreplan
Cities | aler
aler | 0.00
0.00
0.00 | -027
G18 | -628 | 0.00 | C-00 | 620 | 11
15 | | | : | 87
88
33 | : | | HANCOTON PAGE
HANCOTON PAGE | C/G1
HBL13
TBLWHS | CATE
MALLE
TRANSET | EMphysica Bullett
orkok skydne 11
reusi HPLife 2
1-90AF dens incom bing 1 | Halles
Laboration Space
Laboration Space | ecopie
aller | 0.86
0.86
0.86 | 682
628
122 | -004
-087
-180 | 1.0 | 635
635 | 600
600 |
20
20
20 | - | Ī | | 14
19
0 | 6
5 | | HANGERGE CONTRA | METERA
METERA | M ROM | | Other
Orlegious
Mailes | marates. | 0.85
0.85
0.85 | 223
225
248 | 1.07 | 0.00 | 620
620
620 | | | | - | | 14 | | | FMICCECUTORS
FMICCECUTORS | CD 22 28 3A | MAGESTS
MATERIAL
MATERIAL | MICE Elizate Color protein A
replaction in the Colored 2
MARIE Family marrier PS
unche a clerified LDC 200 db | Optoplace
Cities | aler
aler | 0.80 | -CAR | -533 | 0.00 | 680 | 600 | 20
20 | | : | | 20 | = | | PARECEDENTS | ALBEG
GMT2
ALBEG | ALBING
ALBING | al Michaeling 1, let are HSA disaggerane
or reps HSP signs by regulator 2
of Michaeling 7, study better the new dependent disease | Planta Manistrana
Planta Manistrana | Sales of the control | 0.00
0.00 | 684
683 | 0.3E
0.37 | | 500
500
500 | 620
687 | W | - | | | 17 | : | | HANGE COUNTY | ALCCI
CHOTED
CERN
HOHOE | ACCI.
CHO TEO
CCCIN.
HOHER | as the tig signal contempator 2 complex extent 1
CCR-HCT transcription complex calcult 20
CC multiple management to
be to calculate by one of the hydrological contains contains | Qisplam
Qisplam
Manuali mirane p | aler
rate capiel maps | 0.85
0.86
0.86
0.87 | 031
030 | 0.33
-GES | 0.00 | 620
620 | 550 | 20
6
6 | 8
8 | | | 22 | | | HANGERS M.1 | 910-200-1
UO1 | LOCTEDENCI
LICI
LICI
MATERIA | to to children by me or the hydral are domain cost and
unche in der toel LCC 325 NS NS.
13 CS handing, Pall (\$350, pal year are \$ complex comp
NSSS) polycomb or precise complex 2 colonist parada | Cities
Maries | ater
ater | 0.60
0.60
0.66 | E87
E84 | -01 | | = | | 20 | - | | | 0
11 | | | PROCESSION AND ADDRESS OF THE PROCESS PROCES | CLICAD
TORRY
AM
MRTTLD | 10807 | Ladar denote constitute 7 | Qtoplam | aler | 0.88 | EAS | 0.00
0.00
1.00 | 0.00 | | 687
680 | 100
107 | e | 10
10 | | : | : | | HANCORDA TAN | HACH
HACH | METT LZZI
HAECH
LIBERTY S | along late binase to the 22 by dragony of the binase to the 22 by dragony Cash dragony or as we should be put to compage to grow or 22 F (put at only punchage Late) put at the put to | Maine
Optoplasm | major
major
dist | 0.00
0.00
0.00
6.00
6.00 | GA1 | 1.0 | 0.00
0.00
0.00
0.00 | 530
538 | 600 | 100
200 | | | 2 | | : | | HECTORY
HECTORY | HAZH
URIOPS
LARE
LTA
ACRESIA
HEQ
TAXA-1 | LTA | lymphotoath alpha | Mains
Laborable: Space | ather
cytic or opt, a tenar copt/metr | 6.16
6.16
6.10
6.37 | -0.00
-0.00 | -648 | 1.0 | 628
620 | | | 2 | | 11 | 73
83 | | | HANGED ON THE | 9843-1
2843-1 | 180/20-1
180/20-1 | terina e, PEL QA in
T cell ecopios di pia sarabile 201
Transminato crass complementing 1 | Chier
Chier | | 0.80 | 638
638 | 0.23 | 0.00 | 600
600 | 604 | 6
6 | | 8 | | ** | * | | I MICCE CO MA | MICT
MAY
CHING
WHI
CAME | TRAC | Proprepar cross complementing 1
to extent receptor patiential catton channel subfamily to
opticity one bit industries 1
Visid cross is not recently 2 | V Hamattenione
Otopian | major
dilar
major
kandasad
major
dilar
dilar
dilar
kangada | 0.82
0.86
0.80 | 682 | 0.0
0.0 | 1.0 | | 680
680 | - | | n
n | | : | : | | HAROGEOGRAPH
HAROGEOGRAPH
HAROGEOGRAPH | 17 KG P | THE
CANFO
STEELP
COOK | opinitrate illi milation 1 11 pi doman il mily member 2 chamacamo 3 apenimility il anno 62 contro (il membro il linitrating protein CCCCA, opinitratine c an illine membro finitari | Mai ea
Quelem | aler | 0.80
0.80 | GRE
GRY
GRE | 1.03 | | | 520 | 20 | = | 100 | | 14 | | | HANCE COMMA | MA CENT | LEMES. | CCCC I, of whom e is then we mily failer Lik I do noting transmentrace adapter 1 If ghould by group to 1 possings on 8 | Total day has | aler
aler | 0.36
0.39
0.32
0.30 | 587
587
-638 | 1.3 | 0.00 | 630
630 | 624 | #
| - : | | | 11
11 | | | HARCONCO ON D | PD-MOJ
PD-MOJ
PD-MILEZ | | | name - | | 0.70 | CAS
CAS | -111 | 0.00 | 628 | 624 | E U | M. | | | 72 | | | HANGED CO. NO. | MAPER
2178
MEMALS
MEMOLA
MEMOLA
MEMALTY | SEE SEE | miliage neight to dynamic library library to the library milit to domain containing to Montal Service conser 1 mail homolog 1 | Marina
Marina | Bases divi divi major divi divi divi divi divi divi divi divi divi | 0.85
0.86
0.87 | G19
G19 | 1.38 | 0.00 | 500
500 | 500 | # # # # # # # # # # # # # # # # # # # | = | | | | | | HANGER CO. OUT | MEMBER
BANATY | B40A17 | lete-1, tigale chaptrande a ser | Quelen | | 0.80
0.87
0.80 | CAR
CAR
CAR | 0.37
0.38
-G11 | | 680
680 | 600
600
600 | 10. | | | | 11 | | | PROCEEDINGS | MINI
MINI
MINI NO | PHONE
COMMICS
VPRLS | MII markusudese kritymenteril
phykosyl Cut 2 lydrogisse
gem nai mrog meteorolatelyratio2
ytyperitie 2 | Qtopiom
Mai na | major
aler | 0.85
0.87
0.87 | 629
629
628 | -cas | 0.00
0.00
0.00 | 68
68
68 | | - | | | | 16
17
66 | | | Telephone | MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN | MEGAZ | notes mayor addenly Egroup America 2 | Males H | dependent name on | 0.80 | 208
208 | -017
0.88 | 0.00 | 6.00
6.00 | 600
600 | 300
36 | M
M | | | Ë | n
n | | HANGE COLONS | MARC
MARC | MAMI
HOLE
APR
BOTH
BOTH | T cell exceptor of pile sertable 6.1
fermannicalises D
as of phasphate et 3, bycasonal | Clier
Cytophen | mayor
phosphotone | 0.80
0.80
0.80
0.80 | - 03 | -611 | 0.00
0.00
0.00
0.00 | | | - | | • | | | | | HECTECHES | HEIDE
API
DENME
RPT1
HEGIZE
PLSP1 | MARKET 3C | to manninature of hydrogenic male property of the second count make or rise make operation UTI_FIT3 cube of the first gap operation, frameworks are 1 family of the operation from the UTI_FIT3 cube of the second period and of the second period period of the second period of the second period peri | Clie | aler
aler | 0.80
0.85
0.86
0.86 | 618
631 | -631
6.6 | 0.00 | 625
640 | 600 | 16.
16. | | W W | | | 1 | | S MAN CORPORATION AND A | PLSP1
PARS
PARSON
PRISONERS | MISPS
MISS
MAKEUA | riseand past of 1 (pandger 1
MTI having 2
fanily of its expense and only 23 remier A | Other
Optoplesm
Extraorbaler Space | tanis teorogaldur
diler | 0.87 | CHE | 1.00 | 0.00
0.00
0.00 | 500 | 600 | 20
20
40 | | | 27 | | | | | 2821
2821 | 1802-1
1809-1 | T cell exceptor large variable 33% (pre-single-ce)
T cell exceptor of plan variable 8% | Manual territore
Chier | aler | 0.00
0.00
0.00 | CAN | | 0.00 | 600 | 647 | 10.
10. | : | | i . | 14 | • | | | TRACE C
TRACE
MARCE | TRAVES OF STARE | T cell ecoptor al plus sertable 192
coloid n3
EASC, member 953 occupens family | Color Colo | dependent station resident depen dep | 6.12 | -611
-625
-636 | -333
135
0.36 | 1.00 DE 00 78-40 | | 600
600
601 | | : | 17
26 | | 20
20 | 1 2 | | D MANDOTE CEL SEL F
D F | THE
THE | TITHE
MAKES WE
COME | Exceptible bloods 2
(seety fandy member 2
(andy at the openine and arty 120 member 8 | Optoplace
Macros M embrane
Optoplace | aler
techand
aler | 40 | -636
-636
-636 | 0.00
0.00
1.36 | 1.0 | 600
600
600 | 0.00
0.00 | : | : | | 320
320 | 200 | n
n | | HECTORIAN
HECTORIAN
HECTORIAN | CD10 | G103 | COTAl malessie C-C-C mat fühernatmelig auf 1 malesse Strede für die der 3 menster | Parasti entrare
Laboration Space
Parasti entrare | optic ne
louise beloid, N. 300 M. (M.M. | 416 | -610
-620
-630 | 0.40 | 0.00 | 0.00 | 660 | | | : | = | 200 | | | I MADO DE CIA ATI N
I MADO DE CIA ATI N
I MADO DE CIA ATI N
I MADO DE CIA ATI T
I MADO DE CIA CIA SI | CSP3K
HCARG
SP33-780HNA
GSISNA | CSPSK
HCARCS
CSCSS | by dragon bought and receptor 2 CEC and followed becomes to | Remaildening p | rates copied e cepts and/pagitis core, es
rates copied e cept | 4.00
4.00
4.00 | -639
-639
-638 | 1.36
0.32
0.31 | 0.00 | 620
620
620 | 603
603
600 | : | : | 100 | = = | 200
200
200 | | | PROCEEDINGS | 1001 | 1000 | Inhabatet des V | Qtopleum | ater | 4.80 | -EE | 1.86 | 0.00 | CIE . | 600 | | • | 180 | 120 | 300 | • | | | | | _ | | | | | | _ | | | | |
--|---|--|--------------------------------------|--|--------------------------------|------------------------------|----------------------|---------------------------------|----------|---------------------------------------|----------------|-------------------|----------------| | HANDERCHER
HANDERCHER
HANDERCHTER | 07931
38664
(3.861 | CP 221 spinkrate PDC Finds 1 Labburgh 8 member 1 Optoplace microper | 42 | -68
-88
-88 | 2.38
0.86
0.89 | 0.00 | 5.00
5.00 | 529
549
587 | : | . v | ** | 20
20
20 | : | | I MANOGERON MEN
I MEN | SMAAA
CART
STRING
SELVE D
SELVE
SARGE
MEAR
MAARTS
MAARTS | STREET cycum garbo 3 SUN-SUN Internacional lates in this handals as SUN Color after SUN-SUN Internacional lates in this handals as SUN Color after SUN-SUN INTERNACIONAL SUN ASSUMENTS S | 127 | 1991
1991 | -618
-611 | 1.00 | 5.00
5.00 | 0.00
0.00 | : | E 2 | = | 20
20 | - | | PRODUCTION OF SERVICE | MARKETS | 2070 Helschland of tell imagelier a social originate in biologies. Photos Milmoles Milliano. 1680 1680 Antick Sala Milliano Milli | 2.80
4.80
4.81
4.31 | -0.00
-0.00
-0.00 | 0.80
0.87
-0.12
-0.04 | 0.00 | 5.00
5.00 | 5.00
5.00
5.00 | 0 0 | E E | 220 | 200 | 36
34
38 | | E MANDOCECCO SECRE
E MANDOCECCO SECRE
E MANDOCECCO SECRE
E MANDOCECCO SECRE | EAR
BER
SER
CRQA | NAS R. Mary reference per B Quiny herm emigres (IXC-0 REQUEST) follow cell leafs for every part C Personal designers on assessment learn every be RECE on two lifet or of this princip receptor Personal designers called CEXP. complement CEQ at late. I and we failer part learn Extra complement CEQ at late. | 4.38
2.M | -0.00
8.61
33.2 | -624
1.86 | 0.00 | 5.00
5.00 | 587 | | | | 300
0 | | | HANDGE CU 1873
HANDGE CU 1873
HANDGE CU 1873 | CNQA
MEV7-08
IOEVS-0 | CEQA complement CEQ. An late. It alternated in page population
EXY2-01 Immunophisal to in thick worksin 7-02 It attends for space population
EXX3-0-0 Immunophisal to page worksin 2-0 Claim other | 1991
1991 | -6.00
-6.00
-6.00 | -641
-648
-670 | 1.0 | 0.00
0.00 | 6.00
6.00 | : | 2
2 | 22 | 200
200
200 | - | | B MAND COLD COLD AND I
B I | MODIL
MODIL | Marcine Marking paties Marcine Marking marked Marcine Marking | - | -8.86
225
279 | 0.00
1.00 | | 5.00
5.00
5.00 | 600 | - | : | | 200
0 | : | | HANDGE CLUMA
HANDGE CLUMA
HANDGE CLUMA | VANDER
VALUE
MAIN | MARKET integrace date of protein factors the cell represent 2 papers. Special date 1992 per la factor papers (1992 per la factor papers 1992 per la factor papers f | 4.36
0.86 | 276
282
-686
-228 | 1.8
0.0
-026
-039 | 1.0 | 5.00
5.00 | 581
581 | | 1 10
1 11 | us
v | 200 | - | | HANDERSON SERVICES OF | COLLAG
PROT | ACOUNT. adhesived proteins agried exceptor ES. Pleasa M emissee protein coapied excepts. CEX.S.S. collegetings of plea Table. PETER protein great end coard (position). Pleasa M emissee bloom. FETER protein great end coard (position). | C.M
C.M | -239
-230
228
238 | -619 | 1.0 | 6.00
6.00
6.00 | 650 | | | 26 | | - | | | 9492
9
98
19440 | 19CR2 SCE adapter years of Open Control of C | 411
0.00 | -838
-587
582 | 0.3h
-64 R
0.47 | | 600
600 | 548
550
550 | | | ; | 20 | - | | FREE CECTA NO. | COCOC | March Marc | 4E | -137
238 | 0.0 | | 500 | 0.00 | | | 120 | 200 | - | | HAND GEORGE 70 1 | #03
894973 | 2000 | 0.0
0.0
6.71 | 188
182
-188 | 0.88
-618 | 0.00 | 500 | 620
620
620 | 73 S | | | 200 | = | | I MICCECCION I | PURPI
LAW | THEORY Lame protein patients in the lame protein 1 Nation of the Village American patients and the Village American t | en. | -132
184
148 | -613 | | 5.00
5.00 | 600 | | | | : | | | Main Can Can 737
 Main Can Can 737 | THREA COMPAN | TSRNS INIX spining enhancements that Nation conjure CSPLS appeal labeling priorities (and added dated conjure UNIX-DSR displayments and added dated conjure UNIX-DSR displayments and added dated conjure | 0.39 | 148
187
-130 | 0.20
1.21 | 0.30 | | 618
600
600 | - | | - | 1 | | | 1 Mile CE CE THE 2
1 Mile CE CE THE 2 | SAUD
GUECO | UNDOUGH skippite accept to accept to depth of accept to the particle of pa | 0.00 | -238 | 1.07
-612 | | 500 | 600
601 | | 100 | n | 20 | : | | I MANOGEOGRAFIA
I MANOGEOGRAFIA
I MANOGEOGRAFIA | MET DI.
AT PIALI | CERE CERE minist de Partie de la France de ministra de la France | 0.39 | 130
-130
138 | 0.00
-000 | 1.0 | 5.00
5.00 | 600
600
604 | | 100
100
100 | v | 200 | - : | | HANDERCONST
HANDERCONST
HANDERCONST | COM
DEPA | AT BALL A The cophosphelip of an experting BALL Quiplions transporter DUSM distriputable phospheses Quiplions phospheses CRIMAN optimals and regulatory 1 and make calle Manual Mantheses aller | 48 | -138
188
-140
119 | 0.28 | | 5.00
5.00
5.00 | 600 | | | 120 | 87 | | | I MICCOLOGICA
I MICCOLOGICA | LLALZ
HBPL1 | 1962 Library Company Engineering Company Compa | 0.0
0.30
6.30 | 182
118 | 0.76
0.76
0.88 | 0.00
0.00
0.37 | 0.00
0.00 | 600
600 | # E | | | : | : | | HANGED COURSE
HANGED COURSE
HANGED COURSE | 100010
100010 | Market for the print of the company | 6.0
6.0 | -188
-188
101 | -040
-077
0.88 | 0.00 | 0.00
0.00 | 620
620 | 20 1 | | - | 200 | - | | HAND COLOUR VAN 7
HAND COLOUR VAN 0
HAND COLOUR VAN 4 | THEOREM
THEOREM
GALLETTS | MADEN which the september of septemb | 0.33
0.31
4.67 | 181
-188
118
128 | 1.31
-631
-680
-687 | 0.30
0.86 | 5.00
5.00
5.00 | 620
620 | 73 1 | 10 | 2 2 | 200 | | | I MARCHECA DATA
I MARCHECA DATA | 101.1
101.1
20101 | MBCD CHROLYMOLI - e-relation to CAR forming bildy entergened. Marines above 18 to severate these of Opposition on State 28 CDI - sinc Super BED (age containing it Optophese above 18 MBC it part to read containing it Marines above | 40 | -138
-188
134 | 1.00 | | | 600 | | | 77 | 87 | - | | HANDGE COURS
HANDGE COURS
HANDGE COURS | SWORT
SWORT
FLES | METAL overamination of Opinion survivors (Control (Contro | CM
CM | -128
187
-137 | -627
7.36
-644 | 0.00 | 0.00
0.00
0.00 | 6.00
6.00 | | 100
100 | n
n | 100 | - : | | SHARE CELEBY TENS SHARE CELEBY THAN SHARE CELEBY THAN SHARE | MEMA
MUDIA
METO | Titled | 630
630 | -5.37
-5.66
5.02 | -62%
-120
0.00 | 0.00
0.00 | 520
520 | 620
620 | : | 34 | | 87
87 | a u | | I MINICIPE CIA TICA
I MINICIPE CIA VILA
I MINICIPE CIA VILA | DOMES | MAD manuses to dylusquise de contranjune Opinion surpre
DRID, de angle pour linear de la Opinion tonne
NAS manus de la Contranjune de la Opinion Opini | on
on | 118
108 | 0.33
0.38 | 0.4
0.0
0.0 | 5.00
5.00 | 684
687 | 1 | : | : | | | | HANDERSON | CAASI | CONT. diaggine time fee Quijalen time RES pin fet timeS The Control State time DES 7 diagnonistic expetence 1 Quijalen morphe 1886 to enach 1 Malma diber MEMOR To amounts are product 37 Malma diber | 4.0 | -135
-135 | 0.00
0.00
2.30 | 0.00 | 100 | CA* | | 100 | | 97
11 | | | 1 Marchaelle Corner
1 Marchaelle Corner
1 Marchaelle Corner | POSILITI
TPME | Add | 1.31 | 181
181 | 0.31 | | 5.00
5.00 | 540 | 20 2 | | | | • | | IN MERCITATION MATA MER | 100 | TOTAL PATENTS OF THE | 0.84
6.83
0.86 | 104
-128
697
238 | -0.7E | 0.00 | 6.00
6.00 | 626
620 | | | × | 20 | = | | FREEDERSTEINE
FREEDERSTEINE | HORE
CONC. | NESS bemanistrative short late Opinytem engine DMS1 delais1 opening repeting yeard y | ca | -138
334 | 8.0 | 0.00 | 5.00
5.00 | 600 | | | я | 87 | | | I MINISTERIO GRADA
I MINISTERIO GRADA
I MINISTERIO TRADO | THREPIDA
CDCAPL
BAMPI | DRMI dielekt. Openius ungestendig membe 100 Perusta tendanan dankari Senti COOLK and dielekteri die | 6.00
6.00 | -538
-538
-530 | -629
-623
-628 | 0.00 | 548
548 | 588
547
548 | 27
27 | | #
| 100
100
200 | 10
10 | | HAND GEORGE TO A TOP O
HAND TO
HAND TO | TIRS
CAMED
MED TO | Martin | 6.6
4.60 | -127
-127 | -641
-688 | 0.00 | 0.00
0.00 | 6.00
6.00 | | | * | 200 | 12
17 | | E MANDESCOTO PARA E
E MANDESCOTO PARA E
E MANDESCOTO PARA E
E MANDESCOTO PARA E | AMER
MENC | 20120 des frage production frances de la constante const | 6.00
6.00 | 108
-130
-136 | 6.2
-GIA | 0.00 | 5.00
5.00 | 683
680 | | | 11 | 200 | | | NAME OF STREET | 1844 | TERMA Inhabite (de de la companie | 638 | -088
128 | 0.8
-CA 9 | 1.0 | | 683
600 | | | | 20 | e u | | FREEDRICK MAN
FREEDRICK MAN
FR | MEET. | PROCEN phosphary de dripting are Uping lann mayore MEEL MAXII de acturit, d'arrisette partie in Marine Vanning datur | o.m | -088
332 | -CAR
1.36 | ca. | 5.00
5.00 | 6.00
6.00 | | | • | 200 | = | | B MAND COMPOSITION A
B MAND COMPOSITION A
B MAND COMPOSITION A | MACO
MAG.
MAG. | MADD MADE was a clear great habanain Grippiann sher
MAD group late his man 1 Grippiann bin man
2010 to finger you be NATE Cibe she | 0.00
0.00 | 681
681
-167 | 0.48
0.38
-CAS | 0.00
0.00 | 0.00
0.00 | 6.00
6.00 | | | | 20 | n | | I MARCOE CALETY A
I MARCOE COLLAND
I MARCOE COLLAND
I MARCOE COLLAND
I MARCOE COLLAND
I MARCOE COLLAND | DEED
PPKE | 2013 | 0.80
0.80
0.80 | C#8
C#8 | 0.ML
1.37
0.ML | 0.00 | 640
640 | 6.00
6.00 | | 7 180
7 180
7 180 | * | | | | I MICCECCIONO
I MICCECCIONO | ESC.
MCI | CHRIS deut operfielts groeine planeter planeter planeter film bei | 627 | 110
-08
-08 | -0.00
-0.00
-0.00 | 0.00 | 500
500 | 6.00
6.00 | 27 E | 1 10
1 14 | = | 200 | # W | | I MARCOTT CO MAC
I MARCOTT CO MAC | CMMO
CMMO
WORLY | EASE: SAME, namber Milorospess body Quephon surprise DEATE: CEF in SEATON, Exemption or domain contribing: I shareful from spike or MCRES Company Airconnection of Seaton Contributions Airconnection on CEF. | 4 E | -0.00
-0.00
0.00 | -618
-681
0.0 | 1.0 | | 681
680
680 | * · | - | - | 20 | | | HANDER CONTROL
HANDER CONTROL
HANDER CONTROL | H PIC
SERVE | March Marc | 6.0
6.0 | -0.00
0.04 | -CAS
0.07
-018 | 0.00 | 500 | 600
600 | n : | | n | 20 | n
n | | HAROGEOGRAPHA
HAROGEOGRAPHA | MARK
COCUD | MAP SEE mit agenerate be before de la lieure la laure literare la serie (projection literare). EDCIDE code de al discretion bits (p. 130). Manual la serie de la lieure la laure literare la laure la literare de la laure la lieure la laure la lieure lieu | 6.37
0.68 | -046
045 | 0.00 | 0.00 | 500 | 618 | | | | 200 | n | | I MARCOTT CONTROL CON | BARR SARE | CECCE color of the school being 120 Manual Membrase color | en
en | -0.00 | -627
0.86 | | - | 600
600 | - | 100 | n | | - | | HANDERSON ON A
HANDERSON ON A | BBC
CAMI | | 639
648
638 | - CAR | 0.00
0.00
-0.00
-0.07 | 0.00
0.00
0.00 | 5.00
5.00
5.00 | 621
621
620
620 | | | | 200 | | | E MANDOCE CENTRE A
E MANDOCE CENTRE A
E MANDOCE CENTRE A
E MANDOCE CENTRE A | 2001
2001 | EFFEE PF (receptor EE Plant of the following blooms of the following blooms of the following peaks followin | 62
62 | -086
GB 3
-085 | -637
-682
6.38 | 0.00 | 5.00
5.00 | 600
600 | 77 I | | | 0
8
87 | e e | | FREE CECESTON FREE CECESTON FREE CECESTON | PPLES
PPLES | TREADER TO Alpha to develop as to 10. Gyropiano stale v
MACDI In Inglino aporti Cali Alego di Esse di Gyropiano service
ACHIESE Silo ECO e accidato proteini Gyropiano service | 63
63 | -045
-035 | -611
-682
-627 | 0.00 |
5.00
5.00 | 600
600 | 27 | | E 10 | 20
20
20 | - | | HAROGEOGRAPH
HAROGEOGRAPH
HAROGEOGRAPH | MODAL
MARKELL
MORSA | ANDERS and one to ASS to the continue of c | 62 | -03 | 1.01
0.09
0.38 | 0.00 | 5.00
5.00
5.00 | 607
607 | M | 100
30
86 | - 8 | 94
97
300 | 2 | | I MICCOCCI CO 1
I MICCOCCI CO 4 | MPRZ | Amount A | 63
63
63
63 | -530 | -508 | 0.00 | - | 660 | | - 10 | * * | 92
97 | - | | HECTORS ! | BIGST. | SCI (SCI) substrate for the first of the content o | | 688
688
683 | 0.07
-0.75
0.08
-1.08 | 0.00
0.00
0.00
0.00 | 500 | 620
620
620
620 | 27
27 | | 11 | 8
0
11 | 17
34 | | HAROGEOLOGICA
HAROGEOLOGICA | AREAST. | ARIMS as in leading LEMpanier S. Opinplace after CERPS CTD cond phophateur S. Marina phophateur | 0.80
0.80
0.80 | -081
-086
671 | -128
-074
0.86 | 0.00
0.00 | 0.00
0.00 | 600
600 | 1 | | U | 20 | = | | HANGGE CHARA | ATTACA
MATERIA | CODY COUNT physicians and physicians are considered to the conside | 64 | -101 | 0.00
-0.03
0.00 | 0.00 | 500 | 660 | 77 T | 100 | | 200
97 | | | HAROGEOGY 1941 | ARDS
CTRS | 1640001 MM demand, 90 demands and not no business sign. National desire? ADDS any year sign. Sign. Except to company and Quippison business company of the CPPS CPP specimen 1 What has margine right sign optimises. | 638
638 | -030
-030
070 | 0.26 | 0.00
0.00
0.00 | 5.00
5.00 | 620
620
620 | 3 I | . 10 | #
| 200 | ÷ | | FRANCISCOTONIA
FRANCISCOTONIA | HANT THA
STATE | BETS source pithed doe't to solvening 1 Maries does not solve the solve of solv | 6.33
6.86 | -08
-08
-08
016 | -643
-128
0.00 | 0.00
0.00 | 640
640
640 | 0.00
0.00
0.44 | | | 77
80 | 100
87
100 | - | | HANGED COMMAN
HANGED COMMAN
HANGED COMMAN | PEE
PHTS
CIP1 | EXT.1 signal from door to also be a fine exception 1. Maries a Year option of patern
PET.2 procedure of PETS bits and PETS PE | 6E
6E | -CAR
C271
CAR | 0.00
0.00
0.00 | 0.00
0.00 | 6.00 | 6.00
6.00 | M | | | 200 | : | | HANGE CONTROL | ACATA
MARKA | RACES RACES, number Militaring one is nity Homes the militaries mayore ACVES on this A couplet type in PARESON Family of the opposes and only Science A. I advantable Space able of | 610 | -can
-can | -011 | 0.00 | 5.00
5.00 | 500
500 | 2 1 | | 71. | 200 | - | | HAND GEORGE TANK
HAND GEORGE COLUMN 2 | MAX
CN/OR | MEAN_contine Ministry on Nation Ministry of Minist | 0.84
0.35
6.36
0.32 | 670
-087
688
-038
673 | 0.8
-018
-016 | 0.00
0.00 | 500
500 | 0.00
0.00 | n n | 7 B | | 200 | ÷ | | HAROGEOLONS
HAROGEOLONS
HAROGEOLONS | MAPE
MAPE | CRE CRE prote-recigence Marina trans dybinning datur MAPE publisher-lawely polymerane family revoker S. Cliev sites SCO. Section of the control contr | 6.M
0.33 | -0.78
0.72 | -CR4
0.30 | 0.00 | 5.00
5.00 | 000 | 20 1 | 7 78 | * | 200 | 27 | | HANGER COMMIT | MCCIMA
MCCIM
LAPED | ECOM3 white carter age at a stanta reporter that tyrocole. However the branch state of the stanta | 0.0
0.0
0.0
0.0 | 670
-685
671
-686 | 0.36
-0.04
0.36
-0.14 | 0.00
0.00
0.00 | 646
646
646 | 628
628
660 | 27 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 | 200 | | | PRINCIPALISMS PRINCIPALISMS PRINCIPALISMS | PCLE
HUP1
TRMB | 150 | 0.30 | -030
076 | -018
-048
036 | 0.00 | 0.00
0.00 | 600
600
600
600 | B 2 | 100 | 30
30
30 | 11
200
0 | 20
0 | | PRINCES IN A
PRINCES COURS
PRINCES COURS | CCMILL
GOTS
TMBG | MCCT section in Section 1 Mail Max Sense dystorregister (MCT) give into realize of the section in 1 Opinion expression of the Section 1 Opinion expression 2 | 4 M | 108 | 1.37 | | | 600 | • | 100 | | 11 | | | I MINICIPE CO. 2014 | DEXI
MINE | 1943. de hydrogen anglysischen 1 Grippinen ausgen
1979: mit akteud is fluide præsent Grippinen aller
1944: De hand skall grippinen fluide | 0.00 | CAR
CAR
CA7 | -082 | 0.00 | 600
600 | 680 | | | | | - | | HANDER CHARA | MICH
MICH | INTERT : materiale is trace present. GRACIA De Life de lack practic field play(i) menter CI. Remark tentione state: INSE trace produce or practicit. FIECH productionance or CI. Committee or City production or CI. INTERT productionance or CI. INTERT CITY productionance or CI. INTERT CITY productionance or CI. INTERT CITY production or CI. INTERT CITY CITY CITY CITY CITY CITY CITY CIT | 68
68
68 | -0.76
-0.76
0.81 | -637
-688
-687
6.37 | 0.00
0.00
0.00 | 648
648
648 | 0.00
0.00
0.00 | | | | 20 | = | | HANDERSON TO 2
HANDERSON COLOR | DANCES. | 1072 Share Marit S. Faright | 6.00
6.30 | 687
-689
678 | 0.37
0.36
-0.08
0.46 | 0.30 | 5.00
5.00
5.00 | 526 | | | : | 200 | | | HAND COLUMN 1 | COME
COME | COMME System de confesionale de la companya del companya del companya de la del companya del companya de la | 0.83
6.34 | 071
071
-08
071
088 | 0.44
1.34
-147 | 0.00 | 548
548 | 626
626 | n
n | 110 | | 200 | - | | NAME OF CLASSICS OF STREET | CHETTE
GAE | ATPS: ATPs with the plant of 2 Optoplane other
CHITO COLO CTIT recomplate complex colonist 2 Next ea. Exem deplant or other
CHI and a sear deficience Next ea. Bloom | 0.00
0.00 | CAR
CAR | -CB7
D.M.
D.M. | 0.00
0.00 | 6.00
6.00 | 600
600 | | 7 1ED
7 1ED | : | - | 0 | | FRANCISCO ROA
FRANCISCO ROA
FRANCISCO ROA | NAMES
CAMES | 1970 T jagar rang par rang pagag ta sang pa
Padi Tili pagag rang pagag ta sang paggan paggan paggan paggan sang
Padi Tili paggan paggan paggan paggan paggan paggan paggan basa 2 Gang pagan basa paggan basa paggan basa paggan p | 627
627 | -0.8
-0.8
-0.9 | 0.00
0.00
-6.01
-6.61 | | - | 645
660
660 | | | | 200
200
84 | | | PRICEE CLANS PRICEE CLASS | MADS
MADS | Marging Marg | 6.00
0.00 | -130
-000
-039
-035
-035
-039
-039
-030
-031 | -128
-538
-576 | 0.00 | 6.00
6.00 | 6.00
6.00 | : : | | | 200
200
84 | 22 | | S MANDOTE COMMO?
S MANDOTE COMMO?
S MANDOTE COMMO? | PHONE
MED
MEDIAL | PPRINT PPN landing protein 2 National phosphotone USC 900 desired sinking blooms 1 Clear blooms PRINTE Print probability Clear direct | 6.00
6.00
6.00
6.00
6.00 | 671
671
-678 | 1.02
-0.79
-0.41 | 0.00 | 5.00
5.00
5.00 | 620
620
620
620 | 27 | 100 | 27 | 97 | 0
100
84 | | FRANCISCO SEA
FRANCISCO SEA | MARIE
MARIE | Testing Test | 6.0 | -080
071 | 0.30
0.44
0.42 | 1.0 | 0.00
0.00 | 000
000 | 1 | | a
U | 11
17 | : | | HERCECHOLI
HERCECHOLI | PCERTA
HPC SE | POLICA EMpolymera e Toubrett A
1923 — Inches pick to ministen indicates in the 3 calcular general Opinions branch interruption | 68 | -0.00
-0.00
-0.00
-0.00 | -082 | 0.00 | 5.00 | 000 | | | er
T | 200
87 | = | | S MANDOOD COS MALS
S MANDOOD COS MALS | HEAD | MER as the MEX-risked Opposites other HEALT by passes or required 1 Opposites after 1972. The passes of required 1 Opposites after 1972. | 62
62
63 | -030
084 | 0.86
0.86
0.86 | | 0.00
0.00 | 620
620
620 | a : | 100 | n
M | 9.7
B | | | HAND GET CO. 184 A | 100 K
1000
7003 | ## 10 #21 #10 #21 #10 #21 #10 #22 #10
#22 #10 | 6.M
0.B
0.B
6.37
0.47 | CAR
CAR
CAR
CAR
CAR | -643
0.40
0.37 | 120 | 6.00
6.00 | 600
604
600
600
600 | u | 7 E | | | | | PRODUCTION AND A SHARE COLORS | CHARLES
CHARLES | CRESS DATE regulatory NES complete SE Chief Sher Caller Ca | 0.0 | CAO
CAN | 0.05
0.35 | 0.00 | 0.00
0.00 | 620
620 | 17 Y | E 100
7 EL | : | 0 | 0 20 | | I MINICOLECTA THE A
I MINICOLECTA THE I
I MINICOLECTA SIGNA | III
III | CTD-FT chairmanne Ti sperres ding for no 21. Opinphon si ber
18 El prio sengger
ETALS bespiele resultati dipla 2 Nationa Estano Spiele Stational dipla 2 Nationa Estano Spiele Stational dipla 2 | 6.33
6.33 | 627E
627E | -617
-621
0.00 | 0.38
0.38 | 500
500 | 667
687 | | : | | 11 | : | | HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE
HANDSESSEE | MATIA
MER
HEA | MI | 0.67 | 0278
0278
1258
0270
-0271
-0276 | 0.81
0.85 | 0.00 | 640
640 | 660 | | , 4 | | 87 | | | I MICCECCION | COA1 | 1973. Spinos telestricinario 1 tiple calcost Maines Sensi Aplacoregidare 501 288. SSS 97-bes Maines calcost finate 1 benedig Oppison alber CDM opticiones calcost acestricinario 2 Optison alber CMM OPM National COMM optisones COMM optisones alber | 6.0
6.0
6.0 | -03
681 | -129
-617
0.36 | 0.00
0.00 | 60
60 | 520
520
521 | er 2 | | | 87
0 | 32 | | I MINICIPERTY NO.1
I MINICIPERTY PRO
I MINICIPERTY PRO | 100731
10073. | COS.1 (plantum or and disease and definited Thomas (plantum) COS.1 (plantum or and disease and definited Thomas (plantum) COS.1 (plantum) COS.2 COS.3 COS. | 6.07
6.28
6.29
6.07 | - CAS
- CAS
- CAS
- CAS
- CAS
- CAS | -018
-019
-017 | 1.0 | 5.00
5.00
5.00 | 628
620
620
620 | | | - | 100
100
17 | | | HANDSTECKNICA
HANDSTECKNICA | APDI
29VI | AMPCS administer recorphisal de antine S Quiplion alors 39905 in fage 17th specials being 1 Quiplion alors 4000 and | 6.0
6.0
6.0 | -0.00
-0.00
0.07
-0.00 | -0.07
0.08
0.38
-0.78 | 0.00 | | 000
000
000 | | 100 | n | 200 | 0
M | | | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | | 131
132
132
133 | | -0.12
0.80 | 0.80 | 5.00
5.00 | | : | | | | n n | | | EMP
CXDE | ISSNP consistence accept and protein Planted Reviews after ISS translation (pilet or cylinter CEXIS CEXISTS — Quiplion after | | 084
-086
-082 | -619 | 0.00 | 6.00
6.00 | 600
600 | 2 | 100 | п | 200 | | | HANCETCH THE T
HANCETCH THE T
HANCETCH THE
HANCETCH THE
HANCETCH THE T | Profess | 1975 endylamin reliable mystels 25 Griplam busyarie: 19618 1861 feely version 168 Citier siter 19651 biologica olike a citier respicantism 15 Peers de misser e manuface respicantism titerione | 63
63 | -677
681
-675
-686 | -619
-619
-629 | 0.00
0.00
0.00 | 0.00
0.00 | 520
520
520 | | | # n | 97
0
200 | E | | PROCEEDINGS | INCI | TRATE 1984 mellyle mellow a 1987
PPC 2 intermediate (famout family captes 2 Cities dates | 637
637 | CAT | 1.0 | 1.0 | 6.00 | 620 | | - | 2 | 14 | n | | | | | | | | | | | | | | | | | | | _ | Mad ma kinase systemparter Afdrollen | | | | | | | _ | | | | | |--
---|---|--|------------------------------|---|--------------------------------|----------------------|----------------------|--------------------------|----------------------|--|----------------|-------------------------|-------------| | HANDER COLORS | MECHE
CAUS
PERCE | METER manhamble larget of repairspile. METERS continued to by part DDP for et op before subsett. CARD, contract the fing or 1 F79003 problets for the fing. | Martin Bana Application (Application of Application | 6.9
6.9 | -636
681 | 0.00
-1.11
0.00
0.30 | | 500
500
500 | 620
620 | | 100 | 27
34 | 300 | - | | I MINE CERCIA CALS
I MINE CERCIA CARS
I MINE CERCIA CARS
I MINE CERCIA CARS | COLE
SHOOL
SHOOL | P79022 protet nig oud or phosphataus, note receptor type 22
CD38 CD38 makes ale
189701 sphings may be phosphated or one d
MRPL27 mit school to i ribosome i proteto 127 | Remail entrue after
Opposen engre
Opposen after | 0.00 | 281
124
212 | 0.36
0.76 | 1.0 | 6.00
6.00 | 520 | 200 2 | 0 B | | | M . | | FREE CEPCES OF C | MRAJ7
MRA
MRAJE
MRAJE
MRAJE | MAN probe fish
MAN EMANING and print M
MAN Philosophy bibleschapens | Orașium aller
Daina benedițioreguler
Daina benedițioreguler | 0.40 | CAR
CAR | 0.00 | 0.00 | 640
640 | 550 | 20 | 07 100
07 100 | : | | : | | 1 MICCORDINANA | CMP
CMP | CRM cAMPreparte derest reduser CRSP optiests 1 Marking profess SCD-MC sales certer book 2 member 20 | Marina transdythorogalder
Optoplann after
Optoplann after | 0.30
6.00
0.33 | -636
-636 | 0.00
-008
-023 | 0.37
0.00 | 0.00
0.00 | 603
614
600 | 7 | e e | w. | 200 | | | HAND GEOLOGY
HAND GEOLOGY
HAND GEOLOGY | AMINA
PAGE
NA | AMBRO activities and both Singulate S
IMES to activities adopted to the e-S | Organism alter
Organism binase | 0.0 | 039
039
039 | -601
0.38
1.65
1.69 | 0.00 | 600
600 | 623
623 | 200 3 | E E | : | 0
8
17 | | | I MADO CERCAS AND | TOLP
TOLP
TOLP | TOLLE Lift new oling position
1898875 Immunophilad tomor binding protein 2
18985 ophins 65 | Optoplasm sther
Malina minyre
Plasma Mindrase sther | 0.00 | -cas | 1.00
-cze
0.36 | 0.00 | 0.00
0.00 | 620
620 | 33
86 3 | 0 E | | 200 | | | I MANOGE CENTRO 7 I MANOGE CENTRO 7 I MANOGE CENTRO 10 I MANOGE CENTRO 11 I MANOGE CENTRO 11 | PRINCE
THE MICO | PERSON PERSONAL Institution of an image of regulator is
the MED O'MERSON Community between | Hannahl enlarge transported
Hannahl enlarge transported
Optighten other | 6B
6B | -040
-040 | -017
-013 | 0.00
0.00 | 6.00
6.00 | 600
600 | : | | nt
n | 100
97 | : | | HANDERCOMA
HANDERCOMA | AMENAL PRIC NA INF-CENTL-NE TOLLP EDOMPT INFOL NA INF-CENTL-NE TOLLP EDOMPT INFOL NA INF-CENTL-NE TOLLP INFOL NA N | | Opposition of after School Control Con | 62
68 | -128
-621
-686 | -07E
0.33
-043 | 0.00
0.00 | 600 | 620
620
620 | | | | 20 | N 0 | | I MANOCECCIA MANO MANOCECCIA MANO I MANOCECCIA | 1969138
1965 | COPING or old counts of probes 100. SECURIZE SEC. receptor capacitantly counties 10b. SECURIZE Stress princer spin recognitions of the TANKS analysis princer spin recognitions. | Manual militare a namentrare receptopharanal, constanan
Malina ecopie
Malina ecopie | 68 | - CAR
- CAR | 0.M
-0.M
-0.0
-1.00 | 12 | | 660
667
660 | : | 100 | - | 87
87 | | | HAND COLOR SHA | MARI
2016 V | PCMR Po fragments fig bit man plant 2000 sinc finger protein nCO | Mali An. margine Mali An. daller margine Graphian Mali An. daller Qraphian Mali An. daller Mali An. daller Mali An. daller Mali An. daller | 6.00
6.00 | -0.00
-0.00
-0.07 | -082
-084
-088 |
0.3
0.0 | 640
640 | 620
620 | | | u u | 300
87
87 | | | I MADO CERCIO MONTO I MADO CERCIO MOTO I MADO CERCIO MONTO | HPID.
IPIDA
MCIBIZ | EPE1 receptor bitwarding administration to 1 | Manual entrare litrare
Other sites | 0.88 | 58 6
58 6 | 0.M
0.M2
-1.03 | 0.00 | 0.00
0.00 | 600 | | 100 W.
17 100 | | : | : | | HANDER CONTROL
HANDER CONTROL
HANDER CONTROL | MERCI
AMERCIA
DORP | PLOTO I house a displacation open to phospholysmo C I denote a
910 to 10 th physical to black fractor 2
ANEXCI analysis of the subject to the state of the subject to
1000 to 1000 | Oppless store
Mains ster
Oppless ster | 0.0
0.0
0.0 | CAR
CAR
CAR | 0.38
0.86 | 1.0 | 600
600 | 650
650
650 | 200 1
20 1 | 20 76
M 120
M 62 | n | : | | | HANDERCON ACCO
HANDERCON ACCO
HANDERCON ACCO | AUATE
MOSIN | ASPATE 2 may dipressive placeple to Complementer as
199728 ring Engery rate in 188
COSST upd to the product of own 1.7
1985 productions of Enhant | Otophon extyre
Other after | 68 | -030
-030
088 | -018
-018 | 0.00 | 5.00
5.00
5.00 | 620
620 | | 1 | M
M | 200 | | | I MADO CERCIA ACCI
I MADO CERCIA NO I I
I MADO CERCIA NO I I
I MADO CERCIA NO I
I MADO CERCIA NO I
I MADO CERCIA NO II
I MADO CERCIA NO II
I MADO CERCIA NO II
I MADO CERCIA NO II | PRICE
PRICE | CDR27 spill rule pendential rune 1.7 PRISC proble hithans, 2 debad PRISC is 4 more publishing return 28 | Graphon brase
Graphon brase
Graphon peptidos | 0.32
0.39
0.00 | 50.0
50.0
-500 | -028
0.37
0.06 | 0.30
0.39 | 0.00
0.00 | 618
660
678 | 31.
31. | и п
и п | 2 | 200 | : | | HAND GEOLOGY S | HAMES
WINE | I hand to be a second of the s | Griphon dier
Maine benedyberregister
Maine dier | 0.07
0.08
6.09 | CA 6
CA 4
-CAD
-CAD | 0.33
-0.07
-1.08 | 0.00
0.00
0.00 | 600
600 | 600
601
600
600 | : | v 10 | n
u | 17 | = | | B MADO CERCEDANDA E B MADO CERCED POUTE B MADO CERCEDANDA T B MADO CERCEDANDA S | FIFE PROPERTY OF THE | COLUMN CO | Marina mayor
Qaqalaan mayor
Marina pratition | 0.00 | 510
510
510 | -019
-019 | | | 600
600 | 27
ML | 27 | 1 | - 1 | - | | HAND GEODESIA
HAND GEORGE | UMACHS.
MUSEA
DOME. | ATOM states II LINES 1 shop the corpup tog engine R2 R2 RECES or glade of dynamics and glad CODE CODE CODE CODE CODE CODE CODE CODE | Orașian mujes
Orașian alter
Orașian alter | 6.E
6.E
6.E | -CAD
-CAF
-CAR
CAR | -025
0.86
-030 | 0.00 | 0.00
0.00 | 601
600 | 2
U | | N 4 | 300
78
87 | * | | HAND COLORS FOR A SHARE FOR A SHARE COLORS FOR A SHARE COLORS FOR A SHARE COLORS FOR A SH | ADDI
UNCO | ADD1 adds to 1 | Grights super Color Colo | | -cas | -040
-035 | 0.00
0.00
0.00 | 0.00
0.00 | 620
620
620 | 1 2 | 0 8
0 0 | 17
77 | 20 | = | | I MICHECULOS (NA
I MICHECULOS (NA
I MICHECULOS (NA | EMPL
EARL | NOT gradual substitute | Optoplace states
Optoplace states
Optoplace states | 68 | -046
-046 | -676
-684
-175 | 1.0 | 0.00
0.00 | 600
600 | 14
16 | 4 | - | 200 | - | | HAND GEORGE SALT | IMPACT
SMILE | | Originam gradu bidar
Originam ster
Originam mayor | 68
68 | -047
-040
-040 | -082
-084 | 0.00 | 0.00
0.00 | 520
520 | 20 21 | | 77 | 97
200
97 | 120
17 | | IN MADICAL COLUMN AND A PRODUCTION OF THE AND A PRODUCTION OF THE AND A PRODUCTION OF THE AND A PRODUCTION A | BLOS. BARRIL BARRIL BARRI | CHP METP1 CHRON CHANGE describe contacting 1 percenting me
15 33 option 32
20 20 and for producing
CHAR1 Described which protein body (hope) (member 16. | Crophon aller
Cytophon aller
Naires aller
Naires known deler | 48 | -0.00
-0.00
-0.00 | 0.00
0.00
0.00
-0.07 | | 5.00
5.00 | 600
600
607
600 | | | × × | 100
84 | | | HANDERSON TO A SHARE OF THE SAME SA | PCR
COMP
PROCESS | PCR Imports 8 CDSP CDS and dedposes PPSSA protophopiese 1 regulatory salust 13 M. | Naina tempote
Origina ater
Origina ater | 0.m | 071
080
088 | 0.86
0.87
1.67 | 0.00
0.00 | 0.00
0.00 | 620
620 | : | 0 0
0 10 | | | | | I MANOCECCIA SECU-
I MANOCECCI | TANK
MARIE
UNIO
ACAPTI
CHOIL | 1975 1975 has briefly protein accordant for it is a principal accordant for it is a principal accordant for it is a principal accordant for its fo | Mad ma trans dythonorg dator
Mad ma trans dythonorg dator
a Optopheno sectyrae | 0.86
0.80
6.33 | -6.70
-6.77 | -637
6.80 | 0.00
0.00 | 0.00
0.00 | 620
640 | 10.
20. | , x | 21 | 100
87 | | | FREEDRICK SET | CHOIC
THOMAS | CMD4 characters to below a DMA to the ordered | Orophon after
Nation engine
Orophon after | 0.44 | -086
686
681 | -071
0.00 | 0.00 | 640
640 | 620 | u. | 0
0 100 | : | 1 | | | HAND CERCLE AND IN | THOME
GIP2
STRA
SOUNS
FALZE | TO MES. Significant order claims a seal after distance of CREP 4 money resolves a monthly for claim 2 THE A land is to seal of place of the CREP 4 THE A STATE A STATE OF THE ACT | Graphics of the control contr | 6.00
6.00 | 681
687
-680
-680
-680
138 | -032
-034
-037 | 0.00
0.00 | 5.00
5.00 | 600
600 | 1 | | | 14
14
100 | 8
8 | | | PART 200
PART AND AND OWNER PART | CHIPE as in person I provide the 20
CHIP COCCUPY IN Page 1 and the antifolding page in | Cities along | 68 | -0.00 | 6.00
-685
-687 | | 0.00
0.00 | 661
660
660 | | | - | 100 | = | | HANDER COLORS | 96.00 A | 27 ST28 rgg T3 Sandy own rise 8, cell cycle regulator
MADTS scale hydrate or 35
SECS cort og natio 25
25 P1 star lange 25 type and 8 P in all denote containing 1 | Other siler
Originam phosphature
Originam siler | 0.38
0.30
0.80 | CAR
CAR
CAR | -047
0.00
-031
0.38 | 0.00 | 6.00
6.00 | 600
600 | n
n | | | 14 | | | I MINICETTO ANY I
I MINICETTO ATO I | 6874
663 | CEPA granging binding proteins
CEL glabertone
CEL brilly binant | Qrisplan mayor CD-001
Qrisplan mayor CD-001
Qrisplan binas | 6.E
0.M | -030
684
684 | -601
0.67
0.60 | 1.0 | 0.00
0.00 | 687
660
660 | E ST | 0 M | | 17 | • | | HAND CODE COLUMN | MEDIA
MEDIA | PCEPS Det dend nomb bing bloom had appointed. PPS PRO Tager protein 32 PPS AP binding counterable oil procedure 3 ELA grainted by place of the | Optoplasm stiler
Marina transdythorogulatur
Optoplasm transporter | 0.00
0.00
0.00 | CAZ
CAZ | -016
-018
0.86 | 0.00 | 640
640 | 600
600 | 87 3
86 | | | 200
0 | = | | | TEMPETA
TAME | TABLETA. Landouse of town introduction first membrane 225. | Optoplasm transporter
Optoplasm after | 0.00
0.00
6.30
0.31 | 083
081
-080
083 | 1.33
0.62
0.88 | 0.00
0.00 | 6.00
6.00 | 600
600
600 | n
u | 100
or 100 | | 11 | . : | | I MARCOTTOTA MARC
I MARCOTTOTA MARC
I MARCOTTOTA MARA
I MARCOTTOTA MARA
I MARCOTTOTA MARA
I MARCOTTOTA MARA | NOTE OF STREET O | TABLE TABLE is made presented or annotated MEE and other contents of the content to | Nation tempoter
Opplem tempoter
Opplem siler | 0.00
6.00
0.33 | 687
-686 | 0.M
-CAO
0.M | 0.80
0.00
0.00 | | 520
520
548 | 200 3 | | - | 20 | - | | | AMPETA | ABAPEZ A A Minimum a reflect on products 5.35. | Graphon aller
Nation aller | 0.00 | CAS
CAS | 0.88
0.38 | 1.0 | 520 | 660
660 | 200 1 | 2 8
2 8 | | | | | I MANO CERCITA MAIL 3 I MANO CERCITA MAIL 7 I MANO CERCITA CAMIL I MANO CERCITA MAIL 7 I MANO CERCITA MAIL 0 I MANO CERCITA MAIL 7 | MATER
HT MAX
FORDA
JOHELA | HTSS.2 High unite profit date 2 | Quantum peptibus | 0.0
0.0
0.0
0.0 | 682
672
688
-686 | - CET | | 600
600 | 660
660 | M 100 | 7 1E | | 20 | | | | POIDS
DIVIDA
GRANT
BICOSA
CTD-2000031 | SERVE STAN 1909 in the manufact 2
SCECIA SCI daniel counts being 2A | Males aler
Qopisse aler
Qopisse aler | 6.E | -087
078
084 | -119 | 0.00 | 6.00
6.00 | 627 | 3 0 | · · | n
n | 200 | = = | | IN MANIOLECTRA 486.1 IN MANIOLECTRA 1866.7 IN MANIOLECTRA 1866.7 IN MANIOLECTRA 1866.7 IN MANIOLECTRA 1866.8 IN MANIOLECTRA 1866.8 IN MANIOLECTRA 1866.8 IN MANIOLECTRA 1866.8 | MARIA
MARIANA
DYNESS
CSIMATA
TRZ | HOPEL lest shak proteinfamily D (NopE) member 1 MANUFE mit opene other indiprotein little on accounts hell protein 1 DINCTE dy man by localism Taller type E | Optiquism margine Optiquism state st | 6.0 | - CAS
- CAS | 0.00
-0.75
-0.08 | 0.00 | 6.00
6.00 | 600
600 | : | 0 100
0 0 | 11 | 94
300 | = | | HANDERCOMES
HANDERCOMES | TRA
TRA | CHECTS dynaming law late Table type II CHECTS care it speller a glos quarter the original action in the 3 III.1 in model to be to the 2 III.2 in operations of IAMP 32 II.4 beauting protein 32 | Rematitation ster
Graphon source | 6.07
6.28
6.40
6.40 | -036
-035
070
088 | -072
-019
0.86
0.39 | 0.00
0.00
0.00 | 6.00
6.00 | 600
600
600 | u
u | | - | 20 | | | HANDER COLUMN | EARLY
EARLY
MILITH
PLEASE
API
TORNES | MANUF 20 RANK Londing product 20 METERS maturity, meaning progress for differentiation regulator for PCUICIM EMployment is subsettled APP2 on the Big Named plane factor 2 | Other other
Males other | en | -040
-040 | -015
-015 | 10 | 5.00 | 520
520
520 | 1 | | | 300
300 | n
m | | HAND GEORGE 771 E
HAND GEORGE 2072
HAND GEORGE 202
HAND GEORGE 2072 2092 | THE MEET
STOR
MEETINGS
O SER | MORELS mark trade to be 2 | Qriphon dier
Qriphon inne
Males dier
Males beschinzgable | 6.80
6.80 | -646
-647 | -0.00
0.00 | 0.00 | 6.00
6.00 | 520
580 | 1 | | - | 97
300 | - | | B MANDOED CENTERS
B MANDOED CENTERS
B MANDOED CENTERS | ACD | HD Hitpoth-mager,
Hitmorphinfater AD AD, deletionists when and biomerors will | Naina bass dyborny delar
Naina bass dyborny delar
S Naina dler | 6.09
6.07 | -080
-080
-082
-078 | -643
-643 | 0.00 | 5.00
5.00
5.00 | 620
620 | : | n n | 10 | 97
300 | - | | I MINICESCO MET MINI | MICHIGAN
UNIONI
BYRONE | MGBCI problem in and and distribution substitute in receiver
UB 201 ships the compage long empire 62 61.
878 020 878 down to contact up 10 | Grispham transprater
Grispham actions
Optopham after
Plannaki missase projekte tarmifukti | 60 | -646
-646
644 | -0.0
-0.0
0.00 | 1.0 | 6.00
6.00 | 520
520
587 | | | 1 H | 17 | n
a | | HANDER CONTROL | PRINC
SHEARI
HERMINA
HERMINA
PRINCI | PROC. pre-mile 1 10070401 100704 decumes containing 1 1007040404 or proup in coning 5A 101704 or propriet from 10 17901 projecting typer-adequated game 1 | Maine transplace der
Maine dier
Organism phophere | 6 M
6 M
6 M | -0.00
0.00
-0.00
0.01 | 0.80
0.87
-0.28
-0.28 | 0.00 | 640
640 | 000
000
000 | | | | 14
200
200 | | | HANDERCONTES
HANDERCONTES | MAIL
MAINE
MAINE | PAL projecting Experience 1 MARKET RANK bending protein 2 USAP 2 delayable means bed protein 2 USAP 3 delayable means bed protein 2 USAP 4 delayable means bed protein 2 USAP 5 delayable means bed protein 12 USAP 5 delayable means bed protein 12 | Optoplesm entype
Mail ma entype
Optoplesm safer | 0.39 | 581 | -083
0.38
0.31 | 0.00
0.00 | 640
640 | 000
000
000 | : | er e
M EL
U N | | - : | * | | B MANICOLOUP TO 1
B MANICOLOUP TO 1
B MANICOLOUP TO 8 MANICOLO | EARLY
UAAR
CHARIC
URDA
TRAP
BATED
URBC
LTR
ECOME | CORD. FEEL Adaption control on a process of the Feel Control of the th | Other aller
Original majore
Nation majore | 6E
6E | -038
038
082
084 | -048
0.89
1.36 | 0.00
0.00 | 0.00
0.00
0.00 | 600
600
600 | 27
18
18
27 | U 100 | : | 200
2
34 | 0 | | HAROGE CO. NO. 7 | NAMES
OF THE | BMT3D Ignino methyla nako a e 30
SEM3 sertes furgia are spetto e malda 2
Ignifestado beta
BCSSAD2 salas carre fundy 30 member 22 | Nai na ster
Sai na ster
I standido Igano spid ne | 0.0 | 687
-685
671 | 0.8
0.8
-121 | 0.00
0.00
0.00 | 600
600 | 600 | = | | | 92 | - | | FREEDOM 1 | UPE
MPHIZ | UTH UTH, and short pressure compared
UTHS side replacehold operations 2
UTS some / frequency land 2 is | Males after
Other maybe | 0.00
0.00 | G84
-G86
G82 | 1.00
-0.01
0.01 | 1.0 | 600
600 | 600
600 | 107 1 | 10 | | 87 | ÷ | | FRANCESCHARE FRANCESCHARE FRANCESCHARE | MRTTEM
COMEZ
PFET
MRMCZ
MRTEM
MA | UTS UTS qualit dated presented companies SERIO sole spinigle or quite and 2 SERIO sole spinigle or spinig | Mains major
Oppison traspate
Oppison absolutes | 0.38 | CAN | -601
0.85 | 0.00 | 500 | 628
620
627 | | | M
e | : | | | I MICCECCIONI
I MICCECCIONI
I MICCECCIONI | MRNE3
MP2A
NA | 1892 made blod the sphring regula to 2
1893 ring Bayerprobin 28 | Other other | 62
68 | -040
-040
-044 | -612
-613
-621 | 1.0 | 6.00
6.00
6.00 | 660
660 | : | | 10
10
20 | 200
200
67
200 | - 1 | | S MANICOED COLORDO
S MANICOED COLORDO
S MANICOED COLORDO | CONTRACT | ECHM1 sake certer family 80 member 1
Chef 80 sharecome 7 open making frame 60
COM option | Manufacture temporer Other after Males temporerpido | 6.07 | -636
-686
687 | -028
030 | 0.00 | 6.00
6.00 | 620
620 | 1 | 0 27
0 0
M 100 | er
M | 200 | 20
10 | | | THE
BOT IA | THE In such the enceptur BOTHA In could pulpide against the placephateure A. BINES on coupling one companies II. BINESSON of the coupling o | Remattenizae baspate QUAC
Remattenizae phoplatae
Remattenizae siler | 0.00
6.00
0.00 | -0.70
-0.60
-0.60 | 0.76
0.89
-0.25
0.45 | 0.00
0.00
0.00 | 0.00
0.00 | 600
600
600 | | 10 | er
te | 11
200
200 | | | HINDOCEDIA MARIA PROCEEDIA MAR | BECE
BLANCIC
AT BA
MACI
SHPL
2004
CNATS | COM spik AM TREC I has been a require SERVE in Ambreto a require SERVE in Ambreto a require SERVE in Ambreto i | Qriphen aller
Qriphen migra
Qriphen aller | 6.00 | -CAE
-CAE | -C216
-C216 | 0.00 | 640
640 | 600
600 | : | | 120 | 200 | n
n | | HANDERD COLUMN
HANDERD COLUMN
HANDERD COLUMN | DOME A
CHAPTE
TOP | Action Services (1997) and the | Other after
Original after
Original source substitutions | 6.27
6.20
6.20 | -cas | -028
-029 | 0.8
0.8 | 640
640 | 600
600
600 | | | | 90
94
97 | | | HEREGICANA
HEREGICANA | MACH
MACH
MACH
MACH
MACH
MACH
MACH
MACH | 1307 Dishail dishar of applicable IMRES MERCH Glossome applicability and page 1 MERCH couper for the tar apple and primate containing to IMRES couper for the tar apple and primate containing to IMRES couper for the target for the country of IMRES couper for the target for the country of IMRES couper for the target for the country of IMRES couper for the target for the country of IMRES couper for the f | Maina dier
Clie tempoter
Organism alter | 68
68 | -010
011
011
-017
-018 | -018 | | 6.00
6.00
6.00 | 660
660 | | | 27 | 97
9
300
300 | | | PROCEEDINGS
PROCEEDINGS | OPER
E138A | MARCI magai function alore in malling in
AARCIS A? All his ward has alone in 18
UPAN III Or year house alone don't be
\$1.700 his beautiful of models for it
\$1.700 his beautiful of models for it | Marine base optioning datar
Optiophem after
Manual desirane in manuals are receptor | 634
034 | -cas | -016
-016
-016 | 0.00 | 620
620
620 | 620
620
620 | 2 | | 27
M | 97
97
94 | =
=
3 | | I MICHEGINATE | WANTS
COMM | 1973. optingle skets 1 1977. With downto conditing 10 skeptin probe in Igne 2 COTO residencie FARCIANO. Family of the openine skell orby 300 no miles A ALLETS. ADDY Scoplation better life 127 me in the setting probe | Graphen staye Heart Members after | 68 | -080
-080
-081 | -016
-021
-128
-024 | 0.00
0.00
0.00 | 600 | 611 | | | 10
10
10 | 200 | - | | HANCOCCUTATA PROCESSOR PROCESSO | SHIPS
SHIPS
CHIE
HAGSIMA
ARLEPA
COLUMBS
HOUSE | option plan folia to a service of the part | Service of the control contro | 6.0
6.0
0.00 | 081
-080
081
082 | -014
-011
0.36 | 0.00 | 6.00
6.00
6.00 | 000
000
000 | y
E | 0 14 0 150 150 150 150 150 150 150 150 150 1 | | 14
14 | 27 | | HANDER COLUMN 1
HANDER COLUMN 1
HANDER COLUMN 1 | TEACH
TEACT | 1883 Inh designest medrate poleto 3 1886 India protes 1877 RSI designates pitan index 1875 Ipina melijita seka ar M. 1879 Ipena indiplicada ar M. | Places bit enforces a numericane recepto
Marina siber
Marina transitytioning dator | 0.38
G B | EAS
EAS | -671 | 0.00 | 640
640 | 600 | | о
с я | v
= | 12 | n
e | | FREE CECENTY | TEME
TEME
EST
WITE
GP275
YOE
MINACI
ANNUAL ID
ESTR
MI GES
MI GES | MESA lythemetiple also a M.
1777: genral tensolphinfator Pickutti
1800: NJC benning Sectron) | National entryttle
National branch photocognistics
Chiev silver | 6.00
6.00 | -636
682
-636
688 | 0.06
0.06
-037 | 0.00
0.00 | 0.00
0.00 | 683
680
680 | n
M | | 2 | 200 | 20 | | B MAND COLD COLD OF THE PARTY O | ARHEATE
ENR
MIGH | TOC NIC hanning facilities are compared 2 FERRICI programs another mention or compared 2 AMERICA programs another provision COM. Discretely despite pains and the MECH mittelight of the middle facilities are given to mittelies the latter on paties 1 | Graphon after Carphon atter Manual desirate entyte Carphon after | 63
63
63 | -680
-686
-675 | -011
-014
-011
-028 | 0.00
0.00
0.00 | 6.00
6.00
6.00 | 600
600
600 | | | 27
27
15 | 97
300
300 | 20 0 | | I MICCECCIONO
I MICCECCIONO | PREZ | MESC initiation to 1780, methytia native a 2
MCC replication to tar C calculat 4
A 79 CCI A 79 quitase, No Sampor Bag initiation to 10 comple | Malea supre
Malea siler
Graphen kempater | C M | -0.70
0.84 | -011
-021
-049 | 1.00 | 600
600 | 628
628 | n
u | | - : | 97
8
97 | U
U | | HANDERD TO SEE | APNIZ
SING
SING
SICL
SICL | A79-022 A79 gerbann, Nr. Sampur Brig, mit anhead to Fis compile NATES SATES pulposeds as presche compiles 2 salacell 19922 specializer per locate brig consider a markey protein 3 NATES SATES SATES SATES SATES SATES SATES NATES SATES S | Nation expre
Nation after
Option after | 0.00
0.30
0.00 | -046
63.2
63.0
-046
-046 | 0.0
0.0
-0.0 | 0.00
0.00
0.00 | 6.00
6.00 | 681
682
688
688 | 27
20 | | | 14
10 | : | | I MADO CERCIA TALE I MADO CERCIA TALE I MADO CERCIA CANO | ACTO NO AA | MELIE mysio bilithan III MELIE MF excelled bile 1 | Oraștem alter
Naina alter | 0.38 | CAR | -518
-519 | 0.06 | 0.00
0.00 | 600 | y . | n 100 | | 97
39
94
97 | | | HANDERSON TO STREET | APN
OMPLE
3-50
AFF
CZZE | 301 If Provided bear 1 APE APER APER APER APER APER APER APER A | Plannati miliran mayan
Qirqilan mayan
Nafas kasa kabumatan | 68
68
68 | -040
-040
-040
-041
041 | -044
0.88
-049
-021 | 12
12
12
12 | 0.00
0.00
0.00 | 000
000
000 | | | H H | 94
300 | n
er | | B MADIC CERCIA JOST C | CEZIA
STATILLE
VMPS | ART junt ermedding and regulatory protein, pit to dista
CEQUES CES homeing it, was also protein disting and large
EMERLY strain a self and the st punchage on | | 0.38
0.40
0.40 | 687 | 0.35 | 0.00 | 600
600
600 | 600
600 | - | e 18 | | 200 | | | B MANIE CORD COT NO. 4
B MANIE CORD COT NO. 6
B
MANIE CORD COR NO. 6 | TABLE
VMR
DNAET
PO-SMHAR
HPIAR
CR
EGS | DNACE To their state protein body (https://mancher.CET | Qiaptem source | 0.07
G.M.
0.33 | -0.00
0.6.7
-0.00
-0.00 | -676
-681 | 0.00
0.00
0.00 | 640
640 | 620
620 | 2
20
14 | | 77 | 14
200
73 | 2 | | F MARCOCE CES 7345
F MARCOCE CES 200 2 | ECA
MARIE
MARIE | CR CR prote-secopes, a depter parters RCIA Brand CLL/Institution B MAPES influence but be dynamic blue on B Parter Survivor but be dynamic blue on B MARCE institution but before copies MMINICE institution before or cardish bit 2 | Ophophon siber
Marine siber
Ophophon bloson siber siber 1732 diffe | 68
68 | -cas
-cas | 6.37
-683
-687 | 0.00
0.00 | 6.00
6.00 | 600
600 | | | er
10 | 300
300
87 | 20
20 | | B MADE CERCON ACT IS | MARIS FAL MRIDICS ANNOSAS DINAESA | PAL Parad sefan de brenger
MBDC3 meden ni destpres (anthèle 2
ARMS di abiglio bendannin centining DB
DBMS4 De Shell shak praise brillip Spublimenter C.4
81P3 8748 led 751 ment planfator 1 | Manual Ambrase in commission receptor Extraordistripace other Optoplace exceptor | 6.00
6.00
6.00 | -000
-000
-000
-000 | -015
-027
-128
-035 | 1.0 | 0.00
0.00
0.00 | 601
600
600 | | | | 91
200
92
97 | = | | | RPI
TECTOR
TOTAL | SUS Ditties the major of all of | Naina transfeloreguler
Olive aller
Name Menisere majore | 6E | -040
-040
-040
-047 | -011
-011
-011 | 0.00 | 6.00
6.00
6.00 | 620
620
620 | 9 | | - | 97
200
94
97 | | | I MANDO CECCHI PODI
I MANDO CECCHI PATRI
I MANDO CECCHI PATRI
I MANDO CECCHI PATRI
I MANDO CECCHI MAND
I MANDO CECCHI MAND
I MANDO CECCHI MAND | TECTOR TECTOR TECTOR AND AND GRAL CENTS CENTS | ADM subgraph this for 1
MANN more distinct as a second of protein 5
GLAL Clighter Article 1 | Optophen scopes
Extraorbilor Space other
Optophen scopes | 42 | -640
-640
-640
644 | -074
-029 | 12 | 0.00
0.00
0.00 | 680
680 | | | | 100
117
100 | - | | | CERT | CID CP cell death-todal of CPM-like of Feder 4 passing over
CPTST change of tradition for the cell of the center it
CAST to implement
LASS. Imprisory to to committee adopter 1 | Graphin dier State State der Graphin G | 622 | -040 | -CAS
-CAS
-CAS | 0.00
0.00
0.00 | 0.00
0.00 | 600
600
600 | | 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 77
80 | 97
200 | er
Xi | | HANDODON FOR A
HANDODON FOR A
HANDODON FOR A
HANDODON FOR A | CAT
LAIS
MP132
DMP2
MBPS | LASS byrophospleto commentene adoptor 1
19923 ring Engrepolation 22
1993 depolation 2
1995 termonophilal tolonic opposite to 3 | Chie dier Chanali entrare pritiken Chiesan absorbtase | 6.33
6.03
6.03
6.03 | -616.
68.7
-636
-636 | -010
-018
-028
-047 | 0.00
0.00 | 6.00
6.00
6.00 | 600
600
600 | 7)
M
77 | | | 97
29 | u
n | | | | | | | | | | | | | • | | | | | FREE CENTERS 7
FREE CENTERS 1 | HECTOR
STREAMS | DEC glabine provide 7 Qiaplam supre
ETRIALL ITThe by introde sight 25-old/1 tenferon 1 Qiaplam supre | 6.E
6.E | -036
-036 | -017
0.00
-010 | 0.00 | 648
648 | 000
000 | | ÷ | 100 | E. | 20
11
17 | | |--|--|--|------------------------------|-----------------------------|--|----------------------|----------------------|--------------------------|----------------|----------|-------------------------------|----------------|-----------------|-----------| | PROCESS AND | CZLONE.
CZN1
NA | TERUIX TERM
principle dyb-Ty-vidyl senformat Opinium myne
CERM deurse nora Ei generadog fann 16. Die daher
CER CER, neinnie Mary | 637
637 | -016
-016 | -074
-013
-016 | 0.00
0.00 | | 0.00
0.00 | 2 | | : | - | ** | 2 | | FRANCISCOMOS | CB CBC | QCCC quincin suffeyir i colde 2 Ciler minyer
RSQS RAMPT reprise GCCC by princip forge conducting 1 Quipelone to these dynamic guider
RCMLF parks making year before cultimately demander Manachet Mariane for conducting distribution of the conduction of the cold col | 68 | -CAS | 0.m
-082
-338 | 0.00 | 6.00
6.00
6.00 | 600
600 | : | | 100 | 10 | 84
84 | er
er | | D MARIO CERCO 7777 2
D MARIO CERCO CARA 7
D MARIO CERCO CARA 4
D MARIO CERCO CO AGO 2 | REMAI
PERMINTS
RPS1-00-300.1
LEPES
THE MODER | | 0.M
6.M
6.D | EAS
-CAT | -016 | 0.00 | | 000 | 2 | | | - 1 | | - | | D MARIO CELCAL 2014
D MARIO CELCAL 2014
D MARIO CELCAL 2014 | TMO MORES
WOTED
SHOTED | 1970 debydis quel le popisión 25 Marina peptidos
1981 DES la accessión peptidos 25 Ciber deber
1971 DES deber deber Ciber deber | 68 | -036
-030
-036
038 | -011
-021
-031 | 0.00 | 640
640 | 600
600 | | : | | er
n | 97
200
97 | | | FRANCISCO CO ACAS
FRANCISCO CO ACAS | DOE: | DE équationisme Naine (nameleum'illé | 6.07
0.00 | -000
001 | -0H4
0.00 | 0.00 | 628
628 | 000 | | n | | : | | = | | E MERCETO CONTRA E
E MERCETO CONTRA E
E MERCETO CONTRA E
E MERCETO CONTRA E
E MERCETO CONTRA E | 03
1978
604
5040
647 | 100 | 63
68 | -6.75
-6.62
68.8 | 1.38
-634
-618 | 0.00 | 500 | 000
000 | : | : | Ĭ | | 94
20
23 | | | PRODUCTION NO. | PWR | CPERAL opticals was PROFemily 20 subbind y A revoker 1 Ciber mayore CCER 201 20 Print PM PD printed is typicapless protein benough (see 6) Marina diber | 0.00 | E87 | 1.0 | 0.00 | 500
500 | 000 | - | - | 100
100 | : | 17
17 | : | | I MICCECT THE
I MICCECT THE
I MICCECT THE
I MICCECT CLASS
I MICCECT CLASS | MU2
TIO | 1987 und wedelnichteitig pratei. Cibe dier
PRIG pellindit degelie prateilige eilert kommler 2 Geplann binane
1703 belichtigsgebie operfolmiet 9 Entworklart Spine dier | en
en | -CAS
-CAS
-CAS | -018
-018 | 0.00
0.00
0.00 | 626
626 | 000 | 2 H | | 3 | | 87
88
87 | * | | HANGED CARDS | CENTES MASS MASS MASS MASS MASS MASS MASS MA | MED. p21(MCC) act whe distance 1 Opinplasm in successful to the STEPH B stillight accessor to Ethiphic stance Cytoplasm entities CHPS No. 2, ord opinions of Expensive (Expensive Chief Steep Steep | 612
613 | -600
600
-606 | 0.00
0.00 | 0.00
0.00 | 68
68 | 677
623 | | | 17
18 | - | 97
18
200 | • | | HAND COLOR SEA
HAND COLOR SEA
HAND COLOR SEA
HAND COLOR SEA | 207313
207313 | | 0.33
0.47
6.30 | -636
687
682 | 0.0
0.0 | 0.00 | 60 | 0.00
0.00 | 20 | | 100
00
100 | | : | | | I MICCIECTEMENT I MICCIECTE CON I MICCIECTO TO A I MICCIECTO TO A I MICCIECTO TO A I MICCIECTO TO A | 2010M | 2000 in Suger SECtion containing to National after after 1972. TORN interest Passer date of National State of Section 1972. Torn interest Passer date of National Section 1972 and | 68 | -540
-540
-540 | 0.61
-087 | | | 600 | м | | er . | - | 14
92 | | | HARDEST CHARLE | TOTALE | on on the stage entry per community of the t | 68 | -CAR
-CAR | -670
-330 | 0.00 | 0.00
0.00 | 000 | | | : | | 87
87
87 | = | | HAROTECTURAL
HAROTECTURAL
HAROTECTURAL
HAROTECTURAL
HAROTECTURAL | DNAE4
NEME
HERE
CTH-HE
ATION | CRACE Desired what years body SyspiChemister CE Chippisson above
RECRES food years of CE Chippisson above
RECRES and places of CE Chippisson and
ACT CE CHIPPISSON OF CE CHIPPISSON AND
ACT CE CHIPPISSON OF CE CHIPPISSON AND
ACT CE CHIPPISSON OF CE OF CE CE CE CHIPPISSON AND
ACT CE CHIPPISSON OF CE CE CHIPPISSON OF CE | CB | -CAR
-CAR
-CAD | -018
-120
-028 | 0.00 | 6.00
6.00 | 0.00
0.00 | : | : | : | E 20 | 92
94 | - | | HANGED COMM | ATION | M TOTAL confidented grands betar to annihale Spaine opid on
ATRICES and pluggered to d TOSS Quantum atter | 68 | -636
-637
-638 | -018
0.60
-088 | 0.00 | 5.00
5.00 | 000 | : | | | 10.
27 | ** | n | | HANGE COURTS HANGE COURTS | MAN | P790CB problephophese transight eisenthete Mannatienhous phosphase ordinus phospid
1979 open in optiosproble 1
BCSM nicksimisme nebernari omjan ompomitt Nalana mope | 420 | -640
681 | -011 | | - | 0.00 | - | | : | - : | | = | | I MICCIDICIO MA
I MICCIDICIO MA
I MICCIDICIO MA
I MICCIDICIO MA
I MICCIDICIO MA
I MICCIDICIO MA
I | ATPIALD
PERMI
SCHOOL
PARCINA | March Marc | 639
639 | CAR
-CAS
-CAR | -019
-018 | 0.00 | 620
620
620 | 000 | 2 | : | 100
24
8 | M
20
20 | 84
87 | 20 | | I MINO CERCIA CAR 7
I MANO CERCIA MARO
I MANO CERCIA CARO 2 | HMC16A
HMG2 | MARCO M. Forthy at the operace destartly 300 counter A. Other share: 1992 make past to extract the districts in two 4.5 Forthy counts. 1994 MANUFACT machine de byte option to trace 4. Optiopism to the counter of | 68 | -000
-004
-008 | -038
-038
-037 | 0.00
0.00
0.00 | 6.00
6.00 | 000
004 | | : | 4 | 120 | 100
100 | - | | | MARI
MARI
MARI
MARI
MARI | THECT THE complex? Mail ma. other NAMES uphage-region updates 1 PERSES uphage-region updates 1 PERSES updates of practificate receptor pathony school and the other Silver 1 PERSES updates of practificate receptor pathony school and Telephone Silver 1 PERSES updates 1 PERSES updates 2 upd | 63
63 | -cas
-cas
cas | -084
0.86
0.86 | 0.00
0.00 | 68 | 0.00
0.00 | | | | | 97
94 | - | | I MICCELCO MAC
I MICCELCO MAC
I MICCELCO MAC
I MICCELCO XXV | ECTOR | TREET TO Complete T TO COMPLETE COMPLET | 68 | -can
-cao | -075
-087 | 0.00 | 5.00
5.00 | 000
000 | | 1 | 1 | M.
Mr | 97
94 | | | I MINICOLO CIA CALLA | MANUEL STATES | PRICE PRI dens translating EE Optophem alber
MOSE intighted the byd of dalar skalare Optophem engine | 6.00
6.00 | -630
-630 | -011
-011 | 0.30
0.00 | 5.00
5.00 | 0.01
0.00 | n
1 | : | 100 | | 14
300
84 | 320 | | HANGER COMES | APRIC
APRIC | AMP 2 minimary 1930, specificiar complex tolers larg multis. Manical Ministration and later PREC adoption related proposition of the Tolerat Capation Supporter TONS ETHINGS of the Ministration of the Tolerat Ministration State (Ministration of the Ministration State (Ministration | 0.39 | -030
03.0
-038 | -028
0.8
1.9 | | 0.00
0.00 | 000 | | - | a
** | • | 100
11 | : | | | DESIANE
200277 | 270 Plantus S Halles benefijkerengder
ERDAN Dila saul delipanteni. Plantus Menimus dier
2027 Int Superproteni277 Malina, benefijkerengder | 6.00
6.00 | -CAS
-CAS | -CAIL | 0.00 | 640 | 0.00 | | : | : | | 84
87 | 120 | | I MINICIE CLAMPI
I MINICIE CLAMPI
I MINICIE CLAMPI | ERIS-CRIDA SAMOI AMPI AMPI AMRI ERIAM BERTT SETT SETT SETT SETT SETT SETT SETT | NOTE 1 NOT consecute or fundy re-miss 2 Quipleon after MACS MERCAL WITH Quality or flow 2 Quipleon after MACS MERCAL WITH Quality of flow or regulation Quipleon after AMAZIA AMAZ OF extend life Section 1 Note that the CONTROL OF CONTROL WITH AMAZIA MERCAL MERCAL WITH AMAZIA MERCAL | 62
62 | -686
-686
-686 | 0.00
0.00
-0.01 | 0.00
0.00
0.00 | 640
640 | G48
G49 | 27 | | | n | 11 | = | | E MANOGERO COLAMBIA
E MANOGERO COLAMBIA
E MANOGERO COLAMBIA | ALEZ
PENED | ACC ACC, a juli-1, 3/1,0 managhrassin or Quelann mayor MACE proteining the meligible solves it Males mayor | 68 | -CM | -0.00
0.07
-0.70 | 0.00 | 6.00
6.00 | 600
600 | : | | w. | 6 | 97
94
92 | 1 20 | | HANDOECUTOUS
HANDOECUTOUS
HANDOECUTOUS | APPEN
MACE | PCRD18 PC-value a direct contacting 18 Other after ADMISS ADMISSION CONTACTOR below the property of proper | 0.33
0.38
6.39 | -6A2
-6A8 | -089
-082
0.M | 0.37
0.35
0.30 | 0.00
0.00 | 000
000 | | : | | 2 | 17
97
92 | 20 | | PARCETORY OF A
PARCETORY OF A
PARCETORY OF A
PARCETORY OF A | LEPEZ
ARHEREZ | ACTIONS ACTIONS OF CONTROL OT CONTROL OF CON | 63 | -646
-646 | -01
1.8 | 12 | 100 | G18
G18 | : | 1 | | | | 1 | | 1 MINORECULARY | MARCO TAA
PT PAGE | MMCDM. Family of the opposed deciding 125 recorded 6. Madinas other PPM. profit of policy deciding to complete type 1. Option principles are decided to 20 to 60 MMCDM. A supple to the complete comple | 0.00
0.00 | -636
-637
-630 | 0.00 | 0.87 | 6.00
6.00 | 679 | 15. | | | 20 | 200
97 | | | I MICCIECTA GREAT I MICCIECTA GREAT I MICCIECTA MICCI I MICCIECTA MICCI I MICCIECTA MICCI I MICCIECTA MICCI | PO COS APPINO APPINO APPINO DISS. ANGURY DIS | | 6.00
6.30
6.32 | -680
-680
681
-687 | -017
-018
0.80
-017 | 0.00
0.00 | 5.00
5.00 | 600
600
600 | 1 | : | : | er
Er | 97
11 | n
M | | HANDER CON 30-3
HANDER CON 30-3
HANDER CON 30-7
HANDER CON 30-5 | E3E | PCEDS DNA priymeranedella 4, accessory cubanti. Hadinas morphie
E32 haderialo 30. I subandia Space cipida ne
PDEA haderianedella di N | 0.85 | -car
-cas
-cas | -017
-122
-019 | 0.00
0.00 | - | 000 | | | : | - | 82
84 | | | HANGE CANAL | MINITE | PRICE to be procedured of the E Pleasand of embrace of the C
196472 1964, manipular and as to be mading the College of the P
PRICE profile of old-free and amount for filterancing (but mile) Opinism congress (Filter College) of the Paris of the College of the Paris of the College Coll | 63
63 | -640
-640
-640 | -678
-670
-641 | 0.00 | 68 | 600
600 | | | | 2 | 900
97 | M.
300 | | I MICCIDICA NOT
I MICCIDICA NOT
I MICCIDICA NA 7
I MICCIDICA NA 7 | NAME. | ECRECO Calebra hardy Minember 10 Quiphon alter DNSS Distribute hardy
Minember 10 Cities surpre | 68 | -CM | -041 | 0.00 | 500 | 000 | | | n
er | - | ** | - | | HARDOCCUSTON 2 | MERIA
MATEL | TITE options the following offer Manual Medicane offer MANUAL enthalted in Filamental protein 134 Options of the MANUAL Enthalted Statement Founds 1. Marian East application of an analysis of the Manual East applications | en
en | -CAR
-CAR
-CAR | -011
-018
-018 | 0.00
0.00
0.38 | 6.00
6.00 | 0.00
0.00 | | 11
14 | | 10
10 | ** | | | I MARCOTTO TANA I MARCOTTO TANO I MARCOTTO TANO I MARCOTTO TANO I MARCOTTO TANO I MARCOTTO TANA | HENTA
HTM13
NA | BLOVES BLOVE Site and relangues to Optopions margine
ETHS ETHS, perulified disaggerance Optopions margine | 636
638 | -635
-636
670 | -0.78
0.70 | 0.00 | 520 | 000 | 2 | : | : | 77 | 84
82 | - | | HAROCECU MA
HAROCECU MA | HARLESA
THREETS
CHE
PAGE | MARCO 3A. Family of the openine directly 320 A. Estimobilist Space differ. | 0.33 | -636 | -011 | 0.00 | | 000 | 77 | | : | 2 | 100
84 | | | HANGER CLUBS
HANGER CLUBS
HANGER CLUBS | PAG. | CIX — 4-11 years have — Quiplant blass boastels. PXCI — paugher trappines and about our lamples and place () CORRECT — CORRE | 0.34
G.M
0.39 | -GAS
-GAS
-GAS
GAS | -028
-048
-081
0.0 | 0.00 | 0.00
0.00 | 0.04
0.00 | -
n | | 2
2 | | 92
92 | | | HANGED COMES
HANGED COVERS | COMMON
CAMPA
SECTIAN
CEARMINES | CRIP1 co-book adoptional Spoundage or 1 Cities of the
SCI 200 color correl to might member 9 Mount of entrance transporter | 68 | -682
675 | -029 | 0.00 | 68
68 | 0.00 | n | N
H | | - | 17 | | | I MARCOLLO LINES | CAMINA
CRAS
SMA
UK
UK
UKCMA | 1 | 63
63 | -636
-637
-636 | -0.11
-0.14 | | 600 | 000
000 | | | | 77 | 82
87 | - | | PRODUCTIONS PRODUCTIONS PRODUCTIONS PRODUCTIONS PRODUCTIONS PRODUCTIONS | LECTION S | EAST CONTROL C | 68 | -cas
-cas | -010
-011 | 0.00 | 520 | 000 | - | | | 77 | 100
102 | - | | HANGED COVERS
HANGED COVERS
HANGED COVERS | MONEST COMPA | 200400 Sin Superprise (1905) Mariena Alber | 0.00
0.00 | -630
-636 | -010
-100
0.80 | 0.00 | 520
520
520 | 000
000 | | ; | | a
2 | ** | 120 | | HANGGEGLOVY
HANGGEGLOVA
HANGGEGLOV | MONETO DE LA COMPETA COM | hills manisplage mig a bostolida kry factor ig bycasjo bos till oblace flutor figure cybal ne | 63
63
68 | -04E
04.1 | -011
0.0
0.3 | | - | 000 | 21 | m
M | | 26 | : | 1 | | HANDSCORES TO A | IPL
SER | 1895. emoperal binding protein like Optoplace emopre
1899 objekto nikoličkih binding protein 1 Mari na branc dybinoregolskom | 62 | -cas | -101
-086 | 0.00 | 500 | 000 | | | | 10
10 | 84
83 | = | | HANDOTECTA CAT | SERVICE
SERVICE
SERVICE
LIBER
D. (2) 3 | SEMBLE signs are qualitational intervenient — Manus Manisters an anomalous receptable size shape, as MEMBLE — Descriptions seed and place and public size of the Memble of Membl | 42
42
43 | -640
-646
-646 | -530
-675
-647 | 0.00 | 6.00
6.00 | 000
000 | | | : | = | 92
92 | | | PROCEEDED 481 | GE 1903 | DR (DS 3, delency) - Characteristics - Optophone entyres 1979 on a cital-typhophara tain sub-products - Optophone European's 1989 - Amerika in Amerika Subar - Salama Marachiar Space growth from | 63
63 | -600 | -018
-018 | 0.00 | 6.00
6.00 | 000 | : | : | | × | 17
17 | | | HANDER CO. NO. 1
HANDER CO. 60.7
HANDER CO. 60.7
HANDER CO. 60.8 | 798.1
#00.30.1
1000.1 | 1955. In committee profes adjustes socialed 1. Homest emisser - profes coupled ecops | 6.00
6.30 | -CAE
-CAE
-CAE | 1.37
0.38
-Call | 0.00
0.44
0.08 | 5.0
5.0
5.0 | 550
574 | | n
n | 100 | 77
60
18 | 82
88
83 | | | PRODUCTION 1762 | HELEVEZ T | 1993-1.1 1995 indistrict for 3 1993-1.2 1995 indistrict for 3 1995-1.2 1 | 68 | CAD
-CAB | -0.07
-0.03 | 0.00 | 5.00
5.00 | 600
600 | 2 | | : | 27 | 14 | - | | FRANCISCO CALTAR
FRANCISCO CALTAR
FRANCISCO COLOR | MORE | MERCES on Code and to I reference i protein LES Cytopianos e alber 1987. Il poster conquient responsable. Planta Marchane protein coapelad acops 1998. Il poster 1999. p | 6.27
6.27 | -685
-685 | -018
-023 | 0.00
0.07
0.00 | 6.00
6.00 | 0.01
0.00 | - | : | | #
| 94
75
92 | = | | I MINORECOL TAIR I MINORECCUMO II I MINORECCUMO II I MINORECCUMO II I MINORECCUMO II | THE HARLES | 1993-15 - Open Schwarzel der Frager 27 - Reicht Mercher graden ungeleit erspiel
1998-15 - Open Schwarzel wir der jede 1998-15 - Mail mac 2004 princep der
1971 - 1725 Making unter 2004 princep 15 - Mail mac Albert
1984-15 - Schwarzel 1974 (1994-1994) - Mail mac Albert
1984-15 - Mail mac Mail mac Mail mac Mail mac Mail mac
1984-15 - Mail mac Mail mac Mail mac Mail mac
1984-15 - Mail mac Mail mac Mail mac Mail mac
1984-15 - Mail mac Mail mac Mail mac Mail mac
1984-15 - m | CM
CM | -630
-638
-638 | -014 | 0.00 | 5.00
5.00 | 663 | | : | | - | 94
29
72 | = = | | PRODUCED TO | GPACIAL GPAMIC TIPT MACIZM PIM MISS PIM MISSON MISSON PIM P | NYBS | 0.0 | -636
-637 | -211 | 0.00 | 5.00 | 600 | u u | 2 | 0 | | 73.
78. | 100 | | S MARIO CEL COL SUCT
S MARIO CEL COL SUCT
S MARIO CEL COL SUCT
S MARIO CEL COL SMAR | MACUC
CLB-MINITIT
HELI-MINITIT | HEICHED Is connicted 1 HES family remains of Harinas salver MICHE mysels E. Optopleam emigre HEICE fight and develope as Manufacturine emigre | en
en | -636
-636 | -085
-085
2.86
2.82
-287 | 0.00 | 500 | 0.00
0.00 | : | | 100 | = | 72
78 | | | FRANCISC CO. VIA 6 | MA
COUR | MOSE fully ad discusses 8 Manual entrare engree CDB CDB release Manual entrare a superiore respitationals, parameter | 0.00 | 554 | -237
-224 | 0.00 | 10 | 000
000 | w. | : | 0 0 | : | | Ė | | PRODUCE COMMIN. PRODUCE CATALO PRODU | ELTIS
BUTTO | CDS CDS national Annual Committee Co | 0.48 | -610 | -026
2.33
-036
2.36
-037 | | - | 600
600 | 10. | a | 100 | | | 0
100 | | FRANCISCO CONTRA | COID | MRT230 mode e mode leopatile 29 Estamble Tipue populare marinole L
CDID CDM relevale Personal Personal militare e momenturare respita literaturama la
EMAIA biligar di mode serpicità Ini EAA Filmand Marinologie aller | 0.38
0.48
0.88 | -CIE
-CIE | -187
-187
-188 | 0.00
0.00 | 6.00
6.00
6.00 | 600
600
600 | * | 2 | | и
• | 22
75 | = | | FRANCISCO 1772
FRANCISCO 1772
FRANCISCO 1778 | 9000
1900 | Total Separate Properties Pro | 0.39 | 633 | -588
2.00 | 0.00 | | 000
000 | - | • | 100 | | 25
83 | = | | FRANCISCO IN S
FRANCISCO IN S
FRANCISCO IN S | MACS
CORC
THEVEN
MACS
E.C.
E.S.A
COST | TRUE Y oil moștor lete verbio DE Clier divr
MDC manul de Oppolon Yans dyborny philo
EU Harindin III Edwardskripen spikire | | -620 | -588
5.07
-527 | | | 000
000 | 20 | | er
e | | 25 | | | HANGER CLINES | ESA
COST | E.D. Interiodo I a lylin E et acelhir I que e epitic e con COUT COUT COUT COUT COUT COUT COUT COUT | 62 | -638 | 2.86
-188 | 0.00 | CM | 000 | | | 827
0 | | | - | | HAROTECH MAN | PRP
UPROTES | SAMO valle for framely member 3 Nations maybe
MP purity make soldy phosphishi men Shali ma maybe A, purity mali make.
UM NOTAL September purity pagition morphish 1 Remaind molecume dilar | 68 | -638
-638 | -548
5.07
-534 | | 6.00
6.00 | 600
600 | M
E | a | 100 | | | - | | HANGE COURT | TAME FOR LAMINATION UP TO T | LEPTICS.1 in pit or respier came in piting to manage the S Manus Mandrane diver
LEPTICS.1 LEPTIME complying an arrive prephase below 1 LEPTIME complying and the S
CREATES.4 CREATES, spin inguity also applicate in S Completion diversity of the Section 1 LePTIMES.4 CREATES and CREATE | | -638 | -034
138
-048
138
-025 | 0.60 | CAF | 600
600
600 | - | - | 100 | 10. | | - | | FRANCISCO CONT
FRANCISCO CONT
FRANCISCO CONTRA | REG. | DBDDP 177 and 180P is a lyminater 1 Quiplace of liter 1801 Six modified from all 1
Quiplace of later 1804 Six modified from all 1 Quiplace of later 1804 Six modified from all 1 Quiplace of later 1804 Six Modified | 6.22 | -08 | -12%
1.80
-1311 | 0.00 | 5.00 | 000 | м | 2 | 100 | n
n | | : | | FRANCISCO INTO | APDI
APDI | PCIDIS (S). PCIDIS STANS ESSA 1 Cities silver ASSOID allowate encephaghsteid entre e 2 Qippinon encyce 1987/20-1 To de coppin best antide 201 Cities silver | 0.00
0.00 | 637
-628
-638 | -148
1.80
-031 | 1.0 | 6.00
6.00
6.00 | 660
660 | W M | 4 2 | 100 | | 22
18 | 1 | | I MANDE COLORD 7
I MAND COLORD 134 7
I MAND COLORD 134 7
I MAND COLORD 134 404 4 | MAP DE
MAY DE
MAR DE
MAR DE | AND International State of the Control Contr | 6.0 | 613 | 1.00 | 0.00 | | 600 | | : - | 100 | э. | | : | | PROCEEDINGS | PE LEMB | 1975. sign ding de try yoch hig annos. Plants Minister author singular affect in flower his Plants Minister a manufacture complete consolir mechanic 15th in the Confederage manufacture of o | 0.30 | -63 | -018
2.96
-048 | | 5.00 | 000
000 | | : | er
0 | n
N | #1
75 | 1 22 | | FREEDERSON FREEDERSON | ACM
ACM | PHCDS forst obsending y Zidenskin contenting S Optoplace other ASISS AP halfing country such in the member is Planning that is a superior of the ASISS AP and of the design plantin S Optoplace other is a content of the th | | | 1.60
1.66 | | | 600 | | | 100
100
100 | | | | | I MICCECULOR 1 | ADCTE
MARKES
MARKES | 1986 | 0.8
0.2 | -080
807 | 1.00
1.00
-1.62
1.37 | 0.00 | 0.00
0.00 | 600
600
600
600 | er
10 | : | 100
100
0
100
100 | : 1 | 64 | 320 | | A SECULE CLARA. PRINCIPE CEL TATA TA | N PO | Membra | 48 | 617 | -143
1.37
1.68
1.63
2.86 | 0.00 | 68 | 000
000
000 | 20 | e e | 100
100
100
100 | n | ** | | | HANGE COURTS | NUMBER
MCOMA | 10907 best dask proket family A (1923) member 7 Grophon skler
SCOM1 skiele carter og eksektet inspeter first prombe Mannatt enlaren. Vangar br | 0.0 | 688 | 138
-130
135
138 | 1.0 | con . | 600 | е. | | 100 | | 17 | 100 | | E MINICIPERTA MALE
E MINICIPERTA MALE
E MINICIPERTA GON
E MINICIPERTA GON
E MINICIPERTA GON
E MINICIPERTA GON | CARCOTA | CRUZA Copy Institution body 27 review 6 | 1 | | 1.68
1.87 | | | 000
000 | | | 100
67
100 | | | | | HAROGEOGRAPH
HAROGEOGRAPH
HAROGEOGRAPH | AMWER
CHIES | Carp Standard Page Pag | 630 | -09 | -588
5.88 | | | 000 | | : = | 100 | 20 | 72 | 10 | | S MANDOCECCO MILEY
S MANDOCECCO MICH
S MANDOCECCO MICH | COMM | SARCE MACO Inchipmenter 2 Naciona Sendo option regulator
SAMANA manusalmenter Sendo Company Company Company Company
CREATE cyclin deligender 15 manus 1 deligen 20 Mariana Samana | 68 | -0.00
-0.00 | -130
138
-137 | 0.00 | CIE CIE | 600
600 | | | 100 | | 10
16 | 10 | | I MICCIDICA NO. | MINISTER
MINISTER | MMATLA mannagi (shin-1,1-) y yapırlan bel-1,4-te ostylik Qriqilasın soyun
MHMMA İbo garine ucinildə sahəng efatir G Cibe diler
ELM Buyyel ile bisir S Maina bara Qylanı yalatır | 0.36 | E216 | 0.87
-116
1.67
1.86 | 0.00 | 68 | 0.00
0.00
0.00 | * | - | 0
100
100 | : | 22 | 120 | | | 27 ML2
EU/22 | E134 Buyger like beite B Marina Verse dythrong sidere 2018 2 2018 http://prepriete.ibe 2 Marina Verse dythrong sidere E1372 Buyger like beite 22 Marina UMRKEL UMZdamon praken 11 Quiplant alber | 0.07
6.38
0.39 | 524
-620 | 1.86
-130
-134
1.80 | 0.00
0.00 | 6.00
6.00
6.00 | 600
600
600 | 77 | | 100 | H
H | n
a | 12
22 | | S MANDOTE CTA SEC. 3
S MANDOTE CTA SEC. 3
S MANDOTE CTA SEC. 3
S MANDOTE CTA TA SEC. 3 | MINES. | STREET OF | 0.00
6.00
6.00 | -636
-636
-636 | 138
-131
-271 | 0.00
0.00
0.00 | 636
638 | 600
600 | 27
26
48 | | 100 | 2
2
0 | 84
23 | = | | F MADE COLORED TO A SERVICE OF THE SERVICE COLORED TO A SERVICE OF THE T | PECNER
CHEEZ | TRULE T oil emplorates untable16 Clie aller
PERM Mylet densite Ball on Designation
CREAT Clies bis 2 Complete after | - an | | 1.87 | | | 600 | | _ | 100
67 | - | | : | | FREEDRICKS
FREEDRICKS | MAIL
MAIL
DI NE 2 | 1983 jagedi – trabanišarijana gradi šrias
1822 jaujulujun 13 - propinski morpu
1878 – dadyanišni praka plaujunjaturegis bila (spipani | 0.00 | -08 | 1.80
1.81
-1.17 | | | 000
000 | х | | 100 | | 72 | 100 | | HAROTECH CO. 7 | MINES
MACE | HTPMS phosphot dynamic transfer paster, opingt aren't 1 Greatern Samporter 1979 N. MTS hiddworkship | 0.07 | 621
644 | -538
-582 | 0.80 | 680 | 0.00
0.00 | v e | 2 | 100 | | 25
17
28 | 22 | | HAROTOCKES
HAROTOCKES | NCHE ! | SPERIO MERE Indicina i glas Cytoplano trans apturaregistari
WERRE NO i special delimini SPS Chier albert
SERVE accipación IRI Servicio III Servicio III Servicio III
SERVE considerar political parato 7 Mineral Ministera albert
MERE delimini delimini delimini delimini SP profession SP profession albert
MERE delimini delimini delimini con la grada E Cytoplano albert | 0.0 | -627
628 | 1.00
-1.01
1.00 | 0.00 | 0.00
0.00
0.00 | 000
000 | | | 100 | | 71
18 | 320 | | FREE CE CE VAN | MAGE
PETHOL | MPTF maniferancy political principles of principles of the control | 0.00
6.00
6.00
6.00 | -617
-646
-649 | 1.00
-1.31
-1.37
-1.07
-1.08 | 0.34
0.36
0.30 | 6.00
6.00
6.00 | 620
620
620 | : | | : | 11
M | 14
22
23 | 22 | | FREE CECTOR AT 1 MAN CONTROL OF THE CENTER O | 170
170 | COME cycle COME to the Committee Com | 0.06 | -638 | -333 | 0.00 | COD | 000 | | 3
3 | : | | 78 | 22 | | HARCOTTONICS T | NACIA
PAGIN | | 0.07
0.38
6.38
0.30 | -63
-63
-66 | -038
-030
-037
-038 | 0.00
0.00 | 687
687
688 | 620
620
620 | | : | : | n
n | 83
83 | | | PRODUCE CHINA PR | an
TE | CETTE CREE megales belte was placement below 1. Marine deler
2015 - Delt handing vermind belte vermind by a complete Marine deler
1016 - Delta belte promised belte belte final by a complete Marine deler
105.000 - Delta belte promised belte final fin | 0.00 | -08 | 1.00 | 0.39 | 606 | 600 | | - | 100 | | 17 | 100 | | HANGE GEORGE | RATI FORD FORD FORD FORD FORD FORD FORD FORD | | | -ca | 1.88
1.35
-1.11
1.82
-231 | 0.34 | | 600
600 | 10. | | 100
100
0
100 | - | 97 | - | | B MANIC CERCIT VAN A
B MANIC CERCIT 177 1
B MANIC CERCIT MODEL | TERMS I | LCMERTS LCME yeptable on the control distriction of long of the Client called 1996 to 1 and an | 0.40 | -68 | 130
-331
139 | 1.00 | 58. | 000
000 | M. | - | 100 | | 10 | 100 | | | | | | | | | | | | | | | | | | E MAND CERCIO MALE THE SAME
E MAND CERCIO CERCIO CONTROL
E MAND CO | TORMS (Manches reperfuedly combined a Plannia Manches maybe produced by the CODIC by Programming Company to by pro-planning record by Plannia Manches and combiner records by Manches Codic by America (Manches phosphotane) and produced by Manches phosphotane (Manches phosphotane) property by Manches pro | 0.0 | -cae | -180
1.86
-137 | 0.00 603 | 500
500 | H 9 0 17 81 100 |
--|--|--|---------------------------------|---|--|----------------------|--| | PHOCOCOCIONA PINO
PHOCOCOCOCO LIAMENT | COUNTS during military phosphates to the Country of the Marina phosphates PPR parties the dark dynamical and, marginal byte? Hence the following plants to Marina phosphates DANISSE parties the dark greates DANISSE the Country of th | 6.8
6.3 | -0.75
-0.75 | -518 | 1.00 C.00
1.00 C.00
0.00 C.00 | 600 | 7 8 0 12 0 14 15 0 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | EMBOURDERSON DAMAN
EMBOURDERSON DESAMP
EMBOURDERSON DESA | USCOD In alter thire per to the time to be a few and entrane or determinate or see a | 0.32 | -03 | -117
137
-110 | 0.00 6.01. | 600 | 7 4 1 2 11 2 | | NAME OF COLUMN STATES OF THE S | March Marc | 0.25
0.39 | 603
-638 | -128
-137 | 0.00 0.00
0.00 0.00 | 0.00
0.00 | 77 M 0 21 M 20 21 M 22 M 22 M 22 M 22 M 22 | | HARROTTECHNOT RANNE
HARROTTECHNOT BATTANEZZA | EASTERN retinate and complete expendent B Optoplasm engine CASE gave in complete for planels to be to a sent all data. The case of ca | 48 | 617
-636 | 1.00 | 0.00 GM | 500
500 | 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 | | PROGESTACE PART | ECID pulse also desired for commander constraints of the o | 0.33 | -cm | 1.00 | 0.30 0.00 | 500 | 77 23 0 28 71 320 | | HANDED CONTROL PROPERTY IN THE PARTY | COURT part and where Management and exempt Color And and and |
Con, tribatemble, theophy
0.32
0.35 | die, persodytie
-cal
-cal | 1.37 | 0.33 GE | 000
000 | 7 1 2 17 38 | | E MANDOSCOS MORE TRANS E MANDOSCOS SON MORE CALE E MANDOSCOS COLUMNA DISCUSSA. | TREE to this necessarily factor 2 Mail max brough the MECALS microticals as control administrate specially on the second and control of Chapterian surprise. DISCR. Discrepancy described in page 16 for Mail max other control of the page 16 for Mail max. | 63 | -68 | -510
120
-510 | 1.00 | 500 | 3 3 4 3 11 30 | | FREE CECTANGE CHAPT FREE CECTANGE THE | | 626 | -038
-038 | 1.37
-125
-588 | 0.00 0.00
0.00 0.00 | 0.00
0.00 | 8 3 8 11 13 12
8 9 0 17 11 12 | | D MAND CORD COLORS CALLED COLORS CALLED COLORS CALLED COLORS CALLED CALLED COLORS CALLED CALL | MID2 probe rish2 to a second region of the risk | 0.00 | -0.08
600
637 | -0.00
-0.10
0.36 | 0.00 CM
0.00 CM | 000 | W W 12 1 10 20 11 1 | | I MANGEMENT AND I SHE
I MANGEMENT AND I SHE
I MANGEMENT AND I SHE
I MANGEMENT AND I SHE | BBC brightgistig stor 2 Hannatt entrare deer other CEAS beginnisted after by the Phanatter of the CEAS beginnisted after the CEAS beginnisted after the CEAS beginnisted after the CEAS beginnisted after the CEAS beginning t | 6.00
6.00 | -C29 | -089
1.31
-109 | 0.00 0.00
0.00 0.01
0.00 0.00 | 000
000 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | EMBORECH FRA NP
EMBORECH FRA TRANS-1
EMBORECH MAD C'SFS AND | Titols integrated and page 1. Product protein 1. Radina 2 and report integral 1979/11. Radina 2 and photosyndria | 0.0
0.30 | -CIR
619 | -126
1.38
-238
-126 | 0.00 00
0.00 00 | 500 | 130 0 1 120 0 1 12 | | FREEDOCKETS NA
FREEDOCKETS NA | | 636 | 63.0 | 1.02 | 0.00 004 | 500 | | | E MAND CAR CAR CARDON E MAND CARDON | MERCEL spingeringships before hand and Cytopian anyw before produced in Ministry and other spinsers and spins | 0.30
0.00 | 00 M
01 M | 1.00
1.00
-1.01 | 0.00 0.00
0.00 0.00 | 600
600 | 77 M 18 75 44 6
77 M 18 28 18 6
20 71 11 30 | | F MAND CORD COMES CORD | | 0.M
0.M | 646
648 | -10%
0.86 | 0.00 0.00 | 000 | # % 0 37 22 18
77 % 18 28 22 0 | | I MINICEDED 1988 98AV21-1
I MINICEDED NO 2 RANGE
I MINICEDED NO 2 THEIR | 1907-05 " - of mapper dight method 1-15 Other Aller | 630 | -639 | -244
1.38
-686 | 0.30 600 | 0.00
0.00 | 71 28 0 29 72 100
100 0 100
44 21 0 107 109 | | HAROGEOUTHO APWED
HAROGEOUTHO APVA | Committee Comm | 63
63 | -639
669 | -137
-137 | 1.0 CB | 0.00
0.00 | 7 2 1 2 2 11 22 | | E MANDOSECCO SENS MENTO A PROCESA E MANDOSECCO MENTO SE TEXA | MEXTS By glycomann S Company in mily dismalm containing SA Florand Mandalane Exequative STSA captured in the page in mily dismalm containing SA Florand Mandalane Exequative STSA Opposition SA Opposition SA | 60 | -633 | 1.0
1.0
1.0 | 0.00 0.00 | 000 | E | | FREGUESTS THE STAND FREGUESTS THE STAND FREGUESTS THE STAND FREGUESTS THE MARKET | ETAME Spine-de-indeplace CE Nale na minyme (SSME graspie M Oppison profiles (SSME graspie M Oppison profiles (SSME state of the profiles of the collision th | 42 | 631
638 | 0.M
-CAS | 0.00 0.00 | 000 | 8 0 10 0 11 0
2 0 7 11 30 | | PRODUCTION MARK | 18822 In attiner their oper titines 2 18822 In attiner their oper titines 2 18823 In attiner their oper titines 2 18823 In attiner to the operation the optimise titines bit made it made it is not because it is not because it is not because it is not an appear of pie operation it is not because | 0.30
0.33 | -cm
-cm | 1.00
1.00
-0.61 | 0.00 0.00
0.00 0.00 | 500 | E 17 18 E 11 0 | | HANGE CERCITAN TRAVEL 1 HANGE CERCITAN HOUSE I HANGE CERCITAN PARM HANGE CERCITAN PARM HANGE CERCITAN I | TOTAL TO A CONTROL OF THE STATE | 0.m
0.m | -647
-646
-638 | 1.00
-1.11
-0.07 | 0.00 GED
0.00 GED | 600
600 | 3 0 N 14 0 | | | THE TEST OF THE PROPERTY OF THE TEST TH | 611
625
636 | -ca
-ca
-ca
-car | -687
1.00
-118
-684 | 0.00 G/ID
0.07 G/ID | 600
600 | N 2 12 8 71 0 | | PROCECULAR SERVE I | TRANSPORT CONTRACTOR SPACE A SEASON OF THE STATE S | 1 | -612 | 1.01 | 0.00 0.00 | 666 | N 2 0 1 11 10 11 11 11 11 11 11 11 11 11 11 | | S MAND CEDICEN CHOICE PLANSMILE S MAND CEDICES AND MA D CEDICES S MAND CEDICES AND | NPG NPC interfair deletrol tempor 1 Organo tempor | 63 | 619
619 | 1.06
0.06
-2.67
1.06 | 0.00 GE
0.00 GE | 0.00
0.00 | N 71 130 8 28 0
27 9 0 9 44 320
21 75 130 25 25 0 | | EMBEGRECATIONS NACT
EMBEGRECATIONS RANGE
EMBEGRECATIONS NEED
EMBEGRECATIONS THEFTS | EARLY ratigate, MAI Of New Landing of the for protect of Optoplaces of the c | 0.38 | -000 | 138 | 0.00 CED
0.00 CED | 500 | 90 99 100 60 11 0
77 98 0 28 84 320 | | PRODUCESTARION THREE PRODUCESTARIO MARCILI PRODUCESTARION MARCILIANO | No. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | 638 | -cer | -089
-089
1.37 | 0.33 6.33 | 0.00
0.00 | | | PRODUCTION PERSON | ECI 2007 - Labora Labora (El combre Para Carallel Caralle | 0.86 | -09 | 1.0 | 6.00 GA | 000
000 | - : | | S MANICOECOS DES DI LIBATI S MANICOECOS DES MESME S MANICOECOS DE MESME S MANICOECOS DE CONTROL DI SANICOECOS DECENIONES S MANICOECOS DECENIOS DI MONOTO | MEDIT | 0.38
0.00
0.46 | 610
-680
613 | 1.00
-087
-088 | 0.00 0.00
0.00 0.00 | 0.00
0.00 | 75 M 120 26 47 0
M 27 0 6 21 20
10 M 0 1 44 20 | | FRANCISCOLORS UP'S
FRANCISCOLORS UP'S
FRANCISCOLORS VISA | M. Mark Annie M. Mark Mar | 62 | -08 | -087
1/8 | 0.00 CED | | 11 11 11 | | HEROTOLISM SAP: | | 620 | -0.02
-0.02 | -035
-031
125 | 1.00 CM
1.00 CM | 0.00
0.00 | | | EMERCENCE TOWN NAME OF THE PROPERTY PRO | 20000 the Superpose of SCI Cities diler
NOTE souther species to belong it clar 2 Nation other
DAS distance of agency plant type of the SCI Cities of SCI Cities of the Cities of SCI Cities of the Cities of SCI Cit | 0.37
0.34
0.87 | -639 | -689
-181
6.86
-187 | 0.00 CM
0.00 CCF | 0.00
0.00 | 8 0 1 11 11 120
7 8 0 1 20 17 120 | | EMBEGGEOWERS DVS
EMBEGGEOWERS MPRANT
EMBEGGEOGYBOLL THEFT | MPTRAP1 is pump to making 1 Qring form in any me
TRAP2 TRAP daman contacting 2 Real man silver | 0.38 | -0.00
600 | 1.31 | 0.00 0.00 | 600 | N 0 10 0 10 10 10 10 10 10 10 10 10 10 10 | | D MAIOCEOCLY 400 P CO MODELA D MAIOCEOCLY 500 B AND D MAIOCEOCLA 400 C C C C C C C | DESCRIPTION DESCRIPTION OF THE PROPERTY | 0.3
0.0
4.0 | 601
-669
601 | -088
-081
-088 | 0.00 0.00
0.00 0.07
0.00 0.00 | 000
000 | N | | ENGINEERING BANKS ENGINEERING GAARS ENGINEERINGE MAKS THE | CODD 1 CODD 1 option home on their opper the person Option on type 87903 Supposite conduction in Terrorise 20 Final Supposite conduction in Terrorise 20 Final Supposite conduction in Terrorise 20 Final Supposite Code Fi | 0.00 | -69 | -684
-688
-675 | 0.00 0.00 | 500 | 13 78 0 28 81 120 120 120 120 120 120 120 120 120 12 | | HARROGECUMEN AGEN
HARROGECUMEN AGEN | MARTIN Family of the expense desidently 327 member 8 Clies debut CECCH solider of them to combining at ACSE solider of the processing the combining of the combining at comb | 611
638 | 618
618 | 0.00 | 1.0 GF | 0.00
0.00 | # U 0 11 42 120 120 120 120 120 120 120 120 120 12 | | E MAIO CECCU MAIS ACLES E MAIO CECCU TEUR SECULAL E MAIO CECCU CERS GRA1 E MAIO CECCU CERS TRAVEJ 4 | ACES as picas systemate large classificantly member 3 Gyrapisan surpre-
NET 2004 substances to the sing 20 constant Plants of members brought by
NESS paid searched general adult members (RPS) Gyrapisan brought by
TANCO-R T and analysis of plants adults (SR) Class allows | 6m
038 | 600
-608 | 0.86
1.60
0.86 | 0.43 0.30
0.34 0.64 | 000
000 | W 10 11 10 0 | | S MADO CED CELTRALS MICH. S MADO CED CELTRALS CENTRALS | MOCCA Communication print montain contains Model and Albert | 43 | -0.0E | 0.M
-148
1.M
0.M
-001 | 1.0 1.0
 500 | | | FRANCESCO 1938 MT 3A
FRANCESCO 1938 TRANS &
FRANCESCO 1930 | MCDA medalidatests DA Quelleum alber
SERP+8 T cell engale lets worklots 6
MPSED Monte per lets 8 des 49 antiglijk casaning lis Quelleum expre | 437 | 629
-639 | -681
-688
-688 | 0.30 040 | 0.00
0.00 | 9 H 0 7 H 10 | | E MANO CEDICO: 1773 TRANS-6
E MANO CEDICOCERCO MOPHIO
E MANO CEDICOCO MORE MANAS
E MANO CEDICOCO MORE MANAS | MPRES MERCEL D'Écusquie prisé d'écisé de soutréglécommunity lis Quireplann moupre
1994 : Maining de la commandation comma | 0.00 | 682 | 1.00 | 1.0 | 000 | # 0 M 17 30 130 0 | | D MANOGERCEA CENT SERVICE D MANOGERCEA CENT SERVICE D MANOGERCEA CENTRA SEA SEA SEA SEA SEA SEA SEA SEA SEA SE | EQECT E) medi melberi denain i
NE in the per mell'il denain containing i Nasina. Eran dybarragidati
NCSACS solds carrier bendi memberi 1 Quiplan Rangariar | 0.34
0.40 | -66
618
-630 | 0.86
-0.77
0.86 | 0.00 0.00
0.00 0.00 | 600
600 | 71 M 0 71 M 0 71 M 10 | | E MANO CERCIO MARIA MAJAPA E MANO CERCIO TORRA SE PARA E MANO CERCIO SETTE ATRACES E MANO CERCIO SETTE ATRACES | ARPS Artist with the EAP dates a players per tand to the Oping born aller. 1976. Uphage to "y hope been respired." Means to missee you don coupled a copy bing directly business. 1977. I die copy to be to be bette to the Manage of the Manage aller. A FACIE A Three to mits, Addresses containing 30 Mains aller. | 6.0 | -C-08
-C-08 | 0.00
-0.00
-0.02 | 1.0 0.0
1.0 0.0 | 0.00 | U 31 120 0 22 0
U 37 1 0 11 U
E 3 0 0 21 320 | | PRODUCTION AND STATE | MERS managing excensive a copier S. Harmatil entrare a numericane receptor | | | 1.32 | | 0.00
0.00 | E 35 0 E 25 100 0 0 110 0 0 0 1 1 1 1 1 1 1 1 1 1 | | HARRIST CHARLES TOP
HARRIST COURS 1 GRAPS | TOP and ESTATE desperation Completes after 1997 1995 of despetation of the 1997 1995 of despetation of the 1997 1995 1997 1995 of the | 0.00 | 52 E
54 7 | -081
-080 | 0.00 0.00 | 000 | 1 1 1 | | ENGIGERONICAE BYP ENGIGEROCOST | DNS hast stede had som one (NOPF et 2, retachen datal Cataniana morre manifesta | 0.38 | -620 | 1.00
0.00
-0.00 | 0.00 | 500 | 10 2 1 2 2 | | HARDERCARDY RADES
HARDERCARDS APENA
HARDERCARDS BOOK | MARKE East access to reference being consider 2 Cities after APPARA APPARATURE APPARATUR | 611 | -038
-037 | -080
0.86 | 0.00 0.00
0.00 0.00 | 000
000 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | E MANGEMENTA ZAN Z. PERM. E MANGEMENTA MANGEMENTA TRANSPORT E MANGEMENTA TRANSPORT E MANGEMENTA TRANSPORT E MANGEMENTA TRANSPORT | FET3 purious pri complex FET8 Fetancia Marchinese pri clini completi complex METS METS (pri complex FET8) Meta Mets Complex Comple | 63
63
63 | -617
-649
-637 | -0.88
0.87
-0.31
0.85 | 0.00 Gas
0.00 Gas
0.00 Gas | 500 | 8 8 1 8 77 8
8 10 10 0 11 0 | | FREE CENTRAL MC 92 | MC192 multiple CCL and transmission and design 2 Other other | 1 ** | 633 | 128 | | 000 | 12 | | BRECODORNEL RP14-00013
BRECODORNER CORLLI
BRECODORNEY SAMPE | CCRILL codio-lieuted operipalerille 1 Estandiar Ipun aller
186779 186779, senson militalnithi discriminated 7 Other aller
1867050 In number operipalerille (1867050 Cities aller
1867050 Injunishi pyrupi 20 Naina beningaber | 0.38 | 584
630 | 0.ML
0.ML
-0.77 | 1.00 0.00
1.00 0.00 | 500 | 100 0 0 10 0 10 100 100 100 100 100 100 | | I MICCECCECNY SAICY I
I MICCECCECNY TO MANUAL
I MICCECCECNE TO HANCE
I MICCECCECNE NO. 1
I MICCECCECNE NO. 1 | TREETY TREETY NAMES AND ADDRESS OF THE STREET OF TREETY TREETY. | 0.M
0.87
6.37 | -600 | -0.77
0.88
-0.87
-1.08 | 0.00 0.00 | 600
600 | 3 11 0 11 11 12 12 | | I MINICEEUS TAN AMBUSAN
I MINICEEUS SMI ALSEP
I MINICEEUS CANS T PLACE | INCID INCID appropriate CI Company and a | 6.27
6.27 | -0.35
-0.35
600 | -020
-022
-028 | 0.8 CB
0.00 CD
0.87 CD | 000
000 | 1 | | E MANDOCECTA META COCE 2002
E MANDOCECTA META COCE 2002
E MANDOCECTA META MATATA | Approximation of the control | 0.20 | 627
-638 | -087
-085
0.60 | 0.00 0.00 | 000 | 15 8 0 8 14 12
12 3 0 8 72 32 | | I MINICEPENDA BAATRI I MINICEPENDA BATRI I MINICEPENDA 2070 PERMININA BATRI I MINICEPENDA MINICEPE | Martin M | 43 | -628
649 | 0.00
-0.78
-0.85 | 1.0 00
1.0 00 | 000
000 | y y : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | PROCEEDINGS CENTRAL | MESS installand to last on unparter dominative gather let Optophon aller MCH femilies and on unparter dominative optophon except | 63 | -617 | -076
-081 | 0.00 CM | 600 | 100 28 0 0 72 120
E. M 0 0 0 47 120 | | S MARCOZOZIANO | DPHS dijdelminide bilayet besis 5 Geoplasm enzyme
PRO PRS, bytosomal tilsel reducite e Geoplasm enzyme | 43 | -eu | 0.86
-GR7
1.86
0.83
-0.77 | 0.00 | 000
000 | 100 E E E E E E E E E E E E E E E E E E | | I MARCON CARRA CIP-AC | MARCON Family at the expense standardy 300 member 8 Other other OPHAIL CHR at the execution 1. Other other | 6.0 | -688 | 6.80
-637 | 0.00 0.00
0.00 | 0.00
0.00 | 7 N 0 7 N 13 N | | FRANCESCHARCH CARCA
FRANCESCHARCH CARPA
FRANCESCHARCH TRAVEL | CLECK C-type betterformate family of nominer it. Manusch deminere aller of CLECK devil specifying place place and in the CLECK devil specific t | 6.M | 628
621 | 1.0
-081
-245 | 0.00 0.00
0.00 0.00 | 000 | 20 N 1 2 22 0
N 1 N 1 N 1 | | HANGERED THE STOCK HANGERED THE | mm miligin — Marchine character and the second of seco | 6.35
6.35 | -03
-03 | -245
-684
-675
-685 | 0.00 C00
0.00 C00 | 000
000 | 3 7 0 N 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | | I MARCOECO SEA POLATO. I MARCOECO ROSA CAPONA | CREA miles timb to be for 2 receipts did a subset. He made entrare a numericare receipted. IF Ching remails | 0.37
G.DE
In Stational/In grammation | -ca
-ca | -085
-089
1.00
1.30 | 0.00 | 000
000 | a a c v n m | | B MAND COLORS COPE AND A BANACA BANAC | 1966 on Effectly to savigation impressor 1 National Stone System organism PARTIES - Plan print to 15 National entrying 200601 Size Shape ADDrings containing 1 Other after | 0.M
0.D
6.D | 637
-639
-646 | 1.36
-080
-088
0.80 | 0.00
0.00
0.00
0.00 | 0.00
0.00 | 7 2 8 2 14 15
0 2 1 8 20 18 | | S MAND CERCITATION SECTION IN SEC | RDG RD knows Common deglare ST Other disease CD-drST described ST other disease | 0.00 | 544 | 0.60
0.86
-0.84 | 0.00 0.00
0.00 0.00 | 0.00
0.00
0.00 | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | HAROGEOGRAFA POPUTA
HAROGEOGRAFA TRAPA | TOPE TO another contains the Contains to Contain the Contains Cont | 6.00 | -600 | -0.00
0.00 | 0.00 G/ID
0.00 G/IB | 666 | 87 13 0 48 15 120
48 6 120 M 18 0 | | S MANICOCCUS MANICOCCUS MANICOCCUS MANICOCCUS MANICOCCUS COMA PLOP 1 SMANOCCUS COMA PLOP 1 SMANOCCUS COMA PLOP 1 | MIGGLE exploragements reportential Ct tie 1 Hours Membrase sites
MARS seem against de dant en 9 October sites | 0.07 | CIN CIN | -033
0.86
-0.73
0.89
0.80 | 0.00 0.00 | 600
600 | H H 18 18 17 6 | | HANDERSON PUR | PLEF1 : fiscand-point ALT pendique 1 Clie dier
PLEF profesional med lieb Qrapium linux PPANZE, C-227 | 0.29 | 618
-637 | 1.86
0.80 | 0.00
0.00 | 0.00
0.00 | | | NAME | MARTINE MARTIN | 620 | 004
009 | -676
-683
-682 | 0.00 607 | 000 | 0 W 0 10 41 10
M 7 0 W 12 12 | | FREGUEST AND JAMES FREGUEST AND APPEAR FREGUEST AND APPEAR | 2003 prinfundy PRO Espera Halma Vanni Aphenragishtu 20030 Ebu 027 donosh kentuluksurintus Opinplann stripme Halma ili maturatus katu yannan Opinplann ganadi krisu | 6.35
6.35 | -038
-038 | -682
-677
-680
-678 | 0.00 0.00
0.00 0.00 | 500
500 | 9 9 9 9 11 12 12 12 12 12 12 12 12 12 12 12 12 | | HAROGRAPH COM | CREET given and the better gaments (prophene gamen better
CREET (State of the State | 6.11
6.22 | -0.00
011
-0.00 | -6.79
0.85
-6.77 | 0.00 0.00 | 620
620
620 | 2 0 10 10 10 10 10 10 10 10 10 10 10 10 1 | | FREEDRICK TOP THE FREEDRICK TOP TOP TO THE FREEDRICK TOP TO THE FREE FR | 1965 1966, any tendemon-basine-materials follow - Ophysion - empre
CHART - design materials of ledy parties 1 - Ophysion - active
FAURT 1 - produces morphism followed by the - Ophysion - active
1965 - produces for active active - Ophysion - Chart | 6.25
6.25
6.21 | 611
-628
-686 | -677
-678
-682
-676
-118 | 0.00 EAR 0.0 | 0.00
0.00
0.00 | | | HANGERGE TO HANGE
HANGERGE TO HANGE
HANGERGE TO SERVE | MARTINE MARTIN | 6.17
6.32 | -CUE.
-CUE.
CUE | -118
-676
-683 | 0.00 GUS
0.00 GUS
0.00 GUS | 000 | | | S MAIOCECCA MOST TRANS S MAIOCECCA MOST TRANS S MAIOCECCA TOS TAPME S MAIOCECCA COST ROPAL | TRES Truthy and with the register of the figure manufact Claim analysis of the State of | 0.36 | -627 | -081
-081
-081 | 0.23 0.00 | 600
600
600 | | | I MINICEDE CALOR. 7 F.CHCM
I MINICED CALOR. A PRIVATE
I MINICED COLOR. 3 PRIVATE | The proper was required to be for promisers. The major and the best promisers and the promisers are the promisers and the promisers are the promisers and th | 63
63 | -0.00
-0.00
0.00 | 0.7h
-0.77 | 1.0 1.0
1.0 1.0
1.0 1.0 | 660 | 7 G 10 7 18 0 7 18 10 10 10 10 10 10 10 10 10 10 10 10 10 | | PRODUCED STATE OF STA | MAY MAI demand find y member 2 Clier diler | en | -638 | 2.00
-1.04 | 0.00 0.00 | 000 | 180 | | PRODUCTION AND CACHE PRODUCTION OF A PRODUCTIO | MEST | 0.00
0.07 | -026
043
003 | 2.08
-1.04
-0.77
-0.72
-0.74 | 0.00 0.00 | 500
500 | W H 0 1 17 10
M M 0 0 6 67 10 | | HARDERS AND CHARLES HARDS | CREATE sharecare 22 spaces digitare E. Quiplane sher
MOTE such light days 2. Hallow shere
EXS. Most franchise and a bear of the survivient B. Mallow Visio Sharecare days | 636 | 633
-638 | -0.75 | 0.00 0.00
0.00 0.00 | 000 | H H 10 E 14 0 | | B MINICOECTA MARIA ST ANS
B MINICOECTA TURO MERMO A
B
MINICOECTA MARIA CLIPMANA
B MINICOECTA MARIA CLIPMANA
B MINICOECTA MARIA CLIPMANA
B MINICOECTA MARIA A | EIATH signal transform and as to of to except to it. Mad man trans a photoring datar
MATICAS included and in Francisco product that Ophysiology allows
1939 - STASS landing products Matina manyer | 6.0
6.3
6.8 | -639
-649
-633 | 0.86
-0.77
-0.81
0.80
-0.76 | 0.00 0.00 | 5.00
5.00 | 27 I 0 H 97 320
97 H 0 I 67 320 | | D MANDOZZOCZEMBA CLYMATI.
D MANDOZZOCZ MOZY ZA
D MANDOZZOCZ MOZY CCMATI. | CPMS. CIPATINE Cities after CONT. CO | 0.33
0.87
4.78 | 604
607
-636 | 0.00
-0.76
-0.76 | 0.00 0.00
0.00 0.00
0.00 0.00 | 600
600 | 0 130 0 47 0
0 1 15 30
14 2 0 25 30 | | PRODUCTION COP | TMEV20-1 T oil exceptor beta variable 201 Cities after CITE carefully to mit anhanded of materia peptil disception deptilis Cytoplania peptilises | en
en | -03 | -330
-680 | 0.00 634 | 600 | 8 8 8 17 32
8 9 72 32 | | B MARCOED LINE TRAVAL 4 B MARCOED LIMBS CLIP B MARCOED LIMBS 11 PKE B MARCOED LIMBS 7 PKE B MARCOED LIMBS 7 APPLICATE B MARCOED LIMBS 8 FREII | EPM: sphinged ex-Sphinghatermorphis 4 Manna Millerdone - protein mapled excepting dimodylample in 19500 - Institute of the sense | 63 | -cer | -0.77
0.85
0.76 | 0.00 0.00 | 000 | 100
100 | | I MANDECTE DES PROTES
I MANDECE DE LA PROTES
I MANDECE DE LA PROTES | | 0.E | 618
-630 | -074 -320 -000 -077 0.85 0.86 -078 -078 -078 -070 -080 -071 | 0.00 GM | 600
600 | 11 M 0 0 11 12 12 12 12 12 12 12 12 12 12 12 12 | | B MARCOCOLUZALA C MARCOCOLUZALA C MARCOCOLUZALA C MARCOCOLUZALA C MARCOCOLUZALA C MARCOCOLUZALA C MARCOCOLUZALA | CCTA. cost de los cartes la les construintes Calegories. el les comples en comples en Calegories. en comple 18 MEZ E 1920 hours (18 Calegories comples complex comples comples comples comples comples comples comples complex | 611
617 | -08
-08 | -676
-670
-685 | 0.03 | 0.00
0.00 | E 22 0 8 72 120
E 8 0 17 17 120
E 8 0 17 11 120 | | HANDERCOND HIM
HANDERCOND HOLDE
HANDERCOND HIM | PROPER TRANSLATION OF THE PROPERTY PROP | 6.22 | -CAT | -676
0.35 | 0.00 0.00
0.00 0.00
0.00 0.00 | 0.00
0.00 | | | I MADDICECTA NO. CT. 4 MA
I MADDICECTA DATA DITEMA | CDofffil shows and the large on the CDoffil show after 1982. But no Even spherogular 1982 and Ev | 0.00
0.00 | 618
-638
-638 | 0.00 | 0.20 GB
0.20 GB | 600 | | | E MANO CEDICO SUR A COT PURA
E MANO CEDICOR ACMAR ACUMO
E MANO CEDICOMENA COMPANDO
E MANO CEDICOMENA APPODO D | TOTAL THE Express of The Express desired to the Express Section 1. | 48 | -628 | -0.88
-0.70
0.86
0.80
0.85 | 0.30 GE | 0.00
0.00 | 0 M 10 N 14 D | | S MANDOCEDED ANNO GRADEL D S MANDOCEDED ANNO Y 1951 S MANDOCEDED ANNO HORSE S MANDOCEDED ANNO HORSE | Notice of the Control | 6.27 | 540 | 0.86
-0.86
0.78 | 0.00 0.00 | 500 | 1 1 1 | | I MINISTERNATION CAPACITA I MINISTERNATION INTERNATION I MINISTERNATION INTERNATION I MINISTERNATION INTERNATION I MINISTERNATION M | The content of | 0.0
0.0 | 628
626 | 0.76
-085
-086
0.60 | 1.00 0.00
1.00 0.00 | 600
600 | 7 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | March Marc | | - ca | 600
600 | 0.00
-0.00
-0.72 | 1.0 00 | 0.00
0.00 | 100 U 10 | | HANDERSHALL FIRST | MECL perokoneprofisoloresholed recipior panne, co Malesa base dyborregister PSM polypytholite ball landay protein 2 Halesa other | 43 | 607
-08 | 0.76
-0.71 | 0.00 GB | 600
600
600 | 29 M 100 71 67 0
1 0 0 W 120 120 | | E MANOCECCIA MADO PERCI
E MANOCECCIA MADA PER ME
E MANOCECCIA MADA PER MENOCECCIA MENO
E MANOCECCIA MENO GENERAL PER MENOCECCIA MENO GENERAL MENOCECCIA MENOCECIA MENOCECCIA MENOCECCIA MENOCECCIA MENOCECIA MENOCECCIA MENOCECCIA MENOCECCIA MENOCECCIA MENO | APSS adapt rela-bijerate comjes 1 gen 8 situali. Qriplam kroparte
CELS CC methomoline i gen 20 S totar his 1 jans 1 jans myll re
LAMES 1 JANES njag-milj kroropit sekres 2 Qriplam myre | | | 0.86
1.62
1.68 | | 5.00
5.00 | | | | | | | | | | | | D MAND CORE COLUMN 1
D MAND CORE COLUMN 1 | HOUSE
THE LCD I | HRCS is districted nationally bridge protein S Q
SM MSB is national protein SB
SM MSS special growth a sacrifical bills 1 | Open place aller Chie aller Chie aller Chie aller Line | 0.00
0.00 | -66
618
608 | -078
-075
0.86 | 0.00
0.00 | 0.00
0.00 | 500 | 3 1 | # 62 22
6 81 32
24 42 0 | |--|--
--|--|------------------------------|------------------------------|--|------------------------------|------------------------------|--|--|---| | HAND CECTA SHA
HAND CECTA GOS | MARKERS WATANCE PROPERTY ASSAM | TMENCES to committee protein 281 1947-913 spending media accidental file 3 ADMA 1947-914 spending media accidental 127 Floring 12099 spending bandag protein 5 ATMAN ATM | Opposition of the COME | 6.34
0.34 | -0.00
0.00 | 0.86
-681 | 0.00 | 506
506 | 600
600
600
600 | 3 5 1E | M 42 0
77 10 0 | | FREE CEPTAGE C | ATMIN
CHITT
ENCHC | ATMIN ATMINERATOR CONTINUES OF THE T | Maine aler
Maine base deburgator
Maine aler | 62
62 | -620
-620
-620 | -071
-071
-078 | 0.00 | 648
648 | 500
500 | y 2 0 | 25 72 32
41 62 32
28 22 | | I MICCIECTO MAY 1 I MICCIECTO MAY 2 I MICCIECTO MAY 3 I MICCIECTO MAY 3 I MICCIECTO MAY 3 | ZER
MENDS | CM077 CXX-94271 remark (state complex subsets 7 EM-0642 EXM decided and state containing 2 EXM decided EXM decided and state containing 3 EXX decided EXM decided and state containing 1 EXX decided EXM E | Naina ster
Other ster | 6.20 | -0.00
0.10 | -071
-089 | 0.00
0.00 | 680
685 | 600 | | 20 67 32
31 28 32 | | I MAND COM COLUMN
I MAND COM COLUMN
I MAND COM COLUMN | COTO
HOMO 1
ACOT CORAL | MINDS NOS haveing, MICHAECO complex component | Malma tempoter | 48 | -639 | 1.00
-0.05
1.00 | e.m | EM | 500
500 | M 30 0 | m 72 120 | | I MADO COTO CONTRA I
I COT | URE
DEWARES | URIS URIS, prehibb the depresse IMARAPIS MARK types recepts another protein the S PERF process process processed out of the mole to on adjustificat PROFE process processor and the S ON THE PROFESSOR | Maries tone dyborogularo
Optoplem alter | 66 | 602
612 | -670
0.86 | 0.00 | 000 | 000 | 1 | 2 44 32
31 1 | | HEROTORES | PERSON CO. | PROFF paramete properties of different time of polifical PARSE probe convenient late 5 Q PROMIS Q TOTAL TAKENDER TO A PARSE TOTAL TOTAL TAKENDER OF THE PARSE TOTAL TOTAL TAKENDER OF THE PARSE | Optoplasm peptidase stde, cardinanti/dasa
Optoplasm mojere | 627
68
63 | -CM
-CM
-CM
-CM | -088
-086
-076 | 0.00
0.00 | = | 600
600
600 | 3 3 | 77 72 325
326 88 325 | | FRANCISCO CO. INC. | THE T | MIDDL1 P-los problect1 Q TORRES to exchange provide factor lands receptor 2 Manus DIALOS Does have allowed provide facility (require) consider CSA TABLE Size or provided colorism metry accontrated or put assets for CS MIDDL color positive colorism metry accontrated or put assets for CS MIDDL color positive colorism metry accontrated or put assets for CSA MIDDL color positive colorism metry accontrated or put assets for CSA MIDDL color positive colorism metry accontrated or put assets for CSA MIDDL color positive colorism metry accontrated or put assets for CSA MIDDL color positive color positive colorism metry according to the CSA MIDDL color positive | Oler ster | 0.M
0.M
6.ED | DER | -678
6.86
-676 | 0.76 | 68 | 0.00 | W H 100 | 0 17 0
1 11 12 | | I MICCIECU NO 2
I MICCIECU NO 8
I MICCIECU 78 1
I MICCIECU NO 8 | MPSAS
MPSL | 1971/G enterpata to minimo denga ten in dan 1 dipin 1 Q
1872. Bet 1 grig enterior membrane telliki teg proteini ibe
1870. enterpata to minimo telletan in dan 20 Q | Qinplan tash torregular
Qinplan taspote | 6.E | -68
-66
-69 | -076
-080
-088
-078 | 0.00
0.00
0.00
0.00 | 520 | 6.00
6.00
6.00 | n | 2 11 12 | | B MADO COTO CA MADA
B MADO COTO CAS AD A
B MADO COTO COTO CAS
B MADO COTO COTO CAS
B MADO COTO COTO CAS A
B MADO COTO COTO CAS A | MICCIO
HELPIN | M DSS malphaleum of all or optimis 2 Q
MDMS MADMail galane
outlands to sales 1 to Q
CM3 collin 2 Extra | Ottober mojes | 0.36
0.38
6.33 | 612 | -081 | 0.00 | 63E | 600
600 | | N 11 12 | | HANGE CHARLES
HANGE COVERS | ENDS
ENDS | CR3 with 3 False EMSAPS relayable middle rings too beter Julyin Special States EMSCS Rise Sendy (The e S | nehioripase alter
nehioripase alter
Originas mayore | 0.00 | -08
-08 | -075
-086
0.80 | 0.00 | 680
680 | 600
600 | | # 97 120
27 72 75 | | I MINICOLOGO TARA
I MINICOLOGO CON 7
I MINICOLOGO CON 7 | ECTAL
BCTAL | COST : de ange et multata les tar natural 1 | Maine aller
mattendame tempoter lamentale | 6.08 | -63F | -084
0.88
-089 | 0.00 | EM
GED | 0.00
0.00 | a 2 0 | U 71 120
0 | | HAND COLUMN 2
HAND COLUMN 2 | USPR
BCBA4 | LISTS skip the specific population II Q
ILIZANA solute content in might manufacted | Otopian pepties
Other baspoler | 68 | 618
-68 | 0.75
-0.73 | 0.00 | 500 | 600 | a 3 10
2 1 0 | # 2h 0 | | I MADO CERCIA DA A
I MADO CERCIA TABA
I MADO CERCIA DA 2
I MADO CERCIA DA O | 10 TO | 1970. Is operand of figuration in go and an complex 2 or i
1971 — we have do completing one 2 — Please
1972 — Makey plat in calcidate indication is due of 8 Feedly member
1980: 1980 uplnt age otherwise more include 2.0 | Qiqqian ater
natimirae ater
Qiqqian kaskitoreysistar | 0.33 | -610 | 0.76
-087
-072 | 0.79 | EW
EUF | 000
000 | 100 a a a | E 12 12 12 12 | | HANGE CHARG | LINCOL | EPSE subaryals in male ten relation to the 40 family memb. TSECS 1984, split agreement alone in lamit 13.5 1985, split agreement and seq. 5 DAMI describements before the 5 | Malma mayor
Malma mayor | 0.00
0.00 | - C3
- C3 | -072
-071
-072
-088 | 0.E | 529
540 | 0.00
0.00 | | 77 72 320 | | B MADICATION CO. 9 B MADICATION SATIS B MADICATION SATIS B MADICATION SATIS B MADICATION CO. 9 MADI | DMTS. | DAME de al hances le diprocies 3 SERVATA DE CAMPA en cidad procies 3 DENTA DESCRIPTOR EN CIDAD per la la la la 1 DENTA DESCRIPTOR DE CAMPA CA | Other after
Original major | 0.30
6.30
6.37 | -620
-620
-620
-620 | -676
-687
-670 | 1.0 | 6.78
6.06 | 600
600
600 | 7 4 | 3 H H | | I MAN COR COLORS | IDII
VAIP2 | 1998 with yells to midd to relate to the 1 subset 1 Q WART well recorded demonstrate pate to 3 Manual 1 14276 while carrier is mig 2 remine it Person | graphics after
Originals after balabous busings to | 62 | -640 | -076
-084 | 0.00 | 500 | 500 | | # 84 22
97 81 22 | | I MICCE CHICAGO
I MICCE CHICAGO
I MICCE CHICAGO | REGAR
RRGE
RRGE | NOW white center birely 2 remains in Plant
NASC released power not, 3 billed Q
NASC released power no.2.5 | Optoplasm ster
States ster | 638 | -637
-628 | 0.88
-086 | 0.00 | 6.00
GAR | 600
600
600
600 | 2 E 0 | E 11 12 1 | | SHECTED CO. SHECT. | MINES
2014 | ARREST an markition or per translating 1 Q 2000 M and the property of the ST 1 Q 2000 M and | Qiophon aller
Males tressiphongular | 0.01
0.01 | -629 | -671
-671
-688 | 0.00
0.00 | 636
636 | 600 | * * | # 25 III | | HEREGICHES | MONTH I | NOTE ring Experiments 1 ECOMS where carrier birdy 2 member 68 Q EMCER EMCER Q | Optoplace after
Optoplace after | 637 | -631
-636
680 | -087
0.27 | 0.00 | GER
GER | 600
600 | 7 4 10 | 71 81 320
28 8 0 | | B MADO CET COM MOD. | CATHO
CATHO | BACKER BACKER QUARTER OF THE CONTROL | Ole ster | 63
63
65 | -020
-020
519 | -078
-088
0.71 | 0.30 | 538
538
530 | 0.00
0.00 | 7. 0 10 | 77 84 320
29 81 320
31 8 0 | | FREE CECTOR OF | 20177 | CIR crestioned Q DESTE double-protector DESTE double-protector PRINC phase-passible of bything-free local busyless Q | Other ster | 0.00 | 611
-68 | 0.5
1.39
-087
-080 | 0.00 | | 600
600
600
600 | 1 m | | | FRANCESCA NO.1 | PREDIC
PARKEDIA | 2010 the Regar protein CO I PROTECT phosphage state and inputer of more lengths. Golden A COLLEGE golge ACT Golden A COLLEGE golge ACT Q | Other ster | 0.00 | CAN | 1.07
-087
-085 | 0.87 | 540 | 6.00
6.00 | 120
N. M. O | | | I MINICELECTORIA
I MINICELECTORIA | ARE
RAP COPE | ASS antico-territori enhancer of split EMPER 2 Ray gas size receivable enchange factor 2 GMR Bred bloke G | Males trestitoregister
Oppison after | 63 | -020
010 | -082
0.89 | 0.00 | EM EM | 600 | 3 B 0 | 75 84 325
28 0 | | B MADE COLOR MOD 1 B MADE COLOR MAD 1 B MADE COLOR MAD 3 | PLOTE PLANTA | EAPER 2 Exp garder recitable exhauge factor 2 Q
EARE Exp Intel State Q
LISTER Intel 2 and option Announce population Q | Orderon ster | | 618 | 1.01
1.01
-081 | 0.00 | | 000
000 | 100
100 | | | I MICCIOCI PER
I MICCIOCI PER
I MICCIOCO PER | ME
ME | SCHE breaton we are managementations E. Q. MAZ. Mr Canceleration flags particle 19th rise by incide to comment Q. 19th Red Com | Original aller
Maries beneditioning data | 68 | -633 | 0.86
-0.89
-0.71 | 0.00 | 6.0 | 0.00
0.00 | 20 E E | | | HAROTECKENS | HARRY
LACKS | EMA: rition by program of command. Q
EMODE: EM domain containing 1
ACM2: pub-family MC Engar 2 | Other siles
Malina migre | 63 | - CS | -070
-088 | 0.M | 6.78
6.48 | 600 | 7 4 | 0 11 12
11 17 | | I MANICOTOTO MAIL | DHERF
DHERF | COLS de la lite constant l'Assistingued S. Plane
CHCE7 > de lapitude de mid de datase Q.
SPES enterpais l'anniel les lites de late 4.8 Q. | October seate providing | 62 | 618
-686 | 0.88
-0.88
-0.78 | 0.86
0.80 | 5.00
5.00 | 0.00
0.00 | a 22 0 | M 25 32
M 11 32 | | E MAND CERCON MAN A E MAND CERCON MAN 2 E MAND CERCON MAN A E MAND CERCON MAN A E MAND CERCON MAN A | Cheffs
FR1MR
192 | Charles share-unest operating time 89 Q
ENCLOSE released post of Taype using med
195 tigle post operators Plant | Other sites | 0.0 | -6.07 | -086
-086
0.76 | 0.00 | 500 | 500
500 | 1 1 | 75 97 330
34 65 86 | | NAME OF CONTRACT CONT | MELDEN
MELL
MENL | 195 Igils jumil organismo Silvenismo Marini
MESSIN MESSIA planter authorische in sakest III Q
201934 inter Bage authorisch sond australieg SI I
201930 partnergie receptor 2010 Marini
1991 malarysch in militate in bitat in Silvenis | Optoplace engine Mail ma transcription regulator mail entirage gyran consist | 6.00
0.00 | -0.00
-0.00
-0.34 | -CA1
-CA7
-CA7 | 0.00
0.00 | 6.00
6.00 | 600
600 | | ж н ш
и л ш | | HERCECCOM | 101
101.073 | P3010 parting is receptor P2010 Means 1910 environment to exist the data to the to 11000118 The except experiently remains 1.8 Means 1100 to date of UNCSI demonstrated being 2 | Optoplace Sunda Storing datas
na Mandrase Americana recepto | 0.00 | 40 | 0.00 | 0.00 | 680 | 0.00 | M M 100
100 | 11 11 0
0 | | E MADO CERCIO AND 1
E MADO CERCIO CAR 2
E MADO CERCIO AND 4
E MADO CERCIO AND 0 | MARIAS
PLSP32 | 1999/12 199 # copies superlandly member 12 Florin 1991 16 db and URCSE dates become being 2 1 1995/16 1 1 1 1 1 1 1 1 1 | Other after
Other after | 63
63
63 | -622
-625 | -673
-671
-686 | 0.00
0.00
0.00 | 6.38
6.38 | 6.00
6.00
6.00 | | 3 65 35
M 55 8 | | NAME OF COLUMN TO A STREET OF THE | HER STATE OF THE S | MAI | Marine Marine (1984) (1994) (| 6B
6B | 614
-638
617 | -0.00
-0.70
0.30 | 0.00
0.00 | 6.00
6.00 | 000
000 | 2 2 0
2 2 0 | N 81 32
N 81 32 | | I MICCIECTO NIS 2
I MICCIECTO NIS 4
I MICCIECTO NIS 6
I MICCIECTO NIS 0 | MECIN
ARHEAF 27 | 1900b set in enter 3 AMENDATO Sible STONE and helding product 27 GRANTS referenced products and helding product 37 GRANTS referenced products and held in blanch 20 GRANTS CONTROL between the best 3,0 file only glance contents and | Organium aller
Organium aller | 0.37 | -622 | 0.76
0.76 | 0.00 | EN EN | 0.00
0.00 | 7 E 10 | B 10 0 | | NAME OF COLUMN TO STATE OF THE | EMINTS
DEMOCIO | EPUS
riberand protein to terri stat is asked PS Q
BERNIS USE-Clarks behald beta-1,0-the regi glass contents of
CREADED CREAT downers comis may 20 Q | Qrapton atter
Qrapton ster | 620 | -025
014
019 | -681
-682
-671 | 0.00 | 636
636 | 600 | | 10 10 12
20 11 12 | | HANGE COMPA | THE P | CLREA shintle nai exté-sentte deuxé la Paus
1853. Inthitages qui une drancare egus, a elsi e | Nation ther | 42 | -08 | -0.78
0.87
-084 | | | 500
500 | | 77 97 120
1
06 23 96 | | I MARCOLLOT CO: 1 I MARCOLLOT CO: 1 I MARCOLLOT MR-1 I MARCOLLOT MR-1 I MARCOLLOT MR-1 I MARCOLLOT CO: 100-1 I MARCOLLOT CO: 100-1 | MACHAT
MACI TOA
MACI TOA | 1862 Entitlets pent syndram dramaume egist, orable 1
1839 odnie center frindy tire mier A7 Q
1882 daty ilo center by syndrat E | Qisplan taspate | en | -ca | 0.76
-0.76
-0.85 | 0.00 | 6.00
6.00 | 500
500 | n 1 0 | 8 97 32
8 92 32 | | FRANCISCO COLUMN 4 | RPMA
NORTA | 1956 riberand pade n.M. Q.
1865 MRS, antiplegy organization Q.
1866 for stable 1 | Otopison track toning skitor
Otopison skler | 6.38
0.30
0.86 | -638
618
604 | -011 | 0.00
0.00 | 600 | 600
600 | | 11 12
2 14 12
4 44 1 | | I MANO CEL CEL MA 4
I MANO CEL CEL MO 3
I MANO CEL CEL MO 1
I MANO CEL CEL MO 1
I MANO CEL CEL MO 1
I MANO CEL CEL CEL 7
I MANO CEL CEL CEL 7 | MAE
WIRL | MANCE MAP IN PLAN MAY BE READ OF THE MAP IN PLAN MAY BE READ OF THE T | Opinplace stary
Males transdiptorregulator
Males litera ME1775 | 0.00 | -66 | 0.76
0.70
0.86 | 0.00 | - | 600
600 | х в ч | - " | | HAND CED CES CES 7
HAND CED CES CES 2 | DOM: | NO. 51. NO. 51. EX che dipartiti asse NOC. 201. Incolor o contro libro o molypolio de pendenti do ase subs DESTE DESTO DESTO PORTO DE SERVICIO SE | Service de la constanti | 620 | -020
-020
-020 | -CA1
-CA1
-CA1 | 0.00 | 5.00
5.00 | 0.00
0.00 | 2 2 | a 71 12
a 71 12
50 10 17 | | I MARCOLLOS TRAS I MARCOLLOS TRAS I MARCOLLOS TRAS I MARCOLLOS CASA I MARCOLLOS CASA I MARCOLLOS CASA | MATERIAL STREET | MEURO MACHANI qui ne nativedade e salunt CI Q
VMIX: VMICC NOTE e sianti
UMB siantis quel la papale e D Q | Qraphon ster | en | -66 | -687
0.88
-680 | 0.00 | 5.00 | 0.00
0.00 | * 1 v | 8 H H | | FRANCESCO ZAS | MATE. | UPPE shapeth spettle of ED Q MITS PERMIT and AT host containing the Paper S I BINGAS languaged model and y security (E. Paule | Rains tree differentials | 0.00 | -0.00
0.00 | -080
0.76 | 0.00 | 610 | 600 | W 100 100 | a 10 12
a 1 0 | | PRINCEDCTOTALE | EM4 | ERA risemajorateta q | Otopian major | 62 | -03
-03 | -088
-087
-071 | 0.00
0.00 | 610
610 | 500
500 | | # 17 12
18 12 | | HANDSESSAME HANDSESSAME HANDSESSAME HANDSESSAME | SO PAIS
THAN 10-ASS
MIPC (SD
THAPS | SELECTOR CONTROL OF THE PROPERTY OWNER OF THE OWNER OWN | Optoplace surpre
Optoplace surpre
Chie siber
Chie siber
Mai na siber | 633
633 | -638
-637
-638 | -675
-670 | 10 | | 6.00
6.00 | y 2 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | | FREEDOM CO. TO S | ACMON.
ACMONS.
20092 | ATH AT 418 MAY 1 SINGUING INTERIOR SELECTION OF OFFI | Orderpron motion
Orderpron motion | 0.22
0.32 | -0.75
601
618 | -0.71
0.86
0.78 | 0.38
0.30
0.30 | 500 | 6.00
6.00 | M 27 0
m 50 100
m 67 100 | M 10 0 | | HANGEGROUNDS P | 13-438PM.1
RPGP1 | | | 68 | -036 | -078
-083 | 0.00 | ESE
COD | 0.00
0.00 | 2 1 1 | 71 67 330
81 72 86 | | I NOCOCICIO ESPA DE LA CONTROL | ATM
FFD
FTD-NOMES | PF129: ribusond paster n32 pandagene ti
A791: as but by transcription factor d. I
MEMICS rule represented Q
PF12977: ribusond paster n32 pandagene 7 | Disc | 627 | -0.07
-0.00
-0.03 | 0.75
-085
-085 | 0.00 | 6.00
6.00 | 600
600
600
600 | 1 1 1 | H 11 12 12 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | | HAROGEOGRAP | DIPOS CRAFIR SIGN SIGN SIGNIC GRAFIC SIGNIC SI SIGNIC SI SIGNIC S | CHECK OF destroyability to C | Other aller | en. | ·cor | 0.78
-088 | 0.00 | 680 | 000 | 100
0
100
100 | N 97 33 | | PROCEEDINGS | 9A100 | 1909 satisfamin 9 Q 1947 NO spending meta socialed 20 1967 NO spending meta socialed 20 1967 | Oler aler
Naina mojor te antidrandesse l | 0.00
0.00 | 601
687
-637 | 0.86
-0.83 | 0.00 | 5.00
5.00 | 600
600 | N 23 125
N 39 6 | 8 28 0
B 11 12 | | FRANCISCOSCOSOS
FRANCISCOSCOSOS
FRANCISCOSCOSOS | MADE
MADE
EM | MANCE SHAPE or support of the state s | Qiqqison siler
Qiqqison siler
Naima kuna (pisoregulator | 611
631
631 | -638
-638
-641 | -GAR
-GAR
-GA7
0.71 | 1.0 | 633
638
630 | 6.00
6.00
6.00 | | 71 67 320
72 64 87 | | HANGED COURSE HANGED COURSE HANGED COURSE | CRANI
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CRE | AMERICAN antip tropped down int ID Macro CREAT glycape regulates blace State CREAT opticities remay plan like feature I Q LEQUES abbigated opticities as reductive intelling protein. | Mains items masked a
Opping tons determined as | 6.23
6.28
6.20 | -633
-635
-635 | 0.71
-GAS
-GAS
-GAS | 0.00
0.00 | 525
525 | 6.00
6.00
6.00 | 3 7 0
3 1 0 | 31 37 8
8 81 32
8 81 32 | | I MICCE CLASS 7 | CRAN
UCCON
TORAN
EARCA
EARCA | USEE shipped opening or reduction landing protein Q
TOTE APP 1 Levin SA Internating protein 2 Q
EARTLA EARTLA remise EAR congressionly Q | Qraphon ster | en
en | -628
611
-686 | -081
-081
-088 | 1.0 | 0.00
0.00 | 600
600 | | 77 67 320
24 83 320
28 54 320 | | FRANCISCOMA 1
FRANCISCOMA | THECH | CERF confirmating landing protein G | Other tiler | 0.30 | -636
628 | -041 | 0.00 | 660 | 000 | | E 19 12 U | | HARDEST CONTRACT | 200.
190. | ETREAT Independence of Participation of Participation of the Participati | Other stler
Oppions stler | 0.30 | 611
-628
-628 | -671
-675
-688 | 0.30
0.80 | 611
611 | 600
600
600
600 | | 6 81 12 12 12 12 12 12 12 12 12 12 12 12 12 | | FRANCISCO MAN | TOTAL
SAMOS
JESKUA
CODETS | 1901 the direction of a direction ting 1 MMD1 definition of the first | Other after | 0.00 | -617
-628 | -077
-079 | 0.00 | 611
680 | 600 | | 0 14 V | | | | CEDER coded out done translating 75 LIBER LIBER banding Ultimati nation EDUs admitted days EMISE riberand partners 6 | Maina aler
Maina aler | 6.00 | -08
-08 | 0.71
-GRE
-GRE | 1.0 | 600
600 | 600
600 | | U 10 10 10 U | | HANDER COMPA | MART
MART | 1990 riberendyne 1914 Q PMP1 protection 1914 Q PMP1 protection 1914 Q DP70 six flags protection 1 | Other ster | 0.30
0.30
6.60 | -628
-629
-631
-638 | -CAR
-CAR
-CAR | 0.00
0.00
0.00 | 540
533
533 | 6.00
6.00
6.00 | 1 | 60 61 320
67 67 320
86 86 0 | | HANGED CLANG?
HANGED CLANG?
HANGED CLANG? | 897
893 | Chirlis characters operating force in
197 Interior egisting factor 7
1993/PE - risconsipater (1934) postigate b | Other aller
Nation
transipleorogister
Other aller | 6.30
0.37 | -627
-628 | -CAN
C.M
-CA7
-CA9 | 0.00
0.00 | 633
633 | 000
000
000 | | M M M W | | I MANICICATION DI DI PARCICATIONI PARCICATI | MELDAN
TRACE | 10 | Other other
Optoplasm engine
to Minister benjuster | 6.33
6.37 | -CIE
-CIE | -cao
-cas | 0.00 | 5.00
5.00 | 000 | 11 E 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 | 8 18 U
8 88 20
1 72 20 | | 1 MICCE (23 M/2
1 MICCE (23 M/2 | MATER
ALIENT | TAGL | Organism majore
Organism after | CB | -cm | -081
-088 | 0.00 | 6.00
6.00 | 500 | | 8 84 25
20 5 | | HAROCOCCUSA
HAROCOCCUSA
HAROCOCCUSA | RPG
ABA | BIAMM M recognite hydrologe Q RMS ribe second protect ASI ARDA as to to the exist, derivative the accounts had Q | Orderen aper
Orderen aper | 631
638 | -64
-65 | -683
-680
-681 | 0.0
0.0
0.0 | 630
630 | 600
600 | : : | 1 1 V | | FREE CECENTRY
FREE CECENTRY | EPICAL PROPER SOUTH TO SELECT SEL | USBS USSIdentic control of 1 Manual Calada characters of permanagement of permanagement of 1 Manual Calada characters of permanagement of 1 Manual Calada characters ch | District | 0.37 | -628
620 | -085
-077 | 0.32
0.37 | 525
539 | 600 | 71 B C C C C C C C C C C C C C C C C C C | 28 61 320
28 39 320
61 83 0 | | I MICCECO 747 | METANG. | STATEL street and great the of (passing one) UNION beater when you to constron a Barrier State of your street State of your street State of your street State of your street State of S | Other other
Otherhous phosphatus | 6.17
0.48
0.39
6.09 | 628
628
620
630 | 0.8
-088
0.7
-085
-085 | 0.00
0.00
0.00 | 631
637 | 600
600
600
600 | | 6 81 0
8 82 U | | HERCEGE CO. SC. S | TAMES
CAMES | USP 2 USP-glucose populatopharyla e 2 Q
TRACER USBA notifyth notice a 2 hounding E Q
CARER or blum modifieting figured
1987A orall notice or faculty-growth polype piller A | Glabjero spat Njanaponé skyale
Glabjero solina
Andrem solina | 63
63
63 | - C27
- C6 | -can
-can
-can
-can | 0.00
0.00
0.00 | 68
637
638 | 600
600
600 | 2 2 1
2 2 1 | 57 NO 10 NO 10 NO 17 | | I MINICIPATION CONTROL PROPERTY OF THE PROPERT | FR.SE
TG | | | 62 | -628 | -cao
-ca1 | 0.00 | EM
CID | 000 | 2 W 0 | 8 63 20
8 63 20
5 18 20 | | I MINICODO CLI MO 7
I MINICODO CO COM 7
I MINICODO CO VALE | PERMITS
ANDER | PREFIX polyACP-rised polymenor family meriter 38 Q
PETPREC phosphat dylmodel transfer post omenitranea sect. Q
ARCIG erchato 3 | Qrisplann mayor
Qrisplann beaupater
Qrisplann siter | 6.0 | -628
-628 | -076
0.60
-081 | 0.00
0.00 | CM
CAT | 500
500 | 11 07 180
14 39 0 | 97 58 30
20 51 0
20 51 20 | | I MICCOCCI SOR | VMIG. | ARXID archael 1 URXIX between the personal being 8 bind y member C. Hamilton 1 VMID1, SAMP complex schools. Q. VMID1, SAMP complex schools. Q. VMID1, SAMP complex schools. 2 House schools articles to make 2 House schools articles archael 2 1007/03 small make ar risk make open bin 02 polygogish 1 | nationisme tendence
Questions after | 627 | -038 | -08E | 0.00 | 630
630 | 600 | | | | HEREGE CURRE | MAPS
SHIRRES | MAXIS Section 14 Transport and large field y consider C Maxis | Mains ster | 43 | -637
-636 | 0.00
-0.84
-0.85
-0.86
0.00 | 1.0
1.0
1.0 | 5.00
5.70 | 600
600
600
600 | | 77 85 220
8 65 67 | | FRANCISCO CA CONS
FRANCISCO CA CONS | MEMB
EQUAPS | TCP2 TMM Sale and passants in diffration 2 HOSS in hybrid pale and 30 kmm/s values 2/4-kylosyptation 5 Q HOSS in and combining ETT once a fine long problem 5 HOSS MACHINE pales and in which is a color to B Q | na Strenbrane stier
Graphem länase MC-198
Graphem stier | 637
637
648 | -63
-63
-68 | -CA 6
0.86
0.72
-C/TE | 0.00
0.00 | 5.07
5.00
5.00
5.44 | 600
600
600 | 2 0 10
1 1 U | 20 14 320
71 14 0
14 97 1
8 44 220 | | FREEDRICK CO.S. | MPLAK
FUE | MCRMB MACHidal options califormicities outland IB. Q PRIMAX parties like phosphal passe denot nountraling IX. Q PRIMA Q EXTENSION of the control of the control option opti | Orderson store
Orderson store
Orderson store | 0.0
6.0
6.0 | -629
-625
-625 | -0.78
0.88
0.82
-0.88 | 0.00 | E26 | 500
500 | a a « | 25. 69 8 | | HERCECKOCI
HERCECKOCI | RETEXT
COMPA | ECT D2 pate storm cleaned between testine denote containing : EXTLAN - reference people of LTA COPP2 - optique or of MRC1 bits exiting protein 2 - Optiq | Other booksend
Otherhous other
Otherhous other | 60 | -628
-628 | -688
-688
-688 | 12
12
12 | 5.00
5.00 | 600
600
600
600 | N N N N N N N N N N N N N N N N N N N | 6 10 32
11 32
12 32
1 47 32 | | HAROGEOGRAPHS | TANK | COP2 opinion (MAT intenting prints 2 G | Other siler
Organism kempater | 638 | 631
686 | -681 | 0.00 | 120
120 | 600 | 31 % 0 | 8 33 1
8 33 1 | | SHECTED ON THE SHEET OF SHE | WAS
WAS | TOTAL Terrory dybophus branch misses 1 Q
2000-22 and finge DOC System (1922
MASS was 1980 to system (1922) | Open moles
Open moles
Grahamy moles belappi syspens | 612
627
6.89 | -649
-627
611 | 0.06
-0.0.6
-0.05
0.06
-0.06 | 0.00
0.00
0.00 | ta
ta | 600
600
600
600
600
600 | | 27 67 22
23 87 87
24 88 8 | | B MADICATION COM-
B MADICATION CAP 2
B MADICATION CAP 2
B MADICATION CAP 3
B MADICATION CAP 3 | MEMBER 1991 1997 | MATLIN - Chemical political | 19 | 620 | -620 | -681 | 0.00
0.00 | 5.10
5.11 | 0.00
0.00 | | 21 92 220
8 89 92 | | HAROGEOGRAPA | THE LOSS | 17000 type of an investment on parts, appear 170000 type of demands containing it 350000.00 to an investment or protein 100 10071120 methyl in mile on it lie 20 2 | Other siler
Original phophetine | 0.30
0.40
6.39 | 63
63
63 | -0.16
0.00
-0.70
0.31 | 1.0 | 0.00
0.04 | 600
600
600
600
600
600 | | 3 11 10
1 18 0 | | HECCECASES
HECCECASES | DEED
DEED
DEED
DEED
DEED
DEED
DEED
DEE | 1986 19 Indicates containing in | Care aller
Males aller
Qiqqison bessiptorragistar | 0.36 | -CM
CJD | -070
0.35
-082
0.37 | 0.36 | E38 | 5.00
5.00 | 3.00 | 21 61 00
22 61 328
23 23 0 | | S MAIO CEICUS MEL 7
S MAIO CEICUS MEL
3
S MAIO CEICUS MAIS
S MAIO CEICUS MAIS
S MAIO CEICUS MENS
S MAIO CEICUS MENS | FFSS
FFSS
FFSS | CTTAX. grows I transiple of facts M. calcult. 1. Q. 2002. 340 complex 6. 1. 340.00 cm plant 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Marina dher
Marina phaphatase
Qraphon traslationingshitas | 6.00 | -607 | -GA7 | 12 | EAR
EAR | 500
500 | 7 A 18 | 31 25 0
15 18 32
21 14 1 | | HAROCECUEST
HAROCECUEST
HAROCECUEST | HELL
COMMON | H PROS ender yells in midd han hellad han in de de genneu S Q
ESPER blenedd andly merchan 200 I
MEL MEL, MELL like belaner complex companent I
COMMERC COMMITTERS of section 9 8 | Males ecopie
Males aller
Che aller | 6.23
0.38
6.20 | - CEE
- CEE
- CEE | 0.86
0.86
-CAS
-CAS | 0.00
0.00 | 5.00
5.00 | 600
600
600
600 | | 75 84 1
27 33 8
8 31 25
75 72 320 | | HAND COLUMNS | ANTES
HEPTA | COMMEN COMMISSION OF STREET AND A | Naina dier | 6.30
6.33 | -CH7
624 | -CAS
-CAS
-CAS
-CAS | 0.08 | 6.00
6.00 | 600
600
600 | 20 8 0
70 72 100 | 72 72 300
80 64 320
90 28 0
97 88 86 | | D MARCOED CELTRICA
D MARCOED CELTRICA
D MARCOED CENTRAL
D MARCOED CELTRICA
D MARCOED CELTRICA | ACILIA
TACON | NOTE IN NOT Streamferdary protects POLICE POLICE interesting blance 1 like ACES or cylicate optimization long-class framily manuface 5 TACOS to multitude in cities for optimization on a cal disce 1 Q | Naina üler
Naina linae
Qroplam enyre
Qroplam üler | 6.00 | -0.00 | -588 | 0.00 | - | 600
600
600
600 | | N 11 12 | | FRANCOSCOLAGA
FRANCOSCOLAGA
FRANCOSCOLAGA | HCP'S
FORS.
AGEN
TACOS
NA
TICIBIC
BADIG | TERE tetratopoptile operationals RC
BADG ET developed DE benefit 2 | Other alter
Malma bens dyborregister | 0.30 | -GIE. | 0.07
-GAB
-GBD | 1.E
1.R | 600
600 | 0.00 | N 10 0 | | | F MADE CELEGY TO A MAD CELEGY TO A F MADE MAD CELEGY TO A F MAD CELEGY TO A F MADE CELEGY TO A F MADE CELEGY TO A F MADE CE | MARIA
MARIA
MARIA
MARIA | BECSC EST described DEC Normality 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Topic Topi | 48
48
48 | -628
-628
-638 | -CAS
-CAS
-CA7 | 0.00 | 5M
5M | 600
600
600 | 1 G 100
M G 0 | © 21 8 0 14 15 0 15 15 15 15 15 15 15 15 15 15 15 15 15 | | I MICCOCCUMEN | HERES. | EPES reference protects to the PET demands protects 1 MEDIA to the recognition for all the PET demands protects 1 MEDIA to the protect complete colorest 5 MEDIA to the protect complete colorest 5 MEDIA to the protect complete colorest 5 MEDIA to the protect t | Males tens deler deler | 68 | - CR
- CR | -687
-682
-687 | 0.00 | 600
600 | 500
500 | | 60 7% 320
60 94 320
64 83 66 | | | | | | | | | | | | | | | I MINICODODANA | 20100 | 2732 on bye mil 7 dente coloring 2 Naine dier | | -cm | -cas | 0.00 0.00 | 600 | | er | ** | - | |--|--
---|------------------------------|--|--|--|--------------------------|--|----------|----------------------|-----------| | HANGED CLYSCO
HANGED CLYSCH | MHSP1
COCH | ADMENT the CTN-se exhaulty protect. Quayloom other CCCCM confident down broads ting EX. Exhausthair Space other 2000 of confident broads to confident 2 Mail on other 2 feet of the CCCCM. | 0.37 | - CET
1344 | -CA E
0.00 | 0.00 CM | 600 | N m 100 | : | 14 | | | NAME OF CUI AND 7
NAME OF CUI ON 3
NAME OF CUI OF 3 | MANAGE | TROVES TROVE domain is still member 2 Mail ma silver MEMAN million in the committee of | 6 M
6 M | -03 | -627
-627
-639 | 0.00 0.00
0.00 0.00 | 600
600 | a a a | | 11 | - | | HANDER COMPT HANDER COMPT HANDER COMPT HANDER COMPT HANDER COMPT HANDER COMPT | MANAGES
MINISTER
MANAGES
MINISTER
PERDAMIS | MSMAT membrane-spaning distances AT Clie silent MSCD-AS MSCDI-AS M | 0.80 | 631 | 0.80
-088 | 6.00 CD | 000 | K. M. 0 | | | = | | HALLOW COLUMN | 0101 | METT mital cytoline greating proteins Openium other CHRB copies Openium bloom PROM Openium bloom of the CHRB copies | 610 | -68
-63 | -cas | 0.00 0.00
0.00 0.00
0.00 0.07 | 600
600 | | | 89 | = | | HANDSTONE OF THE REAL PROPERTY. | CROS 1 | PPEIM: rise amely act of ETA. CR2 CR2 protein linearing delay valued: 2 Other linear WEXE MO report desired. 3 Optoplace after | 63 | 615
627
-610 | -63 B
0.82
0.86 | 0.00 0.00
0.00 0.00 | 600 | n a n | | | : | | HANDERCORNS
HANDERCORNS
HANDERCORNS
HANDERCORNS | MAP
EPM | EASP ETSI medical naive prioris Naima über
1770. genral besoniphischus SA Naima best phisosystem | 628 | -CB | 0.75
-68 8 | 0.44 0.00
0.00 0.00 | 660
660 | M 22 130
27 34 8 | : | | ÷ | | HAND COLUMN A | 880
880 | BATIA Inche melligite seles a 10. Mai na Bana épitor qui de commente commen | 0.07 | 612
684 | -cas | 0.00 GM
0.00 GM
0.07 GM | 600
600 | 20 11 | | 17 | Ē | | E MAND COR COL MANA
E MAND COR COL MANA
E MAND COR COL MANA | MATERIAL SERVICES | NED nitrose D Quaglann mayne
2019 133 inn Sign Meller Spanish Sign 13 Ned ma Sense Spinish regulater
300.1 Sensite report Ned class to 1 Ned ma Sense Spinish regulater | 60 | -037
039
-038 | -684
-687
0.86 | 1.0 0.0 | 600 | M 11 0 | | 11
78 | | | HAND CERCURATE SHOULD BE SHOULD CERCURATE CERCURAT | G PUS
EANG | CP 320 ord manual produit 320 Quiplan diler EAMS biero Mar administration of Manual Membrane | 0.80 | 601
-68 | -081
-089 | 0.00 0.00 | 600 | : : : | | 16 | = | | PRINCED CLUM? | RPS
MARS | BNDH im berming & mitymenter H Planta Minchare majore myser 891 telefore spikter felte 1 Marina - Vansingberregister MMDD spike senior 3 kinderi, ment/Year 1 Gelspiken - Silve - Vansingberregister | en
en | -628
-639
647 | -082
0.80
0.87 | 0.00 GM | 600
600 | 2 2 1E | # E | : | | | HECCECTOR OF | #120A #50B1 W60B1 W60B1 #579A #579A #570 #57 | March March March March March | en
en | -68 | 0.87
-033
-030 | 0.00 0.00
0.00 0.00 | 600 | 2 2 0 | 77 | 300
72 | Ξ | | I MADO DE COLARA A
I MADO DE COLARA I
I MADO DE COLARA I
I MADO DE COLARA I
I MADO DE COLARA I | 1000
1000 | FILE Claiment part in 12 Quiplion she'r TOT In acceptate dans the Cop I Main a Sans dyboring date FIELD 100 dates come thing SIME the endight to Quiplion she'r FIELD 100 dates come thing SIME the endight to Quiplion she'r FIELD 100 dates come thing SIME the endight to Quiplion she'r | 68 | -649
667 | -688 | 0.37 GM
0.00 GM | 666 | : : : | -
N3 | 61
66 | = | | PRINCED COURSE | PARTE
PARTE | DHEALS DHE denot recent tring DESC life melophilis ED. Quipleon aller MAYS2 periphiral implicaçue la recent products. Planta del missare aller MANSA SE managed (a) la planta del missare del la recent recen | 0.00 | -639 | -082
0.87
0.82 | 0.0 0.0 | 620
620 | | | | n | | B MARIO CECCIA MORA B MARIO CECCIA MORA B MARIO CECCIA MORA B MARIO CECCIA ZURA | ATRIALIS
RPCB | | 60 | -C89
509 | -682 | 0.00 CAR
0.37 CAR | 600 | 1 1 : | 10 | 97
42 | 7 | | 1 Mario (220 Cts 220 4
1 Mario (220 Cts 72) 0 | MMA1
100 MGB | ATMAL ATV gethau, He trapp ting interleafed (17 comple Cycleptum Emparies State of State State Of State Stat | 0.30 | -08 | -cas
-cas | 0.00 G/M | 600 | 1 1 | 2 | 11 | = | |
PROCEEDINGS | CORT. | USE: A side sequent 1 National bloom USE: NATION USE: NATIONAL NATION | 62 | -cm
-cm | 0.86
0.86
-0.88 | 0.00 CM | 660 | 2 4 12
H E 0 | - | | - | | PROCEEDS IN 1 | HOUSE
MODEC | 1987. Nacional consendente de la figura de la porte de norribiolity (nacional de la consendente del consendente del consendente de la consendente del co | 0.00 | -cm | -036
-036
0.76 | 0.00 | 600 | 10 20 100
100 | • | 75 | : | | B MARIC COLOTA NAS. COLOTA NAS. | HAPTE
HAS | MERTE SE ANCHORA DE SE | 63
62 | -car
-car | -638
-638 | 0.30 GAF | 600
600 | | - | | - | | HAND COLUMN 1 | er mess
er m | SCESS white currier is mig C member 2 Planta M mile are Vanque be
ESSC ESS dess increased of 2 Grégolium diber
AFB quigle ais hidd to b Grégolium diber | 6.00 | -ca
-car | -CAE
-CAE | 0.30 E.00
0.30 E.00 | 600 | 2 2 1 | | 88
87 | er
200 | | I MARIC CELCUL AGAS. | MAD
MAD | ATRO AT quitaus, in tempering missionals in comple Options Sempering SAZI ribosomi paste old 3 | 611 | -619
-617 | -cas | 0.25 C.28 | 600 | | | 72
88 | = | | HANDSDOWN TO | COPT | Particular de la companie comp | 62 | -03
-03 | -681
-681 | 0.00 0.00
0.00 0.00
0.34 0.75 | 600
600 | | 21 | ** | = | | FRANCISCOS DE 1944 | MACO
MACOUS | CEPT CEPtion of given of-total of a phaspion define sub-se . Quay born surpre-
SERS rise and given CES . Quay total of the . Quay born sub-ser-
SERSES. Included by Indiana of prints SES. Quay born sub-ser-
ses and the center of the center of prints SES. | 62 | -03
-03 | -038
-038
-035 | 0.00 G.00
0.00 | 600 | M 4 1 | n | | - | | HANDERS SHEET HA | CM/ID
CMC | BMS becometable asknown 251 MA Shamding Cliber alter
CUTC suff-copper to expert as | 611
0.0 | -619
601 | -cas
-cas | 0.00 COM | 600
600 | | ï | 10 | = | | HANDSCOUNCE
HANDSCOUNCE | mar. | ESCIS. Early lie belonce National entry of CEDORS. coded call down traces to bought 1. Other other | 0.25 | -625 | 0.00
0.86
-0.00 | 0.00 0.00 | 600
600 | E H 1E | | 72 | - | | HAROGEOUSEA
HAROGEOUSES
HAROGEOUSES | 104 CS
11405400 | SIGN STATE of O | 60 | -00 | -684 | | 600 | 100 | 16 | 97 | - | | HANDSECTION 7 | MARKE
EHC | 1200 CDM land glycox (upth and 2 MMMC MAMMC on the guide and by male very corporer of Question after 130C SAMMC on the guide and by male very corporer of Question anym | 6.00
6.37 | -CB
628
-629 | -016
-016
-016 | 0.00 0.00 | 600
600 | N N | : | ** | = | | I MICCIECTADO MICRIPADO | LIPLAS | ISSE granustine lets Optober suppe
ISSE purphapital Optober suppe
ISSE COST Plant of the parties | 6.07
0.43 | -629
647 | 0.40 | 0.30 Gar | 600 | 10 10 10 10 | · · | 81
11 | : | | I MAN COR CON 178 A
I MAN COR COR PARA
I MAN COR COR 178 3 | HEIDE | NCCRI di castilio peptidane il castilio per la | 636 | 633
-633
638 | 0.86
-6.70
-63.4 | 0.33 GM
0.35 GM | 600
600 | A A U | 1 | 22
84
29 | = | | PROCEEDINGS | HIP2
CCRAP1 | | 0.39 | -CB | -034
-035
0.86 | 0.00 0.00 | 600
600 | 100 | * | 97 | = | | PROCEEDING | DCAPE
DCAPE | LEMPT LEX being REI de ording print of 2 Entrachtur Space other DCRS DCRS and CLASS and the finance 25 Mail An other BAST DCRS and the finance for 1 Dcrs for other | 6 M | 629
629 | 0.86
0.82 | 0.00 0.00
0.00 0.00 | 600 | | n | | : | | I MANO CELCO PALA I MANO CELCO PALA I MANO CELCO PALO I MANO CELCO PARA | UNICHARD HOME HOME HOME HOME HOME HOME HOME HOME | Manufact antiming parts of the section secti | en
en | -617
-615 | -080
-088 | 0.00 GE
0.00 GE | 600
600 | | n | 81
78 | - | | HANDOECT TO HE
HANDOECT TO T
HANDOECT TO HE
HANDOECT TO HE | HEAR
HCDG
FFRE
SPGD
GROOM
Chaffe | ESTAN mit niger related remyster a julie Nasiana. Mit person et subre rena
NETATL modern energie un represent 1 Mail nas. Even dejistering delater
NETATL 3 - Projekt nigerije filos deligiel state 2 Gyrip imm.
NETATL signifije prije kenter in states 1 Gyrip imm. pre juliese | 0.37 | 549 | 0.05 | 0.00 0.00 | 000
000 | W W 100 | | | : | | HANDGEGEGE 7 | POL | 1933 Mininger into the impact in light Mininger in the bit impact in light Mininger in major interpretation Mininger in major interpretation Mininger in major interpretation Mininger in i | 62 | -636
-636
667 | -cas | 0.00 0.00
0.00 0.00 | 600
600 | u = | - | 11 | = | | I MINORE CENTRAL
I MINORE CENTRAL
I MINORE CENTRAL | CN/D
MADE | WCCCC signed population complex recision in Companies (Continuous proprietation MCCCCCCC) (Continuous contra of MCCCCCCC) (Continuous contra of MCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | 607
607 | -en | 0.70
-0.03
-0.79 | 0.00 0.00 | 660 | | | 83
72 | = | | I MINICIPECTURE 1
I MINICIPECTURE 2715
I MINICIPECTURE 1000 | EST
MARKET | THEST operations of the Committee | 48 | -ca | 0.00 | | 000
000 | 100
21 8 67 | - | 92 | : | | HANGED CHIEF | MACH
MACH
COURLY | PLOS permitment lagranch betwit 28 Grippinen siber
SPCS ribesend punk et 128 Grippinen siber
CODPL 2 COLOnd physiotanch be 2 Naina phopintane | 6.00 | -640
600
611 | -CA1
-CA1
-CA7 | 0.20 G.T.
0.27 G.T. | 600 | | 10 | 97
90 | = | | D MAND COLD COLD TOTAL
D MAND COLD COLD WING 2 | EMENTS
CITEDS | CTORS 2 CTO until physiolenes to 2 White the control of the physiolenes to 2 White the control of the physiolenes are the control of co | 0.00 | -en | -62% | 0.00 GED | 600
600 | | | 84
73 | - | | S MAND CORECTLY WAS 1
S MAND CORECTLY STORE
S MAND CORECTLY MAN 7 | TRACO | MESS rifection to tage each register formulage Marines atter TOMMES to enhance of all and material to immine and 20 Options temporare MEMORS to formulate propriete around binding disease of Marines atter TOMMES to enumerize any product 5 Options atter | 68 | -cm | -cas
-cas
-cas | 0.00 0.00 | 600 | " : : | - | 62
66 | - | | | 16660
16660
16650 | PRINCE In providing evopous memori binding densi k-2 Nala na. diber
35 MBB I kan membrang prision N Qripham diber
3809-27 unul naleur (binnalequistin US/NUI) subunit 27 Nalana diber | 671
637
638 | -00
-03
-08 | -cas
-cas | 0.00 0.00
0.00 0.00 | 600
600 | | | ** | = | | I MANOGEOGRAPA 2
I MANOGEOGRAPA A | PLIPS7
PAGESON | 9519737 rises and pasted to the panel open of 27 Claim other MAKES 68 Family of the open or and only 25 member 8 Mail mail other claims. | | -ear | -076
0.00 | 0.00 004 | 600 | | 77 | | n
M | | I MICCOLOS MA I
I MICCOLOS MA I | THORN TO A PLOP EMAN EMAN EMAN EMAN EMAN EMAN THORN BRING THORN BRING THORN BRING THORN BRING EMAN EMA | PASE i ribusand past stat Question star i Graphon star i ACCS 2 and Palmon beautiful past of the Community o | 630
630 | -036
-036
029 | -683
-670 | 0.00 0.00
0.00 0.00 | 600 | | - | 72
97
19 | 7 | | | MARKET STATE | ICMS breatin at some amplifest oppense 6. Grippione diller
MEPAS mitoshouk in ribasomi protein 150 Grippione aller
SMM ST binding protein one oppensell robbits it maate. Means bleening menyee | 60. | -639 | -070
-084
0.78 | 0.44 CID
0.01 CID | 600 | 2 2 0
7 17 18 | 2 | 83 | = 2 | | B MANUSCEE COLORDON | CD at | C22af2 sharecome23 sparsedingforms 2 Graphon other
SMS SCP-manused, brieflyfrate 9 Graphon mayore | 6.00 | -64 | 0.8E
-0.77 | 1.0 0.0 | 600 | n n n | 2 | 14 | ÷ | | I MARCOTTO A MAR | CELORICA
COMPLIANA
FEMICE E
PANCE ESTA
TO SCHOOL | COUNTY Amendment 25 agreement Surgition to 2 Opiniosis where | 638
638 | -020
-030
614 | -687
-684
-687 | 0.00 0.00
0.00 0.00 | 600
600 | | - | 92 | 7 | | F MANIE CERCIC NAME & | 19 128 1
CERT | 19330 India systematiki Establishi Ipan diler
CCD CC matthematice megist 7 Manuali milane yaran napial enga | 0.00 | -628 | -ca: | 0.00 0.00 | 660 | 3 3 | H | 73
80 | - | | I MAND COD COL NO. 0
I MAND COD COL NAC-9
I MAND COD COL NAC-3
I MAND COD COL NAC-4 | MACE
MACE | MEPCES introduced to informed protein SES Quaptum other METEC Systematish to the SE Marine State Aythorny dates | 0.07 | -CIM | 0.00 | 0.00 0.00
0.00 0.00 | 600 | 1 1 1 | 27 | 82 | - | | NAME OF COMMAND
NAME OF COMMAND
NAME OF COMMAND | MADE TO | METATIC (plan indicated in France of practic SE Quipe land of the France of Section SE SECTION (plan indicated in France of Section SE SECTION SECTION (CORRES IN SECTION SECT | 0.3h
0.37
0.86 | - CAR
CAR
CAR | 0.00
-000
-001 | 0.00 0.00
0.00 0.00 | 600
600 | 10 | | | Ė | | PRODUCTION OF | MCHAI
MHPI | 100 100 to the control of contro | 0.07 | 603 | 0.86 | 0.00 0.00 | 660 | 10 No 100 | | 10 | : | | I MINICOLECTA TO II
I MINICOLECTA COL 7
I MINICOLECTA TO 7
I MINICOLECTA SMIL 1 |
MERCE
METAL
GRAD
MARINETTA
MICHAEL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
METAL
M | 19945 nachmydwath Hall na East dyfanny ddaw
273 bygwagles skylphydain sydawn Gynghann mayne
25CAMS in their mid-SAM dawn noombing 25. Other aller | 6.00 | 681 | -68 E | 0.06 E.M
0.36 E.D | 600 | 100 | ** | 11 | | | PROCESSION | 1730 | TOTAL COLORS CO. ST. ST. ST. ST. ST. ST. ST. ST. ST. ST | 0.36 | -637 | -014
-018
0.80 | 0.00 0.00 | 660 | 2 2 | - | 78 | | | FRANCISCO CO. MA. 1
FRANCISCO CO. MACO | 20'34
PKG 4 | 20°ML inchapt protected. Other other PROSE protected the Other engine. | 638 | -ca
-ca | -081
-088 | 0.00 0.00
0.00 0.00 | 600 | a 1 0 | 73 | 28
78 | - | | NECESTICATION NE | INTE
IMP
CNATES | Married Marr | 638 | -CID
-CID
CID | -081
-081
-084 | 0.00 0.00
0.00 0.00 | 600
600 | y n . | - | | Ē | | FRANCISCO DE T | CIDII | SAGSS SASSOS COM COM STATE COM | 0.38
6.30 | -69 | -082
-084 | 0.25 GSS
0.02 GSS | 600 | 2 2 | | 96 | Ξ | | # 1861/2 CERC CERC 4/2/4 | 18 F3D
1858 | MP10 existryati to existin eloga ton it size 1 de la Quajann transi tonregulatur
SPS existryati to existin siziatus it size 1 R Quajann transi tonregulatur | 63 | -018
-028
-028 | -680
0.86 | 0.00 0.00 | 000 | 2 U | 73
Ma | 28 | | | HANGED COMMON | 88.E | URDAY data no papera express M. Quaphon so syme
RAC relevant point (12) Quaphon deler
SEC verificants 2 Ministeriorizate deler | 0.38
0.31 | -010
000
-010 | -GAD
0.86
-GAD
-GAD
-GAZ | 0.00 GM
0.30 GM
0.35 GM | 600
600 | 1 2 0
11 11 0
71 11 0 | 27 | 67 | = | | FRANCISCONOM | MP P20 MP IR LIMITUS EPALS MP I CRALOS MP I IMA DAMER RESIS FE I IMA PE I I ITA PE | CREES space rather in the fire domains 2 Cities other RAZIA rincome pater (CITIE Quiplem other | 6.20 | 618
-638
-638
607 | 0.86
-681 | 0.00 0.00 | 600 | n m w | 2 | 14 | - 1 | | HAROTON AND | EMER
EMER | DATES of Francisches arting outing non-problems day FRM. Other other FRMI referenties paste (CII Graphics date: FRMI As are referenties for the CII | 634
0.34 | -638
607 | -081
-084 | 0.00 EM | 600 | | - | 81
29
31 | = | | FREE CERCUS SUR | PEZ | SEE 26 Anter (Named and East 25) Made in State State Anter (Named and East 25) Made in State | 622 | 607
-686
-686
-686
-686
-636 | -cas | 0.00 0.00 | 600
600 | M 22 0 | | 78.
89 | = | | HANGGEGE TA 3 | MC1
1992 | PMC publicared blaces of 1 Mains transforming of 1992 1991 blaces of participation of the PMC 1992 1991 blaces of the PMC 1992 1993 | 638 | -cm
con | -682
0.86 | 0.00 GM | 600 | | 10 | 47 | - 1 | | FREE CECE NOTE
FREE CECE OF NO. | RIEM1 | 20000. Jink Bayer production. Other other PURPAL principles bearing plants containing A.1. Optoplasm other PURPAL production of the product | 6.E.
0.30 | 558 | -011
-011 | 0.00 GM
0.00 GM | 620
620 | | : | 10 | - | | FREE CECCHIAN | EPIN
EPINEMANA | SPSH makeryati të mistan bilitan isokr E calendi H. Qënplann siler | 638 | -638 | -035
1.86 | 1.00 636 | 000 | * 1 0
1 100 | 15 | | - | | HAROGEOGRAPH
HAROGEOGRAPH | TABLE 7
Chaff | TREET | 0.0
0.0 | 627
-638
-639 | -631
-634
-638 | 0.00 0.00
0.00 0.00
0.00 | 600
600 | 1. 8 N
2 1 | | 78
73 | - | | FREE CECTOR AND | MAKE | 2010 Institut polydospia to 9 piceplature D. Qripplane phaspiature AQF-1126
1985 7-vid lymphoma translate and meta class S. Qripplane strier | 0.34
0.86 | -039
623
-036 | 0.86
-68.8 | 1.00 CM | 600
600 | 77 N 100 | : | 23
81 | | | FRANCISCO COLOR | MARCO
MARCO | NEXC1 modele and collect field phasphapeans 1 Mail na East dybining dates
MMACD until biograf neutrale protein 20 Graphian alber | 638
638 | -co
-co | -cas | 0.00 0.00 | 000
000 | 44 1300
34 34 0 | | 11 | Ė | | HANGGEGERALS | LEGACIA
MILATE | MEANS METS (but succeed between Marine State Sta | 617
617 | - 23
- 24
- 24
- 24
- 24
- 24
- 24
- 24 | -cas | 0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00 | 600
600 | 1 1 | | 82
73 | = | | I MANGEMENT AND ADDRESS OF THE PARTY | DEST. | 2000 in Super CDC type containing it. Other entyres UMBEST LAMESTAN to containing it. CDCS: characters inhibition to COLINING protein Tille Marina entyre | -6.00 | -639
640 | 0.00
0.00 | 0.37 6496 | 600
600
600 | e 2 10 | 1 | 72
17 | | | HANGED CLUBS | ON NO M | CHIS shore-denabledure Distributing present the Basinas engre
CHIS solutions of the Chisana Chisana and Chisana
CHISIN solutions of the Chisana Chisana Chisana Chisana and Chisana
CHISIN sociation, contrade distribution and quinde materially programmed and the chisana and a | 0.81
0.87
0.61 | 526
528 | -03 S
0.86 | 0.00 GE | 600
600
600 | M M 0 | 1 | 37
28
28
44 | - | | HANGED CLICKS | HEAVET. | Control Contro | 0.20
6.22
0.30 | 640
629
629
629
-638
647
-686 | -675
-688 | 0.30 GAY
0.00 GAS
0.00 GAS | 600
600
600 | 20 M 12 | | 83 | = | | HANGE COMPA | MERCE | CHICATO CONTROL AND | 0.00
0.00
0.00 | -608
613 | -CA 2
0.86 | 0.00 CM
0.00 CM
0.00 CM | 600
600 | 71 42 0
14 72 10 | 1 | 12 | ÷ | | HANDGEGE GES | HORES NO. | PRINTS OF THE PR | 638
638 | 612
-648
622
-628 | 0.01
-680 | 0.00 0.00
0.00 0.00
0.00 0.00 | 600
600 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 16
66 | = | | I MICCOCKING 4 | 100 | COMOS spoil 603 Marina úther
DMS Spoil Veneral planefactur Marina Venes dy Sonoregulatur | | | 0.M
-601 | | 600
600
600 | | | | - 1 | | I MINEGEORANA
I MINEGEORANA | AMERIA
AMERIA | PRODE Place and protection of the Property | 0.00 | - CET
CET | -681
0.86 | 0.00 GN | 660
660 | | 2 2 | 44 | - | | HEREGEGE TAN | NAME
NAME
PARKS | FORM (Instance) properties (Instance) (Insta | 610 | -03
-08
-09 | -cas
-cas | 0.00 0.00
0.00 0.00 | 000 | | 40
N | 87
87
88 | | | BMICGEGENTS | ETHO. | COST CASTO CASTO COST CASTO CA | 6.00
0.00 | -628
641
-632 | 0.86
0.86 | 0.00 0.00 | 600
600 | M M 100 | | 17
17 | | | | # 88.7 1 1 1 1 1 1 1 1 1 | March Marc | 0.0 | GEN
GEN | 0.00
0.00 | 0.00 CE | 600
600 | W W | : | 84
8
14 | : | | FREEDOM NO. | PERSON. | Max September | 6.12
6.12
6.25
6.38 | -05
-08
-03 | 0.80
-0.78 | 0.38 656 | 600 | 71 11 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 | | 80 | = | | HANDSCORE STATE | ASPE | NCIPIC MCPrisit génome autémetiche come nimellich Opispison excepte 2011 de lagigne complete explore explore explore 2015 de lagigne complete explore explore explore explore explore 2015 de la complete explore de la complete explore explore 2015 de la complete explore explore explore explore 2015 de la complete explore explore explore explore 2015 de la complete explore | 0.35 | | -680
-681 | 0.00 0.00
0.00 0.00
0.00 0.00 | 620
620
620
620 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | : | 28 | | | PRINCESCONE 1 | ATRIE | 25055 ribeanud
medit sat anyonie in trott ibe family menike Grippianu minyae
ATME. ATMENIE Grippianud site Grippianud site i
2713 tituarus il Santoni Marianud Santoni piano ngakitar | 0.00 | 629
627 | -683
0.86 | 0.00 E30
0.00 E30 | 600 | 10 u 1 | : | 47
28 | | | HANGED COLORS | DOMEST CONTRACT | DREEK drong senate lite or Original Complex sensity fails Original sites APPE AP getbern claim of the Promple sensity fails Original sites | 0.80
0.80
0.80
0.80 | -CB
-C3
C3 k | 1.00
-684 | 0.00 | 600
600 | 7 4 8
7 2 1 | : | 81 | | | HANGED CLASSES
HANGED CLASSES | TERROR THE | AT-972 AT-quitamentulante Florenjes aventigiate Gjeplann üller
IOAFV IOA-hitus-fundymenter V Naina üller | 60 | -646
630 | -CA4
-CA1 | 0.00 0.00
0.00 0.00
0.00 0.01 | 000 | 3 I 0 | | 14
92
81 | = | | I MICHELOTANI | RATAMAM MACOURTE AT A | 102AV 102A historically consists V Mail An other DMSS delephop complete V Quiplance maybe TSSSS (application of Quiplance maybe TSSSSS (application of Quiplance maybe | 638 | -60 | -678
-688 | 0.00 0.00 | 0.00 | M M I | n n | 11
11 | - | | HEREGISCH CHE | LAMPO III | MARIN | 639
630 | -036
-036
034 | 0.88 | 0.00 0.00
0.00 0.00
0.00 | 600
600
600 | 2 1 10
0 2 0 | 77 | 92 | | | HAND COLOR ON 2
1 MANUAL COLOR ON 2 | MINES
MINES | HECE PTA, Modelle and Hadronic containing 2 Optopheno aller
HECES BESChorophin colonics Hadronic Mariana aller of
HECE MAX (Colonical high meth horology Maxima aller of
BLOSSM is agreed of bycomes in agreed in complex 5 wheat 6 Optopheno aller or | 630 | -60
-63 | -CA1 | 0.00 0.00 | 000 | 7 4 1 | - | 92 | : | | HANGER CO. NO. S. | MUNICIPAL POLISE | BLOCS M. It agrees of bycome in greet in complex 3 when 6 Graphon other | 617 | -02 | -63.7
0.88 | 0.00 600 | 600 | 3 3 0
8 0 12 | я | 72 | - | | I MINE CERCE TO S | NC33
20027 N | March Marc | 637 | -ca | 0.02
-CAN | | 000
000
000 | | - 1 | 92
28 | n
er | | HAND COLOR OF S | HAE
THE MES | PFA replantate product C. Had no. other PFA: protesphage to stored pix should Optopless phagelature TABACCS to nonembrane product 250 Clier other | 0.34 | 607
-636 | 0.88
-031 | 0.00 0.00 | 000
000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | n n | 28
44
87 | | | P MARC CET CHE 2003 P MARC CET CHE MARC P MARC CET CHE CET P MARC CET CHE ATEX | NO. | MP phosphagheside phosphase Clie sugars MB public in State of Stat | 6.00 | -687 | -687
-681 | 0.38 0.00
0.40 0.38
0.35 0.48 | 600 | | | 11 | = | | HAND COLUMN TO SERVICE | LELEADE
HAZZE | METRO 4. METRO havening a financier on time biochester Opiniphism daller
LEXEME in wide mility player to time output class. A direct biochest at Opiniphism diller
METRO made hybrid seek | 0.30
0.30
6.37
6.38 | -08
-08
-08 | 0.00
0.02
-50.7 | 1.0 60 | 600
600
600
600 | 27 8 1325
27 27 6 | | 62
62 | | | HANDERS CO. FUR.
HANDERS CO. FUR. | HEFS
AT PSAZ | MCCD: mode light-dated: Quiplican phosphalane MRP1 Gilliplican claim APP3A2 APParamophismic/miniplicanic miliculan CAP Next Qiliplican Emporter APPA2 APPA2 APPARAMOPHISMIC A | 0.86 | 689 | 0.02 | 0.00 0.00
0.00 0.00
0.00 0.00 | 600 | : : : | ש | 17
28 | - ; | | NAMES CONTROL TO A SECOND TO A SECOND CONTROL TO A SECOND CONTROL TO A SECOND CONTROL SEC | 911E | AP 202 After oran complem following in the factor E Color State Co | 0.0
6.0
0.0 | 618
-640
-651 | Section Sect | 0.00 G.00
0.00 G.00
0.00 G.00 | 600
600 | 11 8 0
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | - | 94
80
18 | | | PROGRAMMA | MOUSE
MOUSE | SAMODE derivation matificancies containing 40 Optoplaces after
19912 ring figure products Optoplaces acquire
19007 register majories final and of Policial constation. Other after | 6.0 | -625 | 0.80
-533 | 0.00 EM | 600
600
600 | n 10 10 | M
D | 19
28
84 | | | PROCESS COMES | MERCO. | 1807CF organis regulated of Princip association. Citizen states
1807CE on Anticlanda de Linguage of protein CES Quipplacen states
18.CE SUE solute control to might 60 months (1) Entranchian Equipment states | ca | -ce | -682
0.78 | 0.00 0.00 | 000 | | 10. | 92 | 67 | | I MINICIPETA CON I
I | OTTRE OTTRE SPEED SANDLE SPEED SANDLE SPEED SANDLE SPEED SANDLE S | Color Colo | 60 | -640
630
-630 | 0.36
-GA 0
-GA 6
0.36 | 1.00 0.00
1.00 0.00 | 600
600
600 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | e | 96
22
58 | = | | I MINICOLOGICA GOLI | DMG. | DPHS diplomate hasystems I Graphon after | 48 | 617 | 0.88 | 1.0 | 600 | | | ä | : | | | | | | | | | | | | | | | 19000000901 | RMX1 | HARRIS | RMS down traces tong 1 | Optoplasm other Optoplasm other Real nat other Optoplasm | 43 | -cm | -684 | 0.00 | 640 | 000 | | | | 78 | - 12 | |--|--|--
---|--|------------------------------|--|---|------------------------------|---------------------------------|---|---------------|-------|--------|----------------------|--------| | FINANCIER COLONIA
FINANCIER COLONIA | 201 | MIRAS MIRAS JPT SES ERAM FOLL FURNEL ECS ECAS MNP SES CHPOIS FFFESS TWOM | mit rational to inflamental protein 1.28
2971 star Began protein | Quaylation other Quaylation other Mad mai other Quaylation other Quaylation other Quaylation other Quaylation other Quaylation other Quaylation other matcher space other matcher space other matcher space other | 634
638
638
638 | - CS
- CS
- CS
- CS
- CS
- CS | -685
-681
-681
-682 | 0.00
0.00
0.00
0.00 | 120
121
122
123
124 | 600
600
600
600 | : : | : | ** | 75
81
84
72 | | | I MINO CED CIA MOTO | 100.3 | 100.2 | ore can single process signal conjugacion receptor colocidi 2 riferencial prode nEETse phrashicital las- phrashicital las- phrashicital las- parts above conductor activated scalar mily Norman. Plan parts above colocion activated channel scalar mily Norman. Plan parts above colocion activated channel scalar mily Norman. Plan parts above colocion activated channel scalar mily Norman. Plan parts above colocion activated channel scalar mily Norman. Plan parts above colocion activated channel scalar mily Norman. | Qtoplem after | 48 | -60 | -681 | 0.00 | 600 | 000 | 1 1 | | * | 14 | | | FREE CECTS SHAPE | PERM | PECL | photostie | Qtoplam siter
Qtoplam major | 0.30 | -639 | -682 | 0.00 | 60 | 660 | | : | M. | 44 | | | PRODUCTION AND A | RIEHRE | PURPOR | places bandag and R.M. donate containing MC 1 and | Carellar Space aller | 63 | -60
-60 | 0.02 | 0.00 | 0.00 | 000 | 2 1
2 2 | 100 | 77 | 20 | : | | PRODUCTION AND | E13 | 802 | Initial to of DBM, landing 2, MEH protein
transaffer shoter assembly 2 | Amenda francisco benchisson yili ali rimanda, ishi bin
Mari mak Yana ayakini nga aker
Gyapianin sheri
Mari mak aker aker
Mari mak Yana ayakini ngakar
Gyapianin phagyiatana
Gyapiani sheri
Gyapiani sheri | 0.5 | 628 | 0.40 | 0.00 | - | 550 | | | - | 11
97 | - : - | | FREE CECTO STORE | 19042 | BEA3 | transality student assembly 2 | Market M. Service Schwerze Sander Service Schwerze Schwe | 0.44 | 62 E
- 62 E | -685
-681 | 0.00 | 6.00 | 000 | | | 11 | 97
78 | - | | PRINCIPOS NO.4 | 983 | 1993 | major und tyroten
1986 de production de govern conduction repair pro | Malma tons deliveregulator | 0.00 | 669 | 0.70 | | | 600 | | er er | | | | | PRINCIPOL TO BOX | PHYSICAL | PERMIT | 2-longist extre and modepende strongenere domain i
proteinghouple be a long datary subset 1386
lynd self-monargine sephystophen benarrang me
sectional adhesian molecule 1. Ma | Qisplam mayre
Qisplam phaplates | 0.00
0.00 | 618
-630 | -EAS | 0.00 | ESS
ESS | 620
620 | | | | : | - | | HECCECCHI | THRUM | TWO | typed with managers only graphen becoming we | Qualities after | -C.III | -630 | 0.82 | 0.00 | 649 | 000 | . 2 | 100 | 16 | 11 | | | PROCEEDINGS | Marcana a | | erate of affects market 1 | and the same of th | | | 1.00 | | | 0.00 | | 100 | | | : | | I MINICOTOTO NEO | MARK | MAKES
MAKES | MARK the, endoyste adopter problem
family of the openine ded and 127 member 8
quad no 1256 - discipline sub-non-score sub-us 12 | Cylingham siber Chler siber Qringham siber Qringham siber Qringham siber | 69 | -620 | 0.00 | 0.00 | 529 | 626
626 | | | | | | | FREE CENTRAL TOPA | diagor | QTEC | great or ESS- discription where accessing subsets 2 | Optopiaum
enzyme | 63 | -620 | 0.02 | 0.00 | 600 | 000 | | 100 | | 83 | | | PRINCIPO GO | REN | PLOS | tridd to of growth is stily member? | Malma atter
Optoplasm atter | 0.20 | 62% | 0.02 | 0.00 | - | 000 | u n | | | 28 | : | | HALL CODE CAL THE F | TATORS | | ships to specify payable of
malleaders anyternoted may be made to be of y dama to
fine some ETAL processing. The
manufacture dama to make the gra-
tified dama some being of
state and y paste state.
The same of years of the
specified in
No. 1 malleaders and the
specified in
No. 1 malleaders and some state of
No. and
No. | | 630 | -C.III
G3.9 | -087 | 0.08 | 5.00
5.00 | 000
000 | | | | 94
37 | 120 | | FRANCISCO 2M7 | 10 PC13 | UPC
BPS
BPS
ARCHOI
BEACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO
BACO | miderale mylesconie mylykopia tee fi of y den a tr | Chier other Mail max other Mail max other Opinplism other Opinplism other Opinplism other Opinplism other Opinplism other | | | 0.87 | | | 000 | | | | - | м | | PRINCESCO CO COLO | AMERICA | ALCHE Z | riboninal ESA, promoting III.
annihilated views demail recent laters 2 | Naina dier
Naina more | 68 | -638 | -681
0.86 | 0.00 | - | 666 | | - | 16. | 71 | - | | 1 Mario (020 (027 Note) | CEARCE | CEARDS | SEAR destroyed long 6 | Optoplace after | 0.38 | 660 | 0.00 | | 6.98 | 660
660 | | 100 | | | | | NAME OF COLUMN | 1960 | 1900 | set quant t | Qtoplem keepate | 0.30 | -637
648 | 0.86 | 0.00 | 5.0 | 660 | | w | u
u | 92 | | | PRINCESCO NA | 2750% | THE | sympletics. | Ottober ster | 0.48 | DAN . | 0.86 | 0.00 | 600 | 000 | | | | : | - : | | FREE COLORS 2 | 1970 | | | | 0.82
0.80
0.37 | 611
618
628 | 0.00 | 0.00 | 6.05
6.05 | 000 | n 2 | 100 | | | | | PROCESSOR SHA | MAPS
MESS | PER I | protestate dense represent 2
recident access de durates d'ATO Sconnin 1 | Other transporter
Ottosium stier | 0.37 | 600 | -681 | 0.39 | 0.00 | 600 | N N | | 3 | 10 | = | | 11000 CE CL 1077 | PIE. | PENPS
RPER
PRIS
DIRECT
PRISE
RESS | regulatory access de dynastic of MES Recomples 1
following his male synthese
de hydrogen anyl relation 6 like 3
protein phospie to a, MgC 4/McC + de pendent 1 MC | Otopium mayre palateum | 6.04 | 626
614 | 0.00 | 0.00 | 600
600
600 | 600
600
600
600
600
600
600 | | 100 | | ** | | | HAROTECH CH. | PROM | PERM | protestation e, tip y titl + dependent titl | Mains phaphatas | 0.3a
6.0a | -63 | -681 | 0.00 | 66 | 000 | : : | : | ű | 72 | | | HANGED CO. | ALM
ACTIONS | | hitegratur complex subsett 28 | Optopious stiler | 0.86 | 687 | 0.00 | 0.00 | 640 | 000 | M M | | | | | | I HAND COM TO A NEW O | CTADAR | CHARGE | OTU dana bosodo bing 6.0 | Other stler | 0.38 | 638 | 0.86 | 0.00 | cox | 000 | B 07 | - | n | | | | HANGED CONTROL | PER I | 100 | tyng (rden alktusfwar).
PED teratig tidden differenteter? | Optoplasm salver | en | -08 | -633 | | 500 | 600
600
600
600 | | | - | 14 | 100 | | I MANOGER CON MANO | MCF1 | #ID1 | AT lading counterable of hymenier 2 | Organia tempera | ı | 639 | 0.00 | | 0.00 | 0.00 | | | | 22 | | | HARDER CENTER | EMPS. | PETS SEES ANDERS THANS ANDERS ANDERS | CTU dans to cold bing ME Typing ip on the Mith conformed: IPTED the wasting thinding and differentiation I APT binding consists with the My Francher 2 PREST methylate mechanic layers (2) ring it garp products. APMED the media APME profilements with 13, paneling me- methylate media APME profilements with 13, paneling me- methylate media APME profilements with 13, paneling me- methylate media APME profilements with 13, paneling me- | Option major | 6.07
6.08
6.38
0.37 | -637
-633
580 | -682
-688 | 0.0 | 620
620
630 | 000
000
000 | | - : | w | 11
78 | | | PROCEEDINGS | 76F1 | THAT. | THE dense control by 1
AND 1 in male MA problem subset 11, pare for me | Nales der
Otopion der | 6.30 | -611
580 | -682
0.60 | 0.00 | 638
640 | 000 | y a | | 24 | 71 | | | 11600 CE CE 780 7 | March Marc | 10773 | metigla suba cella 1
NELS skip the benediter to | The Company of Co | 6 M | -04 | 100 | | | 660 | | 100 | | - | | | PRODUCTION NO. | MAN | PAGE CONTRE MERCE OPEC CRAMC ACAM | IRECT Subsystem to be resulted: you have include the order that the TEXTS character and a specimenting frame AB mit subscribe in Framework protein LAB CHICA benoning CHICA demany any side bed analysing you subside or 1 as the bed bestrapping of all adhering make side. Fine | Naine tone deburgides | 0.00 | 643 | 0.00 | 0.00 | 500 | 000 | w m | 100 | | 17 | | | HALLOTT CO. MR. 7 | carfe | caufus | characters operating force 18 | Oley aler | 0.00
0.33
G.M. | -006
-006
637 | -cao | 0.00 | C.N. | 660
660 | n e | | v | | | | PRINCIPOLE COLUMN | 090 | DPHC | DMG hanning | Qippinn mayor | 0.0 | 637 | 0.00 | 0.00 | CAD
CAD | 000 | м ж | er er | | 14 | | | HANDODON MAR | DIMARI. | ACAM. | DMA dama general de tel autophag y madelater 1
as the tel instructure of latinature materials. Her | Otopiom after | | | 0.00 | | | 000 | | | | | : | | 1 Mileston Con Con I | C1A-09933.1 | Œ | | | 0.04 | 631 | 0.00 | 0.00 | 600 | 600 | M II | - | | 28 | n | | PRINCIPOLOGICA ACCA | AMERICO | ARRE | misple control of the India | Name transferring date | 0.00 | 648
624 | 0.60 | 0.00 | | 000 | | - | | 14 | : | | 1 Marie (22 Chi 364 4 | caute | - | to nime of two minima is mentres 20 | Option after | 6.24
6.34
6.38 | 631
631
-686
-638 | -080 | 0.00 | COT | 000
000
000 | | : | | 12 | 2 | | PRODUCTION AND | 20100 | 2000 | the finger protein MC | Naima üler | 62 | -626 | -684 | 0.00 | GET. | 600 | | : | | 22
88 | | | PRINCEPODE COLOR | COMOR | ARRIVE
TRACES
MARINE
COMES
AN JUNE
PRESEZ | continued by | Other stee | 0.0 | 614
648 | 0.86 | 0.40 | | | 1 1 | 100 | | 28
11 | : | | PRINCED COM NO.1 | MICHE | PREEZ | chape main containing TEPs should II analy to appeal down Int II II contains or of man
should all or analyzes 20 and asked by interesting prairie 124 prairie 124 interesting | traceliar type after | | | 0.88 | | | 650
660
660 | | - | _ | - | 11 | | HAND CERCUI NAT | MONEY | | ujú ingeropini planj hadinár ma 2
rána manj pisté 45 pandigara 7
také manj pisté 45 pandigara 7
také dramanan mistéma ma mujan caraptara 2
mist dramanan mistéma ma mujan caraptara 15
mujanjaran matéma fata 32
MATHOL pistone mistéma kolo mistéma 4
skolo ni mara diján
mistema na diján mistema na mistema mistema mistema na diján
mistema mistema mistema na mistema mistema mistema na mis | Qtopiem mayre | cu. | eas | 0.85 | 0.00 | 0.00 | 000 | y « | 100 | | • | : | | HAROGE CHICAL | ERIP? | SAPOZ PLAY PREZ MESAN MESAN MERAN CHIA MERAN MER | rise and past still pandage to 7 | Oley aler | 630 | -cm
-cm | -670 | 0.00
0.33 | 625
626 | 000 | 4 2
2 2 | 2 | | 78.
78. | - | | PRINCES CECTOR? | MEMB | MCM | mit dramaume matters are complex components | Naine mayor | 63 | 624 | 0.00 | 0.00 | 600 | 600
600
600
600 | | | ж | 11 | : | | PROCESSOR THE | MOTO: | MOPE | mysyleeds not faile X | Males tres determined | | 623 | 0.M
-087 | 0.00 | | 000 | 3. 17 | | | | | | # MARIE GEO CES COS S | DEA | CHEA | chalme in one of pin | Qisplan lines 1070 | 6.33
6.35 | 601 | 0.00 | 0.00 | 636
636
688 | 000 | | - | : | 47 | | | PRINCIPOLOGICA NO. | CFERT | CIP 201 | miliations to inflamme i protein MS.
opticione PREFamily 2 subfamily 8 member 3. | Qtopleon siter
Qtopleon mayne | 0.37 | 600 | -0.86 | 0.39 | CAN. | 620
620
620 | # 0
0
0 | 100 | 2 | u
u | | | HALLOTT CO. TO. | 110 | - | establishmen PROTemby 2 salifamily 8 member 1
Rab bitmail og I yessemal palatin
proteinly sed self mas 2 | Qtopison stler
Qtopison bloss C1-507 | 0.44 | | 0.86 | 0.00 | | 000 | er er | | ١. | | : | | I MINICOLOGICAL NO. | MARK | MAGC | fent hand opt
07 landing protein 2 8 de | Naine transplacements | 63 | -680 | 0.00 | 0.30 | 600 | 550 | | | | 96 | | | NAME OF CUTOR AND A | ETTACHOLIS | | CF tabgram 2 to | trace habit Space analysis | 63
63
63 | 620
620
620 | 0.00 | 0.3E
0.3E | GM.
GM. | 600
600
600 | | | | 10
10 | | | I MANIC CED CON SMILT | cocw | COCH | adel of district and the 187 | Oliv dier | 62 | -638 | -678 | 0.00 | 500 | 660 | e 4 | | | ** | | | PROCEEDINGS | MICH. | BRITS
PH
BRANZ
SMARCS | collected down income long 150° grant glass replacement and proposed a | Naina migra | 0.0 | - CE
- CE
- CE
- CE
- CE
- CE
- CE | -687
-689 | 0.00 | 6.00
6.00 | 660 | 20 2 | : | | 92
78 | | | PRINCES CONTRACTOR | HI. | PH. | function of the same of the 1 | Optoplace majore | 63 | -68 | -682 | om
om | 0.00 | 000 | M 11 | - : | | 29 | | | PRINCIPAL COLOR | BMES | SMACS. | and nation 1904 the log complex polymptable to | Malma tona deliceregulator | 0.0 | -cm | -688 | 0.00
0.44 | 5.00 | 000 | N . | | | 92 | - | | I MINICOLOGO CON II | ALBERT . | ALIBNA | al lith analog E, lycke derestly lace | Optoplace maybe | 0.30 | -631 | -672
-689 | 0.00
0.00
0.01 | 6.0
6.0
6.0 | 650
650
650
650 | n a | | | 11
11
42 | = | | 9 MARIE (222 C23 MAR 2 | ERS.MA | BANKS. | rise and past of the people and | Clier aller | 0.00 | 618 | -689 | 0.25 | 638 | 000 | | - | | 42 | m. | | PRINCEPON REA | CHIPS | CHIPS | of lith conducy at, justice do red by lace. If the conducy do the LEE by an adoption the quartee or highwayer at I conduction a product H conduction a product H conduction product H conduction produce or the China color pick spill about 1 contact aggrade that conduction 2 disposition design for one E of one of one of the spill one for | Naine aler | en | -030 | -682 | 0.00 | 500 | 000 | 2 2 | | н | 72 | - | | FINANCIE CONTROL | PERMIT | RIP: | ration
probe-serie-throuse phophetoes describing pace | Otopiem alter
Otopiem alter | l | | 0.88 | | | 620
620
620 | I | | | | 2 | | 11000000007 | Chets | COM/10 | decrease 2 quered glare 12 | ttler aler | 40 | -680 | -684 | 0.00 | 0.00 | 0.00 | м м | | | - 11 | | | HANGGEGERAT | PROF | PINET | 2 magnateut de 1°5 hap fate 10 hydra och
phaphat djet handa et se 10 methytra subrase | Option major | 4.0 | -046 | -688 | 0.00 | 640 | 600 | N 2 | - : | | 73
94 | | | HARDEST CHART | CHINDER | CHICAGO CO. | COOK domain containing CE Too | Name that there | 0.38
0.40 | 611
681
-687 | 0.00 | 0.00 | | 000
000
000 | N M | 2 | | | n n | | HAND COLOR TO SEE | 10753 | METTLE | nelylanka o lie 2 | Chier siler | 68 | -60 | -684 | 0.00 | 5.00 | 000 | | - 1 | 27 | 81 | w. | | FRANCISCO TO TO S | EP2
CHRS | CRIPS CRIPH REX PS TOP 2 CRIPPS CRIPPS CRIPPS CRIPPS FRAT DERECOR PROPE RETTLIS RES RE | phosphat diplote value on an in modeyla a submane District Construction days (SE PLESS limited ye product C Interferon a gapta top Statu 2 gap | Opposition on page false since Grant | l . | | -680
0.86 | | | | | | 10. | | | | FINANCIECO 704 | MID4 | BANKS. | traffered country 1 | Other silver | 0.00 | 63.8 | 0.00 | 0.00 | 637 | 600
600
600 | | 2 | | 43 | | | HAROGE CLUBS | MACIZA | MAKEERA | Family of the space and only 200 remier A. The gaster recipitals exchange factor 21. | Naina aler | 0.36 | 638 | -682 | 0.00 | - | 000 | | - 1 | | 42 | | | FREE CECTOR SHIP | APHIRP11
Chief ZB | ANNUAL CONTRACTOR | the gaste redestib exhaugefator 11
characterist presenting force 28 | Other siler | 63 | -638 | 0.m
-0.02 | 0.00 | 627 | 660 | | - | 70 | 87 | | | PRICODOS NO. I | TOP CHO-ALL | 10F0 R-60 | thereenst operating time 28
TORES as benefits 1 | Clier aller | 6.38
6.39 | -636
631
-635 | -682 | 0.30
0.30 | 6.00
6.00 | 000 | | | • | 17 | - | | FRANCISCO COMO A | #10-CBUE 1 | POLDO | DNA pri pre-medela 3, accessory subsett | Naina mayor | 0.07 | -620 | 0.00 | 0.00 | 675 | 600
600
600
600 | | 2 | v | 17
81 | 2 | | FRANCISCO ON 1 | SCANA. | 123,510 | CMA palymer are delta 2, accessory subsetti
small CQ all subjequestfol EMA 9
accled-call disma to contacting E2
function allo-bunding protein 1 | Other after | 0.86 | | 0.00 | 0.00 | | 000 | | 2 | Ι., | | | | PRODUCTION OF | PICHE | PION | factor do harding protect 1 | Optoplasm after | I | | 0.00 | | _ | 000 | | - I | I ~ | - | 2 | | PRODUCTION TO | 20240 | 200 | Doublest clask protein body (NopE) member (2.7)
the larger and EAN dated constituting 9 | Clie aler | l | | 0.85 | | | 000 | I | 100 | | | : | | HAND GET COLUMN | BES | 100 | the large and SCAN dated constituting to
immediate and prospers to | Clie ster | ca | 524 | 0.00 | 0.00 | 64B | 600
600
600
600
600 | : : | ** | er er | 41 | | | HAROGE CARDO | MAKE ETA.
MINICE | MAKE 1A | Tendy of the opening and only 207 member A
phosphoglacomateur 2 | Other siler
Others mayne | 43 | -cm | -682
0.85 | | | 500 | | - | | 71 | 1 | | HANGER CO. TOTAL | RPS | POPE | FOR handing chanciles of Philippideses | Males mayor | 6 B | -610 | -080 | 0.07 | C/R | 000 | | = | 2 | ** | | | HARCOTTON TON | March . | DAME: | rise and part of the provide me Ti | Clie dier | 62 | -03 | -687 | 0.20 | CAS
CAS | 000 | 77 4
15 2 | 27 | Ĩ. | | 20 | | PROCESSOR | PUPL | POLDS SCHOOL SCH | Internal late and y request is for the factor of the property | Organization on proper district of the | en | -638 | -CAT
-CAE
0.M | 0.37 | | 000
000 | | M M | - | 72 | n | | HARICGE CO. 7017 | PD-MINA | | | | 0.46
0.44 | 556 | -687 | 0.00 | 630 | 6.00
6.00 | er e | | | | | | FRANCISCO COLORA | 101
101 | H056
3E13 | tes bird y DEDITO mortplan factor d
DC malf chemistre by and 1 to 8 | Other ster
twelvier Space optice | 0.44
4.66 | 508 | 0.40 | 0.00
0.00
0.00 | 639 | 000 | | | 10 | 44 | M
M | | | PTO-MENTA
HERE
HELL
HELLWIS
AMELINES
AMELINES
PTO-MEDIAL | HELENAGE | | Qrisplania mayore | 0.00 | -60 | -Ch7
0.45
0.46
0.46
-Ch2
-Ch2
-Ch4 | 1.0 | 678 | 600
600
600
600 | | - | | 72 | × | | HAROGE CIRCLE | APRES NO. 3 | HE-0101 | recording over according to complex asserting to | distance makes | 0.38
0.34 | 618
628 | -682
-682 | 0.00
0.00 | 6.00
6.00 | 000 | 7 7 | | | 72
28
83 | M. | | PRODUCTION OF | #10-M1081 | | | | 6.34 | -638 | -684 | 0.38 | 6.07 | 000 | n | 2 | | 81 | N N | | | a warm. | | | | | - | | | *** | Supplementary Table | e 38. Differentially | expressed non-coding genes in CD4+, CD8+ and CD4-CD8- fraction con | spared to the original PBMC fi | action (using | | | en only). | | | | _ | | | | _ | |---|--------------------------------------|---|-----------------------------------|------------------------|-----------------|---------------------|----------------------|------|------------------|----------------|----------------|---------------------|-------------|-------------|-----------------| | Ensembl Gene IDs | | Symbol Entrez Gene Name | Location Type(s) Drug(s) | CD 4+ vs PBM | Median Lo | C CD4-CD8-vs. PBM C | | | CD4CD8- vs. PBMC | | | C CD4-CD8- vs. PBMC | CD4+ vs PBM | Percent Dow | CD4-CD8-vs. PBM | | ENSG00000224137
ENSG00000224397 | AC079767.4
LINC01272 | UNC01857 long intergenic non-protein coding RNA 1857
SMIM25 small integral membrane protein 25 | Other other
Other other | -7.11
-4.10 | -4.96
-6.56 | 0.37
0.29 | 0.00 | 0.00 | 0.07
0.42 | 0 | 0 | 70
65 | 100
100 | 100
100 | 30
35 | | ENSG000000251562
ENSG000000253701 | MALAT1
AL928768.3 | MALAT1 metastasis associated lung adenocarcinoma transcript 1 | | 1.78
"-INF" | 1.53
"-INF" | 1.26
-0.28 | 0.00 | 0.00 | 000 | 97 | 100 | 89
27 | 100 | 100 | 11
73 | | ENSG00000255717
ENSG00000256039 | | SNHG1 small nucleolar RNA host gene 1 | Other other | 1.55
-6.67 | 157
191 | 0.78
-2.82 |
0.00 | 0.00 | 000 | 100 | 100
100 | 100 | 100 | 0 | 100 | | ENSG000000260682
ENSG000000269728 | 75 K
RP11-145M9.4 | RN7SKP176 RNA, 7SK small nuclear pseudogene 176 | Other other | -4.77
-3.55 | -1.42
-3.90 | 1.36
-0.04 | 0.00 | 0.00 | 000 | 0 | 0 | 100
43 | 100
100 | 100
100 | 0
57 | | ENSG00000272379
ENSG00000234184 | RP1-257A7.5
RP5-887A10.1 | LINCOL781 long intergenic non-protein coding RNA1781 | Other other | -3.81
"-INF" | -4.00
-5.25 | 087
001 | 0.00 | 0.00 | 0.00 | 0 | 0 | 95
51 | 100
100 | 100
100 | 5
49 | | ENSG00000272016
ENSG00000273472 | RP11-215G15.5
RP11-102N12.3 | | | -3.76
-5.34 | -3.22
-4.79 | 0.61
0.75 | 0.00 | 0.00 | 0.00 | 0 | 0 | 95
97 | 100
100 | 100
100 | 5 | | ENSG00000230709
ENSG00000211459 | AC104024.1
MT-RNR1 | LOC284191 uncharacterized LOC284191
MT-RNR1 s-rRNA | Other other
Cytoplasm other | -6.88
-1.83 | -5.36
-1.14 | 106
005 | 0.00 | 0.00 | 000 | 0 | 0 | 92
57 | 100
100 | 100
100 | 8
43 | | ENSG00000250834
ENSG00000260655 | LINC00989
CTA-250010.23 | UNC00989 long intergenic non-protein coding RNA 989 | Other other | -5.95
-3.67 | "-INF"
-2.39 | -0.98
0.83 | 0.00 | 0.00 | 0.00 | 0 | 0 | 16
97 | 100
100 | 100
100 | 84
3 | | ENSG00000247982
ENSG00000267174 | LINC00926
CTC-510F12.4 | LINC00926 long intergenic non-protein coding RNA 926
HSPC102 uncharacterized HSPC102 | Other other | -3.46
-4.42 | -2.56
-6.19 | 2.02
0.20 | 0.00 | 0.00 | 0.00 | 0 | 0 | 100
62 | 100
97 | 100
100 | 0 | | ENSG00000237604
ENSG00000260065 | AP001056.1 | | | -4.87
-2.49 | -5.17
0.08 | 0.64 | 0.00 | 0.00 | 0.00 | 0 | 0
56 | 89
16 | 100 | 100 | 11
84 | | ENSG00000271614
ENSG00000268734 | LINC00936
CTB-61M7.2 | ATP281-AS1 ATP281 entirense RNA1 | Other other | -2.56
-2.94 | -2.83
-4.70 | 116
195 | 0.00 | 0.00 | 0.00 | 0 | 0 | 100
100 | 100 | 100
100 | 0 | | ENSG00000241163
ENSG00000186594 | LINC00877
MIR22HG | LINCOD877 long intergenic non-protein coding RNA 877 | Other other | -2.97
-1.86 | -4.13
-1.65 | 151 | 0.00 | 0.00 | 0.00 | 0 | 0 | 100 | 100 | 100 | 0 | | ENSG00000272523
ENSG00000230438 | LINCOLO23
SERPINB9P1 | UNC01023 long intergenic non-protein coding RNA1023 | Other other
Other other | -3.32
-2.21 | -2.07
-1.92 | 038
054 | 0.00 | 0.00 | 000 | 0 | 0 | 95
97 | 100 | 100 | 5 | | ENSG000000253364 | RP11-731F5.2 | SERPNB9P1 serpin family 8 member 9 pseudogene 1 | Coner dener | "-INF" | "INF" | -0.34 | 0.00 | 0.00 | 0.00 | 0 | 3 | 35 | 100 | 97 | 65
24 | | ENSG00000260859
ENSG00000180422
ENSG00000272077 | NA
LINC00304
RP11-348P10.2 | UNC00304 long intergenic non-protein coding RNA304 | Other other | -2.20
2.98
-2.36 | -1.18
2.09 | 031 | 0.00 | 0.00 | 0.00 | 100 | 100 | 76 | 0 | 94 | 19 | | ENSG000000272888 | AC013394.2 | UNC01578 long intergenic non-protein coding RNA1578 | Other other | 0.66 | -1.43
0.41 | 0.38
-0.11 | 0.00 | 0.00 | 0.28 | 100 | 86 | 32 | 0 | 94 | 68 | | ENSG00000172965
ENSG00000232931 | LINC00342 | MR4435-2HG MIR4435-2 host gene
UNC00342 long intergenic non-protein coding RNA342 | Other other | -1.79
2.51 | -1.71
1.92 | 0.28 | 0.00 | 0.00 | 0.40 | 100 | 97 | 73
81 | 0 | 100
3 | 27
19 | | ENSG000000233901
ENSG000000255760 | | UNC01503 long intergenic non-protein coding RNA 1503
LOC105369723 | Other other | -3.39
"-INF" | -4.30 | -0.08
0.32 | 0.00 | 0.00 | 0.03
0.61 | 0 | 0 | 49
59 | 100
100 | 100 | 51
41 | | ENSG00000175898
ENSG000000268913 | CTD-2369P2.2
AC026806.2 | | | -1.62
-2.59 | -2.08
-2.66 | 0.26
-0.18 | 0.00 | 0.00 | 0.03
0.01 | 0 | 0 | 73
43 | 100
100 | 100
100 | 27
57 | | ENSG00000263126
ENSG00000233056 | CTC-479C5.10
ERVH48-1 | ERVH48-1 endagenaus retrovirus graup 48 member 1 | racellular Sp other | 2.02
2.27 | 190
-0.43 | 0.84
-0.96 | 0.00 | 0.00 | 000 | 100
100 | 100
22 | 95
5 | 0 | 0
78 | 5
95 | | ENSG000000261005
ENSG000000210082 | NA
MT-RNR2 | MT-RNR2 L-RNA | Other other | -156
-188 | -1.57
-1.40 | 0.82
-0.54 | 0.00 | 0.00 | 0.00 | 0 | 3
0 | 89
16 | 100
100 | 97
100 | 11
84 | | ENSG00000223511
ENSG00000259004 | | LOC101929422uncharacterized LOC101929422 | Other other | 2.50
-3.72 | 2.17
-3.99 | 1.59
0.35 | 0.00 | 0.00 | 0.00 | 100 | 100 | 89
86 | 100 | 100 | 11
14 | | ENSG00000234741
ENSG000000223745 | GASS
RP4-717123.3 | GASS growth arrest specific 5 (non-protein coding) CCDC18-AS1 CCDC18 antisense RNA 1 | Other other | 0.53 | 0.43 | -0.27
1.47 | 0.00 | 0.18 | 000 | 100 | 94
97 | 5
86 | 0 | 6 | 95
14 | | ENSG00000233746
ENSG00000230606
ENSG00000272053 | | CCDC18-AS1 CCDC18 antiseme RNA1
LOC100506123uncharacterized LOC100506123 | Other other | 2.45
-1.68 | 213
-1.13 | 0.98 | 0.00 | 0.00 | 000 | 100 | 100 | 86
89
41 | 0 | 97 | 14
11
59 | | ENSG00000188070 | C11crf95 | C11orf95 chromosome 11 open reading frame 95 | Other other | -1.68 | -0.84 | 0.23 | 0.00 | 0.00 | 0.35 | 0 | 8 | 73 | 100 | 92 | 27 | | ENSG00000270055
ENSG00000261455 | CTD-3092A11.2
LINC01003 | LINCO1003 long intergenic non-protein coding RNA 1003 | Other other | -1.42 | -1.37 | 0.25 | 0.00 | 0.00 | 0.45 | 0 | 0 | 73
76 | 100 | 100 | 27 | | ENSG000000260807
ENSG00000240219 | | LMF1 lipase maturation factor 1
LOC105371692uncharacterized LOC105371692 | Cytoplasm other
Other other | 2.25
2.27 | 0.78
1.71 | -0.78
1.32 | 0.00 | 0.00 | 000 | 100
97 | 89
97 | 27
95 | 3 | 11
3 | 73
5 | | ENSG00000232891
ENSG00000196295 | RP11-136K14.1
AC005154.6 | | | -2.44
2.24 | -2.20
1.68 | 0.99
1.83 | 0.00 | 0.00 | 0.00 | 97 | 100 | 100
92 | 100 | 100 | 8 | | ENSG00000225331
ENSG000000251301 | | LINC01678
LOC10050719Suncharacterized LOC100507195 | Other other
Other other | -154
-3.10 | -2.26
-1.34 | 0.16
0.41 | 0.00 | 0.00 | 0.81
0.58 | 0
3 | 0
17 | 73
62 | 100
97 | 100
83 | 27
38 | | ENSG00000267279
ENSG000000222041 | RP11-879F14.2
LINC00152 | CYTOR cytositeleton regulator RNA | Other other | "-INF"
-1.31 | -1.28 | -0.61
0.02 | 0.00 | 0.00 | 0.00
0.04 | 3 | 6 | 27
51 | 97
97 | 94 | 73
49 | | ENSG000000251136
ENSG000000261490 | | LOC1 01 92 97 09 uncharact or ked LOC10 19 29 70 9 | Other other | -1.47
2.08 | -1.24
1.08 | 0.78
0.76 | 0.00 | 0.00 | 0.00 | 97 | 0
94 | 100
89 | 100 | 100
6 | 0
11 | | ENSG00000188971
ENSG00000269290 | RP11-427H3.3
RP11-869815.1 | | | 1.35
2.12 | 0.75
1.32 | -0.77
0.44 | 0.00 | 0.00 | 0.00 | 100
97 | 94
89 | 3
65 | 0 | 6
11 | 97
35 | | ENSG00000250006
ENSG00000270127 | RP11-469M7.1
PRIXIP1 | | | -1.47
1.99 | -0.74
1.25 | -0.18 | 0.00 | 0.00 | 0.00 | 0 | 100 | 30 | 100 | 100 | 70 | | ENSG00000260910
ENSG00000225783 | LINC00565
MIAT | UNC00565 long intergenic non-protein coding RNA 565 MIAT myccardial infanction associated transcript (non-protein | Other other | 1.66 | 130 | -0.44
1.05 | 0.00 | 0.00 | 0.00 | 100 | 100 | 19
86 | 0 | 0 | 81
14 | | ENSG00000272316
ENSG00000272316
ENSG00002726137 | | | Other other
Other other | 1.62
-1.38 | 103
-245 | 002 | 0.00 | 0.00 | 0.03 | 100 | 94 | 51 | 0 | 6 | 14 | | ENSG000000228784 | LINC00954 | BAIAP2-AS1 BAIAP2 art sense RNA 1 (head to head) LINC00954 long intergenic non-protein coding RNA 954 | Other other | 1.98 | 1.45 | 0.66 | 0.00 | 0.00 | 0.00 | 100 | 97 | 51
86 | 0 | 3 | 14 | | ENSG00000270060
ENSG00000235576 | RP11-390K5.6
AC092580.4 | | | 1.78
-2.33 | 2.08
0.78 | 138
-1.53 | 0.00 | 0.00 | 0.00 | 100 | 100
81 | 86
5 | 100 | 19 | 14
95 | | ENSG00000237438
ENSG00000260787 | CECR7
NA
RP1-266/2019 | ŒCR7 cat eye syndrome chromosome region, candidate 7 (non | Other other | -137
197 | -108
150 | 037
152 | 0.00 | 0.00 | 0.00 | 100 | 92 | 89
86 | 0 | 97
8 | 11 | | ENSG00000266896
ENSG00000243650 | RN7SL834P | RN7SL834P RNA, 7SL, cytopia smic 834, pseudogene | Other other | 2.96 | 2.09 | 2.63 | 0.00 | 0.00 | 0.00 | 97
97 | 97
92 | 92 | 3 | 8 | 8 | | ENSG00000235499
ENSG00000261560 | | | | -109
163 | -0.71
1.82 | -0.04
0.45 | 0.00 | 0.00 | 0.02 | 100 | 100 | 43
59 | 0 | 97 | 57
41 | | ENSG00000254419
ENSG00000272086 | | | | 2.56
-1.37 | 194
-0.96 | 156
011 | 0.00 | 0.00 | 0.00
0.15 | 0 | 97 | 81
57 | 100 | 100 | 19
43 | | ENSG00000260806
ENSG00000228223 | H0511 | RRN3P1 RRNS homolog, RNA polymerase I transcription factor pol
HCG11 HLA complex group 11 (non-protein coding) | Other other | 2.17
-1.00 | 1.40
-1.72 | -0.43 | 0.00 | 0.00 | 0.00 | 100 | 92
0 | 8 | 100 | 100 | 92 | | | CTD-2521M249 | LOC102724017uncharacterized LOC102724017 | Other other | -106
-104 | -0.84
-0.82 | 0.30
-0.66 | 0.00 | 0.00 | 0.00 | 3
0 | 8
6 | 68
8 | 97
100 | 92
94 | 32
92 | | ENSG00000272849
ENSG000000142396 | RP11-347119.8
ERVK3-1 | BRVK3-1 | Other other | 181
152 | 180
166 | -0.02
1.00 | 0.00 | 0.00 | 0.14 | 97
100 | 97
100 | 49
89 | 3 | 3
0 | 51
11 | | ENSG00000197989
ENSG00000260101 | | SNHG 12 small nucleolar RNA host gene 12
LOC1 01 92 7402uncharacterized LOC10 1927 402 | Other other
Other other | 1.86
-1.28 | 1.94
-1.59 | 1.42
0.61 | 0.00 | 0.00 | 000
000 | 100 | 100 | 100
81 | 97 | 100 | 0
19 | | ENSG00000266709
ENSG00000240850 | MGC12916
AC017002.1 | MGC12916 uncharacterized protein MGC12916 | Other other | -1.14
-1.32 | -0.90
-1.23 | 107
033 | 0.00 | 0.00 | 0.00 | 17
11 | 8
14 | 95
76 | 83
89 | 92
86 | 5
24 | | ENSG000000267302
ENSG000000258659 | | LOC1 01 92 77 55 unchar act or lized LOC10 19 27 75 5 | Other other | 1.58
1.96 | 168
197 | 0.70
1.23 | 0.00 |
0.00 | 0.00 | 100
100 | 94
97 | 76
92 | 0 | 6 | 24 | | ENSG00000263470
ENSG00000238142 | RP11-16005.1 | 100105376805 | Other other | -2.62
-1.37 | -1.73
-1.15 | 0.61 | 0.00 | 0.00 | 0.03 | 0 | 0 | 76
38 | 100 | 100
94 | 24
62 | | ENSG00000260751
ENSG00000266274 | | RM75L1389 | Other other | 1.76
"-INF" | 179 | 0.95
0.74 | 0.00 | 0.00 | 000 | 100 | 94 | 92
84 | 0 | 6 | 8 16 | | ENSG00000235373
ENSG00000259928 | | | | 166 | 169
096 | 132 | 0.00 | 0.00 | 000 | 97 | 97
97 | 89
92 | 3 | 3 | 11
8 | | ENSG00000261355
ENSG00000272341 | NA
NA
RP1.151F172 | | | 1.49 | 0.56 | 0.41 | 0.00 | 0.00 | 0.00 | 97 | 94 | 92
81 | 3 | 6 | 19 | | ENSG00000272168 | CASC15 | CASC15 cancer susceptibility 15 (non-protein coding) | Other other | 1.88 | 153 | | 0.00 | 0.00 | | 100 | 94 | | 0 | 6 | _ | | ENSG00000240905
ENSG00000262370 | | RM SL7989 | Other other | "-INF"
154 | -3.91
-0.14 | 0.47
1.43 | 0.00 | 0.00 | 000 | 94 | 44 | 65
89 | 97
6 | 94
56 | 35
11 | | ENSG00000260077
ENSG00000265242 | | | | -1.07
-0.84 | -1.39
-0.66 | -0.60 | 0.00 | 0.00 | 000 | 0 | 6 | 89
5 | 94
100 | 100
94 | 11
95 | | ENSG000000260948
ENSG000000234883 | M R155HG | | | 1.66
-1.04 | 1.00
-1.06 | 1.05
1.05 | 0.00 | 0.00 | 000 | 97
17 | 92
6 | 81
100 | 3
83 | 94 | 19
0 | | ENSG000000260905
ENSG000000230415 | RP11-105C19.1
RP5-902P8.10 | | | 1.89
1.97 | 131
136 | 0.83
0.61 | 0.00 | 0.00 | 0.00 | 100
100 | 89
89 | 81
76 | 0 | 11
11 | 19
24 | | ENSG00000236871
ENSG00000237513 | LINC00106
RP11-325F22.2 | LINC00106 long intergenic non-protein coding RNA 106
LOC1 01927902uncharacterized LOC101927902 | Other other | 3.29
-0.85 | 3.02
-0.80 | 3.15
0.72 | 0.00 | 0.00 | 000
000 | 100
6 | 94
11 | 97
100 | 0
94 | 6
89 | 0 | | ENSG00000228434
ENSG00000251867 | AC004951.6
RP11-4883.5 | | | 1.46 | 117 | 0.49 | 0.00 | 0.00 | 000 | 97 | 94 | 84 | 3 94 | 6 | 16
86 | | ENSG00000264772
ENSG00000236194 | SNORA67
AC009104.1 | | | 137 | 147 | 126
043 | 0.00 | 0.00 | 0.00 | 100 | 97
89 | 100 | 0 | 3 | 0 | | ENSG00000254615
ENSG00000233261 | | UNC00264 long intergenic non-protein coding RNA264 | Other other | 152 | 143 | 034
005 | 0.00 | 0.00 | 0.03 | 100 | 100 | 76
51 | 0 | 0 | 24 | | ENSG00000224478
ENSG00000231607 | RP11-13/5.1
DLEU2 | mir-15 microRNA 15a | Cytoplasm nicroRNA | -1.62
-0.77 | -166
-124 | 098
001 | 0.00 | 0.00 | 000 | 9 | 6 | 97
51 | 91
100 | 94 | 3 | | ENSG00000249532
ENSG00000238795 | RP11-14886.1
SCARNA12 | mir-302 microRNA 302c
SCARNA12 small Cajal body-specific RNA12 | Cytoplasm ricroRNA
Other other | 2.15 | 2.14 | 178
0.99 | 0.00 | 0.00 | 000 | 97 | 100 | 97 | 3 | 0 | 3 | | ENSG000000260114 | CTD-2574022.4 | KCTD13 potassium channel tetramerization domain containing 15 | Nucleus in channel | 1.46 | 190
146 | 0.81 | 0.00 | 0.00 | 0.00 | 97 | 89
97 | 84
86 | 3 | 3 | 14 | | ENSG00000230724
ENSG00000269996 | NA. | 001 (includes dong intergenic non-protein coding RNA 1347 | Other other | 1.33
-0.75 | -1.25 | 0.99 | 0.00 | 0.00 | 0.00 | 100 | 97 | 97
81 | 91 | 100 | 3
19 | | ENSG000000261220
ENSG000000261114 | | | | -1.13
-0.88 | -0.83
-0.46 | 141
0.66 | 0.00 | 0.00 | 000 | 11
14 | 11
31 | 97
86 | 89
86 | 89
69 | 3
14 | | ENSG000000262766
ENSG000000261270 | RP11-196G11.4
RP11-325K4.3 | | | 1.44
-1.17 | 154
-0.38 | 138
065 | 0.00 | 0.00 | 0.00 | 97
11 | 94
31 | 92
92 | 3 20 | 6
69 | 8 | | ENSG00000267701
ENSG00000260841 | RP11-28F1.2
CTC-205M6.5 | | | -1.78
-0.81 | -1.73
-0.15 | 0.64 | 0.00 | 0.00 | 0.16
0.00 | 0
11 | 8
39 | 54
95 | 100
89 | 92
61 | 46
5 | | ENSG00000261824
ENSG00000212694 | LINC00662
LINC01089 | UNC00662 long intergenic non-protein coding RNA 662
UNC01089 long intergenic non-protein coding RNA 1089 | Other other | -0.76
1.28 | -1.00
0.79 | -0.19
-0.58 | 0.00 | 0.00 | 0.00 | 0 | 97 | 27
8 | 100 | 100 | 73
92 | | ENSG00000273352
ENSG00000215908 | | CROCCP2 ciliaryroadet coile 6 coil, roadetin pseudogene 2 | Other other | -0.93
1.36 | -0.78
1.39 | -0.08
0.36 | 0.00 | 0.00 | 0.00 | 9 | 17 | 43
89 | 91 | 83 | 57
11 | | ENSG00000215908
ENSG00000254985
ENSG00000253764 | CROCC92
RSF1-IT2
RP11-439C15.4 | CROCCP2 cilia ryrocdet colled-coil, roodetin pseudogene 2
RSF1-IT2 RSF1 intronic transcript 2 | Other other | -0.99
3.05 | -0.16 | -0.33 | 0.00
0.00
0.00 | 0.00 | 0.00 | 100
9
97 | 100
39 | 30 | 91
3 | 61 | 70 | | ENSG00000206140 | TMEM191C | M1918/TMEMtransmembrane protein 191C | Other other | 1.28 | 455 | *** | 0.00 | | 444 | 100 | or. | | 0 | | | | ENSG00000240731
ENSG00000226423 | AC098642.4 | | | 1.74
1.50 | 173
054 | 1.10
-1.12 | 0.00 | 0.02 | 000 | 100
97 | 97
75 | 86
14 | 3 | 3
25 | 14
86 | | ENSG00000259758
ENSG00000266918 | CASC7
RP11-798G7.8 | | | -0.50
1.45 | -0.32
1.27 | 0.27 | 0.00 | 0.00 | 0.00 | 20
94 | 19
94 | 32
86 | 80
6 | 81
6 | 68
14 | | ENSG00000232470
ENSG00000261338 | RP11-378A13.1 | | | 2.25
-0.78 | 1.98
-0.50 | -0.66 | 0.00 | 0.00 | 0.00 | 100 | 100
25 | 24 | 91 | 75 | 76 | | ENSG00000261094
ENSG00000259715 | CTD-3110H11.1 | | | 1.21
2.48 | 146
206 | 0.74 | 0.00 | 0.00 | 0.00 | 100
97 | 100
89 | 95 | 0
3 | 0
11 | 5 | | ENSG000000271938
ENSG000000270172 | | | | 1.40
1.41 | 176
096 | 0.24
0.64 | 0.00 | 0.00 | 0.33 | 97
97 | 100
97 | 62
92 | 3 | 0
3 | 38
8 | | ENSG00000255989 | | | | -0.75 | -0.76 | 021 | 0.00 | 0.00 | 0.78 | 9 | 11 | 68 | 91 | 89 | 32 | | ENS900000241860 | RP11-34P13.13 | | | 1.28 | 123 | 146 | 0.00 | 0.00 | 0.00 | 97 | 94 | 95 | 3 | 6 | 5 | |---|---|--|----------------------------|----------------------|----------------------|-------------------|------|------|--------------|-----------------|------------------|----------------|----------------|----------------|-----------------| | ENSG00000270972
ENSG00000270157 | | | | 187 | 137 | 0.53 | 0.00 | 0.00 | 0.00 | 91
97 | 89
97 | 86 | 9 | 11
3 | 14 | | ENSG00000271843
ENSG00000269444 | RP11-24509.5
CTB-180A7.6 | | | 1.52 | 1.41 | -0.22
1.34 | 0.00 | 0.00 | 000 | 94 | 92
97 | 35
95 | 6 | 8 | 65 | | ENSG00000251323
ENSG00000244459 | | LOC101928865uncharacterized LOC101928865 | Other other | 134 | 2.34 | 234 | 0.00 | | 430 | 100 | 21 | 23 | 0 94 | | , | | ENSG00000227486
ENSG00000273192 | RP13-188A5.1
CITF22-1A6.3 | | | -0.97
1.44 | -1.30
1.38 | 0.29 | 0.00 | 0.00 | 0.27 | 17
97 | 100 | 68
84 | 83 | 92 | 32
16 | | ENSG00000267532
ENSG00000239002 | M R497HG
SCARNA10 | SCARNA10 small Cajal body-specific RNA10 | Other other | 125 | 230 | 493 | 0.00 | 440 | 450 | 100 | 100 | 84 | 0 | • | - | | ENSG00000227518
ENSG00000237940 | M R1302-2
AC098642.3 | mir-1302 microRNA 1302-5 | Cytoplasm nicroRNA | 1.14 | 104 | 0.63
0.60 | 0.00 | 0.00 | 0.00 | 97 | 92
89 | 81
89 | 3 | 8 | 19
11 | | ENSG00000271975
ENSG00000264112 | RP11-383/24.6 | UNC01238 long intergenic non-protein coding RNA1238 | Nucleus other | -0.54
1.17 | -1.14
1.33 | -0.05 | 0.00 | 0.00 | 0.00 | 9 | 0
97 | 43
54 | 91 | 100 | 57
46 | | ENSG000000260539 | GLG1 | SRSF1 serine and arginine rich splicing factor 1 | Nucleus other | 1.27 | 0.66 | | 0.00 | 0.00 | | 100 | 83 | | 0 | 17 | | | ENSG00000229227
ENSG00000222375 | RM7SIP127 | RN75XP1.27 | Other other | 1.38
2.88 | 1.10
2.68 | 0.74 | 0.00 | 0.00 | 0.00 | 97
100 | 94
92 | 89 | 3
0 | 6
3 | 11 | | ENSG000000261574
ENSG000000152487 | RP1-168P16.2
ARL58-AS1 | | | -1.20
1.94 | 1.62 | 0.66 | 0.00 | 0.00 | 0.00 | 97 | 97 | 84 | 100
3 | 67
3 | 16 | | ENSG000000212464
ENSG000000268802 | SNORA12
NA | SNORA12 small nucleolar RNA, H/ACA box 12 | Other other | 4.84
-0.57 | -1.10 | 0.64 | 0.00 | 0.00 | 0.00 | 91
20 | 3 | 84 | 80 | 97 | 16 | | ENSG00000269086
ENSG00000270066 | CTC-523E23.5
SCARNA2 | SCARNA2 small Cajal body-specific RNA2 | Other other | 1.24
1.54 | 120
115 | | 0.00 | 0.00 | | 100
97 | 100
86 | | 3 | 0
14 | | | ENSG00000261685
ENSG00000238039 | RP11-401P9.A
AF011889.2 | | | 1.14
2.54 | -0.20 | -1.20 | 0.00 | 0.00 | 0.00 | 94
94 | 47 | 3 | 6
6 | 53 | 97 | | ENSG00000273033
ENSG00000272894 | RP11-67L2.2
RP5-1159O4.1 | LINC02035 long intergenic non-protein coding RNA 2035 | Other other | -0.57
1.32 | -0.99 | 0.40
2.25 | 0.00 | 0.00 | 0.00 | 3
94 | 0 | 89
100 | 97
6 | 100 | 11
0 | | ENSG00000100181
ENSG00000204261 | TPTEP1
PSM88-AS1 | TPTEP1 transmembrane phosphatase with tensin homology pseu-
PSM88-AS1 PSM88 antisense RNA1 (head to head) | Other other
Other other | -0.61
-0.57 | 0.12
-0.52 | -0.07
-0.33 | 0.00 | 0.12 | 000 | 11
6 | 64
0 | 35
22 | 89
94 | 36
100 | 65
78 | | ENSG00000260591
ENSG00000272462 | RP11-817013.6
U91328.19 | | | 3.68
-0.56 | -0.29 | -0.05 | 0.00 | 0.00 | 0.01 | 91
3 | 11 | 41 | 6
97 | 89 | 59 | | ENSG00000273015
ENSG00000202198 | LINC00938
RN7SK | RN7SX RNA, 7SX small nuclear | Nucleus other | -0.56
0.93 | -0.47
0.70 | -0.38
0.95 | 0.00 | 0.00 | 0.00 | 0
83 | 8
75 | 3
86 | 100
17 | 92
25 | 97
14 | | ENSG00000249456
ENSG00000227946 | RP11-298/20.4
AC007383.3 | | | -0.63
-0.59 | -0.37
-0.04 | -0.13
0.33 | 0.00 | 0.00 | 0.00
0.14 | 11
6 | 28
44 | 35
81 | 89
94 | 72
56 | 65
19 | | ENSG00000261526
ENSG00000270659 | CTB-31 O 20 2
RP11-105N14.1 | | | 1.22
-0.58 |
1.02
-0.61 | -0.87 | 0.00 | 0.00 | 0.01 | 100
3 | 97
6 | 51
3 | 97 | 3
94 | 49
97 | | ENSG00000174865
ENSG00000230002 | SNHG11
ALMS1-IT1 | SNHG11 small nucleolar RNA host gene 11
ALMS1-IT1 ALMS1 intronic transcript 1 | Other other
Other other | 1.09 | 0.47
1.12 | 0.11
-0.02 | 0.00 | 0.12 | 0.40
0.08 | 100
100 | 89
97 | 59
49 | 0 | 11
3 | 41
51 | | ENSG00000228327
ENSG00000259652 | RP11-206L10.2
RP11-797A18.3 | | | 1.18
3.32 | 1.24 | 0.70 | 0.00 | 0.00 | 0.00 | 97
94 | 94 | 84 | 3 | 6 | 16 | | ENSG00000229512
ENSG00000237491 | AC068580.5
RP11-206L10.9 | | | -2.37
1.07 | "-INF"
1.15 | 0.78
0.43 | 0.00 | 0.00 | 0.01 | 6
94 | 8
97 | 78
81 | 91
6 | 89
3 | 22
19 | | ENSG00000256576
ENSG00000260261 | RP13-9770112 | LOC100996246uncharacterized LOC100996246 | Other other | 1.09 | 0.02 | -1.47 | 0.00 | 0.00 | 0.00 | 100 | 53 | 0 | 0 | 47 | 100 | | ENSG00000269906
ENSG00000245156 | RP11-248/18.2
RP11-248/18.2
RP11-867G23.3 | RAB18 RAB18, member RAS oncogene family | Cytoplasm other | -1.06
1.07 | 166 | 0.93
1.39 | 0.00 | 0.00 | 0.00 | 91 97 | 100 | 97
97 | 91
3 | 0 | 3 | | ENSG00000245156
ENSG00000266236
ENSG00000267096 | NARF-IT1 | RAS18 RAS18, member RAS oncogene family NARF-IT1 NARF intronic transcript 1 | Other other | 1.07
1.01
1.42 | 166
174
149 | 139
164
127 | 0.00 | 0.00 | 000 | 97
97
94 | 100
100
94 | 97
97
81 | 3
3
6 | 0 | 3
3
19 | | ENSG00000250889
ENSG00000270704 | CTD-2537/9.13
LINC01336
SNORD64 | UNC01336 | Other other | 1.42
1.36
1.66 | 1.49
0.67
1.76 | 022 | 0.00 | 0.00 | 0.00 | 94
100
91 | 94
78
94 | 57 | 0 | 6
22
6 | 19 | | ENSG00000270704
ENSG00000269942
ENSG00000267364 | NA. | | | 1.99 | 1.71 | | 0.00 | 0.00 | | 94 | 89 | | 6 | 11 | | | ENSG000000240143 | RP11-47L3.1
RP4-753P9.3 | | | -1.09
-0.91 | -0.84 | -1.73
106 | 0.00 | 0.50 | 000 | 20 | 58 | 19
89 | 91
80 | 78 | 81
11 | | ENSG00000271869
ENSG00000265975 | RP11-519.5
CTB-4116.2 | | | 1.00
-1.07 | 100
-108 | -0.31
1.15 | 0.00 | 0.00 | 000 | 100
20 | 100
11 | 14
95 | 80 | 89 | 86
5 | | ENSG00000271725
ENSG00000259865 | RP11-76114.A
RP11-488.18.10 | | | -0.59
0.85 | -0.67
0.41 | 010
045 | 0.00 | 0.00 | 069
089 | 11
91 | 19
64 | 59
62 | 9 | 81
36 | 41
38 | | ENSG000000267481
ENSG000000239884 | CTC-559E9.5
RN7SL608P | RN75L608P | Other other | 0.97
1.20 | 0.58
1.62 | -0.44
0.31 | 0.00 | 0.00 | 0.00
0.02 | 100
29 | 92
94 | 19
68 | 0
11 | 8
6 | 81
32 | | ENSG00000238164
ENSG000000225978 | RP3-395M20.8
HAR1A | LOC115110 uncharacterized LOC115110 HAR1A highly accelerated region 1A (non-protein coding) | Other other | 0.87 | 0.92 | 0.95
-1.25 | 0.00 | 0.00 | 000 | 97
97 | 100
86 | 97
3 | 3 | 0
14 | 3
97 | | ENSG000000260836
ENSG000000225948 | RP11-39587.7
RP11-5548.1 | | | 0.85
1.84 | 0.52 | 0.42 | 0.00 | 0.00 | 0.07 | 97
94 | 81 | 62 | 3
6 | 19 | 38 | | ENSG00000270419
ENSG00000268205 | CAHM
CTC-444N24.11 | CAHM colon a denocarcinoma hypermethylated (non-protein co- | Other other | -0.60
0.86 | -1.24
0.56 | 0.50 | 0.00 | 0.00 | 0.08
0.23 | 11
94 | 6
81 | 78
57 | 89
6 | 94
19 | 22
43 | | ENSG00000222414
ENSG00000232412 | RMU2-59P
RP1-315G1.3 | RNU2-59P
LOC101928402uncharacterized LOC101928402 | Other other
Other other | -2.02
-0.93 | -0.66
-0.74 | 0.41
0.03 | 0.00 | 0.00 | 0.03
0.36 | 20
23 | 28
22 | 76
54 | 80
77 | 72
78 | 24
46 | | ENSG00000246084
ENSG00000271347 | | LOC101929241uncharacterized LOC101929241 | Other other | 0.97
1.68 | 0.43
1.53 | -1.69 | 0.00 | 0.53 | 0.00 | 97
29 | 75
92 | 5 | 3
11 | 25
8 | 95 | | ENSG00000269900
ENSG00000250950 | RM RP
RP11-3381.3 | RMRP RNA component of mitochondrial RNA processing endoril | Cytoplasm other | 0.60 | 0.85 | -0.05
0.73 | 0.00 | 0.00 | 0.54 | 77
91 | 78
89 | 49
81 | 23
9 | 22
11 | 51
19 | | ENSG00000267475
ENSG00000261101 | CTD-2538C1.2 | | | -0.66
1.56 | 0.69
1.19 | 0.10 | 0.00 | 0.09 | 0.15 | 26
94 | 72
81 | 54
78 | 74 | 28
19 | 46
22 | | ENSG00000215447
ENSG00000266389 | 8X322557.10
CTB-4116.1 | | | 0.94
-0.86 | 0.10
-2.05 | 121 | 0.00 | 0.42 | 0.00 | 100 | 67 | 95 | 0 80 | 33 | 5 | | ENSG00000228485
ENSG00000243339 | GRK5-IT1
RN7SL738P | GRKS-IT1 GRKS introvic transcript 1
RNTSL738P | Other other | -0.62
-0.57 | -0.71
-0.80 | -0.05
-0.01 | 0.00 | 0.00 | 0.24 | 20 | 22
19 | 49
49 | 80 | 78
81 | 51
51 | | ENSG00000271849
ENSG00000196559 | CTC-332L22.1
LINC00610 | not account | CORP CORP | -0.66 | -0.93
0.78 | -1.40
0.48 | 0.00 | 0.00 | 000 | 20 | 17 | 3 | 80 | 83 | 97 | | ENSG00000272140
ENSG00000273290 | | | | 1.11 | 0.45 | 036 | 0.00 | 0.01 | 0.29 | 91
97 | 81 | 76 | 9 | 19 | 24 | | ENSG00000263990
ENSG00000273056 | | | | 147 | 149 | 036 | 0.00 | 0.00 | 0.29 | 97
94
97 | 92 | 76 | 6 | 8 | 24 | | ENSG00000241217
ENSG00000251791 | RN7SL809P
SCARNA6 | RN7SL809P RNA, 7SL, cytoplasmic 809, pseudogene | Other other | 1.47 | 178
162 | 0.59
0.95 | 0.00 | 0.00 | 0.01 | 89
86 | 94
94 | 73
76 | 11
14 | 6 | 27
24 | | ENSG00000272994 | RP11-332H14.2 | SCARNA6 small Cajal body-specific RNA6
LOC100506473uncharacterized LOC100506473 | Other other | 0.84 | 0.83 | -0.01 | 0.00 | 0.00 | 0.04 | 97
100 | 100 | 46 | 3 | 0 | 54 | | ENSG00000242086
ENSG00000261596
ENSG00000260534 | CTB-31N19.3 | SDHAP2 succinate dehydrogenase complex flavoprotein subunit A | Other other | -0.56 | -0.42 | 0.82 | 0.00 | 0.00 | 0.00 | 26 | 100 | 97
76 | 74 | 83 | 3
24 | | ENSG00000260534
ENSG00000272645
ENSG00000272048 | RP11-1006G14.A
RP11-504P24.8 | GTF 2920 general transcription factor III pseudogene 20 | Other other | 0.91 | 0.93
1.08
0.84 | 0.19 | 0.00 | 0.00 | 0.00 | 97
97 | 100 | 65
97 | 3 | 0 | 35
3 | | ENSG00000273190 | RP11-255C15.4 | | | 1.18
-0.55 | -0.30 | -0.55
-0.64 | 0.00 | 0.00 | 000 | 97
23 | 78
31 | 24
8 | 3
77 | 22
69 | 76
92 | | ENSG00000214837
ENSG00000272574 | RP11-359K18.4 | IDD1 (includes dang intergenic non-protein coding RNA 1347 | Other other | 1.06
1.57 | 0.94
2.25 | 061
121 | 0.00 | 0.00 | 000 | 97
29 | 92
97 | 81
92 | 3
11 | 3 | 19
5 | | ENSG00000255455
ENSG00000257900 | RP11-454K7.1 | LOC103611081uncharacterized LOC103611081 | Other other | 0.97 | 106 | 0.15
0.82 | 0.00 | 0.41 | 0.18 | 100
89 | 61
92 | 62
92 | 0
11 | 39
8 | 38
8 | | ENSG00000236255
ENSG00000272432 | | | | 0.96
-0.68 | 0.97
-0.67 | 081 | 0.00 | 0.00 | 0.00 | 23 | 94
31 | 89
51 | 77 | 69 | 11
49 | | ENSG00000270022
ENSG00000269044 | RNU12
CTC-429P9.3 | RNU12 RNA, U12 small nuclear | Nucleus other | 0.93 | 0.86
0.85 | 0.97 | 0.00 | 0.00 | 0.00
0.43 | 29
100 | 94
100 | 84
70 | 11
0 | 6 | 16
30 | | ENSG000000269913
ENSG000000260404 | NA
RP11-384K6.6 | LOC729218 uncharacterized LOC729218 | Other other | 1.11
0.81 | 0.49
0.93 | 0.22 | 0.00 | 0.70 | 0.26 | 89
97 | 67
97 | 73 | 11
3 | 33
3 | 27 | | ENSG000000269958
ENSG000000255933 | RP11-49519.5 | | | 0.76
0.92 | 0.66
1.11 | 0.29
0.58 | 0.00 | 0.00 | 0.03 | 97
29 | 97
97 | 86
78 | 3
11 | 3 | 14
22 | | ENSG00000228107
ENSG00000230590 | AP000692.9
FTX | FTX Transcript, XST regulator (non-protein coding) | Other other | 0.90
0.75 | 0.87
0.46 | 0.30 | 0.00 | 0.00 | 0.09 | 100
97 | 89
83 | 76 | 0
3 | 11
17 | 24 | | ENSG000000257151
ENSG000000249614 | PWAR6
RP11-703G6.1 | PWAR6 Prader Willi/Angelman region RNA 6 | Other other | 0.79 | 0.80 | 0.69 | 0.00 | 0.00 | 0.00 | 91
94 | 92 | 86 | 9 | 8 | 14 | | ENSG00000270195
ENSG00000273142 | RP11-458F8.4 | | | 1.02
0.85 | 0.89
0.72 | 0.72 | 0.00 | 0.00 | 0.00 | 94
91 | 94
97 | 84
57 | 6
9 | 6
3 | 16
43 | | ENSG00000272365
ENSG00000270015 | RP11-389C8.3
RP11-54086.6 | FAN1 FANCD 2 and FANCI a secciated nuclease 1 | Nucleus enzyme | 1.22
0.79 | 0.45 | 0.18 | 0.00 | 0.02 | 0.72 | 97
97 | 97 | 84 | 3 | 3 | 16 | | ENSG00000262251
ENSG00000262879 | RP11-199F11.2
RP11-156P1.3 | | - | 0.90 | 0.65
0.36 | 0.74
0.13 | 0.00 | 0.00 | 000 | 97
94 | 92
78 | 81
59 | 3 | 8
22 | 19
41 | | ENSG00000265625
ENSG00000272812 | RP11-68(3.11
RP5-855021.3 | | | 0.84 | 0.25 | 0.89 | 0.00 | 0.64 | 0.00 | 80 | 69
86 | 86 | 11
11 | 31
14 | 14 | | ENSG00000236337
ENSG00000258441 | FMR1-IT1
LINC00641 | FMR1-IT1 FMR1 intronic transcript 1
UNC00641 long intergenic non-protein coding RNA641 | Other other | 1.70 | 1.14 | -0.41 | 0.00 | 0.00 | 000 | 91
100 | 86
72 | 14 | 9 | 14 | 86 | | ENSG00000231560
ENSG00000223473 | AC0918143
GS1-12485.3 | LOC400002 uncharacterized LOC400002 | Other other | 0.86 | 114 | 0.63 | 0.00 | 0.00 | 0.01 | 94
94 | 94
86 | 76 | 6 | 6 | 24 | | ENSG00000237943
ENSG00000225975 | PRKCQ-AS1
AC074138.3 | PRIXCO_AS1 PRIXCO antisense RNA 1 UNC01534 long intergenic non-protein coding RNA 1534 | Other other | 0.79 | 0.54
1.03 | -1.37 | 0.00 | 0.00 | 000 | 100
94 | 94
97 | 0 | 0 | 6 | 100 | | ENSG00000268568
ENSG0000020087 | AC007228.9
SNORA738 | SNORA738 small nucleolar RNA, H/ACA box 738 | Other other | 0.91 | 137
103 | 0.78
0.62 | 0.00 | 0.00 | 0.00 | 94
86
66 | 83
81 | 89
73 | 14
34 | 17
19 | 11
27 | | ENSG00000270108
ENSG00000242853 | | SNORA738 small nucleotae RNA, H _i ACA box 738 RNDS:7499 | Other other | 0.88 | 0.70
-0.66 | 034
014 | 0.00 | 0.00 | 059
059 | 86
26 | 81
81
22 | 65
54 | 34
14
74 | 19
19
78 | 27
35
46 | |
ENSG00000242853
ENSG00000225880
ENSG00000252464 | RN75L749P
LINC00115
RN75XP70 | LINC00115 long intergenic non-protein coding RNA115 | Other other Other other | 0.88 | -0.66
0.85 | 1.06 | 0.00 | 0.00 | 0.59 | 91 | 97
81 | 97
65 | 74
9
14 | 78
3
19 | 3 | | ENSG000000207445 | SNORD158 | RN7SK970 RNA, 7SK small nuclear pseudogene 70
SNORD158 small nucleolar RNA, C/D box 158 | Other other | 1.39
2.18 | 1.05 | 0.79 | 0.00 | 0.00 | | 86
89 | 75 | | 11 | 22 | 35 | | ENSG00000264087
ENSG00000264673 | CTC-429P9.2
RN7SL15P | RN75.15P | Other other | 0.97
1.27 | 100
213 | 109 | 0.00 | 0.00 | 0.00 | 97
83 | 92
94 | 68
84 | 3
17 | 6 | 32
16 | | ENSG00000224078
ENSG00000267798 | SNHG 14
NA | SNHG 14 | Other other | 1.08 | 0.72
1.41 | -0.46
0.82 | 0.00 | 0.00 | 000 | 97
89 | 97
97 | 8
95 | 3
11 | 3 | 92
5 | | ENSG00000269688
ENSG00000252010 | AC008982.2
SCARNA5 | SCARNAS small Cajal body-specific RNAS | Other other | 0.77 | 1.28
1.14 | 0.74 | 0.00 | 0.00 | 0.00 | 94
74 | 94
81 | 89 | 6
26 | 6
19 | 11 | | ENSG00000243015
ENSG00000265802 | RN75L737P
RN75L49P | RNTSL737P
RNTSL48P | Other other
Other other | 1.34
1.74 | 102 | | 0.00 | 0.02 | | 91
91 | 78 | | 9 | 22 | | | ENSG000000260257
ENSG000000252481 | RPS-1085F17.3
SCARNA13 | SCARNA13 small Cajal body-specific RNA13 | Other other | 0.67
1.54 | 0.65 | -0.02 | 0.00 | 0.00 | 0.02 | 91
86 | 89 | 43 | 9
11 | 11 | 57 | | ENSG00000272799
ENSG00000264608 | RP11-474N24.6
RP11-192H23.8 | | | 1.08
1.10 | 0.60
0.66 | 0.36 | 0.00 | 0.30 | 014 | 97
91 | 72
75 | 65 | 3
9 | 28
25 | 35 | | ENSG00000272947
ENSG000000271862 | RP11-71H17.9
RP11-343L5.2 | | | 0.84
0.83 | 0.12
0.75 | -0.41
0.02 | 0.00 | 0.16 | 0.00
0.17 | 94
97 | 58
81 | 27
51 | 6
3 | 42
19 | 73
49 | | ENSG00000262652
ENSG00000223768 | LINC00205 | LINC00205 long intergenic non-protein coding RNA 205 | Other other | 0.97
0.91 | 135 | 1.17 | 0.00 | 0.00 | 0.00 | 20
20 | 92 | 84 | 11
11 | 8 | 16 | | ENSG00000223525 | | RABGAP1L-IT1RABGAP1L intronic transcript 1 INE1 inactivation escape 1 (non-protein coding) | Other other | 0.87
0.70 | 0.49
0.86 | 0.59
0.69 | 0.00 | 0.04 | 000 | 83
94 | 72
97 | 81
84 | 17
6 | 28
3 | 19
16 | | ENSG00000224975
ENSG00000268027 | NE1
AC006129.2 | | | 0.68 | 0.16 | -0.80 | 0.00 | 0.48 | 0.00 | 100 | 69 | 3 | 0 | 31 | 97 | | ENSG00000259821 | ₩11-468£2.5 | | | 1.03 | 0.89 | | 0.00 | 0.00 | | 91 | 81 | | 9 | 19 | | |---|----------------------------------|--|------------------------------|----------------------|----------------------|----------------|--------------|--------------|--------------|----------------|----------------|-----------------|-----------------|----------------|----------------| | ENSG00000232300
ENSG00000235314 | FAM2158
UNC00957 | FAM2158 family with sequence similarity 215 member 8 (non-prot
UNC00957 long intergenic non-protein coding RNA957 | Other other | 0.69 | 0.66 | 0.42 | 0.00 | 0.00 | 0.00 | 86
100 | 83
22 | 92 | 14
0 | 17 | 8
97 | | ENSG00000263202
ENSG0000026321 | SNORDED | LINCOUSS / Tong intergence non-process coming NAA-957 | Cour deser | -0.68
0.78 | -0.85 | 0.60 | 0.00 | 0.00 | 000 | 31
86 | 17
89 | 81
76 | 60
14 | 83
11 | 19 | | ENSG00000269898
ENSG00000245164 | NA
SNHG8
LINCOO861 | SNHS8 small nucleolar RNA host gene 8 | Other other | 0.53 | 0.32 | -0.12
-1.52 | 0.00 | 0.37 | 000 | 100 | 86
36 | 41 | 0 | 14 | 59
97 | | ENSG00000245954
ENSG00000246898 | | UNC00861 long intergenic non-protein coding RNA861
LOC100996286uncharacterized LOC100996286 | Other other | 0.71 | -0.26
-0.16 | -2.00
-1.81 | 0.00 | 0.00 | 000 | 94 | 42
39 | 5 | 6 | 58 | 95 | | ENSG00000188185 | LINC00265 | UNC00920 long intergenic non-protein coding RNA 920 UNC00265 long intergenic non-protein coding RNA 265 | Other other | 0.63 | 0.66 | 1.02 | 0.00 | 0.00 | 0.00 | 91
97 | 97 | 97 | 3 | 61
3 | 3 | | ENSG00000262074
ENSG00000272382 | SNORD38-2
CTD-2085E11.4 | SNORD38-2 small nucleolar RNA, C/D box 38-2 | Other other | -0.72
0.89 | -0.99 | 0.64 | 0.00 | 0.00 | 0.00 | 31
91 | 22 | 89 | 9 | 78 | 11 | | ENSG00000259834
ENSG00000269063 | NA
NA | | | 0.63 | 0.72 | -1.40
0.55 | 0.00 | 0.00 | 0.00 | 94
91 | 22
89 | 0
73 | 9 | 78
11 | 100
27 | | ENSG00000273156
ENSG00000259880 | | | | 0.80 | 0.62 | 0.44 | 0.00 | 0.14 | 0.00 | 83
86 | 92 | 84 | 17
14 | 53
8 | 16 | | ENSG00000273284
ENSG00000202538 | RP11-888D10.4
RNU4-2 | RNU4-2 RNA, U4 small nuclear 2 | Other other | 0.74
1.40 | 1.06
1.13 | 0.62
0.27 | 0.00 | 0.00 | 0.00 | 83
69 | 94
69 | 78
54 | 17
31 | 6
31 | 22
46 | | ENSG00000265206
ENSG00000263164 | MIR142
RP11-333E1.2 | mir-142 microRNA 142 | Cytoplasm nicroRNA | 0.68 | 1.05
0.46 | 147 | 0.00 | 0.00 | 0.00 | 83
80 | 86
75 | 89 | 17
20 | 14
25 | 11 | | ENSG00000261716
ENSG00000273353 | RP11-196G18.22
CTA-268H5.12 | | | 1.09 | 0.35 | -0.03 | 0.00 | 0.05 | 000 | 97
86 | 83 | 49 | 3
14 | 17 | 51 | | ENSG00000226029
ENSG00000262194 | RP4798A10.2
CTD-319515.5 | LINC01772 | Other other | 0.66 | -0.14
1.12 | -0.73
0.99 | 0.00 | 0.00 | 000 | 97
89 | 39
89 | 3
89 | 3
11 | 61
11 | 97
11 | | ENSG000000254911
ENSG000000267904 | SCARNA9
CTC-429P9.5 | SCARNA9 small Cajal body-specific RNA9 | Other other | 0.72
0.54 | 0.70 | 0.95
0.26 | 0.00 | 0.97 | 0.00
0.26 | 77
94 | 69
81 | 95
68 | 23
6 | 31
19 | 5
32 | | ENSG00000268471
ENSG00000267834 | MIR4453
RP11-167N5.5 | | | 0.67
0.74 | 0.85 | 0.74 | 0.00 | 0.00 | 0.00 | 97
94 | 83 | 84 | 3
6 | 17 | 16 | | ENSG00000270083
ENSG00000232164 | RP1-257020.14
AC092669.3 | LINC01873 long intergenic non-protein coding RNA1873 | Other other | 0.59
0.58 | 1.18
0.54 | 0.60
0.42 | 0.00 | 0.00 | 0.00 | 86
91 | 97
78 | 78
78 | 14
9 | 3
22 | 22
22 | | ENSG00000268544
ENSG00000231125 | NA
AF129075.5 | | | 0.65 | 0.55 | -1.23 | 0.00 | 0.00 | 0.00 | 94
80 | 92 | 0 | 6
20 | 8 | 100 | | ENSG000000272065
ENSG000000225528 | U91328.20
RP3-370M22.8 | | | 0.69 | 0.34
1.30 | 0.07 | 0.00 | 0.97 | 0.23 | 83
80 | 69
100 | 51 | 17
20 | 31
0 | 49 | | ENSG00000267098
ENSG00000233016 | NA
SNHG7 | SNHG7 small nucleolar RNA host gene 7 | Other other | 0.69 | 154
050 | 104
056 | 0.00 | 0.00 | 000 | 89
100 | 94
97 | 92
100 | 11
0 | 6
3 | 8 | | ENSG00000249731
ENSG00000264442 | RP11-25902.3
NA | | | 0.57
1.19 | 0.55
1.21 | 0.55
1.48 | 0.00 | 0.00 | 0.00 | 86
89 | 89
83 | 89
92 | 14
11 | 11
17 | 11
8 | | ENSG00000269952
ENSG00000273437 | RP11-32422.3
RP11-434H6.7 | | | 1.06
1.04 | 1.47
0.74 | 0.31
-0.90 | 0.00 | 0.00 | 0.60 | 77
80 | 86
64 | 62
27 | 23
20 | 14
36 | 38
73 | | ENSG00000232686
ENSG00000267074 | NA
RP11-1094M14.5 | | | 0.70 | 0.89 | 0.01 | 0.00 | 0.00 | 0.12 | 80
74 | 86
89 | 51 | 20
26 | 14
11 | 49 | | ENSG00000270012
ENSG00000166770 | LL0XNCD1-793.1
ZNF667-AS1 | P9P1R3F protein phosphatase 1 regulatory subunit 3F
ZNF667-AS1 ZNF667 antisense RNA1 (head to head) | Other other | 0.55 | 0.15
1.40 | -0.10
0.48 | 0.00 | 0.31 | 0.00 | 97
100 | 67
97 | 35
84 | 3 | 33 | 65
16 | | ENSG00000226328
ENSG00000234663 | NUPSO-AS1
AC104820.2 | NUPSOASI DUPSO antisense RNA I (head to head) UNC01984 long intergenic non-protein coding RNA 1984 | Other other
Other other | 0.52 | 0.46 | 0.33 | 0.00 | 0.08 | 0.26 | 94
97 | 83 | 73 | 6 | 17 | 27 | | ENSG00000234663
ENSG00000233411
ENSG00000272777 | RP11-104L21.2
RP11-571L19.8 | | June Other | 1.09 | 0.10 | -0.36 | 0.00 | 0.97 | 0.00 | 97
80
86 | 58 | 22 | 20 | 42 | 78 | | ENSG00000272777
ENSG00000239569
ENSG00000263607 | RP11-571L19.8
KMT2E-AS1
NA | KMT2E-AS1 KMT2E antisense RNA1 (head to head) | Other other | 0.62
0.54
0.78 | 0.10
0.47
1.31 | 0.93 | 0.00 | 0.48 | 000 | 86
86 | 78
86 | 97 | 14
14
14 | 42
22
14 | 3 | | ENSG00000244625
ENSG00000257410 | NA
CTA-211A9.5
RP11-2H8.2 | MIATNB MIAT neighbor (non-protein coding) | Other other | 0.78
0.54
0.59 | -0.06
0.06 | -0.36 | 0.01 | 0.00 | 000 | 97
89 | 86
44
56 | 11
16 | 3
11 | 14
56
44 | 89
84 | | ENSG00000260808 | CTD-2007L18.5 | | | 0.62 | 1.05 | -0.52 | 0.01 | 0.79 | 400 | 89 | 56
86 | 16 | 11 | 14 | 34 | | ENSG00000271927
ENSG00000269867 | | | | 0.53 | 0.74 | | 0.01 | 0.01 | | 20 | 81 | | 11 | 19 | | | ENSG00000213971
ENSG00000237989 | AP001046.5 | UNC01679 long intergenic non-protein coding RNA1679 | Other other | 0.57
0.53 | 0.71 | 0.52
-0.34 | 0.01 | 0.41 | 000 | 91
80 | 97
58 | 89
19 | 9
20 | 3
42 | 11
81 | | ENSG00000208772
ENSG00000272098 | SNORD94
CTC 365E16.1 | SNORD94 small nucleiclar RNA, C/D box 94 | Other other | 0.86 | 0.19 | | 0.01 | 0.44 | | 66
29 | 72 | | 26
11 | 28 | _ | | ENSG00000269940
ENSG00000256582 | RP11-73M18.7
RP11-75L1.1 | | | 0.63 | 0.74
0.50 | 0.48
-0.43 | 0.02 | 0.02 | 0.00 | 77
94 | 83
92 | 78
19 | 23
6 | 17
8 | 22
81 | | ENSG00000214298
ENSG00000212443 | APTR
SNORAS3 | APTR Alto-mediated CD KN1A/p21 transcriptional regulator (nor
SNORA53 small nucleolar RNA, H/ACA box 53 | Other other | 0.59 | 0.51
1.09 | 036
083 | 0.02
0.08 | 0.02 | 020
015 | 91
71 | 97
67 | 81
62 | 9
29 | 3
33 | 19
38 | | ENSG00000178440
ENSG000000227403 | LINC00843
AC009299.3 | UNC00843 long
intergenic non-protein coding RNA 843 UNC01806 long intergenic non-protein coding RNA 1806 | Other other
Other other | 0.54
0.53 | 0.73 | 0.59
-0.70 | 0.08 | 0.01 | 0.07 | 83
94 | 78
58 | 76
11 | 17
6 | 22
42 | 24
89 | | ENSG00000272054
ENSG00000257499 | RP11-423P10.2
NA | CEBP2 CCAAT/enhancer binding protein zeta | Nucleus iption regulator | 0.51
0.63 | 0.85
0.84 | | 0.04 | 0.00 | | 80
86 | 86
94 | | 20
14 | 6 | | | ENSG00000230732
ENSG00000269246 | AC127904.2
CTC-246818.10 | | | 0.61 | 0.49
0.16 | 035
010 | 0.04 | 0.00 | 0.02
0.18 | 69
71 | 72
53 | 68
57 | 31
29 | 28
44 | 32
43 | | ENSG00000272933
ENSG00000271856 | RP11-47A8.5
LINC01215 | LINC01215 long intergenic non-protein coding RNA1215 | Other other | -0.27
-0.25 | -1.06
-0.87 | 0.08
0.09 | 0.00 | 0.00 | 0.26
0.24 | 31.
23 | 3 | 54
62 | 69
77 | 97
100 | 46
38 | | ENSG00000270069
ENSG00000229645 | M R222HG
NA | M R222HG | Other other | 0.15 | -1.47
-0.80 | 2.27
0.27 | 0.08 | 0.00 | 0.00 | 60 | 0 | 97
76 | 40 | 100
100 | 3
24 | | ENSG00000265150
ENSG00000266088 | NA
RP5-10281/7.2 | | | 0.13
-0.40 | -0.59
-1.25 | 0.28
-0.77 | 0.07 | 0.00 | 0.64 | 54
17 | 25
3 | 59
8 | 46
83 | 75
97 | 41
92 | | ENSG00000238121
ENSG00000260979 | LINC00426
RP11-77H9.8 | UNC00426 long intergenic non-protein coding RNA426 | Other other | -0.42
-0.44 | -0.86
-0.90 | -0.29
0.13 | 0.00 | 0.00 | 0.00 | 20
20 | 3
6 | 30
62 | 80
80 | 97
94 | 70
38 | | ENSG00000272005
ENSG00000268573 | RP11-91J19.4
RP11-158H5.7 | ZSCANBO zinc finger and SCAN domain containing 30 | Other other | -0.46 | -0.76
-0.70 | -1.22
-1.12 | 0.01 | 0.00 | 0.00 | 60
14 | 11
6 | 3 | 40
86 | 89
94 | 97
97 | | ENSG00000267440
ENSG00000272091 | CTC-501010.1
RP4-758124.5 | | | -023 | 2.01 | -1.13 | 0.00 | 0.00 | 0.00 | 14 | 100 | | 86 | 0
94 | 100 | | ENSG00000261662
ENSG00000268855 | RPS-104288.7
AC006129.1 | | | -0.36
0.26 | -0.81
-0.72 | 001 | 0.00 | 0.00 | 0.20 | 26
57 | 3 22 | 51
54 | 74
43 | 97 | 49 | | ENSG00000233721
ENSG00000272449 | RP11-20516.1 | LOC105376276 | Other other | 0.04 | 2.06 | 0.25 | 0.00 | 0.00 | 0.41 | 54 | 100 | 68 | 46 | 0 81 | 32 | | ENSG00000268947
ENSG00000235728 | A0000684.2
AC007349.5 | | | | 182
2.14 | | 0.00 | 0.00 | 442 | | 97
94 | | _ | 3 | _ | | ENSG00000247134
ENSG00000272384 | RP11-11N9.4
RP11-44N11.2 | | | -0.47 | -0.79 | -0.44 | 0.00 | 0.00 | 0.00 | 40 | 11 | 32 | 60 | 89 | 68 | | ENSG00000272384
ENSG00000245060
ENSG00000272871 | LINC00847 | LINC00847 long intergenic non-protein coding RNA 847 | Other other | -035 | -0.51 | 0.12 | 0.00 | 0.00 | 0.45 | 11 | 6 | 59 | 89 | 94 | 41 | | ENSG00000272871
ENSG00000232233
ENSG00000229807 | RP11-573015.2 | | Other other | -0.30 | -0.76
1.23 | 036 | 0.00 | 0.00 | 0.27 | 20 | 97 | 68 | 80 | 86
3 | 32
16 | | ENSG00000249667 | XST
LINCO1259 | XST X inactive specific transcript (non-protein coding) UNC01259 long intergenic non-protein coding RNA1259 | Nucleus other
Other other | 0.48 | 0.52
-0.97 | -2.00 | 0.00 | 0.00 | 000 | 54
71 | 75
11 | 49
5 | 17
29 | 3
89 | 95 | | ENSG00000267519
ENSG00000273344 | PACIP1-AS1 | PAXIP1-AS1 PAXIP1 antisense RNA 1 (head to head) | Other other | -031
002 | 0.70
-0.50 | 2.60
-0.29 | 0.00 | 0.00 | 000 | 34
54 | 89
17 | 100
14 | 66
46 | 11
83 | 0
86 | | ENSG00000262663
ENSG00000260260 | RP11-497H17.1
SNHG19 | SNHG19 small nucleolar RNA host gene 19 | Other other | 0.38 | 2.01
0.73 | -0.36 | 0.97 | 0.00 | 0.00 | 77 | 78
100 | 14 | 23 | 0 | 86 | | ENSG00000267002
ENSG00000260868 | RP11-34208.1
RP11-521/2.3 | | | 0.28 | 0.95
1.32 | 0.23 | 0.74 | 0.00 | 0.62 | 71 | 97
78 | 68 | 29 | 3
22 | 32 | | ENSG00000272583
ENSG00000271359 | RP11-84C13.1 | | | -050
-050 | -0.97
-0.61 | -1.01
-0.06 | 0.00 | 0.00
0.00 | 0.00 | 29
17 | 22
19 | 14
49 | 71
83 | 78
81 | 86
51 | | ENSG000000267143
ENSG000000232545 | RP11-67704-6
KB-31888.7 | | | 0.39 | 0.95
1.45 | 0.43 | 0.08 | 0.00 | 0.01 | 74 | 86
83 | 78 | 26 | 14
17 | 22 | | ENSG000000264352
ENSG000000203620 | RN75L6029
RP11-84A19.2 | RN7SL6029 RNA, 7SL, cytoplasmic 602, pseudogene | Other other | 0.63 | 1.27
0.71 | 0.67 | 0.17 | 0.00
0.00 | 0.01 | 74 | 86
92 | 78 | 26 | 14
8 | 22 | | ENSG00000238035
ENSG00000245532 | AC138085.2
NEAT1 | | | 0.37 | 0.77
0.71 | 193 | 0.01 | 0.00 | 0.00 | - 60 | 92
81 | 97 | 31 | 8
19 | 3 | | ENSG00000272556
ENSG00000251194 | RP11-6388.1
RP1-68018.2 | GTF 2IP13 general transcription factor III pseudogene 13 | Other other | 0.22 | 1.16
0.86 | 0.79 | 0.83 | 0.00 | 0.00 | 60 | 83
89 | 81 | 40 | 17
11 | 19 | | ENSG00000263874
ENSG00000258199 | LINC00672
RP11-977G19.5 | UNC00672 long intergenic non-protein coding RNA 672 | Other other | 0.56 | 0.76
0.88 | -0.09
0.42 | 0.06
0.05 | 0.00 | 000 | 83
86 | 92
89 | 43
70 | 17
14 | 8 | 57
30 | | ENSG00000269899
ENSG00000244357 | CTD-3222019.12
RN7SL145P | RN75L145P | Other other | 0.47 | 0.73
1.42 | | 0.08 | 0.00 | | 91 | 94
81 | | 9 | 6
17 | | | ENSG00000264756
ENSG00000262380 | NA. | | | 0.73 | 132
112 | 0.63 | 0.08 | 0.00 | 0.01 | 77 | 86
81 | 76 | 23 | 14
19 | 24 | | ENSG00000206612
ENSG00000231865 | SNORAZA
SIKS-IT1 | SNORAZA small nucleolar RNA, H/ACA box 2A | Other other | | 179
059 | | | 0.00 | | | 81
83 | | | 17 | - | | ENSG00000270640
ENSG00000226067 | | UNC00623 long intergenic non-protein coding RNA623 | Other other | -0.14
-0.34 | 0.91 | 1.48
-1.10 | 0.04 | 0.00 | 000 | 43
31 | 78
28 | 95
16 | 57
60 | 72 | 5
84 | | ENSG00000226091
ENSG00000269925 | LINC00937
RP3-467L1.6 | UNC00987 long intergenic non-protein coding RNA937 | Other other | 0.05 | 080 | 103 | 0.04 | 0.00 | 000 | 54
77 | 78
78 | 97
78 | 46
23 | 22 | 3 22 | | ENSG00000262758
ENSG00000232956 | CTD-3195/5.1
SNHG15 | SNHG15 small nucleolar RNA host gene 15 | Other other | 0.39 | 0.62
0.61 | 021 | 0.37 | 0.00 | Q54
Q00 | 86
77 | 89
100 | 70
100 | 14
23 | 11
0 | 30
0 | | ENSG00000212607
ENSG00000231611 | SNORA458
AP006216.11 | SNORASB small nucleolar RNA, H/ACA box 38 | Other other | 0.39 | 136
065 | 0.38 | 0.29 | 0.00 | 0.12 | 91 | 75
97 | 78 | 9 | 19
3 | 22 | | ENSG00000245694
ENSG00000239868 | | LOC1 01 92 74 80 unch ar act or ked LOC 10 19 27 48 0
RN7 SL34 P | Other other | | 0.83
0.92 | 0.81
0.69 | 0.23 | 0.00 | 000
001 | | 97
86
81 | 78
84
76 | | 14
19 | 16
24 | | ENSG00000239868
ENSG00000232098
ENSG00000260023 | | | ores other | 0.46 | 0.61 | 0.19
-0.12 | 0.04 | 0.00 | 0.01
0.72 | 80
66 | 81
86
89 | 76
59
46 | 20
34 | 19
14
11 | 24
41
54 | | ENSG000000256092 | MIR8072 | | | 0.51 | 0.62 | 0.38 | 0.11 | 0.00 | 0.02 | 86 | 86 | 81 | 14 | 14 | 19 | | ENSG00000254676
ENSG00000261061 | RP11-308E16.2 | | | 0.24 | 0.55 | -0.08
0.62 | 0.98 | 0.01 | 0.01 | 57 | 83
83 | 49
81 | 48 | 17 | 51
19 | | ENSG00000264469
ENSG00000259623 | RP11-173M1.8
RP11-15666.1 | KLHL11 kelch like family member 11 | Other other | 0.42 | 0.70
0.56 | 0.72
-0.22 | 0.10
0.52 | 0.01 | 000 | 83 | 83
92 | 95
22 | 37
17 | 17
8 | 78 | | ENSG00000243745
ENSG00000248360 | NA
LINCO0504 | UNC00504 | Other other | 0.43 | 0.78
0.51 | 0.97
0.62 | 0.04 | 0.01 | 000 | 91 | 81
86 | 73
86 | 9 | 19
14 | 27
14 | | ENSG00000261468
ENSG00000223692 | DP2A-IT1 | DIP2A-IT1 DIP2A intronic transcript 1 | Other other | 0.44 | 0.58
0.70 | -0.81
-0.35 | 0.08
0.31 | 0.01 | 0.00
0.01 | 94
60 | 92
78 | 0
43 | 6
40 | 8
22 | 100
57 | | ENSG000000245556
ENSG000000248323 | SCAMP1-AS1
LUCAT1 | SCAMP1-AS1 SCAMP1 antisense RNA1
LUCAT1 lung cancer associated transcript 1 (non-protein coding) | Other other | 0.26 | 0.51 | -0.37
2.43 | 0.73 | 0.02 | 000 | 83 | 97 | 100 | 17 | 3 | 92
0 | | ENSG00000241657
ENSG00000247774 | TRBV11-2
PCED18-AS1 | TRBV11-2 T cell receptor beta variable 11-2 PCED 18-AS1 PCED18 antisense RNA 1 | Other other
Other other | 0.20 | -0.08
0.27 | -2.20
-1.48 | 0.29
0.58 | 0.01 | 000 | 71
29 | 44
78 | 0 | 29
11 | 56
22 | 100
100 | | ENSG00000271109
ENSG000000260822 | GS1-35898.4 | LOC102723540uncharacterized LOC102723540 | Other other | 0.51 | 0.43
-0.38 | -1.38
-1.28 | 0.06
0.01 | 0.00 | 000 | 94
57 | 94
22 | 0 | 6
43 | 6
78 | 100
100 | | ENSG00000175061
ENSG00000273448 | RP11-5407.18 | L RRC75A-AS1 LRRC75A antisense RNA 1 | Other other | -0.09 | -0.16 | -0.56
2.38 | 0.00 | 0.00 | 000 | 34 | 31 | 100 | 66 | 69 | 100 | | ENSG000000261888
ENSG000000260066 | AC144831.1
RP11-690019.3 | | | 0.21 | -0.23 | 2.04
-1.12 | 0.16 | 0.00 | 000 | 74 | 28 | 97
0 | 26 | 72 | 3
100 | | ENSG00000235999 | NA. | | | -0.33 | -0.49 | -1.19 | 0.00 | 0.00 | 0.00 | 20 | 17 | 0 | 80 | 83 | 100 | | | | | | | | | _ | | | | | | | | | |--------------------------------------|-------------------------------
--|----------------------------|----------------|----------------|----------------|------|------|------|-----------------|----------|----------|-----------------|----------|------------| | ENSG00000241014 | | LOC653160 uncharacterized LOC653160 | Other other | 0.46 | 0.18 | -1.19 | 0.12 | 0.79 | 0.00 | 86 | 75 | 0 | 14 | 25 | 100 | | ENSG000000226380 | MIR2981 | | | | | 133 | | | 0.00 | | | 100 | | | 0 | | ENSG00000273148
ENSG00000182165 | RP5-1068E13.7
TP53TG1 | TPS3TG1 TPS3 target 1 (non-protein coding) | Other other | -0.22 | -0.22
-0.36 | -1.01
-0.90 | 0.00 | 0.00 | 0.00 | 51
31 | 22 | 0 | 49
69 | 78
78 | 100
100 | | ENSG00000182168 | AC007278.3 | ing in a supple of the confidence confide | Coner coner | -0.22 | -0.36 | 2.27 | 0.00 | 4.00 | 0.00 | 31 | 22 | 95 | as | /8 | 5 | | ENSG00000231133 | HAR1B | HAR1B highly accelerated region 18 (non-protein coding) | Other other | 0.38 | 0.38 | -1.89 | 0.30 | 0.25 | 0.00 | 80 | 78 | 3 | 20 | 22 | 97 | | ENSG000000247556 | OIPS-AS1 | CIPS-AS1 OIPS antikense RNA 1 | Other other | 0.21 | -0.38 | -0.77 | 0.08 | 0.00 | 0.00 | 71 | 14 | 0 | 29 | 86 | 100 | | ENSG000000260940 | | | | 0.13 | -0.31 | -1.17 | 0.01 | 0.00 | 0.00 | 54 | 36 | 3 | 46 | 64 | 97 | | ENSG00000245937
ENSG00000235437 | LINC01184
LINC01278 | UNC01184 long intergenic non-protein coding RNA 1184
UNC01278 long intergenic non-protein coding RNA 1278 | Other other | -0.13
0.14 | -0.45
0.00 | -0.91
-0.83 | 0.00 | 0.00 | 000 | 31
77 | 8
50 | 3 | 60
23 | 92
50 | 97
97 | | ENSG00000255437 | | LINCUI 278 long intergenic non-protein coding RNA 1278 | Other other | 0.38 | 0.23 | -0.83
-0.91 | 0.13 | 0.65 | 0.00 | 91 | 64 | 3 | 9 | 36 | 97 | | ENSG00000251230 | RP11-701P16.5 | MIRS945HG MIR3945 hox gene | Other other | | | 193 | 0.00 | | 0.00 | | - | 100 | | | 0 | | ENSG00000232324 | AC008440.10 | | | 1 | | 2.80 | | | 0.00 | l | | 97 | | | 3 | | ENSG000000258929 | | | | 1 | | 1.46 | | | 0.00 | l | | 100 | | | 0 | | ENSG000000270846 | | | | 1 | | 1.40 | | | 0.00 | | | 95 | | | 5 | | ENSG00000259976
ENSG00000264290 | RP11-553L6.5
RP11-68B.4 | mir-568 microRNA 568 | Cytoplasm nicroRNA | 0.47 | 0.04 | -0.92
1.81 | 0.05 | 0.10 | 0.00 | 80 | 58 | 3 | 20 | 42 | 97 | | ENSG00000264290 | | LOC101928343uncharacterized LOC101928343 | Other other | 1 | | 118 | | | 0.00 | l | | 95
97 | | | 5
3 | | ENSG00000267350 | | COCTOS ELECTRICAL METER COCCO ESTADOS | COMP CENTER | -0.04 | -0.44 | -0.68 | 0.00 | 0.00 | 0.00 | 43 | 11 | 3 | 57 | 89 | 97 | | ENSG000000268713 | CTC-444N24.8 | | | -0.41 | -0.16 | -0.70 | 0.00 | 0.00 | 0.00 | 17 | 33 | 3 | 83 | 67 | 97 | | ENSG000000263941 | RN75L32P | RN7SL32P RNA, 7SL, cytoplasmic 32, pseudogene | Other other | 0.12 | 0.50 | 1.40 | 0.08 | 0.05 | 0.00 | 51 | 72 | 97 | 49 | 28 | 3 | | ENSG000000260805 | RP11-61J19.5 | | | | | 131 | | | 0.00 | | | 97 | | | 3 | | ENSG00000257742
ENSG00000273008 | RP11-350F4.2
RP11-351D16.3 | | | 0.35 | -0.12 | -0.72
130 | 0.72 | 0.00 | 0.00 | 91 | 33 | 95 | 9 | 67 | 100
S | | ENSG00000273008 | | | | 0.25 | 0.05 | -1.01 | 1.00 | 0.21 | 0.00 | 74 | 56 | 95 | 26 | 44 | 92 | | ENSG00000255135 | | | | -0.30 | 0.08 | -1.08 | 0.00 | 0.22 | 0.00 | 29 | 61 | 3 | 71 | 39 | 97 | | ENSG000000261026 | CTD-3247F14.2 | LOC286058 uncharacterized LOC286058 | Other other | 1 | | 1.22 | | | 0.00 | l | | 97 | | | 3 | | ENSG00000175701 | LINC00116 | UNC00116 long intergenic non-protein coding RNA116 | Other other | -0.01 | -0.21 | -0.83 | 0.00 | 0.00 | 0.00 | 46 | 19 | 0 | 54 | 81 | 100 | | ENSG00000262477 | AC021224.1 | | | 0.19 | -0.28 | -0.72 | 0.23 | 0.00 | 0.00 | 63 | 42 | 22 | 37 | 58 | 78 | | ENSG00000258733
ENSG00000272899 | | LOC100130705uncharacterized LOC100130705 | Other other | -0.25 | -0.04 | -0.98
1.36 | 0.00 | 0.00 | 000 | 34 | 42 | 100 | 66 | 58 | 95
0 | | ENSG00000270101 | NA NA | The state of s | July dive | 0.09 | -0.11 | -0.53 | 0.03 | 0.00 | 0.00 | 60 | 44 | 8 | 40 | 56 | 92 | | ENSG00000271948 | RP11-242F4.2 | | | 0.16 | -0.13 | -0.92 | 0.52 | 0.00 | 0.00 | 71 | 44 | 11 | 29 | 56 | 89 | | ENSG000000260563 | | | | 0.06 | -0.26 | -0.66 | 0.00 | 0.00 | 0.00 | 51 | 25 | 11 | 49 | 75 | 89 | | ENSG00000248476 | BACH1-IT1 | | | 1 | | 156 | | | 0.00 | l | | 95 | l | | 5 | | ENSG00000271020 | | INCOMEN In a large of the | Other | | 0.22 | 2.29 | | | 0.00 | | 0.5 | 84 | _ | _ | 16 | | ENSG00000269220
ENSG00000273356 | LINC00528
RP11-804H8.6 | LINCOD528 long intergenic non-protein coding RNA 528 | Other other | -0.17
-0.39 | -0.50 | 0.86
1.03 | 0.00 | 0.75 | 0.00 | 37
34 | 94
17 | 100 | 63
66 | 83 | 0 | | ENSG00000273931 | RP5-943/3.2 | | | -0.40 | -0.41 | -0.95 | 0.00 | 0.00 | 0.00 | 17 | 14 | 5 | 83 | 86 | 95 | | ENSG000000244567 | AC096772.6 | | | -0.33 | -0.19 | -0.71 | 0.00 | 0.00 | 0.00 | 20 | 36 | 0 | 80 | 64 | 100 | | ENSG000000204272 | LINC01420 | NBDY negative regulator of P-body association | Other other | -0.31 | -0.21 | -0.55 | 0.00 | 0.00 | 0.00 | 29 | 36 | 3 | 71 | 64 | 97 | | ENSG000000264885 | | | | -0.07 | -0.07 | -0.65 | 0.00 | 0.00 | 0.00 | 43 | 44 | 0 | 57 | 56 | 100 | | ENSG00000215417
ENSG000002256950 | MIR17HS
DANCE | DINCO differentiales consendences and codes and | Other other | -0.04 | -0.15 | 1.09
-0.61 | 0.00 | 0.00 | 0.00 | 43 | 39 | 89 | 57 | 61 | 11 100 | | ENSG00000273265 | | DANCR differentiation antagonizing non-protein coding RNA | Coner dener | 0.04 | -0.43 | -1.29 | 0.02 | 0.00 | 0.00 | 57 | 33 | 11 | 43 | 67 | 89 | | ENSG00000263753 | LINC00667 | LINC00667 long intergenic non-protein coding RNA 667 | Other other | 0.17 | -0.44 | -0.56 | 0.08 | 0.00 | 0.00 | 71 | 3 | 0 | 29 | 97 | 100 | | ENSG000000224914 | LINC00863 | LINCOD863 long intergenic non-protein coding RNA 863 | Other other | 0.27 | -0.24 | -0.56 | 0.23 | 0.00 | 0.00 | 74 | 28 | 3 | 26 | 72 | 97 | | ENSG000000261799 | | LOC283357 uncharacterized LOC283357 | Other other | 0.25 | 0.11 | -0.62 | 0.89 | 0.22 | 0.00 | 74 | 56 | 5 | 26 | 44 | 95 | | ENSG000000260817 | RP11-4883.4 | | | -0.08 | -0.08 | -0.66 | 0.01 | 0.00 | 0.00 | 46 | 50
58 | 8 | 54
20 | 50
42 | 92
92 | | ENSG000000255328
ENSG000000253948 | | 0.0106.0386666 | Other other | 0.62 | -0.20 | -0.76
-1.06 | 0.06 | 0.44 | 000 | 80
54 | 42 | 8
11 | 20
46 | 42
58 | 92 | | ENSG00000170846 | AC098323.3 | LOC93622 Morf 4 family associated protein 1 like 1 pseudogene | Other other | 0.09 | -0.40 | -0.55 | 0.03 | 0.00 | 0.00 | 66 | 11 | 5 | 34 | 89 | 95 | | ENSG00000273216 | AC002059.10 | , | | | | 1.57 | | | 0.00 | | | 92 | | | 8 | | ENSG000000231507 | LINC01353 | LINCO1353 long intergenic non-protein coding RNA 1353 | Other other | 1 | | 1.10 | | | 0.00 | l | | 100 | | | 0 | | ENSG00000237310 | | GS1-124K5.4 uncharacterized LOC100289098 | Other other | 0.18 | 0.01 | -0.95 | 0.20 | 0.05 | 0.00 | 60 | 53 | 11 | 40 | 47 | 89 | | ENSG000000259863 | SH3RF3-AS1 | SH3RF3-AS1 SH3RF3 antisense RNA 1 | Other other | 0.06 | -0.31 | -0.66 | 0.00 | 0.00 | 0.00 | 60 | 28 | 11 | 40 | 72 | 89 | | ENSG00000263004
ENSG00000267521 | RP11-166P13.3
RP11-87624.6 | | | -0.02 | -0.06 | -0.88
1.40 | 0.11 | 0.03 | 0.00 | 46 | 42 | 97 | 54 | 58 | 97 | | ENSG00000230555 | | | | -0.16 | -0.13 | -0.76 | 0.00 | 0.00 | 0.00 | 40 | 33 | 5 | 60 | 67 | 95 | | ENSG000000229152 | ANKRD10-IT1 | ANKRD10-IT1 ANKRD10 intronic transcript 1 | Other other | 0.44 | 0.48 | 1.13 | 0.11 | 0.11 | 0.00 | 74 | 75 | 86 | 26 | 25 | 14 | | ENSG000000264456 | 8911-84891.2 | | | 1 | | 0.98 | | | 0.00 | | | 95 | | | 5 | | ENSG00000237772 | AC092620.3 | | | -0.31 | | 1.02 | 0.00 | | 0.00 | 34 | | 95 | 66 | | 5 | | ENSG00000260997
ENSG00000273456 | RP4-647121.1
RP11-68606.2 | LOC285957 uncharacterized LOC285957 | Other other | -0.46 | -0.06 | 0.83 | 0.00 | 0.00 | 0.00 | 17
49 | 44
50 | 100 | 83
51 | 56
50 | 0 | | ENSG00000273450 | | | | 0.38 |
-0.04 | -0.83 | 0.00 | 0.00 | 000 | 80 | 47 | 14 | 20 | 53 | 84
86 | | ENSG00000273245 | | | | 0.48 | 0.31 | -0.98 | 0.20 | 0.97 | 0.00 | 77 | 72 | 14 | 23 | 28 | 86 | | ENSG000000272565 | | | | -0.12 | 0.22 | 0.67 | 0.00 | 0.70 | 0.00 | 46 | 64 | 100 | 54 | 36 | 0 | | ENSG000000224959 | AC017002.2 | | | 1 | | 1.22 | | | 0.00 | | | 84 | l | | 16 | | ENSG000000273038 | | | 04 | 0.32 | 0.09 | 0.58 | 0.13 | 0.06 | 0.00 | 83 | 56 | 92 | 17 | 44 | 8 | | ENSG00000207501
ENSG000000257613 | RNVUI-14
RP11-32097.1 | RNVUI-14 RNA, variant UI small nuclear 14
UNC01481 long intergenic non-protein coding RNA 1481 | Other other
Other other | -0.33
0.27 | -0.46
-0.26 | -0.70 | 0.16 | 0.00 | 000 | 49
83 | 39
33 | 97
22 | 51
17 | 61
67 | 3
78 | | ENSG00000224376 | AC017104.6 | ARMC9 armadillo repeat containing 9 | Cytoplasm other | 427 | -2.20 | 0.73 | 3.73 | 200 | 0.00 | - | | 97 | . " | 37 | 3 | | ENSG00000241732 | RP11-38P22.2 | | | 1 | | 0.74 | | | 0.00 | l | | 76 | l | | 24 | | ENSG00000198106 | SN029P2 | | | -0.13 | 0.14 | 0.59 | 0.00 | 0.08 | 0.00 | 43 | 56 | 97 | 57 | 44 | 3 | | ENSG00000269951 | No. 22-12 Inches | | | -0.08 | 0.07 | 0.61 | 0.00 | 0.01 | 0.00 | 43 | 58 | 100 | 57 | 42 | 0 | | ENSG00000226644
ENSG00000273272 | | | | 1 | | 160
161 | | | 0.00 | l | | 86
97 | l | | 14
3 | | ENSG00000273160 | | | | 0.39 | 0.03 | -1.11 | 0.41 | 0.42 | 0.00 | 71 | 50 | 14 | 29 | 47 | 86 | | ENSG00000271855 | RP11-214N9.1 | | | 1 | 0.39 | 0.94 | | 0.99 | 0.00 | | 64 | 92 | | 36 | 8 | | ENSG00000199568 | RNUSA-1 | RNUSA-1 RNA, USA small nuclear 1 | Other other | 1 | | 2.61 | | | 0.00 | l | | 78 | l | | 11 | | ENSG000000223336 | RNU2-6P | RNU2-6P RNA, U2 small nuclear 6, pseudogene | Other other | -0.19 | -0.16 | 116 | 0.08 | 0.01 | 0.00 | 46 | 42 | 86 | 54 | 58 | 14 | | ENSG000000251580 | | LOC105374366 | Other other | 0.36 | 0.30 | -1.08 | 0.73 | 0.86 | 0.00 | 66 | 67 | 19 | 34 | 33 | 81 | | ENSG00000273175
ENSG00000272716 | | | | -0.34 | -0.45
0.24 | -0.69
-0.77 | 0.00 | 0.00 | 0.00 | 26
54 | 67 | 22
11 | 74
46 | 86
33 | 78
89 | | ENSG00000269653 | U62631.5 | | | | 244 | 1.02 | 3.00 | | 0.00 | | - | 84 | ı ~ | | 16 | | ENSG00000273117 | | | | -0.08 | 0.15 | 0.69 | 0.00 | 0.24 | 0.00 | 43 | 67 | 89 | 57 | 33 | 11 | | ENSG000000207205 | | RNVUI-15 RNA, variant U1 small nuclear 15 | Other other | 1 | | 2.27 | | | 0.00 | | | 73 | l . | | 24 | | ENSG00000237892 | | KLF7-IT1 KLF7 intronic transcript 1 | Other other | 0.18 | 0.35 | 0.72 | 0.13 | 0.70 | 0.00 | 69 | 72 | 84 | 31 | 28 | 16 | | ENSG00000272666
ENSG00000236901 | | LOC105373098uncharacterized LOC105373098 | Other other | 1 | | 0.82 | | | 0.00 | l | | 84
84 | l | | 16
16 | | ENSG00000234901 | | M R181A1HG MIR181A1 host gene | Other other | 1 | | 0.64 | | | 0.00 | l | | 95 | l | | 16
5 | | ENSG00000223401 | | | June deller | 1 | | 126 | | | 0.00 | l | | 78 | l | | 22 | | ENSG00000229801 | NA. | | | 1 | | 137 | | | 0.00 | l | | 70 | l | | 30 | | ENSG00000235908 | | RHOA-IT1 | Other other | 1 | | 0.83 | | | 0.00 | | | 81 | l | | 19 | | ENSG00000269930 | | | | 0.27 | 0.00 | 0.73 | 0.18 | 0.01 | 0.00 | 60 | 50 | 84 | 31 | 50 | 16 | | ENSG00000269919
ENSG00000230138 | | | | 1 | | 0.96
0.70 | | | 0.00 | l | | 76
81 | l | | 24
19 | | ENSG00000230138
ENSG00000178977 | | UNC00324 long intergenic non-protein coding RNA324 | Other other | -035 | -0.45 | 0.70 | 0.00 | 0.00 | 000 | 29 | 28 | 81
81 | 71 | 72 | 19 | | ENSG00000197813 | | | | -0.02 | -0.37 | 0.65 | 0.02 | 0.00 | 0.00 | 43 | 25 | 84 | 57 | 75 | 16 | | ENSG000000212456 | NA. | | | 0.51 | | 1.01 | 0.43 | | 0.00 | 60 | | 76 | 40 | | 24 | | ENSG00000235621 | | LINCOD494 long intergenic non-protein coding RNA494 | Other other | 1 | | 0.61 | | | 0.00 | I | | 78 | | | 22 | | ENSG00000263050 | | 8075.2639 | Other other | 1 | | 0.78 | | | 0.00 | l | | 70
70 | l | | 30
30 | | | | THE PARTY AND ADDRESS OF | June Coner | 1 | | 485 | | | | ı | | 70 | | | | | ENSG00000240160
ENSG00000271914 | | | | 0.16 | 0.14 | 056 | 0.29 | 0.51 | 0.04 | 60 | 58 | 73 | 40 | 42 | 27 | # Genes up-regulated in CD4+ and down-regulated in CD8+ | | | | | CD4+ v | s PBMC Re | esults | | | | | | | CD8+ | vs PBMC Re | sults | | | | |-----------------|-----------|------------|------------|------------|-----------|------------|------------|-------------|------------|-----------|------------|------------|------------|------------|----------|------------|------------|------------| | EnsemblGeneIds | GeneNames | logFC | logCPM | LR | Pvalue | FDR | MedianLogF | PercentDown | PercentUp | GeneNames | logFC | logCPM | LR . | Pvalue | FDR | MedianLogF | PercentDow | PercentUp | | ENSG00000186815 | TPCN1 | 0.57010976 | 4.62939163 | 74.3038222 | 6.70E-18 | 3 1.44E-17 | 0.63636169 | 2.85714286 | 97.1428571 | TPCN1 | -0.4822395 | 4.01170591 | 38.6181773 | 5.15E-10 | 1.02E-09 | -0.5664693 | 88.8888889 | 11.1111111 | | ENSG00000100055 | CYTH4 | 0.40385086 | 6.82564425 | 43.4555976 | 4.34E-11 | 7.68E-11 | 0.50967264 | 14.2857143 | 85.7142857 | CYTH4 | -0.573059 | 6.36477092 | 70.5017825 | 4.60E-17 | 1.16E-16 | -0.571028 | 88.888889 | 11.1111111 | # Genes down-regulated in CD4+ and up-regulated in CD8+ | | | | | CD4+ v | s PBMC Re | sults | | | | | | | CD8+ | vs PBMC Re | sults | | | | |-----------------|-----------|------------|------------|------------|-----------|-----------|------------|---------------|------------|-----------|------------|------------|------------|------------|----------|------------|-------------|------------| | EnsemblGeneIds | GeneNames | logFC | logCPM | LR | Pvalue | FDR | MedianLogF | PercentDowr F | PercentUp | GeneNames | logFC | logCPM | LR | Pvalue | FDR | MedianLogF | PercentDown | PercentUp | | ENSG00000073861 | TBX21 | -2.5831174 | 3.64262614 | 1038.40435 | 8.07E-228 | 1.16E-226 | -2.5910849 | 100 | 0 | TBX21 | 0.84101475 | 4.84947155 | 136.357887 | 1.67E-31 | 6.09E-31 | 0.81396416 | 5.5555556 | 94.444444 | | ENSG00000007264 | MATK | -2.2797468 | 4.40821692 | 1010.42844 | 9.72E-222 | 1.36E-220 | -2.2020995 | 100 | 0 | MATK | 0.67034716 | 5.37041189 | 93.8698258 | 3.37E-22 | 9.83E-22 | 0.55910148 | 8.33333333 | 91.6666667 | | ENSG00000101082 | SLA2 | -1.7391343 | 4.33823297 | 610.133926 | 1.05E-134 | 9.37E-134 | -1.6008776 | 100 | 0 | SLA2 | 0.72442627 | 5.32868166 | 108.449767 | 2.14E-25 | 6.82E-25 | 0.66066898 | 11.1111111 | 88.888889 | | ENSG00000100302 | RASD2 | -1.3415626 | 3.55928138 | 295.87142 | 2.61E-66 | 1.27E-65 | -1.3294818 | 100 | 0 | RASD2 | 1.24865364 | 4.69863195 | 289.111355 | 7.77E-65 | 4.92E-64 | 1.08310416 | 0 | 100 | | ENSG00000111537 | IFNG | -1.9045296 | 1.61416643 | 292.557632 | 1.38E-65 | 6.62E-65 | -1.9909315 | 94.2857143 | 5.71428571 | IFNG | 0.5061156 | 2.63627694 | 24.6825224 | 6.76E-07 | 1.16E-06 | 0.57772804 | 30.555556 | 69.444444 | | ENSG00000145220 | LYAR | -1.0568571 | 3.22881949 | 175.203622 | 5.40E-40 | 1.80E-39 | -1.030111 | 100 | 0 | LYAR | 0.60434701 | 3.93729181 | 60.1030942 | 9.00E-15 | 2.12E-14 | 0.51916139 | 2.77777778 | 97.222222 | | ENSG00000030419 | IKZF2 | -0.7364122 | 4.62260595 | 123.331515 | 1.18E-28 | 3.20E-28 | -0.6102724 | 94.2857143 | 5.71428571 | IKZF2 | 0.44749396 | 5.13001686 | 40.4324091 | 2.04E-10 | 4.10E-10 | 0.50647936 | 19.444444 | 80.555556 | | ENSG00000123146 | CD97 | -0.5525341 | 7.67921764 | 79.6516961 | 4.47E-19 | 9.83E-19 | -0.5077599 | 77.1428571 | 22.8571429 | CD97 | 0.67602885 | 8.17339963 | 94.3230962 | 2.68E-22 | 7.85E-22 | 0.6355205 | 5.5555556 | 94.444444 | | ENSG00000179588 | ZFPM1 | -0.603066 | 3.91550539 | 69.216991 | 8.82E-17 | 1.84E-16 | -0.598581 | 80 | 20 | ZFPM1 | 1.31566417 | 5.04389481 | 331.105399 | 5.52E-74 | 3.93E-73 | 1.20356161 | 2.77777778 | 97.222222 | | ENSG00000188483 | IER5L | -0.5943439 | 3.16728197 | 53.0334736 | 3.28E-13 | 6.20E-13 | -0.5217895 | 80 | 20 | IER5L | 0.61053988 | 3.74100042 | 54.9319498 | 1.25E-13 | 2.83E-13 | 0.59562147 | 19.444444 | 80.555556 | # Genes Regulated in the same direction | | | | | CD4+ v | vs PBMC R | esults | | | | | | CD8+ v | vs PBMC Re | sults | | | | |-----------------|-----------|------------|------------|------------|-----------|--------|--------------|-----------------------|------------|------------|------------|------------|------------|-----------|-------------|-------------|------------| | EnsemblGeneIds | GeneNames | logFC | logCPM | LR | Pvalue | FDR | MedianLogI | (PercentDowr PercentU | GeneNames | logFC | logCPM | LR | Pvalue | FDR | MedianLogF(| PercentDowr | PercentUp | | ENSG00000002933 | TMEM176A | -4.6157092 | 3.28432572 | 2182.51922 | | 0 | 0 -4.5776051 | 100 | 0 TMEM176A | -6.0494878 | 3.12752998 | 2393.35763 | 0 | 0 | -6.3426531 | 100 | 0 | | ENSG00000007237 | GAS7 | -4.3189257 | 5.71935075 | 3534.12118 | | 0 | 0 -4.2820207 | 7 100 | 0 GAS7 | -3.0769767 | 5.81424142 | 1702.85624 | 0 | 0 | -2.9850081 | 100 | 0 | | ENSG00000007312 | CD79B | -5.1383115 | 5.0160411 | 4303.88978 | | 0 | 0 -5.0033355 | 100 | 0 CD79B | -4.518447 | 4.9612892 | 2983.08862 | 0 | 0 | -4.5638882 | 100 | 0 | | ENSG00000010671 | BTK | -5.1197631 | 2.89600191 | 2320.3947 | | 0 | 0 -5.1512944 | 100 | O BTK | -4.9921357 | 2.81410099 | 1831.56681 | 0 | 0 | -5.1994175 | 100 | 0 | | ENSG00000011422 | PLAUR | -3.8273961 | 6.90900637 | 2937.01915 | | 0 | 0 -3.6890158 | 3 100 | 0 PLAUR | -5.362708 | 6.75250322 | 4197.84359 | 0 | 0 | -5.335006 | 100 | 0 | | ENSG00000011600 | TYROBP | -4.6188508 | 6.45320108 | 3913.07392 | | 0 | 0 -4.4759645 | 100 | O TYROBP | -5.4830473 | 6.40434251 | 4341.5325 | 0 | 0 | -5.6377018 | 100 | 0 | | ENSG00000019582 | CD74 | -4.0674413 | 10.4900897 | 3421.96946 | | 0 | 0 -3.9721209 | 100 | 0 CD74 | -3.7007971 | 10.455096 | 1918.20758 | 0 | 0 | -3.7935346 | 100 | 0 | | ENSG00000025708 | TYMP | -3.6476381 | 4.9832763 | 2479.93319 | | 0 | 0 -3.3998281 | 100 | 0 TYMP | -4.4369081 | 4.99894981 | 2803.42119 | 0 | 0 | -4.5023336 | 100 | 0 | | ENSG00000028137 | TNFRSF1B | -2.6883568 | 7.4919964
| 1710.81304 | | 0 | 0 -2.6256617 | 7 100 | O TNFRSF1B | -1.9938727 | 7.65750881 | 741.113528 | 3.43E-163 | 4.71E-162 | -1.9490992 | 97.222222 | 2.77777778 | | ENSG00000030582 | GRN | -4.4511915 | 6.57268341 | 3827.6768 | | 0 | 0 -4.4742581 | 100 | 0 GRN | -5.2528573 | 6.60148026 | 4084.12747 | 0 | 0 | -5.1102897 | 100 | 0 | | ENSG00000038427 | VCAN | -4.6996941 | 6.06444454 | 3910.25304 | | 0 | 0 -4.5253754 | 100 | 0 VCAN | -6.2262528 | 6.04687211 | 4971.04903 | 0 | 0 | -6.531513 | 100 | 0 | | ENSG00000042493 | CAPG | -3.5006817 | 4.40574773 | 2135.79931 | | 0 | 0 -3.3794208 | 3 100 | 0 CAPG | -4.5335832 | 4.32883541 | 2612.90579 | 0 | 0 | -4.4101095 | 100 | 0 | | ENSG00000044115 | CTNNA1 | -3.880545 | 3.66313468 | 2051.08884 | | 0 | 0 -3.8945177 | 7 100 | 0 CTNNA1 | -4.0440641 | 3.67469446 | 1784.85673 | 0 | 0 | -4.2546973 | 100 | 0 | | ENSG00000057704 | TMCC3 | -4.351095 | 3.39698704 | 2219.11949 | | 0 | 0 -4.3605667 | 7 100 | 0 TMCC3 | -2.3466202 | 3.59109726 | 660.160894 | 1.38E-145 | 1.76E-144 | -2.6206668 | 100 | 0 | | ENSG00000066336 | SPI1 | -4.3790688 | 6.26229317 | 3577.98563 | | 0 | 0 -4.2570218 | 3 100 | 0 SPI1 | -5.9465206 | 6.23401088 | 4780.93412 | 0 | 0 | -6.0902494 | 100 | 0 | | ENSG00000075826 | SEC31B | 3.01839719 | 4.21305248 | 1520.14726 | | 0 | 0 3.06382107 | 7 0 1 | OO SEC31B | 2.79374708 | 4.02087402 | 1070.97891 | 6.71E-235 | 1.26E-233 | 2.68070956 | 0 | 100 | | ENSG00000084234 | APLP2 | -3.4835884 | 7.64621438 | 2687.04074 | | 0 | 0 -3.2920222 | 2 100 | 0 APLP2 | -3.6074437 | 7.62716468 | 2250.18267 | 0 | 0 | -3.7044757 | 100 | 0 | | ENSG00000085265 | FCN1 | -5.0924371 | 8.05962372 | 4600.07678 | | 0 | 0 -4.7373043 | 3 100 | 0 FCN1 | -6.8298993 | 8.05303582 | 5641.8771 | 0 | 0 | -6.8576671 | 100 | 0 | | ENSG00000086730 | LAT2 | -3.5532801 | 3.63753083 | 1784.48856 | | 0 | 0 -3.5907553 | 3 100 | 0 LAT2 | -3.1490575 | 3.65356385 | 1251.60606 | 3.72E-274 | 8.05E-273 | -3.2401306 | 100 | 0 | | ENSG00000088826 | SMOX | -3.4888212 | 4.47965152 | 2109.5326 | | 0 | 0 -3.5352756 | 100 | 0 SMOX | -3.7568168 | 4.41453738 | 1986.17888 | 0 | 0 | -3.8580394 | 100 | 0 | | ENSG00000095303 | PTGS1 | -4.5812445 | 3.43727938 | 2403.96362 | | 0 | 0 -4.7564977 | 7 100 | 0 PTGS1 | -5.2515763 | 3.33083421 | 2381.31936 | 0 | 0 | -5.4665883 | 100 | 0 | | ENSG00000099985 | OSM | -3.5864681 | 4.50262775 | 2233.21707 | | 0 | 0 -3.4496356 | 5 100 | 0 OSM | -3.6953916 | 4.42760796 | 1945.99438 | 0 | 0 | -3.8187767 | 100 | 0 | | ENSG00000100079 | LGALS2 | -4.2960423 | 3.00052779 | 1776.65534 | | 0 | 0 -4.3605145 | 100 | 0 LGALS2 | -6.042898 | 3.07351181 | 2386.88447 | 0 | 0 | -6.1227397 | 100 | 0 | | ENSG00000100097 | LGALS1 | -3.30741 5.93073237 | | 0 | 0 -3.2729629 | 100 | 0 LGALS1 | -3.1910265 5.98850798 1759.57402 | 0 | | -3.1096589 | 100 | 0 | |------------------------------------|----------|--|------------|---|--------------|-----|------------|----------------------------------|-----------|-----------|------------|-----|-----------| | ENSG00000100292 | HMOX1 | -4.4713384 6.12084599 | | 0 | 0 -4.3607943 | 100 | 0 HMOX1 | -5.2236728 6.02370924 3974.91278 | 0 | | -5.1881408 | 100 | 0 | | ENSG00000100300 | TSPO | -2.6696029 5.31473511 | | 0 | 0 -2.5349352 | 100 | 0 TSPO | -2.9768844 5.27205723 1559.52331 | 0 | 0 | -2.876872 | 100 | 0 | | ENSG00000100453 | GZMB | | 2629.4526 | 0 | 0 -4.2741169 | 100 | 0 GZMB | -1.1585836 4.65493712 205.520107 | 1.30E-46 | | | | 33.333333 | | ENSG00000100721 | TCL1A | -6.2386888 1.79107689 | | 0 | 0 -6.6974113 | 100 | 0 TCL1A | -4.6699522 1.71312441 1148.53693 | 9.33E-252 | | -4.6772239 | 100 | 0 | | ENSG00000101057 | MYBL2 | -3.7489304 4.16475426 | | 0 | 0 -3.7838832 | 100 | 0 MYBL2 | -2.5216153 4.15879847 916.138883 | 3.04E-201 | 4.95E-200 | | 100 | 0 | | ENSG00000101160 | CTSZ | -3.8854383 5.4100884 | | 0 | 0 -3.8345332 | 100 | 0 CTSZ | -4.5957576 5.36617891 3189.69175 | 0 | | -4.6039543 | 100 | 0 | | ENSG00000101439 | CST3 | | 3597.0651 | 0 | 0 -4.1577047 | 100 | 0 CST3 | -5.9255497 6.45520371 4751.42114 | 0 | | -5.9188171 | 100 | 0 | | ENSG00000101916 | TLR8 | -4.9050554 2.93122585 | | 0 | 0 -4.8742291 | 100 | 0 TLR8 | -6.7963648 2.99022251 2805.71476 | 0 | | -7.4129336 | 100 | 0 | | ENSG00000102007 | PLP2 | -2.6004319 5.66872403 | | 0 | 0 -2.5815503 | 100 | O PLP2 | -2.2303805 5.71948365 977.727154 | 1.25E-214 | 2.15E-213 | | 100 | 0 | | ENSG00000102265 | TIMP1 | -2.9468418 6.35356799 | 1925.99939 | 0 | 0 -2.776529 | 100 | 0 TIMP1 | -4.0440395 6.26969579 2703.29211 | 0 | 0 | -4.0474944 | 100 | 0 | | ENSG00000103187 | COTL1 | -2.6994407 8.35003244 | 1734.93263 | 0 | 0 -2.6025778 | 100 | 0 COTL1 | -2.5170263 8.38427232 1133.35403 | 1.86E-248 | 3.64E-247 | -2.5682517 | 100 | 0 | | ENSG00000103811 | CTSH | -3.5431989 5.10356182 | 2472.90792 | 0 | 0 -3.4288216 | 100 | 0 CTSH | -4.6944134 5.0580527 3176.63189 | 0 | 0 | -4.7496831 | 100 | 0 | | ENSG00000104312 | RIPK2 | -2.9223508 5.59426817 | 1870.21955 | 0 | 0 -2.6557911 | 100 | 0 RIPK2 | -2.6263202 5.58584317 1301.35659 | 5.73E-285 | 1.29E-283 | -2.6933214 | 100 | 0 | | ENSG00000105369 | CD79A | -6.3594762 7.81174121 | 6785.74848 | 0 | 0 -6.4413839 | 100 | 0 CD79A | -4.4714707 7.7253101 3180.80037 | 0 | 0 | -4.3775154 | 100 | 0 | | ENSG00000106066 | CPVL | -5.0972943 5.78803748 | 4427.92723 | 0 | 0 -5.2658804 | 100 | 0 CPVL | -6.6659407 5.73431635 5374.47356 | 0 | 0 | -6.7568828 | 100 | 0 | | ENSG00000106565 | TMEM176B | -4.7380758 3.44144046 | 2349.1902 | 0 | 0 -4.4869257 | 100 | 0 TMEM176B | -6.1857838 3.28161532 2546.68132 | 0 | 0 | -6.6478396 | 100 | 0 | | ENSG00000107438 | PDLIM1 | -4.2823556 3.88397682 | 2584.30133 | 0 | 0 -4.1806385 | 100 | 0 PDLIM1 | -3.132899 3.8472057 1315.23794 | 5.52E-288 | 1.25E-286 | -3.1654479 | 100 | 0 | | ENSG00000107738 | C10orf54 | -2.6944442 6.93634323 | 1708.7049 | 0 | 0 -2.535117 | 100 | 0 C10orf54 | -2.5173299 6.97583517 1219.02933 | 4.46E-267 | 9.35E-266 | -2.43626 | 100 | 0 | | ENSG00000108691 | CCL2 | -4.5581882 4.19580169 | 2536.63906 | 0 | 0 -4.5334286 | 100 | 0 CCL2 | -6.3152975 4.19929903 3179.95809 | 0 | 0 | -6.6095052 | 100 | 0 | | ENSG00000110042 | DTX4 | -5.2295651 5.77780448 | 4758.71411 | 0 | 0 -5.2319253 | 100 | 0 DTX4 | -4.3870165 5.71025314 3067.39761 | 0 | 0 | -4.546714 | 100 | 0 | | ENSG00000110077 | MS4A6A | -4.5617287 3.68280926 | 2524.41628 | 0 | 0 -4.6543719 | 100 | 0 MS4A6A | -6.2410651 3.65188586 3214.30024 | 0 | 0 | -6.4044596 | 100 | 0 | | ENSG00000110446 | SLC15A3 | -3.4038243 5.22967458 | 2341.43395 | 0 | 0 -3.294524 | 100 | 0 SLC15A3 | -4.4910274 5.14445875 3053.4624 | 0 | 0 | -4.5623276 | 100 | 0 | | ENSG00000110777 | POU2AF1 | -5.195318 3.19205088 | 2690.0318 | 0 | 0 -5.1995949 | 100 | 0 POU2AF1 | -4.3207063 3.13174199 1722.76039 | 0 | 0 | -4.2826317 | 100 | 0 | | ENSG00000110880 | CORO1C | -2.8078553 5.08042223 | 1669.52376 | 0 | 0 -2.7487811 | 100 | 0 CORO1C | -2.7344257 5.07888147 1324.44676 | 5.50E-290 | 1.26E-288 | -2.804274 | 100 | 0 | | ENSG00000111321 | LTBR | -4.0406526 2.72767497 | | 0 | 0 -4.1912191 | 100 | 0 LTBR | -5.3765605 2.72760235 1991.75389 | 0 | 0 | -5.6948998 | 100 | 0 | | ENSG00000111666 | CHPT1 | -3.1012678 5.60802717 | 2072.62904 | 0 | 0 -3.0388111 | 100 | 0 CHPT1 | -1.8546461 5.71032026 682.829458 | 1.62E-150 | 2.10E-149 | -1.9021402 | 100 | 0 | | ENSG00000112799 | LY86 | -4.3798955 3.68825853 | | 0 | 0 -4.3110538 | 100 | 0 LY86 | -4.8158136 3.60695751 2349.29944 | 0 | 0 | -4.896577 | 100 | 0 | | ENSG00000113269 | RNF130 | -3.1144666 5.1545903 | | 0 | 0 -2.9660858 | 100 | 0 RNF130 | -3.0441037 5.15939019 1614.87807 | 0 | 0 | -3.0165605 | 100 | 0 | | ENSG00000114013 | CD86 | -4.1458321 4.99941215 | | 0 | 0 -3.985042 | 100 | 0 CD86 | -5.7699358 5.0008114 4145.07808 | 0 | | -5.7378972 | 100 | 0 | | ENSG00000114450 | GNB4 | -4.2930321 3.40478661 | | 0 | 0 -4.3340417 | 100 | 0 GNB4 | -4.6338661 3.34035585 2049.73477 | 0 | | -4.6105721 | 100 | 0 | | ENSG00000115956 | PLEK | -4.4850637 7.41051439 | | 0 | 0 -4.1760174 | 100 | O PLEK | -4.5996848 7.38692731 3247.43509 | 0 | | -4.4555316 | 100 | 0 | | ENSG00000116574 | RHOU | -3.5262315 3.71159908 | | 0 | 0 -3.4924518 | 100 | 0 RHOU | -4.2286718 3.677791 1992.43631 | 0 | | -4.3197466 | 100 | 0 | | ENSG00000116701 | NCF2 | -4.0792696 4.86360606 | 2903.6948 | 0 | 0 -3.9608907 | 100 | 0 NCF2 | -5.4391991 4.8035547 3729.84071 | 0 | | -5.6990073 | 100 | 0 | | ENSG00000117984 | CTSD | -3.2659199 6.86956962 | | 0 | 0 -3.1165516 | 100 | 0 CTSD | -3.3843619 6.89557164 2011.54122 | 0 | | -3.4108364 | 100 | 0 | | ENSG00000119655 | NPC2 | -2.798472 6.03894148 | 1773.7683 | 0 | 0 -2.6638036 | 100 | 0 NPC2 | -3.3737981 5.9948929 2031.41918 | 0 | | -3.3749265 | 100 | 0 | | ENSG00000120708 | TGFBI | -4.7180946 5.63742387 | 3882.1399 | 0 | 0 -4.6095805 | 100 | 0 TGFBI | -6.1367459 5.61897875 4741.36694 | 0 | | -6.3013252 | 100 | 0 | | ENSG00000121064 | SCPEP1 | -2.7970259 5.05460727 | | 0 | 0 -2.6636559 | 100 | 0 SCPEP1 | -2.6583607 5.10980842 1263.89857 | 7.92E-277 | | -2.6441696 | 100 | 0 | | ENSG00000121316 | PLBD1 | -5.1415 4.38021023 | | 0 | 0 -5.1578093 | 100 | 0 PLBD1 | -6.6949804 4.38820476 4336.56378 | 0 | | -7.132773 | 100 | 0 | | ENSG00000121552 | CSTA | -4.5014977 3.97310946 | | 0 | 0 -4.3862561 | 100 | 0 CSTA | -6.2854952 3.9236133 3598.2967 | 0 | | -6.4205715 | 100 | 0 | | ENSG00000123384 | LRP1 | -3.5861052 6.13377226 | | 0 | 0 -3.4592486 | 100 | 0 LRP1 | -4.7606223 6.07473281 3466.91478 | 0 | | -4.8453366 | 100 | 0 | | ENSG00000123689 | GOS2 | -4.7230788 7.60976584 | | 0 | 0 -4.523553 | 100 | 0 G0S2 | -6.5951731 7.5769061 5479.35349 | 0 | | -6.4538761 | 100 | 0 | | ENSG00000124145 | SDC4 | -3.5780521 3.33245925 | | 0 | 0 -3.4834844 | 100 | 0 SDC4 | -4.446691 3.293692 1829.18484 | 0 | | -4.6774305 | 100 | 0 | | ENSG00000125124 | BBS2 | 2.70633163 4.90608514 | | 0 | 0 2.84860099 | 0 | 100 BBS2 | 2.11941558 4.36532413 743.770031 | - | | 2.00849502 | 0 | 100 | | ENSG00000125124 | CFP | -2.6422581 5.30559208 | | 0 | 0 -2.4464092 | 100 | 0 CFP |
-3.9929189 5.21702656 2508.46346 | 0 | | -4.041528 | 100 | 0 | | ENSG00000127951 | FGL2 | -4.2533832 3.55065954 | | 0 | 0 -4.0769357 | 100 | 0 FGL2 | -5.4843786 3.67146127 2693.72755 | 0 | 0 | -5.68742 | 100 | 0 | | ENSG00000127331 | APOBEC3A | -4.5759645 4.96229936 | | 0 | 0 -4.4872246 | 100 | 0 APOBEC3A | -6.123336 5.00833119 4088.85064 | 0 | • | -6.3316709 | 100 | ŏ | | ENSG00000128383 | PVRL2 | -4.2700222 2.7037846 | | 0 | 0 -4.4337513 | 100 | 0 PVRL2 | -4.4602951 2.69182628 1551.26305 | 0 | | -4.5346694 | 100 | ŏ | | ENSG00000130202 | LILRB2 | -4.1071422 4.64725311 | | 0 | 0 -4.0961087 | 100 | O LILRB2 | -5.8479082 4.59525897 3878.5205 | 0 | | -6.2199775 | 100 | ŏ | | ENSG00000131042 | NAPSB | -4.1071422 4.64725311
-4.1320035 4.35578943 | | 0 | 0 -4.0961087 | 100 | O NAPSB | -5.4185456 4.31733953 3280.89062 | 0 | | -5.8285116 | 100 | ŏ | | ENSG00000131401 | IL13RA1 | -5.2358507 2.96592344 | | 0 | 0 -5.2653224 | 100 | 0 IL13RA1 | -5.5120323 2.92065457 2200.66929 | 0 | | -5.4985559 | 100 | Ö | | ENSG00000131724
ENSG00000133789 | SWAP70 | -2.9287854 5.63547599 | | 0 | 0 -5.2653224 | 100 | 0 SWAP70 | -3.1041637 5.53955202 1737.36081 | 0 | | -3.1247569 | 100 | ď | | | CD36 | -2.9287854 5.63547599
-4.6546919 3.34816666 | | 0 | 0 -4.4822188 | 100 | 0 CD36 | -6.1043124 3.3110364 2637.52181 | 0 | | -6.7019896 | 100 | ď | | ENSG00000135218 | CD36 | -4.0346919 3.34816666 | 2207.24809 | U | U -4.4822188 | 100 | U CD36 | -0.1045124 5.5110304 2037.52181 | U | U | -0.7019896 | 100 | U | | I | h | | | | | | | | | | | | | | | | | اء | |--------------------------------------|-----------------|------------------------------------|---------|------------|---|---|--------------------------|----|----------|--------------------|------------|---------|------------------------------------|----------------|-----------|--------------------------|------------|------------| | ENSG00000135363 | LMO2 | -4.3034024 3.49 | | | 0 | | -4.2270263 | 10 | | 0 LMO2 | | | 3722 2920.66736 | 0 | | -6.2398194 | 100 | 0 | | ENSG00000135404 | CD63
HLX | -3.710913 6.3 | | | 0 | | -3.6541088 | | 00 | 0 CD63
0 HLX | | | 5715 2137.96573 | 0 | | -3.5118053 | 100
100 | 0 | | ENSG00000136630 | | -4.8188179 3.10 | | | 0 | | -5.0653685 | | | O TLR4 | | | 3994 2601.71477 | 0 | | -6.4449701 | | 0 | | ENSG00000136869 | TLR4
RAB20 | -4.5468911 5.09 | | | 0 | | -4.2847766
-4.4828008 | | 00 | 0 TLR4
0 RAB 20 | | | 5008 4588.98334 | 0 | 0 | -6.5991547 | 100
100 | 0 | | ENSG00000139832 | JDP2 | -4.5410996 4.3 | | | | _ | | | | | -6.0348653 | | | | 0 | -6.1375889 | | 0 | | ENSG00000140044 | | -4.6957113 4.3 | | | 0 | | | | | O JDP2 | | | 5683 3964.78114 | 0 | | -6.3668952 | 100 | 0 | | ENSG00000140379 | BCL2A1 | -2.6155408 5. | | | 0 | 0 | -2.524805 | | 00 | 0 BCL2A1 | | | 5097 2013.32183 | - | 0 | -3.4843256 | 100 | 0 | | ENSG00000141574 | SECTM1 | -3.1720754 3.9 | | | 0 | | -2.9480053 | | 00 | 0 SECTM1 | | | 0923 2263.79546 | 0 | 0 | -4.7872442 | 100 | 0 | | ENSG00000142512 | SIGLEC10 | -4.8460797 2.7 | | | 0 | | -4.8649128 | | 00 | 0 SIGLEC10 | | | 9634 1569.46223 | 0 | 0 | -4.5979935 | 100 | 0 | | ENSG 00000143878 | RHOB | -3.1248683 5.70 | | | 0 | | -2.9596921 | | 00 | O RHOB | -1.7914263 | | | | | -1.8542063 | 100 | 0 | | ENSG 00000146072 | TNFRSF21 | -3.4311061 4.8 | | | 0 | | -3.3542981 | | 00 | 0 TNFRSF21 | | | 3596 1736.80512 | 0 | 0 | -3.337885 | 100 | 0 | | ENSG00000150457 | LATS2 | -3.9673838 4.1 | | | 0 | | -4.0761419 | | 00 | 0 LATS2 | | | 0458 609.701335 | | | -1.7118199 | 100 | 0 | | ENSG00000151948 | GLT1D1 | -4.1516001 2.50 | | | 0 | | -3.9761135 | | 00 | 0 GLT1D1 | | | 5394 2078.48718 | 0 | | -6.0596101 | 100 | 0 | | ENSG 00000153064 | BANK1 | -6.2344267 4.0 | | | 0 | | -6.0891458 | | 00 | 0 BANK1 | | | 1075 2496.76828 | 0 | | -4.8597245 | 100 | 0 | | ENSG00000155130 | NA | -4.5370806 6.7 | | | 0 | 0 | -4.275207 | | 00 | 0 NA | | | 9124 4676.32351 | 0 | 0 | -5.6417652 | 100 | 0 | | ENSG 00000155465 | SLC7A7 | -4.5777241 5.1 | | | 0 | | -4.4587986 | | | 0 SLC7A7 | | | 3996 4362.00789 | 0 | 0 | -6.0295355 | 100 | 0 | | ENSG 00000155629 | PIK3AP1 | -4.2955145 4.9 | | | 0 | | -4.3706362 | | 00 | 0 PIK3AP1 | | | 2797 515.519611 | | | -1.4783289 | 100 | 0 | | ENSG00000156966 | B3GNT7 | -6.229367 4.20 | | | 0 | | -6.4960281 | | 00 | 0 B3GNT7 | | | 9025 467.359128 | | 1.16E-102 | -1.666821 | 100 | 0 | | ENSG00000158457 | TSPAN33 | -5.2511245 5.3 | | | 0 | | -4.9956841 | | 00 | 0 TSPAN33 | | | 3409 2580.74704 | 0 | | -4.0086914 | 100 | 0 | | ENSG 00000158825 | CDA | -4.7225288 2.4 | | | 0 | | -4.6582444 | | 00 | O CDA | | | 3584 2145.01813 | 0 | | -7.1451154 | 100 | 0 | | ENSG 00000158869 | FCER1G | -4.4265612 5.0 | | | 0 | 0 | -4.386564 | | 00 | 0 FCER1G | | | 1667 3815.02085 | 0 | | -5.2714181 | 100 | 0 | | ENSG 00000160991 | ORAI2 | -2.7667837 5.7 | | | 0 | | -2.6962876 | | 00 | O ORAI2 | | | 5287 650.351093 | | | -1.8599992 | 100 | 0 | | ENSG00000161921 | CXCL16 | -2.9322946 6.69 | | | 0 | | -2.8026268 | | 00 | 0 CXCL16 | | | 3421 1716.32735 | 0 | | -2.9332992 | 100 | 0 | | ENSG00000162444 | RBP7 | -4.8182409 1.8 | | | 0 | | -5.1065461 | | 00 | O RBP7 | | | 1425 1694.30445 | 0 | | -7.0055165 | 100 | 0 | | ENSG00000162734 | PEA15 | -3.1037953 5.0 | | | 0 | | -2.9820459 | | 00 | 0 PEA15 | | | 9432 1328.9523 | | 1.33E-289 | -2.7475084 | 100 | 0 | | ENSG00000163131 | CTSS | -3.3384352 7.79 | | | 0 | | -3.0549498 | | 00 | 0 CTSS | | | 1924 1894.9666 | 0 | | -3.2445121 | 100 | 0 | | ENSG00000163220 | S100A9 | -5.2609068 7.8 | | | 0 | | -5.1143898 | | 00 | 0 S100A9 | | | 3382 5723.50158 | 0 | 0 | -6.961067 | 100 | 0 | | ENSG00000163221 | S100A12 | -4.6669755 4.03 | | | 0 | | -4.5329815 | | | 0 S100A12 | | | 7229 3757.85917 | 0 | 0 | -6.8865052 | 100 | 0 | | ENSG00000163534 | FCRL1 | -6.4069375 4.03 | | | 0 | | -6.4200116 | | 00 | 0 FCRL1 | | | 7202 2038.86582 | 0 | | -4.1447586 | 100 | 0 | | ENSG 00000163563 | MNDA | -4.9346449 3.4 | | | 0 | | -5.2535766 | | 00 | 0 MNDA | -6.6341862 | | | 0 | | -7.3056619 | 100 | 0 | | ENSG 00000163694 | RBM47 | -4.2312358 4.0 | | | 0 | | -4.1906169 | | 00 | 0 RBM47 | | | 2075 3474.57273 | 0 | 0 | -6.1003861 | 100 | 0 | | ENSG 00000163823 | CCR1 | -5.1013947 5.1 | | | 0 | | -5.0616303 | | | 0 CCR1 | | | 5574 5048.40711 | 0 | 0 | -7.0237088 | 100 | 0 | | ENSG00000165025 | SYK | -4.6700227 4.8 | | | 0 | | -4.7161266 | | 00 | O SYK | | | 9155 3393.50589 | 0 | 0 005 224 | -5.102915 | 100 | 0 | | ENSG00000165030 | NFIL3 | -2.9975548 5.2 | | | 0 | | -2.7267562 | | 00 | 0 NFIL3 | | | 7596 1057.81801 | | | -2.39954 | 100 | 0 | | ENSG00000165140 | FBP1 | -3.6362522 3.0 | | | 0 | 0 | -3.6435342 | | 00 | 0 FBP1
0 CYBB | | | 1025 2316.48463 | 0 | | -4.9879741 | 100 | 0 | | ENSG00000165168 | CYBB | -4.9418555 5.13 | | | | • | -4.822201 | | 00 | | | | 3115 4068.74403 | 2 745 272 | 0 005 274 | -5.6231666 | 100 | 0 | | ENSG00000165178
ENSG00000168081 | NCF1C
PNOC | -4.454762 1.99
-5.4574685 1. | | | 0 | | -4.4446965
-5.7777662 | | 00
00 | 0 NCF1C
0 PNOC | | | 7677 1242.3928
5612 996.135003 | | | -4.6724053
-4.9725571 | 100
100 | 0 | | | | | | | 0 | | -4.9947255 | | | 0 RAB31 | | | | 1.246-216 | | | | 0 | | ENSG 00000168461
ENSG 00000168792 | RAB31
ABHD15 | -5.1193129 4.01
-3.6794945 3.63 | | | 0 | | | | 00
00 | 0 ABHD15 | | | 5239 3436.86092
3021 913.718037 | _ | | -6.0019566
-2.6292758 | 100
100 | 0 | | ENSG00000168792 | CLIC4 | -4.6166447 5.7 | | | 0 | | -4.5519935 | | 00 | 0 CLIC4 | | | 1043 3205.31023 | 1.02E-200 | | -4.5563744 | 100 | 0 | | ENSG00000169896 | ITGAM | -4.4614764 5.2 | | | 0 | | | | 00 | 0 ITGAM | | | 7307 631.365039 | | | -1.8354157 | 100 | 0 | | ENSG00000170458 | CD14 | -4.9072307 6.1 | | 4192.7027 | 0 | | -4.6540953 | | 00 | 0 CD14 | | | 1645 5168.7963 | 2.526-159 | | -6.4163477 | 100 | 0 | | ENSG00000170458
ENSG00000170866 | NA | -4.6281127 3.2 | | 1903.0959 | 0 | | -4.1360599 | | | 0 NA | | | 0776 2558.10137 | 0 | | | | 2.7777778 | | ENSG00000170866
ENSG00000171051 | FPR1 | -4.9727281 4.8 | | | 0 | | -5.1731573 | | 00 | O FPR1 | | | 3572 4671.29197 | 0 | | -6.9020934 | 100 | 2.7777770 | | ENSG00000171031 | CXXC5 | -4.6931696 5.89 | | | 0 | | -4.6660803 | | 00 | 0 CXXC5 | | | 3985 2375.58207 | 0 | | -3.7073177 | 100 | 0 | | ENSG00000171804
ENSG00000171777 | RASGRP4 | -3.9658681 2.79 | | | 0 | | -3.8670802 | | 00 | 0 RASGRP4 | | | 5652 2203.07069 | 0 | 0 | -6.4780324 | 100 | 0 | | ENSG00000171777
ENSG00000173801 | JUP | -3.0894523 4.10 | | | 0 | | -2.9985034 | | 00 | 0 JUP | | | 1328 1293.69589 | | 5.93E-282 | -3.0934293 | 100 | 0 | | ENSG00000173801 | LRRC25 | -5.0026983 4.6 | | 3806.2395 | 0 | | -4.9979925 | | 00 | 0 LRRC25 | | | 7854 4573.56913 | 2.03E-203
0 | | -6.8162167 | 100 | Ö | | ENSG00000175489 | B3GNT5 | -4.1996043 4.74 | | | 0 | | -4.1906971 | | 00 | 0 B3GNT5 | | | 5327 3280.80576 | 0 | 0 | -5.052696 | 100 | 0 | | ENSG00000178397 | CD300LB | -4.1996043 4.74
-4.3045277 3.68 | | | 0 | | -4.1900971 | | 00 | 0 CD300LB | | | 2519 3060.92754 | 0 | 0 | -6.1993766 | 100 | 0 | | ENSG00000178789 | HLA-DQB1 | -5.1114991 6.14 | | | 0 | 0 | -4.2512094 | | 00 | 0 HLA-DQB1 | | | 1636 3126.66109 | 0 | 0 | -0.1993766
-4.5864298 | 100 | 0 | | ENSG00000179344
ENSG00000180739 | S1PR5 | -5.3637183 3.9 | | | 0 | _ | -5.4138488 | | 00 | 0 S1PR5 | | | 2573 319.436526 | 1.92E-71 | - | | 83.3333333 | 16 6666667 | | 214300000100733 | STERS | 3.303/103 3.3. | 2204303 | 3-20.03373 | U | U | 5.4130400 | 1 | | O JIFKJ | 1.4003001 | 4.40032 | 2373 319.430320 | 1.321-71 | 1.33L-70 | 1.302032 | 03.333333 | 10.000007 | | BASCONCONIGINATY BASCON | ENSG00000181467 | RAP2B | -2 5810845 | 6 37/12377 | 1562 29673 | 0 | 0 -2.476 | 2072 | 100 | O RAP2B | -1 9786534 | 6 41988727 7 | 97 045165 | 2 37F-175 | 3 //3F-17/ | -2 0690891 | 100 | ol |
--|-----------------|----------|------------|------------|------------|---|----------|---------|-----------|------------|------------|--------------|------------|-----------|------------|------------|-----------|-----------| 0 | | SEGEOMORISHOND SAMMB A.5132899 A339995 163995 16606946 O C.5257143 100 O SEMANB S.525796 163977712 232044 O C.576277 100 O SEGOMORISHOND SAMMB S.525797 A33995 1639779 16397712 16207 O C.576277 O O O C.576277 O O O O O O O O O | | | | | | | | | | | | | | _ | | | | 0 | 0 | | SECONODISTON AND 3.1128415 SOM-MEND 100.13186 0 0 3.1001664 0 100 NAOP 2.47705916 3.8581005 95.417861 1.452-00 2.442-00 2.4020777 0 100 0 100 0 100 0 100 0 | | | | | | _ | | | | | | | | • | • | | | 0 | | PASSON000155391 TOLE A-1739395 L7164797 16421631 O O - 4,8815745 100 O METITAL A-175700 L287570 R042-93 R042 | | | | | | | | | | | | | | | | | | 100 | | DESCONDOSISSAIZ METILA | | | | | | • | | | _ | | | | | | | | 100 | 0 | | PRISECORDISSION URAS | | | | | | - | | | | | | | | | | | | 0 | | BMSC0000018716 URAS | | | | | | _ | | | | | | | | | | | | 0 | | BMSCO00018976 FMAIL 4_2845687 29889787 205126877 00 -7.3488101 100 0 FMAIL 4_15796714 12845899 0 0 -4.244275 100 0 0 0 0 0 0 0 0 | | | | | | - | | | | | | | | - | | | | 0 | | PASS-0000189675 PAMILIB | | | | | | 0 | - | | | | | | | - | | | | 5.5555556 | | BISCORO0189500 HIFD | | | | | | 0 | | | | | | | | | | | | 0 | | PASSCO00019692 PASS | | | | | | - | | | | | | | | | | | | 0 | | RSGO000019626 NE-DRB1 | | - | | | | _ | | | | | | | | 0 | _ | | | 0 | | RSG00000196743 SIMOM | | _ | | | | 0 | | | | | | | | _ | _ | | | 0 | | ENS-0000019562 SUPL 3.6782758 46399403 29441189 0 0 3.4862118 100 0 0 0 0 0 0 0 0 | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | INSCRIGO000197497 SERNIAL 3-5055542 3-3498759 2135.86947 0 0 -3.9468212 100 0 0 0 0 0 0 0 0 | | | | | | _ | | | | | | | | _ | | | | 0 | | ENSCO000019729 SERINAL -5.1411408 7.0289884 45.902012 0 0 -4.8327214 1.00 0 SERINAL -6.4679127 7.0589565 536.678194 0 0 -5.315477 1.00 0 0 ENSCO0000197629 MPGG | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSCO00019746 MPG61 4.94402 5.0210254 4375346 0 0 4.4791018 100 0 MPG61 6.3323905 6.45437189 5343.6109 0 0 6.372999 100 0 0 MPG61 6.3243805 6.4471389 5343.6109 0 0 6.372999 100 0 0 MPG61 6.3243805 6.4471389 5343.6109 0 0 6.372999 100 0 0 MPG61 6.3243805 6.4471389 5343.6109 0 0 6.372999 100 0 0 MPG61 6.3243805 6.4471389 5343.6109 0 0 6.372999 100 0 0 MPG61 6.3243805 6.4471389 6.4683138 4.4793878 6.4683138 4.4793878 6.4683138 4.4793878 6.4683138 4.4793878 6.4683138 4.4793878 6.4683138 4.4793878 6.4683138 4.4793878 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.479388 6.4883138 4.48948 6.4883148 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.48948 6.4883138 6.4883138 6.48948 6.4883138 | | | | | | 0 | | | | | | | | 0 | | | | 0 | | ENSCO000197670 | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSCO000197766 (F) 3-0.089418 10.0686571 2103.94174 0 0 0 -2.8570252 10.0 0 SAP -3.4088541 10.0575187 1718.77568 0 0 -3.3377878 100 0 0 ENSCO0000197676 (F) 3-0.802522 4.24175798 2026.74217579 2026.7421759 2026.74217579 2026.74217579 2026.74217579 2026.7421759 2026.74217579 2026.7421759 2026. | | | | | | 0 | | | | | | | | 0 | 0 | | | o | | ENSCO000198766 CPD | | | | | | 0 | | | | O PSAP | | | | 0 | 0 | | | 0 | | ENSCORDO015893 SIRPA | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSCO000021452 H.A. DRBS | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENS-GOMOQUI-103 MAFB 4.7824477 7075596 17770775 0 0 -4.8005526 100 0 MAFB -6.069315 2.5666733 1941.5047 0 0 -5.2707707 100 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSG00000214257 ENSG0000024257 ENSG0000024257 ENSG0000024257 HA-DOM | | | | | | 0 | | | | 0 CES1 | | | | 0 | 0 | | 100 | 0 | | ENSG000002157 ENSG00000217 ENSG00000204287 ENSG00000204288 ENSG00000204288 ENSG00000204288 ENSG00000204288 ENSG00000204288 ENSG00000204289 ENSG0000021660 ENSG | | MAFB | | | | 0 | 0 -4.600 | 2526 | | | | | | 0 | 0 | -6.2246188 | | 0 | | ENSG00000214257 ENSG00002044257 ENSG000002044257 ENSG000002044287 ENSG000002044287 ENSG000002044287 ENSG000002044287 ENSG000002044287 ENSG00000204428 LST1 -3.7749205 -5.24484717 -7.4223936 0 0 -3.6644565 100 0 10.ST1 -4.2700862 -5.19599106 -6.6549056 -6.91599106 -6.6549056 -6.91599106 -6.6549056 -7.2481913
-7.2481913 -7.248191 | | | | | | 0 | | | | | | | | 2.22E-74 | | | 97.222222 | 2.7777778 | | ENSG0000021487 HA-DRA 5.2173304 9.7489869 4943-33191 0 0 -5.0784816 100 0 HA-DRA 5.0460578 9.6700566 3332.26792 0 0 -4.8625458 100 0 ENSG00000211598 IGW-1 -7.7911488 3.46684251 4376.19862 0 0 -3.6644565 100 0 IST1 -4.2700862 5.19509106 2815.69424 0 0 -4.8026788 100 0 ENSG00000211698 IGW-1 -7.7911488 3.46684251 4376.19862 0 0 -9.6329653 100 0 IGW-1 -6.6584056 3.29166798 3116.62041 0 0 -7.0312837 100 0 ENSG00000211694 IGW-1 -6.9634855 1.89655154 2244.93446 0 0 -9.6329653 100 0 IGW-1 -4 -6.1341434 1.84960578 IG54.63352 0 0 -6.4488005 100 0 ENSG00000211694 IGW-1 -4 -7.2026797 2.11356698 2720.83174 0 0 -8.6291364 100 0 IGW-1 -4 -5.7249904 0.65997545 977.949097 1.12E-214 1.92E-213 -6.2907406 100 0 IGW-1 -4 -5.724990 0.65997545 977.949097 1.12E-214 1.92E-213 -6.2907406 100 0 IGW-1 -4 -5.7030936 2.06941245 IGAT.97895 0 0 -6.8392425 100 0 IGW-1 -4 -5.7030936 2.06941245 IGAT.97895 0 0 -6.8392425 100 0 IGW-1 -4 -5.7030936 2.06941245 IGAT.97895 0 0 -5.7815477 100 0 IGW-2 -2 -7.962171 2.1190667 255.94997 0 0 -7.6538457 100 0 IGW-2 -2 -6.3981224 2.1052319 1865.71409 0 0 -7.3963739 100 0 IGW-2 -2 -7.962171 2.1190667 2655.94997 0 0 -1.0000 100 0 IGW-2 -2 -6.3981224 2.1052319 1865.71409 0 0 -7.3963739 100 0 IGW-3 -1 -7.686407 2.67390184 3174.50302 0 0 -8.8422508 100 0 IGW-2 -1 -7.8204071 2.0698760 2.688.66119 0 0 -8.2486336 100 0 IGW-3 -1 -7.8204071 2.0698760 2.688.66119 0 0 -8.2486336 100 0 IGW-3 -1 -7.8204071 2.0698760 2.688.66119 0 0 -8.2486336 100 0 IGW-3 -1 -7.8204071 2.0698760 2.688.66119 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.688.66119 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.2635439 100 0 IGW-3 -1 -7.8204071 2.0698760 2.887.09183 0 0 -5.8856349 100 0 IGW-3 -1 -7.820407 | | _ | | | | 0 | | | | | | | | | | | | 0 | | ENSG00000211649 IST1 | ENSG00000204287 | HLA-DRA | | | | 0 | 0 -5.078 | 4816 | 100 | 0 HLA-DRA | | | | 0 | 0 | -4.8625458 | 100 | 0 | | ENSG00000211698 GKV4-1 -7.7911488 3.46684251 4376.19862 0 0 -9.3150613 100 0 GKV4-1 -6.6548056 3.29166798 3116.62041 0 0 -7.0312837 100 0 CKSG00000211649 GKV4-1 -6.9644855 1.89655154 2244.93446 0 0 -9.3150613 100 0 GKV4-1 -6.1341434 1.84960578 1654.63352 0 0 -6.4488005 100 0 CKSG00000211651 GKV4-6 -7.2481913 0.68776352 1492.65382 0 0 -10000 100 0 GKV4-6 -5.7224904 0.65397545 97.949079 1.12E-214 1.92E-213 -6.2907406 100 0 CKSG00000211653 GKV4-1 -8.0529669 2.11356698 2720.83174 0 0 -8.6291364 100 0 GKV4-1 -5.75030936 2.06941245 1647.97895 0 0 -6.3592425 100 0 CKSG00000211663 GKV2-2 -7.9262171 2.11906667 2655.94997 0 0 -7.0358457 100 0 GKV4-1 -5.5506022 2.46399373 1905.26285 0 0 -7.3963739 100 0 CKSG00000211662 GKV2-2 -7.962171 2.11906667 2655.94997 0 0 -8.4822508 100 0 GKV2-2 -7.804071 2.68897606 2688.66119 0 0 -8.489337 100 0 CKSG00000211666 GKV2-14 -7.2007245 4.04068092 963.54486 0 0 -7.6063428 100 0 GKV2-14 -5.2570028 2.24639937 2.2533778 20.593873 0 0 0 CKSG00000211667 GKV2-14 -7.2007245 4.04068092 963.54486 0 0 -7.6063428 100 0 GKV2-14 -5.25700385 2.244188 174.23486 0 0 -5.4880337 100 0 CKSG00000211667 GKV2-14 -7.2007245 4.04068092 963.54486 0 0 -7.6063428 100 0 GKV2-14 -5.25700385 2.244188 174.23486 0 0 -5.4880337 100 0 CKSG00000211667 GKV2-14 -7.2007245 4.04068092 4.0406809 | | | | | | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSG00000211649 ENSG00000211651 ENSG00000211651 ENSG00000211651 ENSG00000211651 ENSG00000211651 ENSG00000211651 ENSG00000211651 ENSG00000211650 ENSG00000211660 ENSG00000211860 ENSG0000021186 | | IGKV4-1 | | | | 0 | 0 -9.315 | 0613 | | | | | | 0 | 0 | -7.0312837 | | 0 | | ENSG00000211651 GLV1-44 | | | | | | 0 | | | | | | | | 0 | | | | 0 | | ENSG00000211653 GLV1-40 -6.9691907 2.54905941 2910.04971 0 0 -7.6538457 100 0 GLV1-40 -5.5560822 2.46399373 1905.26285 0 0 -5.7815477 100 0 CNSG00000211663 GLV2-23 -7.2606171 2.11906667 267390184 3174.50302 0 0 -8.4822508 100 0 GLV2-23 -7.820071 2.6895060 2688.66119 0 0 -8.2486336 100 0 CNSG0000211663 GLV3-19 -7.5634089 2.37407184 2910.43336 0 0 -8.4812559 100 0 GLV3-19 -6.3592337 2.25537278 2015.99837 0 0 -6.4975539 100 0 CNSG00000211663 GLV2-14 -7.2007245 4.04068092 9463.54486 0 0 -7.6663428 100 0 GLV2-14 -5.2100288 3.96090776 2887.09183 0 0 -5.26353439 100 0 CNSG00000211671 NA -7.4972125 1.96219219 2429.46159 0 0 -8.48113698 100 0 GLV2-11 -5.5879455 2.244158 1714.23486 0 0 -7.0329139 100 0 CNSG00000211673 GLV2-11 -7.2897996 3.0536284 3490.24964 0 0 -7.8095481 100 0 GLV3-1 -6.8335602 9.6905498 2733.47539 0 0 -7.0329139 100 0 CNSG00000211679 GLC2 -7.0431384 4.32524241 4.494.379 0 0 -7.037561 88.5714286 0 GLC2 -5.9386209 4.33771028 3556.7416 0 0 -5.7837776 100 0 CNSG00000211897 GLC3 -7.685688 4.24413216 5295.49761 0 0 -7.037561 88.5714286 0 GLC2 -7.6488646 3.18045998 3131.62586 0 0 -5.7807776 100 0 CNSG00000211897 GlC3 -7.687566 3.31020407 3796.16706 0 0 -7.8921394 100 0 GlGC2 -7.6488646 3.18045998 3131.62586 0 0 -5.7807776 100 0 CNSG00000211897 GlC3 -7.687566 3.31020407 3796.16706 0 0 -7.8921394 100 0 GlGC2 -7.6488646 3.18045998 3131.62586 0 0 -5.7807776 100 0 CNSG00000211897 GlC3 -7.087566 3.31020407 3796.16706 0 0 -7.8921394 100 0 GlGD -7.4179873 6.0437129 6072.68106 0 0 -7.8092828 100 0 GlGD -7.6675085 0 0 -7.8921391 100 0 GlGD -7.6579073 100 0 GlGD -7.6579073 100 0 | ENSG00000211649 | IGLV7-46 | -7.2481913 | 0.68776352 | 1492.65382 | 0 | 0 -1 | 0000 | 100 | 0 IGLV7-46 | -5.7224904 | 0.65397545 9 | 77.949079 | 1.12E-214 | 1.92E-213 | -6.2907406 | 100 | 0 | | ENSG00000211660 GLV2-23 -7.9262171 2.11906667 2655.94997 0 0 -10000 100 0 GLV2-23 -6.3981224 2.1052319 1865.71409 0 0 -7.3963739 100 0 ENSG00000211663 GLV3-21 -7.6684607 2.67390184 3174.50302 0 0 -8.4822508 100 0 GLV3-21 -7.8204071 2.60897605 2688.66119 0 0 -8.2486336 100 0 ENSG00000211666 GLV2-14 -7.2007245 4.04068092 4963.54486 0 0 -7.6063428 100 0 GLV3-19 -6.3592337 2.25537278 2015.99837 0 0 -6.4975539 100 0 ENSG00000211666 GLV2-14 -7.2007245 4.04068092 4963.54486 0 0 -7.6063428 100 0 GLV2-14 -5.2100288 3.9609076 2887.90183 0 0 -5.2635439 100 0 ENSG00000211667 NA -7.4972125 1.9621919 2429.46159 0 0 -8.4113698 100 0 MA -6.4324792 1.93796475 1780.31501 0 0 -7.0029139 100 0 ENSG00000211677 GLC2 -7.0431384 4.32542491 4494.379 0 0 -7.037561 88.5714286 0 GLC2 -5.9386209 4.32532541 3191.8797 0 0 -5.733966 88.8888899 0 ENSG00000211897 GLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 GLC2 -5.9386209 4.31371028 3556.7416 0 0 -5.7877776 100 0 ENSG0000211897 GHG3 -7.4735869 6.14713091 7098.54057 0 0 -7.8913194 100 0 GHG3 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG00000211897 GHG3 -6.6286815 3.48991934 3542.85329 0 0 -7.4379156 100 0 GHG3 -5.6930083 3.38071425 253.65755 0 0 -5.8251971 100 0 ENSG00000211899 GHM -7.2272283 318422588 807.21577 0 0 -7.2375308 100 0 GHM -4.8605318 9.1065279 3315.06488 0 0 -5.9831704 100 0 ENSG0000211893 GHW-1 -7.0621975 0.7814254 1551.38484 0 0 -7.2001668 100 0 GHW-1 -5.5931368 0.70075339 93.696857 4.21E-218 7.42E-217 5.7782628 100 0 ENSG0000211934 GHV-2 -7.5490701 2.7459310 234.06116 0 0 -7.9001168 100 0 GHW-2 -5.590155 2.67335719 | ENSG00000211651 | IGLV1-44 | -8.0529669 | 2.11356698 | 2720.83174 | 0 | 0 -8.629 | 1364 | 100 | 0 IGLV1-44 | -5.7030936 | 2.06941245 1 | .647.97895 | 0 | 0 | -6.3592425 | 100 | 0 | | ENSG00000211662 GLV3-21 -7.6086407 2.67390184 3174.50302 0 0 -8.4822508 100 0 GLV3-21 -7.8204071 2.60897606 2688.66119 0 0 -8.2486336 100 0 ENSG00000211666 GLV3-19 -7.5634089 2.37407184 2910.43336 0 0 -8.4182559 100 0 IGLV3-19 -6.3592337 2.25537278 2015.99837 0 0 -6.4975539 100 0 ENSG00000211668 IGLV2-14 -7.2007245 4.04068092 4963.54486 0 0 -7.6063428 100 0 IGLV2-14 -5.2100288 3.9609076 2887.09183 0 0 -5.2836339 100 0 ENSG00000211668 IGLV2-11 -7.3655404 2.34383318 2744.43095 0 0 -8.0841068 100 0 IGLV2-14 -5.5879455 2.244158 1714.23486 0 0 -5.4880337 100 0 ENSG00000211671 NA -7.4972125 1.96219219 2429.6159 0 0 -8.48113698 100 0 NA -6.4324792 1.93796475 1780.31501 0 0 -7.0029139 100 0 ENSG00000211673 IGLV3-1 -7.2897996 3.0536284 3490.24964 0 0 -7.8095481 100 0 IGLV3-1 -6.8335602 2.9658498 2733.47539 0 0 -7.2301266 100 0 ENSG00000211679 IGLC2 -7.0431384 4.32542491 4494.379 0 0 -7.037561 88.5714286 0 IGLC2 -5.938609 4.32532541 3191.8797 0 0 -5.733966 88.888889 0 ENSG00000211897 IGLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 IGLG3 -5.8976029 4.13771028 3556.7416 0 0 -5.7877776 100 0 ENSG00000211897 IGHG1 -7.4753869 6.14713091 7098.54057 0
0 -7.8921394 100 0 IGHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG00000211898 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.2175308 100 0 IGHD -4.580132 6.42967996 3341.01718 0 0 -4.6051084 100 0 ENSG00000211898 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.22759073 100 0 IGHW -4.580132 6.42967996 3341.01718 0 0 -4.6051084 100 0 ENSG00000211934 IGHW -7.6261975 0 -7.5490701 2.74592174 3523.6016 0 0 -7.0901168 100 0 IGHW -7.599155 2.5735579 2.57.07555 0 0 -5. | ENSG00000211653 | IGLV1-40 | -6.9691907 | 2.54905941 | 2910.04971 | 0 | 0 -7.653 | 8457 | 100 | 0 IGLV1-40 | -5.5560822 | 2.46399373 1 | 905.26285 | 0 | 0 | -5.7815477 | 100 | 0 | | ENSGO0000211665 GLV3-19 -7.5634089 2.37407184 2910.43336 0 0 -8.4182559 100 0 GLV3-19 -6.3592337 2.25537278 2015.99837 0 0 -6.4975539 100 0 ENSGO00002116666 GLV2-14 -7.2007245 4.04068092 4963.54486 0 0 -7.6063428 100 0 GLV2-14 -5.2100288 3.96090776 2887.09183 0 0 -5.2635439 100 0 ENSGO0000211671 NA -7.4972125 1.96219219 2429.46159 0 0 -8.0841068 100 0 GLV2-14 -5.5879455 2.244186 0 0 -7.0029139 100 0 ENSGO0000211673 GLV2-1 -7.2897996 3.0536284 3490.24964 0 0 -7.8095481 100 0 GLV2-1 -6.8335602 2.96058498 2733.47539 0 0 -7.2301266 100 0 ENSGO0000211677 GLC2 -7.0431384 4.32542491 4494.379 0 0 -7.037561 88.5714286 0 GLC2 -5.9386209 4.32532541 3191.8797 0 0 -5.733966 88.8888889 0 ENSGO0000211893 GHG2 -7.7087566 3.31020407 3796.16706 0 0 -7.8095849 100 0 GHG2 -7.6488646 3.18045998 3131.62586 0 0 -7.8095828 100 0 ENSGO0000211898 GHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.839136 100 0 GHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 ENSGO0000211898 GHG1 -7.0867255 6.46670146 7328.22957 0 0 -7.2375308 100 0 GHG1 -7.489738 6.049670527 3341.0718 0 0 -5.8251971 100 0 ENSG00000211898 GHM -7.2272283 9.18422568 807.31217 0 0 -7.2579073 100 0 GHM -4.8605318 9.100535719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.7459174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.7459174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.7459174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 | ENSG00000211660 | IGLV2-23 | -7.9262171 | 2.11906667 | 2655.94997 | 0 | 0 -1 | 0000 | 100 | 0 IGLV2-23 | -6.3981224 | 2.1052319 1 | .865.71409 | 0 | 0 | -7.3963739 | 100 | 0 | | ENSG0000211666 GLV2-14 -7.2007245 4.04068092 4963.54486 0 0 -7.6063428 100 0 GLV2-14 -5.2100288 3.96090776 2887.09183 0 0 -5.2635439 100 0 ENSG0000211671 -7.3655404 2.34383318 2744.43095 0 0 -8.0841068 100 0 GLV2-11 -5.5879455 2.244158 1714.23486 0 0 -5.4880337 100 0 ENSG0000211671 0 0 -7.0029139 100 0 0 0 0 0 0 0 0 | ENSG00000211662 | IGLV3-21 | -7.6086407 | 2.67390184 | 3174.50302 | 0 | 0 -8.482 | 2508 | 100 | 0 IGLV3-21 | -7.8204071 | 2.60897606 2 | 688.66119 | 0 | 0 | -8.2486336 | 100 | 0 | | ENSG00000211671 | ENSG00000211663 | IGLV3-19 | -7.5634089 | 2.37407184 | 2910.43336 | 0 | 0 -8.418 | 2559 | 100 | 0 IGLV3-19 | -6.3592337 | 2.25537278 2 | 015.99837 | 0 | 0 | -6.4975539 | 100 | 0 | | ENSG0000211671 NA -7.4972125 1.96219219 2429.46159 0 0 -8.4113698 100 0 NA -6.4324792 1.93796475 1780.31501 0 0 -7.0029139 100 0 ENSG0000211673 IGLV3-1 -7.2897996 3.0536284 3490.24964 0 0 -7.8095481 100 0 IGLV3-1 -6.8335602 2.96058498 2733.47539 0 0 -7.2301266 100 0 ENSG0000211677 IGLC2 -7.0431384 4.32542491 4494.379 0 0 0 -7.037561 88.5714286 0 IGLC2 -5.9386209 4.32532541 3191.8797 0 0 -5.733966 88.8888889 0 ENSG0000211679 IGLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 IGLC3 -5.8976029 4.13771028 3556.7416 0 0 -5.7877776 100 0 ENSG00000211893 IGHG2 -7.0787566 3.31020407 3796.16706 0 0 -7.8921394 100 0 IGHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG00000211899 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -5.8921971 100 0 IGHG2 ENSG00000211899 IGHD -7.0867255 6.46670146 7328.22957 0 0 -7.2175308 100 0 IGHD -4.580132 6.42967796 3341.01718 0 0 -4.6851084 100 0 IGHM -4.8605318 9.1005227 3315.06483 0 0 -4.8810891 100 0 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.1005227 3315.06483 0 0 -4.8810891 100 0 IGHV-1 -7.0621975 0.7814254 1551.38484 0 0 0 -7.0001168 100 0 IGHV1-2 -5.991515 2.67335719 2157.07954 0 0 -5.9831704 100 0 IGHV -5.5931704 100 0 IGHV -5.5931704 100 0 IGHV -5.5931704 100 0 IGHV -5.5931704 IGHV -5.5931704 IGHV -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV -5.5910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 IGHV -5.5931704 IGHV -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV -5.5931515 2.67335719 2157.07954 0 0 -5.9831704 100 0 IGHV -5.5931704 -5. | ENSG00000211666 | IGLV2-14 | -7.2007245 | 4.04068092 | 4963.54486 | 0 | 0 -7.606 | 3428 | 100 | 0 IGLV2-14 | -5.2100288 | 3.96090776 2 | 887.09183 | 0 | 0 | -5.2635439 | 100 | 0 | | ENSG0000211673 GLV3-1 -7.2897996 3.0536284 3490.24964 0 0 -7.8095481 100 0 GLV3-1 -6.8335602 2.96058498 2733.47539 0 0 -7.2301266 100 0 ENSG0000211677 GLC2 -7.0431384 4.32542491 4494.379 0 0 -7.037561 88.5714286 0 GLC2 -5.9386209 4.32532541 3191.8797 0 0 -5.733966 88.8888889 0 ENSG0000211679 GLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 GLC3 -5.8976029 4.13771028 3556.7416 0 0 -5.7877776 100 0 ENSG0000211893 GHG2 -7.7087566 3.31020407 3796.16706 0 0 -7.8921394 100 0 GHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG00000211896 GHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 GHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8009828 100 0 ENSG00000211899 GHD -7.0867255 6.46670146 7328.22957 0 0 -7.2175308 100 0 GHHD -4.580132 6.42967796 3341.01718 0 0 -4.6801084 100 0 ENSG00000211893 GHW -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 GHW -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 ENSG00000211933 GHV6-1 -7.0621975 0.7814254 1551.38484 0 0 -10000 100 0 GHW -5.5931436 0.70273303 993.696857 4.21E-218 7.42E-217 -5.7782628 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 ENSG00000211934 GHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 GHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 -5.9831704 100 0 -5.9831704 100 0 -5.9831704 100 0 -5.9831704 100 0 -5.9831704 100 0 -5.9831704 10 | ENSG00000211668 | IGLV2-11 | -7.3655404 | 2.34383318 | 2744.43095 | 0 | 0 -8.084 | 1068 | 100 | 0 IGLV2-11 | -5.5879455 | 2.244158 1 | 714.23486 | 0 | 0 | -5.4880337 | 100 | 0 | | ENSG00000211677 IGLC2 -7.0431384 4.32542491 4494.379 0 0 -7.037561 88.5714286 0 IGLC2 -5.9386209 4.32532541 3191.8797 0 0 -5.733966 88.8888889 0 ENSG0000211679 IGLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 IGLC3 -5.8976029 4.13771028 3556.7416 0 0 -5.7877776 100 0 ENSG0000211893 IGHG2 -7.7087566 3.31020407 3796.16706 0 0 -9.0065849 100 0 IGHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG0000211896 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8098282 100 0 ENSG00000211897 IGHG3 -6.6286815 3.48991934 3542.85329 0 0 -7.4379156 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 ENSG00000211899 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.1005227 3315.06483 0 0 -4.8801891 100 0 ENSG00000211933 IGHV6-1 -7.0621975 0.7814254 1551.38484 0 0 0 -10000 100 0 IGHV6-1 -5.5931436 0.70273303 993.696857 4.21E-218 7.42E-217 -5.7782628 100 0 ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 IGHV1-2 | ENSG00000211671 | NA | -7.4972125 | 1.96219219 | 2429.46159 | 0 | 0 -8.411 | 3698 | 100 | 0 NA | -6.4324792 | 1.93796475 1 | 780.31501 | 0 | 0 | -7.0029139 | 100 | 0 | | ENSG0000211893 IGLC3 -7.1685688 4.24413216 5295.49761 0 0 -7.3145422 100 0 IGLC3 -5.8976029 4.13771028 3556.7416 0 0 -5.7877776 100 0 ENSG0000211893 IGHG2 -7.7087566 3.31020407 3796.16706 0 0 -9.0065849 100 0 IGHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG0000211896 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8009828 100 0 ENSG00000211897 IGHG3 -6.628615 3.48991934 3542.85329 0 0 -7.4379156 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 IGHG9 -4.580132 6.42967796 3341.01718 0 0 -4.8610184 100 0 IGHG9 IGHG9 -4.580132 6.42967796 3341.01718 0 0 -4.8610184 100 0 IGHG9 IGH | ENSG00000211673 | IGLV3-1 | -7.2897996 | 3.0536284 | 3490.24964 | 0 | 0 -7.809 | 5481 | 100 | 0 IGLV3-1 | -6.8335602 | 2.96058498 2 | 733.47539 | 0 | 0 | -7.2301266 | 100 | 0 | | ENSG0000211893 IGHG2 -7.7087566 3.31020407 3796.16706 0 0 -9.0065849 100 0 IGHG2 -7.6488646 3.18045998 3131.62586 0 0 -8.2522484 100 0 ENSG0000211897 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8009828 100 0 ENSG0000211897 IGHG3 -6.6286815 3.48991934 3542.85329 0 0 -7.4379156 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 ENSG00000211898 IGHD -7.0867255 6.46670146 7328.22957 0 0 -7.2175308 100 0 IGHD -4.580132 6.42967796 3341.01718 0 0 -4.86051084 100 0 ENSG00000211899 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 ENSG00000211933 IGHV6-1 -7.0621975 0.7814254 1551.38484 0 0 -10000 100 0 IGHV6-1 -5.5931436 0.70273303 993.696857 4.21E-218 7.42E-217 -5.7782628 100 0 ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211677 | IGLC2 | -7.0431384 | 4.32542491 |
4494.379 | 0 | 0 -7.03 | 7561 88 | 8.5714286 | 0 IGLC2 | -5.9386209 | 4.32532541 | 3191.8797 | 0 | 0 | -5.733966 | 88.888889 | 0 | | ENSG0000211896 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8009828 100 0 ENSG0000211897 IGHG3 -6.6286815 3.48991934 3542.85329 0 0 -7.4379156 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 IGHD -4.580132 6.42967796 3341.01718 0 0 -4.6051084 100 0 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 IGHM -7.0621975 0.7814254 1551.38484 0 0 0 -7.000000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211679 | IGLC3 | -7.1685688 | 4.24413216 | 5295.49761 | 0 | 0 -7.314 | 5422 | 100 | 0 IGLC3 | -5.8976029 | 4.13771028 | 3556.7416 | 0 | 0 | -5.7877776 | 100 | 0 | | ENSG0000211896 IGHG1 -7.4753869 6.14713091 7098.54057 0 0 -7.8921394 100 0 IGHG1 -7.4179873 6.04347129 6072.68106 0 0 -7.8009828 100 0 ENSG0000211897 IGHG3 -6.6286815 3.48991934 3542.85329 0 0 -7.4379156 100 0 IGHG3 -5.6930083 3.38071425 2532.65755 0 0 -5.8251971 100 0 IGHD -4.580132 6.42967796 3341.01718 0 0 -4.6051084 100 0 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 IGHM -7.0621975 0.7814254 1551.38484 0 0 0 -7.000000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | | | -7.7087566 | 3.31020407 | 3796.16706 | 0 | 0 -9.006 | 5849 | 100 | | | | | 0 | 0 | -8.2522484 | 100 | 0 | | ENSG00000211898 IGHD -7.0867255 6.46670146 7328.22957 0 0 -7.2175308 100 0 IGHD -4.580132 6.42967796 3341.01718 0 0 -4.6051084 100 0 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 IGHV -1.000000000000000000000000000000000000 | | IGHG1 | -7.4753869 | 6.14713091 | 7098.54057 | 0 | 0 -7.892 | 1394 | 100 | 0 IGHG1 | -7.4179873 | 6.04347129 6 | 072.68106 | 0 | 0 | -7.8009828 | 100 | O | | ENSG0000211899 IGHM -7.2272283 9.18422568 8072.31217 0 0 -7.2579073 100 0 IGHM -4.8605318 9.10065227 3315.06483 0 0 -4.8810891 100 0 ENSG00000211933 IGHV6-1 -7.0621975 0.7814254 1551.38484 0 0 -10000 100 0 IGHV6-1 -5.5931436 0.70273303 993.696857 4.21E-218 7.42E-217 -5.7782628 100 0 ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211897 | IGHG3 | -6.6286815 | 3.48991934 | 3542.85329 | 0 | 0 -7.437 | 9156 | 100 | 0 IGHG3 | -5.6930083 | 3.38071425 2 | 532.65755 | 0 | 0 | -5.8251971 | 100 | 0 | | ENSG00000211933 IGHV6-1 -7.0621975 0.7814254 1551.38484 0 0 -10000 100 0 IGHV6-1 -5.5931436 0.70273303 993.696857 4.21E-218 7.42E-217 -5.7782628 100 0 ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211898 | IGHD | -7.0867255 | 6.46670146 | 7328.22957 | 0 | 0 -7.217 | 5308 | 100 | 0 IGHD | -4.580132 | 6.42967796 3 | 341.01718 | 0 | 0 | -4.6051084 | 100 | 0 | | ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211899 | IGHM | -7.2272283 | 9.18422568 | 8072.31217 | 0 | 0 -7.257 | 9073 | 100 | 0 IGHM | -4.8605318 | 9.10065227 3 | 315.06483 | 0 | 0 | -4.8810891 | 100 | 0 | | ENSG00000211934 IGHV1-2 -7.5490701 2.74592174 3234.06116 0 0 -7.9001168 100 0 IGHV1-2 -5.910515 2.67335719 2157.07954 0 0 -5.9831704 100 0 | ENSG00000211933 | IGHV6-1 | -7.0621975 | 0.7814254 | 1551.38484 | 0 | 0 -1 | 0000 | 100 | 0 IGHV6-1 | -5.5931436 | 0.70273303 9 | 93.696857 | 4.21E-218 | 7.42E-217 | -5.7782628 | 100 | O | | ENSG00000211937 IGHV2-5 -8.0484423 1.44206466 2149.69969 0 0 -10000 100 0 IGHV2-5 -7.1739226 1.33033726 1566.77067 0 0 -5004.1154 100 0 | | IGHV1-2 | -7.5490701 | 2.74592174 | 3234.06116 | 0 | 0 -7.900 | 1168 | 100 | 0 IGHV1-2 | -5.910515 | 2.67335719 2 | 157.07954 | 0 | 0 | -5.9831704 | 100 | 0 | | | ENSG00000211937 | IGHV2-5 | -8.0484423 | 1.44206466 | 2149.69969 | 0 | 0 -1 | 0000 | 100 | 0 IGHV2-5 | -7.1739226 | 1.33033726 1 | 566.77067 | 0 | 0 | -5004.1154 | 100 | 0 | | INCOCONDITION INCO | ENSG00000211938 | IGHV3-7 | -7 4774906 | 2 5/28063 | 2004 42627 | 0 | 0 | -8.5194744 | 10 | 1 | 0 IGHV3-7 | -5 6944236 | 2 47796746 1962 | 49172 | 0 | 0 | -5.9575492 | 100 | ol | |--|------------------|-----------|------------|------------|------------|-----------|-----------|------------|----|-----|------------|------------|------------------|--------|-----------|-----------|------------|------------|------------| | MS-050000211941 7.287402 2.0002799 252.71053 0 0 3.8389067 100 0 0 0 0 0 0 0 0 | | | | | | • | | | | | | | | | • | | | | 2 7777778 | | MAGE-00000211945 GMP-315 7.021741 20707053 2471.02933 0 0 0 .53782993 100 0 GMP-315 .54159490 1086.03523 0 0 .53782555 100 0 0 GMP-315 .52807073 2451550 0 0 .53782555 100 0 0 GMP-315 .52807073 2451550 0 0 .53782555 100 0 0 GMP-315 .52807073 2451550 0 0 .53782555 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 100 0 0 GMP-315 .52807073 2451550 0 0 .54591125 0 0 0 GMP-315 .52807073 2451550 0 0 0 .54591125 0 0 0 GMP-315 .52807073 2451550 .52 | | | | | | | _ | | | | | | | | | | | | 0 | | MSG0000011945 MSG00000011945 MSG00000011945 MSG00000011945 MSG0000011945 MSG0000011945 MSG00000011945 MSG000000011945 MSG00000011945 MSG000000011945 MSG00000011945 MSG000000011945 MSG000000011945 MSG000000011945 MSG000000011945 MSG0000000000000000000000000000 | | | | | | • | | | | | | | | | _ | | | | 0 | | MSG0000011967 MSG19125 7.795173 £265277462 3118.086677 0 | | | | | | _ | _ | | | | | | | | | _ | | | 0 | | MSG0000211996 MR-21 | | | | | | | | | | | | | | | • | | | | 0 | | MacCondouzilists MacCondouzi | | | | | | _ | | | | | | | | | _ | | | | 0 | | MSG00000211956 GHH-44 -6.4848717 255560022 311.88975 0 0 -6.478829 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 22917504 281535541 0 0 -8.258134 100 0 GHH-46 -7.4761462 -7 | | | | | | - | | | | | | | | | - | - | | | 0 | | MSG0000011962 MSH_1-86 | | | | | | _ | | | | | | | | | | _ | | | 0 | | INSCRIGO00211966 CHIPS-94 CHIPS-95 CHIPS-96 C | | | | | | 0 | | | | | | | | | 3.03F-288 | | | | 0 | | INSCRIGO00211966 INF-951 7.0481726 0.82824995 125829979 0 0 1.000 0 INF-960000211967 INF-951 7.051271 1.128269 3.7682694 1.00 0 INF-951 0.4872408 100 0 INF-951 0.4872408 100 0 INF-950000211979 INF-951 0.751271 1.128269 3.7682694 1.00 INF-951 0.4872408 100 0 INF-950000211979 INF-951 0.4872408 1.00 0 INF-951 0.4872408 0 0 4.999931 1.00 0 INF-950000021797 INF-951 0.4872408 0.489242
0.489242 | | | | | | 0 | | | | | | | | | | | | | 0 | | INSTOCTOOD INSTACT STATE | | | | | | 0 | | | | | | | | | 1.68F-209 | | | | 0 | | INSCRIGATION INSTRUMENT I | | | | | | _ | _ | | | | | | | | 0 | | | | 0 | | RINGCORDO0121973 GiFFI-69 -7.3926012 38927868 889283338 0 0 -7.551125 100 0 GiFFI-69 -4.9744855 382282646 2627.30014 0 0 4.9950351 100 0 GiFFI-69 -7.0926012 1299788 -3.6765348 441384518 221217578 0 0 -2.8946555 100 0 Cigord 1.992656 1.992656 1.9926 | | | | | | 0 | 0 | | | | | | | | 5.47F-261 | | | | 0 | | MSC00000213191 | | | | | | 0 | 0 | | | | | | | | | | | | 0 | | PASSCORDO0224121 C199478 C189578 C1895829 S31737849 O | | | | | | 0 | 0 | | | | | | | | 2.30F-305 | | | | 0 | | INSCORDO0223869 Ha.PMP81 | | | | | | _ | _ | | | | | | | | | | | | o | | BASCORO0022865 CHAP3-74 4.8134354 8.06981538 4.9400012 0 | | | | | | 0 | 0 | | | | | | | | 0 | | | | 0 | | ENSCORDO023496 M-A-786 4.8894376 125565225 1738.8598 0 | | | | | | 0 | _ | | | | | | | | 0 | _ | | | 0 | | ENSCOROO0223191 LA-DREG | | | | | | 0 | | | | | | | | | 4.11F-255 | | | | 0 | | ENSCORDO0231495 (HAV-DPA1 | | | | | | 0 | | | | | | | | | | | | | 0 | | ENSCORDO0231475 6FW-31 | | | | | | 0 | 0 | | | | | | | | 0 | | | | 0 | | ENSCORDO023486 NA | | | | | | 0 | 0 | | | | | | | | 5.89E-220 | | | | 0 | | ENSCOROU0232978 M.A. DOBZ 5.0754922 3.28778376 505.637789 0 0 - 5.0919686 100 0 6PK1 - 2.2974594 5.101688 1589 95613 0 0 - 2.2979518 100 0 0 0 0 0 0 0 0 | | | | | | 0 | 0 | | | | | | | | | | | | 0 | | ENSCO0000233756 ENSCO000023951 ENSCO000023951 ENSCO000239551 ENV-320 | | | | | | 0 | 0 | | | | | | | | 0 | | | | 0 | | FASCO0000237951 HA-DQA2 | | | | | | 0 | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSGO00002349754 HLA-DOA2 | | NFAM1 | | | | 0 | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSGO0000239951 IGKV3-20 | | | | | | 0 | | | | | | | | | 0 | | | | 0 | | ENSGO0000249988 LILRA2 | | | | | | 0 | 0 | | | | | | | | 0 | 0 | | | 0 | | ENSGO0000240671 [KKV1-8] -7.3081332 0.76396608 IS87.15677 0 0 -8.1017741 100 0 KKV1-18] -5.3688837 0.71628703 956.385062 5.48E-210 9.26E-209 5.4787013 100 0 KKV1-200024084 KKV2-24] -7.7383575 1.30792025 R16.4053 0 0 -10000 100 0 KKV1-16] -5.604137 1.02003845 1108.98806 3.68E-243 7.04E-242 5.810118 100 0 KKV2-24] -7.7383575 1.30792025 R16.4053 0 0 -10000 100 0 KKV2-24] -6.429788 1.23648152 1275.08313 3.00E-279 6.68E-273 6.9567322 100 0 KKV2-24] -7.7383575 1.30792025 R16.4053 0 0 -10000 100 0 KKV2-24] -6.429788 1.23648152 1275.08313 3.00E-279 6.68E-278 6.9567322 100 0 KKV1-10 -7.4202088 3.43020924 R18.584928 0 0 -8.0842643 100 0 KKV2-24] -6.429788 1.23648152 1275.08313 3.00E-279 6.68E-278 6.9567322 100 0 KKV1-10 -7.4202088 3.43020924 R18.584928 0 0 -8.0842643 100 0 KKV1-15 -5.4126452 3.34083081 2504.444499 0 0 -3.2411737 100 0 KKV1-16 -7.6311309 3.28833214 A058.53015 0 0 -8.5913765 100 0 KKV1-15 -6.2787887 3.22528274 R18.9747 0 0 -3.241173 100 0 KKV1-15 -6.2787887 3.22528274 R18.9747 0 0 -6.5964442 100 0 KKV1-15 -7.116868 1.42633608 2007.3855 0 0 -8.0054371 100 0 KKV1-15 -5.3209004 2.25892108 R16.93266 0 0 -5.5515555 100 0 KKV1-15 -6.583603 3.3402094 R18.4042444 5.555555 100 0 KKV1-27 -5.1456024 1.35755904 1156.44989 1.78E-253 3.55E-252 5.411938 100 0 KKV1-27 -5.1456024 1.35755904 1156.44989 1.78E-253 3.55E-252 5.411938 100 0 KKV1-27 -5.1456024 1.35755904 1.564989 1.78E-253 3.55E-252 5.411938 100 0 KKV1-27 5.601566 2.6863608 2.978-138449 5.786000000000000000000000000000000000000 | | LILRA2 | | | | 0 | 0 | -4.7159109 | 10 |) | 0 LILRA2 | | | | 0 | 0 | -7.2440622 | 100 | 0 | | ENSG00000241294 [6KV2-24 -7.7383575 1.30792025 1816.4053 0 -1.0000 100 | ENSG 00000240671 | IGKV1-8 | -7.3081332 | 0.76396608 | 1587.15677 | 0 | 0 | -8.1017741 | 10 |) | 0 IGKV1-8 | -5.3688837 | 0.71628703 956.3 | 868062 | 5.48E-210 | | | 100 | 0 | | ENSG00000241294 [6KV2-24 -7.7383575 1.30792025 1816.4053 0 -1.0000 100 | | | | | | 0 | 0 | -10000 | | | 0 IGKV1-16 | | | | 3.68E-243 | 7.04E-242 | -5.810118 | 100 | 0 | | ENSG00000241839 PLEKHO2 | ENSG00000241294 | IGKV2-24 | -7.7383575 | 1.30792025 | 1816.4053 | 0 | 0 | -10000 | 10 |) | 0 IGKV2-24 | -6.4297888 | 1.23648152 1275 | .03813 | 3.00E-279 | 6.68E-278 | -6.9567322 | 100 | 0 | | ENSG00000243466 GKV1-5 | ENSG00000241351 | IG KV3-11 | -7.4202088 | 3.43020924 | 4185.84928 | 0 | 0 | -8.0842643 | 10 |) | 0 IGKV3-11 | -5.4126452 | 3.34083081 2504 | 44499 | 0 | 0 | -5.3827155 | 100 | 0 | | ENSG00000244437 GKV3-15 -6.9225786 2.35143725 2699.43982 0 0 -7.7286592 100 0 IGKV3-15 -5.3209004 2.25892108 1661.93266 0 0 -5.5515525 100 0 0 ENSG00000244754 HBB -6.6334449 5.78001334 4635.01612 0 0 -6.9452619 100 0 HBB -5.2346566 5.73725631 2449.04824 0 0 -5.2299241 94.444444 5.55555556 ENSG00000254799 IGLS -6.8583023 3.034072 3427.71156 0 0 -7.7126638 100 0 IGLLS -5.0601566 2.96356408 2019.51653 0 0 -5.2299241 94.444444 5.55555556 ENSG0000017900 CFRL1 -2.4546942 5.90338473 1403.12549 4.406-307 8.76E-306 -2.3383725 100 0 0 0 0 0 0 0 0 | ENSG00000241839 | PLEKHO2 | -3.4973396 | 5.72541113 | 2530.78411 | 0 | 0 | -3.3257143 | 10 |) | 0 PLEKHO2 | -3.2659548 | 5.75171051 1860 | 14851 | 0 | 0 | -3.2411737 | 100 | 0 | | ENSG00000244575 GKV1-27 -7.116868 1.42633608 2007.3855 0 0 -8.0054371 100 0 GKV1-27 -5.1456024 1.35755904 1156.44989 1.78E-253 3.55E-252 -5.411938 100 0 ENSG00000244734 HBB -6.6334449 5.78001334 4635.01612 0 0 -6.9452619 100 0 HBB -5.2346566 5.73725631 2449.04824 0 0 -5.2299241 9.44444444 5.55555556 5.75600000215902 SLC1A4 -2.8894123 4.09334084 413.32458 0.00E+00 5.37E-308 -2.8125916 100 0
SLC1A4 -1.5669356 4.0778784 3.96.15219 3.79E-88 3.17E-87 -1.419178 97.222222 2.77777778 1.00E-100 | ENSG00000243466 | IGKV1-5 | -7.6311309 | 3.32833214 | 4058.53015 | 0 | 0 | -8.5913765 | 10 |) | 0 IGKV1-5 | -6.2787887 | 3.22528274 281 | 8.9747 | 0 | 0 | -6.2964442 | 100 | 0 | | ENSGO0000244734 HBB | ENSG00000244437 | IGKV3-15 | -6.9225786 | 2.35143725 | 2699.43982 | 0 | 0 | -7.7286592 | 10 |) | 0 IGKV3-15 | -5.3209004 | 2.25892108 1661 | .93266 | 0 | 0 | -5.5515525 | 100 | 0 | | ENSGO0000254709 IGLLS | ENSG00000244575 | IG KV1-27 | -7.1168868 | 1.42633608 | 2007.3855 | 0 | 0 | -8.0054371 | 10 |) | 0 IGKV1-27 | -5.1456024 | 1.35755904 1156 | .44989 | 1.78E-253 | 3.55E-252 | -5.411938 | 100 | 0 | | ENSG00000115902 SLC1A4 | ENSG00000244734 | HBB | -6.6334449 | 5.78001334 | 4635.01612 | 0 | 0 | -6.9452619 | 10 |) | O HBB | -5.2346566 | 5.73725631 2449 | .04824 | 0 | 0 | -5.2299241 | 94.444444 | 5.5555556 | | ENSGO0000119900 OGFRL1 | ENSG00000254709 | IGLL5 | -6.8583023 | 3.034072 | 3427.71156 | 0 | 0 | -7.5120638 | 10 |) | 0 IGLL5 | -5.0601566 | 2.96356408 2019 | .51653 | 0 | 0 | -4.9420517 | 100 | 0 | | ENSGO000169413 RNASE6 -3.9099932 2.44271473 1400.96863 1.29E-306 2.57E-305 -3.7198161 100 0 RNASE6 -5.5159613 2.33557562 1774.91707 0 0 -5.870038 100 0 ENSGO000172216 CEBPB -2.4362218 6.07465393 1380.21318 4.19E-302 8.22E-301 -2.3236255 100 0 CEBPB -2.0535036 6.10253802 833.383852 2.98E-183 4.47E-182 -2.0060425 100 0 ENSGO0000161929 SCIMP -4.1262456 2.15980459 1374.6622 6.74E-301 1.32E-299 -4.1328367 100 0 SCIMP -4.4571969 2.15095466 1257.25892 2.20E-275 4.78E-274 -4.522873 100 0 ENSGO000157851 CD300A -3.301682 3.12542813 1355.39242 1.04E-296 1.98E-295 -3.2163668 100 0 CD300A -0.9328543 3.57288924 121.490792 2.98E-28 1.01E-27 -0.2463676 8.33333333 ENSGO000128245 YWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 YWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -0.24636473 100 0 ENSGO0000067182 TNFRSF1A -2.4828717 5.30265915 1345.12565 1.77E-294 3.36E-293 -2.5179648 100 0 HBRS 1 -3.4670361 1.91000128 419.727895 2.80E-39 2.43E-92 -4.3203473 86.111111 11.1111111 ENSGO0000211936 NA -6.0464003 1.01075149 1341.09437 1.33E-293 2.51E-292 -6.6609182 100 0 NA -5.0968724 0.87823436 855.42399 4.31E-188 7.36E-187 -5.2168521 100 0 ENSG00000189319 FAM538 -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.444444 5.55555556 | ENSG00000115902 | SLC1A4 | -2.8894123 | 4.09334084 | 1413.32458 | 0.00E+00 | 5.37E-308 | -2.8125916 | 10 |) | 0 SLC1A4 | -1.5669356 | 4.30778784 396.1 | 52219 | 3.79E-88 | 3.17E-87 | -1.4219178 | 97.222222 | 2.77777778 | | ENSG00000172216 CEBPB -2.4362218 6.07465393 1380.21318 4.19E-302 8.22E-301 -2.3236255 100 0 CEBPB -2.0535036 6.10253802 833.383852 2.98E-183 4.47E-182 -2.0060425 100 0 ENSG00000161929 SCIMP -4.1262456 2.15980459 1374.6622 6.74E-301 1.32E-299 -4.1328367 100 0 SCIMP -4.4571969 2.15095466 1257.25892 2.20E-275 4.78E-274 -4.522873 100 0 ENSG00000158106 RIPN1 2.76842576 4.22510068 1358.63887 2.04E-297 3.93E-296 2.86587581 0 100 RIPN1 2.2085345 3.68282393 654.483664 2.37E-144 3.01E-143 2.23372377 0 100 ENSG00000167851 CD300A -3.301682 3.12542813 1355.39242 1.04E-296 1.98E-295 -3.2163668 100 0 CD300A -0.9328543 3.57288924 121.490792 2.98E-28 1.01E-27 -0.9163276 91.666667 8.33333333 ENSG00000128245 VWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 YWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -2.46884717 5.30265915 1345.12565 1.77E-294 3.36E-293 -2.5179648 100 0 TNFRSF1A -2.6960405 5.27169777 1321.06235 2.99E-289 6.83E-288 -2.7832826 100 0 ENSG00000206172 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-93 2.43E-92 -4.3203473 86.111111 11.1111111 11.1111111 11.1111111 | ENSG00000119900 | OGFRL1 | -2.4546942 | 5.90338473 | 1403.12549 | 4.40E-307 | 8.76E-306 | -2.3383725 | 10 |) | 0 OGFRL1 | -1.6442227 | 6.01110125 561.7 | 96508 | 3.42E-124 | 3.81E-123 | -1.6204332 | 100 | 0 | | ENSG0000161929 SCIMP -4.1262456 2.15980459 1374.6622 6.74E-301 1.32E-299 -4.1328367 100 0 SCIMP -4.4571969 2.15095466 1257.25892 2.20E-275 4.78E-274 -4.522873 100 0 ENSG00000158106 RHPN1 2.76842576 4.22510068 1358.63887 2.04E-297 3.93E-296 2.86587581 0 100 RHPN1 2.2085345 3.68282393 654.483664 2.37E-144 3.01E-143 2.23372377 0 100 ENSG00000167851 ENSG00000128245 VWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 YWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -2.4868473 100 0 ENSG0000026172 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-39 2.43E-99 2.43293478 86.111111 11.1111111 ENSG00000189319 FAM538 -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.55555556 | ENSG00000169413 | RNASE6 | -3.9099932 | 2.44271473 | 1400.96863 | 1.29E-306 | 2.57E-305 | -3.7198161 | 10 |) | O RNASE6 | -5.5159613 | 2.33557562 1774 | 91707 | 0 | 0 | -5.870038 | 100 | 0 | | ENSG0000158106 RHPN1 2.76842576 4.22510068 1358.63887 2.04E-297 3.93E-296 2.86587581 0 100 RHPN1 2.2085345 3.68282393 654.483664 2.37E-144 3.01E-143 2.23372377 0 100 ENSG00000167851 CD300A -3.301682 3.12542813 1355.39242 1.04E-296 1.98E-295 -3.2163668 100 0 CD300A -0.9328543 3.57288924 121.490792 2.98E-28 1.01E-27 -0.9163276 91.6666667 8.33333333 ENSG00000128245 VWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 VWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -2.4368473 100 0 ENSG0000026172 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-93 2.43E-294 -3.202473 86.1111111 11.1111111 ENSG00000189319 FAM538 -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.444444 5.55555556 | ENSG00000172216 | CEBPB | -2.4362218 | 6.07465393 | 1380.21318 | 4.19E-302 | 8.22E-301 | -2.3236255 | 10 |) | O CEBPB | -2.0535036 | 6.10253802 833.3 | 883852 | 2.98E-183 | 4.47E-182 | -2.0060425 | 100 | 0 | | ENSG0000167851 CD300A -3.301682 3.12542813 1355.39242 1.04E-296 1.98E-295 -3.2163668 100 0 CD300A -0.9328543 3.57288924 121.490792 2.98E-28 1.01E-27 -0.9163276 91.666667 8.33333333 ENSG00000128245 YWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 YWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -2.4368473 100 0 ENSG00000067182 ENSG00000206172 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-93 2.43E-92 -4.3203473 86.111111 11.1111111 ENSG00000211936 NA -6.0464003 1.01075149 1341.09437 1.33E-293 2.51E-292 -6.2609182 100 0 NA -5.0968724 0.87823436 855.423992 4.81E-188 7.36E-187 -5.2168521 100 0 ENSG00000189319 FAM538 -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.555555556 | ENSG00000161929 | SCIMP | -4.1262456 | 2.15980459 | 1374.6622 | 6.74E-301 | 1.32E-299 | -4.1328367 | 10 |) | O SCIMP | -4.4571969 | 2.15095466 1257 | 25892 | 2.20E-275 | 4.78E-274 | -4.522873 | 100 | 0 | | ENSG00000128245 YWHAH -2.7092628 4.26896879 1354.26493 1.82E-296 3.48E-295 -2.7447072 100 0 YWHAH -2.4019278 4.24839078 905.107551 7.61E-199 1.22E-197 -2.4368473 100 0 ENSG00000067182 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-93 2.43E-92 -4.3203473 86.111111 11.1111111 ENSG00000189319 FAM53B -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.555555556 | ENSG00000158106 | RHPN1 | 2.76842576 | 4.22510068 | 1358.63887 | 2.04E-297 | 3.93E-296 | 2.86587581 | |) 1 | 00 RHPN1 | 2.2085345 | 3.68282393 654.4 | 183664 | 2.37E-144 | 3.01E-143 | 2.23372377 | 0 | 100 | | ENSG0000067182 TNFRSF1A | ENSG00000167851 | CD300A | -3.301682 | 3.12542813 | 1355.39242 | 1.04E-296 | 1.98E-295 | -3.2163668 | 10 | 0 | 0 CD300A | -0.9328543 | 3.57288924 121.4 | 190792 | 2.98E-28 | 1.01E-27 | -0.9163276 | 91.6666667 | 8.33333333 | | ENSG00000206172 HBA1 -6.3638104 1.79888269 1342.05607 8.20E-294 1.55E-292 -8.5101988 100 0 HBA1 -3.4670361 1.91000128 419.727895 2.80E-93 2.43E-92 -4.3203473 86.111111 11.1111111 ENSG00000211936 NA -6.0464003 1.01075149 1341.09437 1.33E-293 2.51E-292 -6.2609182 100 0 NA -5.0968724 0.87823436 855.42399 4.81E-188 7.36E-187 -5.2168521 100 0 ENSG00000189319 FAM53B -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.555555556 | ENSG00000128245 | YWHAH | -2.7092628 | 4.26896879 | 1354.26493 | 1.82E-296 | 3.48E-295 | -2.7447072 | 10 |) | 0 YWHAH | -2.4019278 | 4.24839078 905.1 | 07551 | 7.61E-199 | 1.22E-197 | -2.4368473 | 100 | 0 | | ENSG00000211936 NA -6.0464003 1.01075149 1341.09437 1.33E-293 2.51E-292 -6.2609182 100 0 NA -5.0968724 0.87823436 855.423992 4.81E-188 7.36E-187 -5.2168521 100 0 ENSG00000189319 FAM53B -2.3517318 6.9214198 1335.64766 2.03E-291 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.55555556 | ENSG00000067182 | TNFRSF1A | -2.4828717 | 5.30265915 | 1345.12565 | 1.77E-294 | 3.36E-293 | -2.5179648 | 10 | 0 | O TNFRSF1A | -2.6960405 | 5.27169777 1321 | .06235 | 2.99E-289 | 6.83E-288 | -2.7832826 | 100 | 0 | | ENSG00000189319 FAM53B -2.3517318 6.9214198 1335.64766 2.03E-292 3.80E-291 -2.1691075 100 0 FAM53B -1.2308409 7.2194044 304.027735 4.37E-68 2.92E-67 -1.4493146 94.4444444 5.55555556 | ENSG00000206172 | HBA1 | -6.3638104 | 1.79888269 | 1342.05607 | 8.20E-294 | 1.55E-292 | -8.5101988 | 10 |) | 0 HBA1 | -3.4670361 | 1.91000128 419.7 | 27895 |
2.80E-93 | 2.43E-92 | -4.3203473 | 86.1111111 | 11.1111111 | | | ENSG00000211936 | NA | -6.0464003 | 1.01075149 | 1341.09437 | 1.33E-293 | 2.51E-292 | -6.2609182 | 10 | 0 | 0 NA | -5.0968724 | 0.87823436 855.4 | 23992 | 4.81E-188 | 7.36E-187 | -5.2168521 | 100 | 0 | | ENSG00000165175 MID1IP1 -2.4621918 5.11853096 1331.37286 1.72E-291 3.21E-290 -2.3612766 100 0 MID1IP1 -2.9936789 4.9863489 1551.37829 0 0 -3.0042019 100 0 | ENSG00000189319 | FAM53B | -2.3517318 | 6.9214198 | 1335.64766 | 2.03E-292 | 3.80E-291 | -2.1691075 | 10 |) | 0 FAM53B | -1.2308409 | 7.2194044 304.0 | 27735 | 4.37E-68 | 2.92E-67 | -1.4493146 | 94.444444 | 5.5555556 | | | ENSG00000165175 | MID1IP1 | -2.4621918 | 5.11853096 | 1331.37286 | 1.72E-291 | 3.21E-290 | -2.3612766 | 10 |) | 0 MID1IP1 | -2.9936789 | 4.9863489 1551 | .37829 | 0 | 0 | -3.0042019 | 100 | 0 | | I | | | | | | | | | - | | | al | |------------------------------------|-----------------|---|------------------------|--|-------|-------------------|--|------------------------|------------------------|--------------------------|------------|-----------| | ENSG 00000205269 | TMEM170B | -2.4273385 5.34328524 1322.13276 | 1.75E-289 | 3.26E-288 -2.405413 | | 0 TMEM170B | -2.9595139 5.22923835 1562.71537 | 0 | | -2.8769353 | 100 | 0 | | ENSG00000163453 | IGFBP7 | -4.2629084 1.83648017 1321.04348 | 3.02E-289 | 5.62E-288 -4.47598 | | 0 IGFBP7 | -4.5707734 1.7607928 1151.25932 | 2.39E-252 | | -4.5515228 | 100 | 0 | | ENSG00000239855 | IGKV1-6
ELF4 | -7.8719001 0.25178684 1320.07594 | 4.90E-289 | 9.09E-288 -1000
1.14E-287 -2.221998 | | 0 IGKV1-6 | -6.8274383 0.13092716 919.779231 | 4.92E-202 | 8.06E-201 | -10000 | 100 | 0 | | ENSG00000102034
ENSG00000213722 | DDAH2 | -2.3607764 6.17980689 1319.61724 | 6.17E-289
9.28E-288 | 1.14E-287 -2.221998
1.70E-286 -2.936121 | | 0 ELF4
0 DDAH2 | -2.2023124 6.20090712 951.100986
-2.9981597 3.59497753 1122.32668 | 7.65E-209
4.64E-246 | 1.27E-207
9.00E-245 | -2.0353417
-3.0616081 | 100
100 | 0 | | ENSG00000213722 | GLIPR2 | -2.962895 3.59767157 1314.19828
-2.9098306 3.75908635 1312.38815 | 2.30E-287 | | | 0 GLIPR2 | | 2.67E-187 | | -2.4925294 | 100 | 0 | | ENSG00000122694
ENSG00000187446 | CHP1 | -2.3970073 5.33885511 1311.73483 | 3.18E-287 | 4.20E-286 -2.750937
5.81E-286 -2.330743 | | 0 CHP1 | -2.4899127 3.81516527 852.003062
-1.4494131 5.50127488 428.851659 | 2.89E-95 | | -1.4183895 | 100 | 0 | | ENSG00000187446 | S100A6 | -2.3164217 7.63079463 1311.54318 | 3.51E-287 | 6.38E-286 -2.171789 | | 0 S100A6 | -2.2813087 7.64610868 1002.05273 | 6.43E-220 | 1.14E-218 | -2.280579 | 100 | 0 | | ENSG00000197938 | QPCT | -3.9994204 2.17839903 1310.3541 | 6.36E-287 | 1.15E-285 -3.889185 | | 0 QPCT | -5.2640171 2.15466294 1555.74132 | 0.45E-220 | | -5.3239846 | 100 | 0 | | ENSG00000113828 | RNF135 | -3.4681649 2.73680775 1310.23957 | 6.73E-287 | 1.22E-285 -3.313836 | | 0 RNF135 | -3.4204126 2.76416183 1065.90955 | 8.48E-234 | 1.58E-232 | | 100 | 0 | | ENSG00000101481 | LYL1 | -3.7565714 2.32317326 1306.70561 | 3.94E-286 | 7.11E-285 -3.743015 | | 0 LYL1 | -4.050482 2.25279276 1165.83967 | 1.62E-255 | | -4.2035188 | 100 | 0 | | ENSG0000015475 | BID | -2.4652907 4.93431679 1306.0606 | 5.45E-286 | 9.78E-285 -2.397097 | | 0 BID | -2.4169828 4.9451666 1058.44253 | 3.56E-232 | | -2.4403691 | 100 | 0 | | ENSG00000019169 | MARCO | -4.5236498 1.70120997 1290.59652 | 1.25E-282 | 2.23E-281 -4.807414 | | 0 MARCO | -6.2522989 1.74065562 1507.75698 | 0.302-232 | | -6.9016621 | 100 | 0 | | ENSG00000211974 | IGHV2-70 | -6.6421222 0.46550883 1290.37821 | 1.39E-282 | 2.48E-281 -1000 | | 0 IGHV2-70 | -7.1936178 0.39022648 1064.87026 | 1.43E-233 | 2.65E-232 | -10000 | 100 | 0 | | ENSG00000211974 | NA | -5.7400193 1.45845908 1283.25356 | 4.93E-281 | | | 5.71428571 NA | -5.4315017 1.42577465 980.791038 | 2.69E-215 | | | | 2.7777778 | | ENSG00000172322 | CLEC12A | -4.3728588 1.91703062 1280.91682 | 1.59E-280 | 2.80E-279 -4.078641 | | 0 CLEC12A | -6.2017633 1.86585201 1554.64335 | 0 | | -6.3662806 | 100 | 0 | | ENSG00000172522 | THEMIS2 | -2.3192939 6.29958344 1276.57869 | 1.39E-279 | 2.45E-278 -2.22927 | | 0 THEMIS2 | -3.304792 6.21772936 1907.49781 | 0 | | -3.5465751 | 100 | 0 | | ENSG00000125505 | MBOAT7 | -2.5688188 4.41565309 1273.33918 | 7.03E-279 | 1.24E-277 -2.460614 | | 0 MBOAT7 | -2.9855613 4.38389445 1365.77579 | 5.75E-299 | | -2.9780413 | 100 | 0 | | ENSG00000158481 | CD1C | -4.7000824 1.4943985 1269.66555 | 4.42E-278 | 7.75E-277 -4.798286 | | 0 CD1C | -5.5220326 1.37215872 1161.31749 | 1.56E-254 | 3.12E-253 | -6.173355 | 100 | 0 | | ENSG00000073849 | ST6GAL1 | -2.3281125 5.91440337 1267.91404 | 1.06E-277 | 1.86E-276 -2.268635 | 7 100 | 0 ST6GAL1 | -2.4022017 5.78674859 1124.58513 | 1.50E-246 | 2.91F-245 | -2.5131016 | 100 | 0 | | ENSG00000211950 | IGHV1-24 | -5.0983366 1.00644822 1267.63747 | 1.22E-277 | 2.13E-276 -5.166351 | | 0 IGHV1-24 | -5.578538 0.89412687 1066.20773 | 7.30E-234 | | -5.6407132 | 100 | 0 | | ENSG00000178719 | GRINA | -2.3209554 5.81401763 1266.53272 | 2.12E-277 | 3.69E-276 -2.196813 | 1 100 | 0 GRINA | -2.5074349 5.80298586 1200.23067 | 5.43E-263 | 1.12E-261 | -2.5874106 | 100 | 0 | | ENSG00000185112 | FAM43A | -3.1007867 3.29180007 1264.43904 | 6.04E-277 | 1.05E-275 -2.935439 | | 0 FAM43A | -0.6117813 3.82600836 55.7548285 | 8.21E-14 | | | | 22.222222 | | ENSG00000161944 | ASGR2 | -4.2295929 1.81304772 1263.10459 | 1.18E-276 | 2.04E-275 -4.283027 | 4 100 | 0 ASGR2 | -6.0550993 1.78239754 1575.60882 | 0 | | -6.4632258 | 100 | 0 | | ENSG00000158470 | B4GALT5 | -2.3945377 5.1097461 1259.76389 | 6.27E-276 | 1.08E-274 -2.199550 | | 0 B4GALT5 | -1.0571496 5.4018913 228.099319 | 1.55E-51 | 8.18E-51 | -1.017949 | 100 | 0 | | ENSG00000167173 | C15orf39 | -2.2863676 6.69332083 1256.07462 | 3.97E-275 | 6.84E-274 -2.073836 | 5 100 | 0 C15orf39 | -2.2403037 6.68791966 989.496871 | 3.45E-217 | 6.04E-216 | -2.1819163 | 100 | 0 | | ENSG00000211650 | IGLV5-45 | -7.665599 0.14230738 1247.61779 | 2.73E-273 | 4.69E-272 -1000 | 0 100 | 0 IGLV5-45 | -6.6439164 0.07951099 896.980856 | 4.45E-197 | 7.05E-196 | -10000 | 100 | 0 | | ENSG00000164687 | FABP5 | -2.6908919 4.0854703 1247.21513 | 3.34E-273 | 5.72E-272 -2.692546 | 1 100 | 0 FABP5 | -1.2952234 4.34852522 277.789362 | 2.28E-62 | 1.38E-61 | -1.246255 | 94.444444 | 5.5555556 | | ENSG00000167703 | SLC43A2 | -2.2682573 6.84026005 1244.19255 | 1.52E-272 | 2.59E-271 -2.246994 | 3 100 | 0 SLC43A2 | -2.5263224 6.76475594 1232.30349 | 5.82E-270 | 1.23E-268 | -2.5855899 | 100 | 0 | | ENSG00000175040 | CHST2 | -2.404529 5.10367684 1243.87597 | 1.78E-272 | 3.02E-271 -2.285957 | 5 100 | 0 CHST2 | -2.4937986 5.02512179 1117.92118 | 4.21E-245 | 8.12E-244 | -2.5321211 | 100 | 0 | | ENSG00000114315 | HES1 | -3.3104703 2.83088694 1239.43713 | 1.64E-271 | 2.77E-270 -3.270620 | 3 100 | 0 HES1 | -3.4899041 2.68699801 1063.6594 | 2.61E-233 | 4.84E-232 | -3.5106281 | 100 | 0 | | ENSG00000144228 | SPOPL | -2.303501 5.57073871 1239.20304 | 1.84E-271 | 3.11E-270 -2.323243 | 2 100 | 0 SPOPL | -2.0874742 5.55538476 851.759593 | 3.01E-187 | 4.58E-186 | -2.1960736 | 100 | 0 | | ENSG00000161381 | PLXDC1 | 2.54513856 4.69261932 1238.45079 | 2.69E-271 | 4.52E-270 2.2736224 | 4 0 | 100 PLXDC1 | 2.04031205 4.12646812 621.465973 | 3.59E-137 | 4.31E-136 | 1.76148751 | 0 | 100 | | ENSG00000146535 | GNA12 | -2.2500818 6.81625306 1237.42035 | 4.50E-271 | 7.55E-270 -2.169159 | 2 100 | 0 GNA12 | -1.9612546 6.80025977 783.324024 | 2.28E-172 | 3.26E-171 | -1.9333666 | 100 | 0 | | ENSG00000175274 | TP53I11 | -3.0980408 3.133098 1230.37322 | 1.53E-269 | 2.56E-268 -2.994861 | 4 100 | 0 TP53I11 | -2.8456921 3.15752122 885.033285 | 1.76E-194 | 2.75E-193 | -2.7657071 | 100 | 0 | | ENSG00000136158 | SPRY2 | -3.5462701 2.45999388 1227.39335 | 6.79E-269 | 1.14E-267 -3.373340 | 6 100 | 0 SPRY2 | -0.7998757 2.9894848 71.9952151 | 2.16E-17 | 5.47E-17 | -0.6922587 | 77.777778 | 22.222222 | | ENSG00000211976 | IGHV3-73 | -7.0471396 0.25297677 1225.87804 | 1.45E-268 | 2.42E-267 -1000 | 0 100 | 0 IGHV3-73 | -6.2894346 0.19738289 860.944232 | 3.04E-189 | 4.67E-188 | -7.281722 | 100 | 0 | | ENSG00000155366 | RHOC | -2.8313316 3.61220434 1224.18257 | 3.39E-268 | 5.64E-267 -2.711080 | | 0 RHOC | -1.9795358 3.74187707 550.453641 | 1.00E-121 | | -2.0007932 | 100 | 0 | | ENSG00000163545 | NUAK2 | -2.2878767 5.67072172 1222.9962 | 6.13E-268 | 1.02E-266 -2.19208 | | 0 NUAK2 | -2.0144255 5.65508296 810.757938 | 2.47E-178 | | -2.0551723 | 100 | 0 | | ENSG00000143870 | PDIA6 | -2.3207653 5.23284855 1217.46225 | 9.78E-267 | 1.61E-265 -2.291327 | | 0 PDIA6 | -1.8276837 5.26845512 655.465306 | 1.45E-144 | | -1.8352158 | 100 | 0 | | ENSG00000104763 | ASAH1 | -2.2655539 6.02671129 1217.25435 | 1.09E-266 | 1.79E-265 -2.14814 | | 0 ASAH1 | -2.4170946 5.98754829 1143.70242 | 1.05E-250 | | -2.4803648 | 100 | 0 | | ENSG00000140406 | MESDC1 | -2.2903436 5.56063203 1208.97718 | 6.83E-265 | 1.12E-263 -2.236781 | | 0 MESDC1 | -2.3638225 5.47993544 1074.06214 | 1.43E-235 | | -2.3386347 | 100 | 0 | | ENSG 00000059377 | TBXAS1 | -3.1420607 3.07850416 1205.11608 | 4.71E-264 | 7.70E-263 -3.138367 | | 0 TBXAS1 | -5.158386 2.93473891 2018.17133 | 0 | | -5.2350864 | 100 | 0 | | ENSG00000211951 | IGHV2-26 | -7.3976983 0.01282831 1204.125 | 7.74E-264 | 1.26E-262 -1000 | | 0 IGHV2-26 | -5.9032877 -0.0416333 801.887017 | 2.10E-176 | 3.07E-175 | -6.170188 | 100 | 0 | | ENSG 00000033327 | GAB 2 | -2.217093 6.94668897 1194.2067 | 1.11E-261 | 1.79E-260 -2.324092 | | 0 GAB2 | -2.0592807 6.94950708 849.633576 | 8.73E-187 | | -2.0839094 | 100 | 0 | | ENSG 00000188677 | PARVB | -2.7951671 3.55918943 1182.13364 | 4.66E-259 | 7.51E-258 -2.672483 | | 0 PARVB | -2.7755275 3.52444209 975.461932 | 3.87E-214 | | -2.8220721 | 100 | 0 | | ENSG00000146112 | PPP1R18 | -2.2355941 6.05610259 1175.90537 | 1.05E-257 |
1.69E-256 -2.104350 | | 0 PPP1R18 | -2.085121 6.08275539 864.319795 | 5.60E-190 | | -2.1005972 | 100 | 0 | | ENSG00000122877 | EGR2 | -2.5996551 4.14867641 1174.39478 | 2.24E-257 | 3.59E-256 -2.31355 | | 0 EGR2 | -2.7098479 4.19061595 1031.83164 | 2.16E-226 | | -2.8451942 | 100 | 0 | | ENSG00000156273 | BACH1 | -2.1727404 7.55793362 1171.35945 | 1.02E-256 | 1.64E-255 -1.996608 | | 0 BACH1 | -1.9612749 7.5448805 769.194127 | 2.69E-169 | 3.83E-168 | -1.966433 | 100 | 0 | | ENSG00000148158 | SNX30 | -2.2658717 5.24861576 1163.1979 | 6.07E-255 | 9.66E-254 -2.105479 | | 0 SNX30 | -1.5998246 5.402761 508.755907 | 1.18E-112 | | | | 2.7777778 | | ENSG00000243264 | IGKV2D-29 | -7.1388625 0.0368816 1160.20537 | 2.72E-254 | 4.31E-253 -1000 | | 0 IGKV2D-29 | -6.3069466 -0.044887 816.6697 | 1.28E-179 | 1.89E-178 | -10000 | 100 | 0 | | ENSG00000137166 | FOXP4
RHOQ | -2.2403813 5.46512243 1156.13701 | 2.08E-253 | 3.29E-252 -2.081980 | | 0 FOXP4
0 RHOQ | -1.7696585 5.48934649 622.857034 | 1.79E-137 | | -1.7668045 | 100
100 | 0 | | ENSG00000119729 | KHUU | -2.490149 4.19144439 1153.54944 | 7.59E-253 | 1.20E-251 -2.455154 | 2 100 | UKHUU | -2.3046217 4.2042 847.709594 | 2.29E-186 | 3.45E-185 | -2.3290524 | 100 | U | | ENSG00000159399 | uva | 2 2206107 E 86575420 1120 72722 | 7.675.350 | 1 205 249 2 10720 | 26 100 | o uva | 2 2719105 5 71265152 042 709576 | E 10E 207 | 0 425 206 | 2.265000 | 100 | ام | |------------------------------------|------------------|--|------------------------|--|--------|----------------------------|--|------------------------|------------------------|--------------------------|------------|------------| | ENSG00000159399
ENSG00000127838 | HK2
PNKD | -2.2206107 5.86575429 1139.72733
-2.4564459 4.28648146 1129.84175 | 7.67E-250
1.08E-247 | 1.20E-248 -2.10730
1.67E-246 -2.32252 | | 0 HK2
0 PNKD | -2.2718195 5.71365152 942.708576
-2.863336 4.30860364 1245.1149 | 5.10E-207
9.57E-273 | 8.42E-206
2.07E-271 | -2.265009
-2.958291 | 100
100 | 0 | | ENSG00000127838
ENSG00000184730 | APOBR | -2.4519414 4.22428035 1124.86532 | 1.30E-247 | 2.02E-245 -2.32252 | | O APOBR | -2.863336 4.30860364 1243.1149 | 2.26E-138 | | | 100 | 0 | | ENSG00000184730 | IFI6 | -2.2606172 5.22508021 1123.51452 | 2.56E-246 | 3.96E-245 -2.15067 | | 0 IFI6 | -2.2466087 5.33642471 922.600094 | 1.20E-202 | | -2.2036148 | 100 | 0 | | ENSG00000126709 | FTL | -2.1520899 10.3269411 1121.9873 | 5.50E-246 | 8.46E-245 -1.98820 | | 0 FTL | -2.0994724 10.3366723 703.413964 | 5.41E-155 | | -2.2036148 | 100 | 0 | | ENSG00000087080 | LRRC32 | -2.71144 3.60823767 1120.55206 | 1.13E-245 | 1.73E-244 -2.60825 | | O LRRC32 | -3.8230522 3.41070577 1566.29857 | 0.416-133 | | -3.8428056 | 100 | 0 | | ENSG00000137307
ENSG00000177989 | ODF3B | -2.853315 3.33633237 1117.59225 | 4.96E-245 | 7.60E-244 -2.83229 | | 0 ODF3B | -3.2654995 3.30124416 1154.71819 | 4.23E-253 | | -3.2121088 | 100 | 0 | | | | -2.833313 3.33633237 1117.39223 | 1.44E-244 | | | 0 CHSY1 | | 4.23E-233
3.53E-53 | | | 100 | 0 | | ENSG00000131873
ENSG00000177374 | CHSY1
HIC1 | -3.3551736 2.48773722 1103.44534 | 5.89E-242 | 2.20E-243 -2.24401
8.98E-241 -3.21895 | | 0 HIC1 | -1.0633407 5.52131632 235.631917
-2.3214255 2.67132626 493.959747 | 1.96E-109 | | -1.0643255
-2.5066914 | 100 | 0 | | | | | | | | | | | | | | 0 | | ENSG00000179388
ENSG00000186350 | EGR3
RXRA | -2.652111 3.92806368 1102.27509
-2.4640786 4.15149936 1098.41554 | 1.06E-241
7.30E-241 | 1.61E-240 -2.64784
1.11E-239 -2.40950 | | 2.85714286 EGR 3
0 RXRA | -1.9541431 4.00273288 548.239619
-2.0973826 4.22607851 684.304376 | 3.04E-121
7.74E-151 | | -1.9986179
-2.3490876 | 100
100 | 0 | | | | | 1.34E-238 | | | 0 TPI1 | | 3.43E-98 | | | | 0 | | ENSG00000111669 | TPI1 | -2.1330086 5.89156095 1087.99974 | 6.49E-238 | 2.02E-237 -2.12100
9.73E-237 -100 | | - | -1.4588107 6.00753063 442.29409
-5.1813725 -0.1524849 616.271849 | 4.84E-136 | | -1.3992339 | 100 | 0 | | ENSG00000211638 | IGLV8-61 | -7.8665403 -0.0546704 1084.84889 | | | | 0 IGLV8-61
100 GPRASP1 | | 4.64E-136
4.45E-88 | | -6.1702063 | 100 | 100 | | ENSG00000198932
ENSG00000148834 | GPRASP1
GSTO1 | 2.14596771 6.02392108 1084.69287
-2.3253079 4.48326438 1081.00207 | 7.01E-238
4.45E-237 | 1.05E-236 2.241946
6.63E-236 -2.10793 | | 100 GPRASP1
0 GSTO1 | 1.40458613 5.42372915 395.833786
-2.5225873 4.41606599 1026.28446 | 4.45E-88
3.48E-225 | | 1.38224891
-2.6155803 | _ | 100 | | | | | | | | | | | | | 100 | 0 | | ENSG00000104870 | FCGRT | -2.1541767 5.73609798 1080.72298 | 5.11E-237
9.31E-237 | 7.61E-236 -2.10590 | | 0 FCGRT | -2.9213789 5.59968875 1543.15784 | 0
9.40E-266 | | -2.9444996 | 100 | 0 | | ENSG00000143162 | CREG1 | -2.2941797 4.62406156 1079.52602 | | 1.38E-235 -2.23217 | | 0 CREG1 | -2.7187184 4.59574723 1212.93885 | | 1.97E-264 | -2.938845 | 100 | 0 | | ENSG00000253276 | CCDC71L | -2.6821097 3.50069125 1070.88021 | 7.05E-235 | 1.04E-233 -2.55614 | | 0 CCDC71L | -2.4394978 3.51012486 764.920237 | 2.29E-168 | | -2.3796054 | 100 | 07 2222222 | | ENSG00000139631 | CSAD | 2.84393624 3.3651276 1070.71227 | 7.66E-235 | 1.13E-233 2.732467 | | | 1.80389477 2.46383616 292.955299 | 1.13E-65 | | | | 97.222222 | | ENSG 00000086062 | B4GALT1 | -2.0489496 7.80166088 1065.34041 | 1.13E-233 | 1.65E-232 -1.91877 | | 0 B4GALT1 | -0.9078373 8.03607592 171.711559 | 3.13E-39 | | -0.9064827 | 100 | 0 | | ENSG00000140105 | WARS | -2.1062832 6.14373723 1058.34318 | 3.74E-232 | 5.45E-231 -1.97759 | | 0 WARS | -2.0721439 6.24607075 857.236034 | 1.94E-188 | | -2.0433954 | 100 | 0 2222222 | | ENSG00000175505 | CLCF1 | -3.7059396 1.74329151 1057.19503 | 6.64E-232 | 9.64E-231 -3.57047 | | 0 CLCF1 | -1.4183139 2.13803144 165.008956 | 9.11E-38 | | | | 8.33333333 | | ENSG00000168961 | LGALS9 | -2.1003445 5.86134805 1056.89798 | 7.71E-232 | 1.12E-230 -2.00503 | | 0 LGALS9 | -2.4804064 5.76524251 1186.30173 | 5.79E-260 | 1.18E-258 | | 100 | 0 | | ENSG00000178996 | SNX18 | -2.1076926 5.7580151 1054.46573 | | 3.76E-230 -2.059679 | | 0 SNX18 | -1.969129 5.7576515 770.124377 | 1.69E-169 | 2.41E-168 | | 100 | 0 | | ENSG00000111729 | CLEC4A | -3.2235714 2.44446612 1052.23603 | 7.95E-231 | 1.15E-229 -3.05443 | | 0 CLEC4A | -3.8720082 2.37635681 1116.04618 | 1.07E-244 | | -3.9826992 | 100 | 0 | | ENSG00000188820 | FAM26F | -3.02537 2.92111327 1034.58036 | 5.47E-227 | 7.80E-226 -2.92290 | | 0 FAM26F | -3.8292081 2.70508663 1208.38724 | 9.17E-265 | | -3.9580507 | 100 | 0 | | ENSG00000171700 | RGS19 | -2.4535987 3.88841467 1030.63941 | 3.93E-226 | 5.59E-225 -2.299530 | | 0 RGS19 | -2.4663442 3.90717472 872.703236 | 8.43E-192 | | -2.4706224 | 100 | 0 | | ENSG00000114738 | MAPKAPK3
PGD | -2.0916255 5.43571073 1021.62644
-2.0921294 5.31661727 1014.26502 | 3.58E-224
1.42E-222 | 5.05E-223 -2.01130-
2.00E-221 -2.073359 | | 0 MAPKAPK3
0 PGD | -2.3256966 5.41016242 1027.36401
-1.9564339 5.35470845 745.36441 | 2.02E-225
4.09E-164 | | -2.3980493
-2.0954734 | 100
100 | 0 | | ENSG00000142657 | | | 1.42E-222
1.86E-222 | | | | | 1.54E-146 | | | 100 | 100 | | ENSG00000124181 | PLCG1 | 2.01924185 7.1845552 1013.72878
-2.2925749 4.42922373 1013.58623 | 2.00E-222 | 2.61E-221 2.067425
2.80E-221 -2.27243 | | 100 PLCG1
0 AOAH | 1.80451413 6.95044633 664.53819 | 1.76E-112 | | 1.69643982 | | | | ENSG00000136250 | AOAH | | | | | | -1.741859 4.50771625 507.963664 | | | | | | | ENSG00000187091 | PLCD1
CPPED1 | 2.13750843 4.87573393 1004.86643
-3.1828923 2.4581609 999.998315 | 1.57E-220
1.80E-219 | 2.19E-219 2.242517
2.50E-218 -2.92847 | | 100 PLCD1
0 CPPED1 | 1.63484761 4.46352717 473.742606
-2.9723066 2.4683745 726.657278 | 4.91E-105
4.78E-160 | | 1.62825721
-3.0297507 | 0
100 | 100 | | ENSG00000103381
ENSG00000182287 | AP1S2 | -3.1828923 2.4581609 999.998315
-2.0841235 5.16614631 992.516591 | 7.60E-219 | 1.05E-216 -1.92110 | | 0 AP1S2 | -2.2006927 5.11270205 909.015532 | 1.08E-199 | | -3.0297507 | 100 | 0 | | ENSG00000182287
ENSG00000126247 | CAPNS1 | -2.0101281 6.36459917 991.371226 | 1.35E-217 | 1.87E-216 -1.90810 | | 0 CAPNS1 | -1.5247843 6.44768565 484.833799 | 1.90E-199 | 1.89E-106 | | 100 | 0 | | ENSG00000128247
ENSG00000233429 | HOTAIRM1 | -2.9895647 2.67911603 984.860785 | 3.51E-216 | 4.84E-215 -2.86517 | | 0 HOTAIRM1 | -2.4992841 2.85818941 632.018006 | 1.82E-139 | 2.24E-138 | | 100 | 0 | | ENSG00000233429
ENSG00000187840 | EIF4EBP1 | -3.2433077 2.16773492 980.588104 | 2.98E-215 | 4.09E-214 -3.2254 | | 0 EIF4EBP1 | -1.7464183 2.37160456 280.936295 | 4.69E-63 | | -1.7265323 | 100 | 0 | | ENSG00000187840 | VASP | -2.0285571 6.05107363 976.204968 | 2.67E-214 | 3.65E-213 -2.06045 | | 0 VASP | -1.4325717 6.15980346 423.495309 | 4.03E-03 | | -1.7203323 | 100 | 0 | | ENSG00000123733 | GPX1P1 | -3.0444031 2.48300557 974.236395 | 7.15E-214 | 9.76E-213 -2.91175 | | 0 GPX1P1 | -3.0744585 2.45498552 806.445574 | 2.14E-177 | | -3.1405094 | 100 | 0 | | ENSG00000137382
ENSG00000130489 | SCO2 | -2.5180479 3.57912493 973.683221 | 9.43E-214 | 1.28E-212 -2.51716 | | 0 SCO2 | -2.7596319 3.63792114 964.9515 | 7.46E-212 | | -2.8177685 | 100 | 0 | | ENSG00000130489 | LSP1 | -1.9617624 7.5489895 973.650057 | 9.59E-214 | 1.30E-212 -1.94648 | | 0 LSP1 | -1.8542218 7.53680571 685.474407 | 4.31E-151 | | -1.9685898 | 100 | 0 | | ENSG00000130332
ENSG00000211829 | TRDC | -3.2810002 2.12521624 970.795297 | 4.00E-213 | 5.43E-212 -3.29379 | | 0 TRDC | -2.6147249 2.10533236 528.55439 | 5.83E-117 | | -2.5697657 | 100 | 0 | | ENSG00000211823 | ADAM15 | -2.2796821 4.13010545 967.381404 | 2.21E-212 | 2.99E-211 -2.16309 | | 0 ADAM15 | -2.5952284 4.10135666 984.633763 | 3.93E-216 | | -2.4996931 | 100 | 0 | | ENSG00000143337 | TPP1 | -2.0239284 5.761538 959.634352 | 1.07E-210 |
1.43E-209 -1.94585 | | 0 TPP1 | -2.173143 5.72822135 908.065566 | 1.73E-199 | | -2.2565997 | 100 | 0 | | ENSG00000100340 | RP2 | -2.0790928 4.80260833 948.919428 | 2.28E-208 | 3.02E-207 -2.00001 | | 0 RP2 | -1.7157324 4.8448203 556.744598 | 4.29E-123 | | -1.7097244 | 100 | o | | ENSG00000102218
ENSG00000127947 | PTPN12 | -2.0790928 4.80260833 946.919428 | 3.92E-208 | 5.18E-207 -1.90984 | | 0 PTPN12 | -1.2983997 5.29142817 338.218379 | 1.56E-75 | | -1.7097244 | 100 | ŏ | | ENSG00000127947 | SH3BGRL3 | -1.9355845 7.48607592 944.809612 | 1.78E-207 | 2.35E-206 -1.76855 | | 0 SH3BGRL3 | -1.4341318 7.59620077 415.060908 | 2.90E-92 | | -1.4380244 | 100 | 0 | | ENSG00000142009
ENSG00000104918 | RETN | -4.1949178 0.89922051 938.607134 | 3.97E-206 | 5.23E-205 -4.09005 | | O RETN | -4.8708927 0.94455675 901.442498 | 4.77E-198 | | -4.9206544 | 100 | ő | | ENSG00000104318 | LCP1 | -1.9187529 8.75870932 931.666833 | 1.28E-204 | 1.67E-203 -1.80573 | | 0 LCP1 | -1.599268 8.81425691 480.667614 | 1.53E-106 | | -1.5754183 | 100 | ő | | ENSG00000130107
ENSG00000189068 | VSTM1 | -4.5957486 0.81028379 930.732853 | 2.05E-204 | 2.67E-203 -4.84278 | | 0 VSTM1 | -6.2688302 0.77535257 1018.98731 | 1.34E-223 | 2.40E-222 | -1.5754165 | 100 | ŏ | | ENSG00000185088 | CHST10 | -2.5806521 3.23225268 927.26491 | 1.16E-203 | 1.51E-202 -2.40135 | | 0 CHST10 | -0.7800726 3.57061244 88.8408221 | 4.28E-21 | | | 94.444444 | 5 5555556 | | ENSG00000115526
ENSG00000085514 | PILRA | -2.561171 3.37203302 925.279702 | 3.14E-203 | 4.07E-202 -2.51258 | | 0 PILRA | -3.0924011 3.3216625 1044.20299 | 4.43E-229 | 8.10E-228 | -3.1965185 | 100 | 0.5555555 | | ENSG00000083314 | ZYX | -1.9274122 7.16040117 925.123574 | | 4.39E-202 -1.76093 | | O ZYX | -1.4595304 7.31912514 430.750792 | 1.12E-95 | | | 97.2222222 | 2 7777778 | | 214355555555555 | LIA | 2.52/7122 /.1004011/ 525.1255/4 | 3.33E-203 | 202 -1.70033. | .5 100 | LIN | 1555504 7.51512514 450.750792 | 1.126-93 | J.JUL-33 | 1.7031221 | JIILLELLEL | 2.7777770 | | FNC C 000000144570 | 1011/0.0 | 6.0700046 | 0.0000574 | | C 255 202 | 0.005.000 | 40000 | 400 | o Louis | V 2 0 | F 04 44 24 4 | 0.0740476 | 00 402705 | 4.075.400 | 2 275 420 | F 6670477 | 400 | | |--------------------------------------|------------------|-------------------------------|-----------|------------|------------------------|------------------------|--------------------------|-------------------|---------------------------|--------|--------------|------------------------------|-----------|------------------------|------------------------|------------|------------|-------------------------| | ENSG00000211670 | IGLV3-9 | -6.3789046 -0 | | | 6.36E-203 | 8.22E-202 | -10000 | 100 | 0 IGLV | | | -0.3712476 5 | | 1.97E-130 | 2.27E-129 | | 100 | 0 | | ENSG00000057657 | PRDM1 | -2.0114874 5. | | | 5.44E-201 | | -1.8600731 | 100 | 0 PRDI | | | 5.20405403 1 | | 1.24E-270 | 2.62E-269 | -2.445149 | 100 | 0 | | ENSG00000170275 | CRTAP | -1.9537289 5. | | | 4.19E-200 | | -1.8242067 | 100 | 0 CRTA | | | 5.42647547 1 | | 6.06E-261 | 1.24E-259 | | 100 | 0 | | ENSG00000138166 | DUSP5 | -1.9236688 6. | | | 7.88E-200 | | | 100 | 0 DUS | | | 6.33248192 6 | | 4.80E-150 | | -1.8802379 | 100 | 0 | | ENSG00000164733 | CTSB | | | 907.387836 | 2.43E-199 | | -1.7006972 | 100 | 0 CTSE | | | 6.50631878 1 | | 0 | | -3.4205807 | 100 | 0 | | ENSG00000211445 | GPX3 | -3.377137 1 | | | 3.12E-198 | | -3.2417037 | 100 | 0 GPX | | | 1.7938737 8 | | 5.20E-185 | 7.83E-184 | | 100 | 0 | | ENSG00000111796 | KLRB1 | -1.9757 5.
-4.2854256 0. | | 900.253101 | 8.65E-198 | 1.10E-196 | -1.894887 | 100
97.1428571 | 0 KLRE
2.85714286 IGHV | | | 5.36283627 4 | | 6.71E-98 | 6.13E-97 | -1.490272 | 100 | 0 2222222 | | ENSG 00000211935
ENSG 00000105639 | IGHV1-3
JAK3 | 1.88980477 7. | | 897.2417 | 3.90E-197
7.16E-197 | | 1.87900757 | 97.1428571 | 100 JAK3 | | | 0.81269804 5
6.69224292 2 | | 1.02E-111
2.09E-65 | | | | 8.33333333
97.222222 | | ENSG00000103639 | TIMP2 | -1.9586807 5. | | | 8.09E-196 | 1.02E-194 | -1.885918 | 100 | 0 TIME | | | 5.35106006 7 | | 8.69E-167 | 1.33E-64
1.22E-165 | | 100 | 97.222222 | | ENSG00000033862 | KLF11 | -1.9386807 5. | | | 1.43E-195 | | -1.857716 | 100 | 0 KLF1 | | | 5.5454865 6 | | 6.71E-151 | 8.74E-150 | | 100 | 0 | | ENSG00000172033 | AGPAT2 | -2.7992967 2. | | | 6.06E-194 | | -2.6909387 | 100 | 0 AGP | | | 2.68682055 5 | | 2.17E-132 | 2.54E-131 | | 100 | 0 | | ENSG00000159128 | IFNGR2 | -1.9034518 6. | | | 7.22E-194 | | -1.7875291 | 100 | 0 IFNG | | | 5.79608512 1 | | 0 | | -3.0649072 | 100 | 0 | | ENSG00000153120 | LAPTM5 | -1.8854842 11 | | | 4.32E-193 | | -1.8275737 | 100 | 0 LAPT | | | 10.9266037 6 | | 8.76E-140 | 1.08E-138 | | 100 | o | | ENSG00000174125 | TLR1 | -2.1844517 | | | 1.62E-192 | | -2.1360667 | 100 | O TLR1 | | | 3.91416328 1 | | 1.01E-245 | 1.95E-244 | | 100 | 0 | | ENSG00000174123 | VOPP1 | -1.8722879 6. | | | 1.74E-192 | | -1.7909889 | 100 | 0 VOP | | | 6.86257557 | | 3.73E-162 | 5.09E-161 | | 100 | 0 | | ENSG00000091490 | SEL1L3 | -1.9467262 5. | | | 2.11E-191 | | -1.7564424 | 100 | 0 SEL1 | | | 5.20192248 5 | | 3.50E-129 | | -1.8454909 | 100 | 0 | | ENSG00000088992 | TESC | -2.8528469 2. | | | 7.56E-190 | | -2.7660779 | 100 | O TESO | | | 2.59455327 3 | | 2.28E-79 | | -1.9047653 | 100 | 0 | | ENSG00000075426 | FOSL2 | -1.8367068 8. | | | 1.06E-189 | | -1.7875945 | 100 | 0 FOSI | | | 9.01735702 5 | | 1.03E-12 | 2.26E-12 | | | 8.33333333 | | ENSG00000213366 | GSTM2 | 2.30701717 3. | | | 6.38E-189 | | 2.14450794 | 0 | 100 GSTI | | | | 127.74114 | 1.28E-29 | | | | 80.555556 | | ENSG00000169385 | RNASE2 | -4.9338647 0. | | | 1.64E-188 | | -5.7341684 | 100 | 0 RNA | | | 0.37634242 8 | | 8.53E-195 | 1.34E-193 | -10000 | 100 | 0 | | ENSG00000232216 | IGHV3-43 | -6.1587434 -0 | 0.2988754 | 852.322638 | 2.27E-187 | 2.72E-186 | -10000 | 100 | 0 IGHV | V3-43 | -6.2228027 | -0.3887244 6 | 47.714307 | 7.02E-143 | 8.85E-142 | -10000 | 100 | 0 | | ENSG00000100365 | NCF4 | -2.737752 2. | | | 2.51E-187 | | -2.7423353 | 100 | 0 NCF4 | | | 2.46705636 1 | | 0 | | -4.6390466 | 100 | 0 | | ENSG00000142409 | ZNF787 | -2.0866585 4. | .27849102 | 850.964012 | 4.49E-187 | 5.34E-186 | -2.113325 | 100 | 0 ZNF | 787 | -1.9909961 | 4.25726897 6 | 51.898973 | 8.63E-144 | 1.10E-142 | -2.0115345 | 100 | 0 | | ENSG 00000244509 | APOBEC3C | -2.2399935 3. | .79377967 | 845.568287 | 6.68E-186 | 7.94E-185 | -2.1531126 | 100 | 0 APO | DBEC3C | -0.9086103 | 4.11654827 1 | 37.875429 | 7.76E-32 | 2.86E-31 | -0.9755444 | 100 | 0 | | ENSG00000174021 | GNG5 | -1.9704931 4. | .67557118 | 837.596591 | 3.62E-184 | 4.26E-183 | -1.9138507 | 100 | 0 GNG | G5 | -1.729705 | 4.70604493 5 | 50.262681 | 1.10E-121 | 1.20E-120 | -1.7746898 | 100 | 0 | | ENSG00000181444 | ZNF467 | -2.5524113 2. | .98723905 | 834.573825 | 1.64E-183 | 1.93E-182 | -2.3701141 | 100 | O ZNF4 | 467 | -3.2096507 | 2.92167543 | 988.66456 | 5.23E-217 | 9.14E-216 | -3.2237736 | 100 | 0 | | ENSG00000111640 | GAPDH | -1.8074571 9. | .33584652 | 829.70727 | 1.88E-182 | 2.19E-181 | -1.7039819 | 100 | 0 GAP | PDH | -1.3122152 | 9.43848203 3 | 13.310201 | 4.15E-70 | 2.83E-69 | -1.3222431 | 100 | 0 | | ENSG00000171867 | PRNP | -1.7974171 7. | .36955149 | 828.383344 | 3.64E-182 | 4.24E-181 | -1.6848595 | 100 | O PRN | NP. | -1.1248018 | 7.46393128 2 | 67.566637 | 3.85E-60 | 2.27E-59 | -1.0333156 | 100 | 0 | | ENSG00000106991 | ENG | -2.2209094 3. | .86203408 | 824.837492 | 2.15E-181 | 2.49E-180 | -2.1145737 | 100 | 0 ENG | ŝ | -2.4643048 | 3.85635344 8 | 21.288629 | 1.27E-180 | 1.88E-179 | -2.5021905 | 100 | 0 | | ENSG 00000108932 | SLC16A6 | -2.1837695 3. | .81144623 | 819.634588 | 2.91E-180 | 3.35E-179 | -2.0869387 | 100 | 0 SLC1 | 16A6 | -1.5560208 | 3.94773835 3 | 73.002075 | 4.15E-83 | 3.26E-82 | -1.5768383 | 100 | 0 | | ENSG 00000065882 | TBC1D1 | -1.8227195 5. | .89520007 | 818.323313 | 5.60E-180 | 6.45E-179 | -1.6868041 | 100 | O TBC | C1D1 | -1.1902136 | 5.98828704 3 | 04.157507 | 4.09E-68 | 2.74E-67 | -1.2510562 | 100 | 0 | | ENSG 00000148429 | USP6NL | -1.9706497 4. | .55988028 | 817.500907 | 8.45E-180 | 9.71E-179 | -1.8644625 | 100 | 0 USP | P6NL | -1.5557319 | 4.58815751 4 | 40.028538 | 1.07E-97 | 9.74E-97 | -1.5607566 | 100 | 0 | | ENSG00000128203 | ASPHD2 | -2.6479333 2. | | | 4.11E-178 | 4.70E-177 | -2.6038409 | 100 | 0 ASPI | | -2.1469339 | 2.64123886 4 | | 2.18E-102 | 2.07E-101 | | 100 | 0 | | ENSG00000105963 | ADAP1 | -2.6626957 2. | | | 1.41E-177 | | -2.5004123 | 100 | 0 ADA | | | 2.85436611 | 248.9586 | 4.38E-56 | 2.46E-55 | | | 2.7777778 | | ENSG00000170677 | SOCS6 | -2.2717678 3. | | | 1.43E-176 | | -2.2651375 | 100 | 0 SOC | | | 3.42825874 9 | | 1.28E-209 | | -2.7257569 | 100 | 0 | | ENSG 00000169756 | LIMS1 | -2.0748207 4. | | | 3.97E-176 | | -2.0375564 | 100 | 0 LIMS | | | 4.07901218 6 | | 2.08E-135 | 2.47E-134 | | 100 | 0 | | ENSG00000177105 | RHOG | -1.7798743 6. | | | 6.40E-176 | | -1.7043002 | 100 | 0 RHO | | | 6.88548517 | | 6.24E-89 | | -1.4320135 | 100 | 0 | | ENSG00000140030 | GPR65 | -2.0419788 4. | | | 5.12E-174 | | -1.8735856 | 100 | 0 GPR | | | | 28.895111 | 1.67E-73 | | -1.3458771 | 100 | 0 | | ENSG00000196187 | TMEM63A | 1.8093388 5. | | | 6.04E-174 | | 1.83948455 | 0 | 100 TME | | | 5.30345943 2 | | 2.92E-66 | | | | 97.222222 | | ENSG00000146540 | C7orf50 | -1.9760005 4 | | | 2.65E-172 | | -1.7341468 | 100 | 0 C7or | | | 4.33260518 5 | | 1.33E-131 | 1.54E-130 | | 100 | 0 | | ENSG00000165527 | ARF6 | -1.7447768 7. | | | 2.24E-171 | | -1.6763342 | 100 | 0 ARF | | | 7.58222853 3 | | 3.52E-83 | | -1.3764979 | 100 | 0 | | ENSG00000198833 | UBE2J1 | -1.7481491 7. | | | 5.35E-171 | | -1.7201174 | 100 | 0 UBE | | | | 449.21261 | 1.07E-99
6.75E-163 | | -1.4813324 | 100 | 0 | | ENSG00000170296 | GABARAP
PRAM1 | -1.8440591 5.
-2.4504186 3 | | | 1.19E-170
1.84E-170 | | -1.6917727 | 100 | 0 GAB | BARAP | | 5.04022477 7
3.04648235 8 | | 6.75E-163
2.02E-181 | 9.25E-162
3.01E-180 | | 100
100 | 0 | | ENSG 00000133246
ENSG 00000130402 |
ACTN4 | -1.7908134 5. | | | 4.55E-169 | | -2.5011652
-1.7213221 | 100
100 | 0 ACTI | | | 5.8199634 9 | | 1.01E-22 | 3.01E-180
3.01E-22 | | | 13.8888889 | | ENSG00000130402 | EMP3 | -1.7319678 7 | | | 2.28E-168 | | -1.7213221 | 100 | 0 EMP | | | 7.04412734 5 | | 2.59E-130 | | -1.8087626 | 100 | 13.0000009 | | ENSG00000142227 | CD151 | -2.2538839 3. | | | 2.54E-168 | 2.49E-167
2.77E-167 | -2.169411 | 100 | 0 CD15 | | | 3.46887069 4 | | 3.90E-102 | | -1.8087626 | 100 | 0 | | ENSG00000177697 | IGLV9-49 | -6.2118837 -0 | | | 1.32E-167 | 1.43E-166 | -2.169411 | 100 | | V9-49 | | -0.4869072 6 | | 1.23E-140 | 1.53E-139 | -1.9894034 | 100 | 0 | | ENSG00000223330 | KCTD12 | -1.8276224 5. | | | 1.83E-166 | | -1.8774749 | 100 | 0 KCTE | | | 4.85604232 1 | | 1.23E-140
0 | | -3.1314168 | 100 | 0 | | ENSG00000178693 | ATP6V1F | -1.7503088 5. | | | 6.38E-165 | | -1.7880296 | 100 | | 26V1F | | 5.87188202 4 | | 3.26E-94 | | -1.5179587 | 100 | 0 | | ENSG00000128324
ENSG00000074800 | ENO1 | -1.6997947 8. | | 748.416519 | 8.87E-165 | | -1.5793957 | 100 | 0 ENO | | -1.4304636 | 7.9990363 5 | | 1.81E-116 | | -1.6771766 | 100 | 0 | | ENSG00000074800 | PYCARD | -2.6240584 2. | | | 3.48E-164 | | -2.575912 | 100 | 0 PYCA | | | 2.46352963 6 | | 8.16E-138 | 9.90E-137 | | 100 | 0 | | 2.1.500000103430 | ··CAIND | 2.0240304 2. | 0132303 | 5.005050 | 3.70L 104 | 5.75E 103 | 2.373312 | 100 | o Pio | | 2.0727333 | 2. 70332303 0 | L 722732 | 5.10L 136 | 3.30E 137 | 2.3000700 | 100 | 3 | | Seconomic Seco | ENSG00000122862 | CDCN | 4 7222266 | 0.27242004 | 742 024020 | 0.005.164 | 0.435.463 | 1 (210220 | 100 | OCDCN | | 1 2020510 | 0.20204202 | 05 205722 | 2 225 66 | 2 145 65 | 1 2465224 | 100 | al | |--|-----------------|------------|------------|------------|------------|-----------|-----------|------------|-----|------------|---------|------------|--------------|------------|-----------|-----------|------------|------------|------------| | MSG60000014769 MSF15 1474219 45795727 75679336 278-162 2056142 20101496 0 0 MSF15 1.20104713 45050644 758-01548 2046-1077 27122222 27777777 27122222 278-0156000010120 0 0 0 0 0 0 0 0 0 | | SRGN | | | | 8.80E-164 | | | 100 | 0 SRGN | | | | | 3.32E-66 | | | 100 | 0 | | MASSES MARROW APSEL 1,797033 4,00051511 73,795164 ASSEL 10 ASSE | | | | | | | | | | | | | | | • | | | | 07 222222 | | MAGRODOLISAD MARINE 1.867782 \$729775 7238254 3.86-1.07 \$7.075.000 3.96-1.07 | | | | | | | | | | | | | | | | | | | 0 | | SECONOMICATION ORNER 1.827115 4.865489 73.222446 2.66719 2.76714737 100 ORNER 0.9313179 4.810313157 107.79151 5.01-39 1.48-28 0.9571002 1.267103 1.826390 100 ORNER 0.940171 1.867103 1.867 | | | | | | | | | | | | | | | | | | | 97 222222 | | MSG0000017501 APTILOD APRISSEA 1567/1017 727-38002 4238-159 A18-159 A18- | | | | | | | | | | | | | | | | | | | 0 | | SASCONDOVINOS ARCIGE 1.7665078 ASSESTED 1.711531 SASCONDOVINOS ASSESTED 1.711531 SASCONDOVINOS ASSESTED ASS | | | | | | | | | | | | | | | | | | | 25 | | MSG0000005797 MCG | | | | | | | | | | | | | | | | | | | 0 | | SASSONODISOTA SOMIT 2011/8878 2000S288 70.881144 97.86154 1.99020781 0 100 FMRSONODISOTA 1711/10652 37.181645 57.581541 1.6155002 100 0 6TFF1 1.4617781 3.6080021 431.14149 3.14164 2.99169 5.1515709 100 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | | 100 | | INSTOCOMORISSON FIFT 1.16978 3.4769.07
3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.4769.07 3.476 | | | | | | | | | | | | | | | | | | • | | | BSG00000012570 CORNIC -1.476178 5.3550787 703.4020 5.851-15 5.951-154 -1.615092 100 CORNIC -1.4862472 2.4220698 301-1975 8.615-74 6.01673 2.0103482 700.7007 700.7 | | | | | | | | | _ | | | | | | | | | • | 0 | | MSCO0000129757 CRNIC -2,4671973 270089452 700.070070 2,141-154 2,191-153 2,3550599 100 0 CRNIC -1,000705566 ARAAAS1 -2,7237553 1981.39602 700.14767 2,781-154 2,861-153 2,6670648 100 0 RARAAS1 -2,0007993 2,03113953 336.283025 4,116-75 2,955-74 -1,9467173 100 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | | 0 | | NSSCOROUSSESSES PART -1,7812566 471590838 700.39757 2.451-154 2.451-153 2.6516908 100 0.106811 0.7316358 4.9683602 107.662766 3.196-25 0.106-26773 0.106 | | | | | | | | | | | | | | | | | | | 2.7777778 | | RNSCORDOOXSEGS ARRANS1 | | | | | | | | | | | | | | | | | | | 0 | | NSCO000013527 NSF5198 1.88547 | | | | | | | | | | | | | | | | | | | 0 | | INSCORDOUICISAR THE 1.652540 1.65254 | | | | | | | | | | | | | | | | | | | 100 | | RNSCOROOUTZES CHAPPE 1.6527811 S.83116091 605.55889 185-153 187-152 1.5512236 100 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | | | | 100 | 0 | | MSCO0000104582 Capacita Cap | | | | | | | | | | | | | | | | | | | 0 | | RNSCO0000019872 PUCA | | | | | | | | | | | | | | | | | | | o | | RNSCO000001085 TPK1 | | C19orf45 | | | | 2.24E-152 | | | | 100 C19orf | | | | | 3.53E-63 | | | 0 | 100 | | ENSCORDOOTIONESIZE MAPPENS 1.65574109 6.42477000 6.26486780 6.26477000 6.264770000000 6.264770000 6.264770000 6.2647700000000000000000000000000000000000 | | | | | | | | | | | | | | | | | | 100 | 0 | | ENSCORDO00034152 MAPZN3 | ENSG00000100605 | ITPK1 | -1.6965671 | 5.29653667 | 689.813624 | 4.91E-152 | 4.92E-151 | -1.6072058 | 100 | 0 ITPK1 | ı | -1.027753 | 5.44505692 2 | 19.733994 | 1.03E-49 | 5.31E-49 | -1.088934 | 97.222222 | 2.7777778 | | ENSCO0000138804 MT-CO1 -1-6718649 12-690/177 682-845814 1.61E-150 1.60E-149 -1.556-849 100 0 MT-CO1 -1.0873559 12.8151788 165-786-498 6.1E-38 2.578-37 -1.1556-89 100 0 ENSCO0000179385 1.8129116 6868633 4.29E-150 4.2FE-149 2.476886 100 0 SLG30A1 -1.756135 46304199 677.07746 2.11E-149 2.0FE-148 1.7467-815 100 0 SLG30A1 -0.8594187 4.8889928 143.730932 4.0FE-33 1.54E-32 -0.8162489 100 0 ENSGO0001913 RAB34 -1.2500478 7.5700200 67.6864314 3.2E-149 3.9E-148 1.4709618 100 0 SHCBB -1.751888 7.47893848 613.75934 -1.7E-1518 -0.08162489 100 0 ENSGO0001913 RAB34 -2.3300474 2.82729312 676.79944 3.32E-149 3.9E-148 -2.2024717 100 0 FH3 -1.8525444 2.605239 4.0E-76 7.32E-76 -1.8461894 100 0 ENSGO00001839 -1.6512156 6.4961653 675.77177 3.7E-149 3.6FE-148 -2.515068 100 0 PFH3 -1.8525444 2.605239 4.866621 1.0E-76 7.32E-76 -1.8461894 -2.5107797 9.72E-2222 2.7777778 1.856500000189 | | | | | | | | | | | | | | | | | | | 0 | | ENSCO00001938 SCAPE - 1,679318 1 | ENSG00000034152 | MAP2K3 | -1.6574109 | 6.24475062 | 682.846042 | 1.61E-150 | 1.60E-149 | -1.5672346 | 100 | 0 MAP2 | 2K3 | -0.9324747 | 6.38564946 1 | 87.031187 | 1.41E-42 | 6.43E-42 | -0.9419847 | 100 | 0 | | ENSCOODOLITY 25 FINAL 1.776513 | ENSG00000198804 | MT-CO1 | -1.6718649 | 12.6907177 | 682.845814 | 1.61E-150 | 1.60E-149 | -1.556349 | 100 | 0 MT-CO | 01 | -1.0873559 | 12.8151788 1 | 65.786498 | 6.16E-38 | 2.57E-37 | -1.1535689 | 100 | 0 | | ENSCO0000113252 ENSCO00001031306 FNL3 | ENSG00000090013 | BLVRB | -2.7307935 | 1.98129116 | 680.886233 | 4.29E-150 | 4.27E-149 | -2.476886 | 100 | 0 BLVRB | В | -1.8581652 | 2.10800127 2 | 78.870945 | 1.32E-62 | 8.08E-62 | -2.0048094 | 100 | 0 | | ENSGO000011313 RAB34 | ENSG00000170385 | SLC30A1 | -1.7765135 | 4.63041949 | 677.707746 | 2.11E-149 | 2.09E-148 | -1.7443852 | 100 | 0 SLC30 | 0A1 | -0.8594187 | 4.88899283 1 | 43.730932 | 4.07E-33 | 1.54E-32 | -0.8162489 | 100 | 0 | | ENSGO000128386 FHL3 | ENSG00000111252 | SH2B3 | -1.6196887 | 7.57022002 | 676.864314 | 3.21E-149 | 3.19E-148 | -1.4709618 | 100 | 0 SH2B3 | 3 | -1.7316885 | 7.47963848 6 | 13.750349 | 1.71E-135 | 2.03E-134 | -1.6606198 | 100 | 0 | | ENSGO000018319 PPIR8B | ENSG00000109113 | RAB34 | -2.3300474 | 2.82729312 | 676.79944 | 3.32E-149 | 3.29E-148 | -2.2024717 | 100 | 0 RAB 34 | 34 | -3.696272 | 2.69984712 1 | 169.32949 | 2.82E-256 | 5.71E-255 | -3.7935524 | 100 | 0 | | ENSGO00017367 CHSTII | ENSG00000183386 | FHL3 | -2.4294465 | 2.544161 | 676.711488 | 3.47E-149 | 3.43E-148 | -2.311795 | 100 | 0 FHL3 | | -1.8525444 | 2.605239 3 | 43.686612 | 1.00E-76 | 7.32E-76 | -1.8461884 | 100 | 0 | | ENSGO0000173191 | ENSG00000108819 | PPP1R9B | -1.6321526 | 6.4961653 | 676.577177 | 3.71E-149 | 3.67E-148 | -1.516068 | 100 | 0 PPP1R | R9B | -1.1461509 | 6.57117789 2 | 79.466924 | 9.81E-63 | 6.01E-62 | -1.1776976 | 97.222222 | 2.7777778 | | ENSGOU000177879 AP351 AP | ENSG00000125657 | TNFSF9 | -2.7948315 | 1.78970946 | 675.768151 | 5.56E-149 | 5.49E-148
 -2.6992246 | 100 | 0 TNFSF | F9 | -1.3948181 | 2.10805478 1 | 57.683552 | 3.63E-36 | 1.46E-35 | -1.3101112 | 94.444444 | 5.5555556 | | ENSGO0000142634 LAMP2 -1.6651177 5.47111481 667.492113 3.51E-147 3.42E-146 -1.5892304 100 0 LAMP2 -1.6397824 5.46460647 547.208986 5.10E-121 5.53E-120 -1.6215108 100 0 ENSGO000105738 SIPA113 -1.7095959 4.79940965 66.4410171 1.64E-148 1.5893799 100 0 SIPA113 -1.7095959 4.79940965 66.4410171 1.64E-148 1.5947399 100 0 SIPA113 -1.7095959 4.79940965 66.4410171 1.64E-148 1.5947399 100 0 SIPA113 -1.7095959 3.65257485 428.937397 2.77E-95 2.45E-94 -1.7076829 100 0 ENSGO00010978 ENSGO00010978 ENSGO00010978 ENSGO00010978 ENSGO00010978 ENSGO00010979 ENSGO000010979 ENSGO00010979 ENSGO00010979 ENSGO00010979 ENSGO000010979 ENSGO000000000000000000000000000000000000 | ENSG00000171310 | CHST11 | -1.6660919 | 5.43574178 | 673.344852 | 1.87E-148 | 1.84E-147 | -1.6174455 | 100 | 0 CHST1 | 11 | -1.3797342 | 5.4775365 3 | 93.432493 | 1.48E-87 | 1.23E-86 | -1.4263146 | 100 | 0 | | ENGO0000142634 | ENSG00000177879 | AP3S1 | -1.6986214 | 5.06534489 | 671.87098 | 3.91E-148 | 3.84E-147 | -1.6801534 | 100 | 0 AP3S1 | 1 | -1.2427126 | 5.14798614 3 | 311.522361 | 1.02E-69 | 6.92E-69 | -1.3013038 | 100 | 0 | | ENSGO000015738 SIPA1L3 -1.7095959 4.97490665 64.410171 1.64E-146 1.59E-145 -1.5947399 100 0 SIPA1L3 -1.5633251 4.87675647 463.222851 9.56E-103 9.12E-102 -1.6560044 100 0 0 0 0 0 0 0 0 | ENSG00000005893 | LAMP2 | -1.6651177 | 5.47111481 | 667.492113 | 3.51E-147 | 3.42E-146 | -1.5892304 | 100 | 0 LAMP2 | P2 | -1.6397824 | 5.46460647 5 | 47.208986 | 5.10E-121 | 5.53E-120 | -1.6215108 | 100 | 0 | | ENSGO0000150403 TMCO3 -1.9971242 3.62470782 663.345726 2.80E-146 2.71E-145 -1.9382639 100 0 TMCO3 -1.7297569 3.65257485 428.937397 2.77E-95 2.45E-94 -1.7076829 100 0 ENSGO0000140749 ISSF6 -2.9053929 1.51566013 660.939832 9.33E-146 9.02E-145 -1.612688 100 0 ISSF6 -2.9053929 1.51566013 660.939832 9.33E-146 9.02E-145 -1.62631439 100 0 ISSF6 -3.334193 1.45763958 634.729285 4.68E-140 5.79E-139 -3.3627927 100 0 ENSGO000168516 ILHOC2 1.63389925 6.50552856 656.817935 7.35E-145 6.03E-144 1.5886092 0 100 ILHOC2 0.9950277 5.2233661 205.728237 1.17E-46 5.74E-46 0.99801408 2.77777778 97.2222222 ENSGO0000185334 ILHOC2 1.6389025 5.6634963 8.06E-145 7.72E-144 1.5301213 100 0 AKIRIN2 -1.3741166 5.9981649 399.18475 5.94E-455 -1.646555 9.7222222 2.7777778 97.2222222 ENSGO0000185334 ILHOC2 1.658025 5.4674267 654.15383 2.79E-144 1.5301213 100 0 AKIRIN2 -1.3741166 5.9981649 399.18475 5.94E-455 -1.6164655 9.7222222 2.7777778 97.222222 ENSGO000018525 ILHOC2 1.668025 5.4674267 654.15383 2.79E-144 1.5301213 100 0 AKIRIN2 -1.3741166 5.9981649 399.18475 8.28E-89 6.94E-88 -1.367188 100 0 ENSG00000185344 -1.624628 5.9941495 5.6634963 8.06E-145 7.72E-144 -1.5301213 100 0 AKIRIN2 -1.240212 5.3564196 51.516487 1.68E-70 1.5E-69 -1.2841449 100 0 ENSG0000018517 CD82 -1.6674654 5.3795102 654.15383 2.79E-143 -1.5144974 100 0 CD82 -2.798405 5.13790932 1.935.67176 4.52E-305 -1.076308 4.698163 | ENSG00000142634 | EFHD2 | -1.6108102 | 7.28342576 | 665.540791 | 9.32E-147 | 9.06E-146 | -1.6387966 | 100 | 0 EFHD2 |)2 | -0.6898398 | 7.51689244 9 | 9.8390133 | 1.65E-23 | 5.00E-23 | -0.7839614 | 91.6666667 | 8.33333333 | | ENSGO0000110987 BCL7A | ENSG00000105738 | SIPA1L3 | -1.7095959 | 4.97490665 | 664.410171 | 1.64E-146 | 1.59E-145 | -1.5947399 | 100 | 0 SIPA1 | 1L3 | -1.5633251 | 4.87675647 4 | 63.222851 | 9.56E-103 | 9.12E-102 | -1.6560044 | 100 | 0 | | ENSGO0000140749 IGSF6 | ENSG00000150403 | TMCO3 | -1.9971242 | 3.62470782 | 663.345726 | 2.80E-146 | 2.71E-145 | -1.9382639 | 100 | 0 TMCO | 03 | -1.7297569 | 3.65257485 4 | 28.937397 | 2.77E-95 | 2.45E-94 | -1.7076829 | 100 | 0 | | ENSGO0000188313 PLSCR1 -1.8911815 4.04807113 659.627944 1.80E-145 1.74E-144 -1.7308978 100 0 PLSCR1 -1.9664268 4.09867888 609.690171 1.31E-134 1.54E-133 -1.893248 100 0 PLSCR1 1.62389925 6.02552856 657.13532 6.27E-145 6.03E-144 1.65850992 0 100 KLHDC2 0.99050277 5.52233661 205.728237 1.17E-46 5.74E-46 0.99801408 2.77777778 97.222222 | ENSG00000110987 | BCL7A | -1.7018496 | 5.07706743 | 661.831068 | 5.97E-146 | 5.78E-145 | -1.612688 | 100 | 0 BCL7A | Α | -1.4347793 | 5.02521678 4 | 01.088339 | 3.19E-89 | 2.69E-88 | -1.471094 | 100 | 0 | | ENSGO0000165516 KLHDC2 1.62389925 6.02552856 657.13532 6.27E-145 6.03E-144 1.65850992 0 100 KLHDC2 0.99050277 5.52233661 205.728237 1.17E-46 5.74E-46 0.99801408 2.77777778 97.2222222 2.77777778 ENSGO0000172270 BSG -1.6390314 5.67505951 656.817935 7.35E-145 7.05E-144 -1.5866051 100 0 BSG -1.0798646 5.81320219 242.864319 9.34E-55 5.14E-54 -1.1564655 97.222222 2.77777778 ENSGO0000135334 AKIRIN2 -1.6524628 5.99414955 656.634963 8.06E-145 7.72E-144 -1.5301213 100 0 AKIRIN2 -1.3741166 5.99818649 399.18747 8.28E-89 6.94E-88 -1.367188 100 0 ENSGO0000185825 BCAP31 -1.658025 5.24674267 654.153383 2.79E-144 2.67E-143 -1.5839072 100 0 BCAP31 -1.2402121 5.35641966 315.116487 1.68E-70 1.15E-69 -1.2841449 100 0 ENSGO0000085117 CD82 -1.6674654 5.37951023 651.899642 8.63E-144 8.25E-143 -1.5144974 100 0 CD82 -2.798405 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 ENSGO0000072135 PTPN18 -1.6825737 4.96671983 650.515766 1.68E-143 1.60E-142 -5.5477346 97.1428571 2.85714286 IGHVVOR15-8 -4.6988652 -0.5856958 450.532149 5.52E-100 5.08E-114 5.384077205 100 0 ENSGO0000124570 SERPINB6 -2.155201 3.21178492 648.965487 3.75E-143 3.55E-142 -2.0652497 100 0 SERPINB6 -0.6275902 3.60620242 56.9335383 4.51E-14 1.04E-13 -0.730678 88.888889 11.111111 ENSGO000016484 MAPK7 -1.787776 4.34219926 648.81926 4.04E-143 3.83E-142 -1.7288855 100 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 ENSG00000173457 PPP1R4B -1.781368 4.3178909 642.674873 8.75E-142 8.27E-141 1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PP1R14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PP1R14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PP1R14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 1.7161489 100 0 PPP1R14B -1.514516 4.297 | ENSG00000140749 | IGSF6 | -2.9053929 | 1.51566013 | 660.939832 | 9.33E-146 | 9.02E-145 | -2.6631439 | 100 | 0 IGSF6 | 6 | -3.3341934 | 1.45763958 6 | 34.729285 | 4.68E-140 | 5.79E-139 | | 100 | 0 | | ENSGO0000172270 BSG | ENSG00000188313 | PLSCR1 | -1.8911815 | 4.04807113 | 659.627944 | 1.80E-145 | 1.74E-144 | -1.7308978 | 100 | | | -1.9664268 | 4.09867888 6 | 609.690171 | 1.31E-134 | 1.54E-133 | -1.893248 | 100 | 0 | | ENSG00000135334 AKIRIN2 -1.6224628 5.99414955 656.634963 8.06E-145 7.72E-144 -1.5301213 100 0 AKIRIN2 -1.3741166 5.99818649 399.18747 8.28E-89 6.94E-88 -1.367188 100 0 ENSG00000185825 BCAP31 -1.658025 5.24674267 654.153383 2.79E-144 2.67E-143 -1.5839072 100 0 BCAP31 -1.2402121 5.35641966 315.116487 1.68E-70 1.15E-69 -1.2841449 100 0 ENSG00000085117 CD82 -1.6674654 5.37951023 651.899642 8.63E-144 8.25E-143 1.50E-143 1.50E-1 | ENSG00000165516 | KLHDC2 | 1.62389925 | 6.02552856 | 657.13532 | 6.27E-145 | 6.03E-144 | 1.65850992 | 0 | 100 KLHDC | C2 | 0.99050277 | 5.52233661 2 | 05.728237 | 1.17E-46 | | | | 97.222222 | | ENSG00000185825 BCAP31 -1.658025 5.24674267 654.153383 2.79E-144 2.67E-143 -1.5839072 100 0 BCAP31 -1.2402121 5.35641966 315.116487 1.68E-70 1.15E-69 -1.2841449 100 0 ENSG00000085117 CD82 -1.6674654 5.37951023 651.899642 8.63E-144 8.25E-143 -1.5144974 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 ENSG0000072135 ENSG0000072135 ENSG00000174570 PPPIR14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 ENSG00000173457 PPIR14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG00000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG00000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 ENSG0000173457 PPIR14B -1.7813686 4.3178900 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR1 | ENSG00000172270 | BSG | -1.6390314 | 5.67505951 | 656.817935 | | 7.05E-144 | -1.5866051 | | 0 BSG | | -1.0798646 | 5.81320219 2 | 42.864319 | 9.34E-55 | 5.14E-54 | -1.1564655 | 97.222222 | 2.7777778 | | ENSG00000085117 CD82 -1.6674654 5.37951023 651.899642 8.63E-144 8.25E-143 -1.5144974 100 0 CD82 -2.7984065 5.13970932
1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 1.07E-303 -2.6937764 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 15.040933 1393.86717 4.52E-305 13.8933333 1393.86717 4.52E-305 13.893718 100 0 CD82 -2.7984065 5.13970932 1393.86717 4.52E-305 13.983718 100 0 CD82 -2.7984065 1.5984067 13.983718 100 0 CD82 -2.7984065 1.5984067 100 CD82 -2.7984065 1.5984067 100 CD82 -2.7984065 1.5984067 100 CD82 -2.7984065 1.5984067 100 CD82 -2.7984065 1.0784067 | ENSG00000135334 | AKIRIN2 | -1.6224628 | 5.99414955 | 656.634963 | 8.06E-145 | 7.72E-144 | -1.5301213 | 100 | 0 AKIRIN | IN2 | -1.3741166 | 5.99818649 | 399.18747 | | 6.94E-88 | -1.367188 | | 0 | | ENSG00000259261 GHV4OR15-8 -4.9083217 -0.4831849 650.571766 1.68E-143 1.60E-142 -5.5477346 97.1428571 2.85714286 GHV4OR15-8 -4.6988652 -0.5856953 450.532149 5.52E-100 5.18E-99 -5.3840672 91.6666667 8.33333333333333333333333333333333333 | | | | | | | | | | | | | | | | | | | 0 | | ENSG0000072135 PTPN18 -1.6825737 4.96671983 650.159296 2.06E-143 1.96E-142 -1.5768146 100 0 PTPN18 -1.6569608 4.96013 515.040993 5.08E-114 5.30E-113 -1.7779205 100 0 SERPINB6 -2.1552201 3.21178492 648.965487 3.75E-143 3.56E-142 -2.0652497 100 0 SERPINB6 -0.6275902 3.60620242 56.9335383 4.51E-14 1.04E-13 -0.730678 88.888889 11.111111 ENSG0000016484 MAPK7 -1.787776 4.34219926 648.819226 4.04E-143 3.83E-142 -1.7288855 100 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 ENSG00000173457 PPP1R14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 | | | | | | | | | | | | | | | | | | | 0 | | ENSG00000124570 SERPINB6 -2.1552201 3.21178492 648.965487 3.75E-143 3.56E-142 -2.0652497 100 0 SERPINB6 -0.6275902 3.60620242 56.9335383 4.51E-14 1.04E-13 -0.730678 88.888889 11.1111111 ENSG00000166484 MAPK7 -1.787776 4.34219926 648.819226 4.04E-143 3.83E-142 -1.7288855 100 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 ENSG00000173457 PPPIR14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B 1.04E-13 -0.730678 88.888889 11.11111111 0 0 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 0 MAPK7 -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 PPPIR14B -1.514516 4.2975678 | | | | | | | | | | | | | | | | | | | 8.33333333 | | ENSG00000166484 MAPK7 -1.787776 4.34219926 648.819226 4.04E-143 3.83E-142 -1.7288855 100 0 MAPK7 -2.175312 4.25184346 759.013395 4.40E-167 6.18E-166 -2.2335898 100 0 ENSG00000141140 NA 1.8747583 4.03441122 646.382465 1.37E-142 1.29E-141 1.87509352 0 100 NA 1.70037871 3.8591189 432.382758 4.92E-96 4.39E-95 1.56983969 0 100 ENSG00000173457 PPPIR14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPPIR14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 | | | | | | | | | | | | | | | | | | | 0 | | ENSG00000141140 NA 1.8747583 4.03441122 646.382465 1.37E-142 1.29E-141 1.87509352 0 100 NA 1.70037871 3.8591189 432.382758 4.92E-96 4.39E-95 1.56983969 0 100 ENSG00000173457 PP1R14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 | | | | | | | | | | | | | | | | | | | 11.1111111 | | ENSG00000173457 PPP1R14B -1.7813686 4.31789009 642.674873 8.75E-142 8.27E-141 -1.7161489 100 0 PPP1R14B -1.514516 4.29756785 394.35516 9.33E-88 7.75E-87 -1.6370314 100 0 | | | | | | | | | | | | | | | | | | | 0 | • | 100 | | ENSG00000136840 ST6GALNAC4 -1.9256896 3.77679839 639.452985 4.39E-141 4.13E-140 -1.7931662 100 0 ST6GALNAC4 -1.1878637 3.87662832 220.798233 6.06E-50 3.13E-49 -1.2551755 100 0 | | | | | | | | | | | | | | | | | | | 0 | | | ENSG00000136840 | ST6GALNAC4 | -1.9256896 | 3.77679839 | 639.452985 | 4.39E-141 | 4.13E-140 | -1.7931662 | 100 | 0 ST6GA | IALNAC4 | -1.1878637 | 3.87662832 2 | 20.798233 | 6.06E-50 | 3.13E-49 | -1.2551755 | 100 | 0 | | PRINCE 1.009791 SEPTION 1.000791 |--|------------------|-----------|------------|------------|------------|-----------|-----------|------------|-----|------------|----------|------------|---------------|-----------|-----------|-----------|------------|------------|------------| | SECONOLOGISTING FIGURE 1.044040 5.78817-66 2.021715 7.771-78 1.051-785
1.051-785 1.0 | ENSG00000182606 | TRAK1 | | | | 4.04E-140 | | | 100 | 0 | | | | | 4.44E-72 | | | 100 | 0 | | PARTICOLOGO-100-100-100-100-100-100-100-100-100-10 | | | | | | | | | | 0 | | | | | | | | | 0 | | SPANDOLOGO-1995 SPANDA 1,6976277 555860037 603.19803 357-118 1,7987556 0 0.00 | | | | | | | | | | 0 | | | | | | | | | 0 | | Seconocionocionocionocionocionocionociono | | | | | | | | | | 0 | | | | | | | | | 0 | | PROFORMINISTRAY 1.556333 7531347 628.07414 1.28643 63.07505 61.1542 1.00 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 100 | | | | | | | | | 100 | | PASCORDIOLIZIZE COUNTY | | | | | | | | | | 0 | | | | | | | | | 0 | | Description Perform Control Contro | | | | | | | | | | 0 | | | | | | | | | 0 | | Description Sept | | | | | | | | | | 0 | | | | | | | | | 0 | | PROCOCOURDISS229 MMS19 | | | | | | | | | | 0 | | | | | | | | | 0 | | PROSCO00011329 APRIA 1.69402544 (5.090259) FREIDIT 1.704554 \$45171557 (5.191804) 1.3145 1.0347359 1.6669346 0.097610 1.899862 (5.195833) 66.42458 3.06138 3.66534 1.91275 100 0.0 | | | | | | | | | | 0 | | | | | | | | | 0 | | PRINCE P | PRINCE CONCOUNTING PRINCE PRINCE 1.564718 6.5908796 5.081-13 5.081-13 1.097-12 1.00 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 100 | | | | | | | | | 97.222222 | | NO.0000017551 PH.LDB3 1.70307881 4.5099018 61.5131679 73.671.18 2.6621998 0 100 PH.DB3 2.0889015 4.771482 793.03652 7.6714 2.246173 1.96259011 0 100 PH.SCO000018428 NAAP 2.112173 2.7671660 1.64713 2.76716 2.667160 2.767160 2.667160 2.767160 2.667160 2.767160 2.667160 2.767160 2.667160 2.767160 2.667160 2.767160 2. | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSCO000019845 NARAP 2-3112173 26726600 61497874 927E-136 8.36E-135 2.22691765 10 0 NARAP 2-5305499 2.5540366 576.59663 2.00E-127 2.23E-126 2.4298082 2.00E-127 2.23E-126 2.23 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSCORDOOID21422 NA | | | | | | | | | | 100 | _ | | | | | | | _ | 100 | | NSG000001245 NSG1000001245 NSG1000001245 NSG1000001245 NSG1000001245 NSG1000001245 NSG1000001245 NSG1000001245 NSG1000000000000000000000000000000000000 | | | | | | | | | | 0 | | | | | | | | | 0 | | INSCREDOMO12469 NCF18 C.2599568 | | | | | | | | | | 100 | | | | | | | | | 100 | | INSCREPANCE INSCRIPTION CONTRICT CON | | | | | | | | | | 0 | | | | | | | | | 0 | | NSGOODOL14930 MAMAH L60661151 SA231818 60.1590645 7555-133 6.706-132 1.69585411 0 100 MAGRA 1.6751222 4.66525964 27.9700991 4.755-153 1.74123085 0 100 NSGOODOL13930 6AlT 1.88917923 3.7528818 599.13477 2.885-132 2.88-131 1.69988175 0 100 6AlT 1.0952994 3.0612793 145.422626 1.746-33 6.666-33 0.92047144 0 100 1.000 1. | | | | | | | | | | 0 | | | | | | | | | 0 | | NSG0000012164 NSG0000012242 EFF STORM STOR | | | | | | | | | | 0 | | | | | | | | 100 | 0 | | SASTONO-00012342 2F3 -1.889643 3.7525881 5991.3477 2.58E-132 2.58E-131 1.89988175 0 100 GAIT 1.09529943 3.0612279 145.425265 1.74E-33 6.68E-33 0.52007144 0 1.00 | | | | | |
| | | 0 | | | | | | | | | 0 | | | EPS 1.8806434 36967468 598.90965 5876-132 5.286-131 1.284807 1.0908899 3.6748302 188.26972 7.616-23 3.486-42 1.186881 97.222222 2.7777778 | | | | | | | | | - | | | | | | | | | 0 | | | NSG0000014910 ADDITION ADDI | | | | | | | | | _ | 100 | | | | | | | | • | | | NAPILCS 1.5145145 7.4272073 5.971.12570 7.977-132 6.198-131 1.461.1686 1.00 0 0 0 0 0 0 0 0 0 | | E2F3 | | | | | 2.54E-131 | -1.8488076 | | 0 | | | | | | | | 97.222222 | | | ENS-G00000124954 ENS-G0000012455 ENS-G00000012455 ENS-G0000012455 ENS-G0000012455 ENS-G0000012455 ENS-G0000012455 ENS-G0000012455 ENS-G0000012455 ENS-G00000012455 ENS-G0000012455 ENS-G00 | | GOLG A2P5 | 1.78645952 | 4.09243846 | 597.265498 | 6.59E-132 | 5.78E-131 | 1.70100893 | 0 | 100 | GOLGA2P5 | 1.58069651 | 3.87058949 38 | 30.631211 | | 7.25E-84 | 1.5064684 | 0 | 100 | | RFS 1.59150655 5.0611808 59.501087 2.056.131 1.78E-130 1.69806974 0 1.69806 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO0000141735 ISFBP4 C.24025801 2.20643299 594.870362 2.196.131 1.906.130 2.2667222 1.00 0 0 0 0 0 0 0 0 0 | ENSG 00000104894 | CD37 | -1.5094425 | 8.06888522 | 595.620908 | 1.50E-131 | 1.31E-130 | -1.4109248 | 100 | 0 | CD37 | -1.5578792 | 7.96816456 49 | 90.549126 | | | | | 0 | | RNG00000149925 ALDOA -1.5066796 R.02555497 593.819449 3.70E-131 3.21E-130 -1.423845 100 0 ALDOA -1.1982797 8.09856725 292.113941 1.72E-65 1.10E-64 -1.1843309 100 0 RNG0000017417 RPI1-23P136 2.0163922 2.7935332 577.256162 1.48E-127 1.7E-126 2.19188939 0 100 RPI1-23P136 2.1696657 2.0014761 446-24002 4.75E-99 4.40E-98 2.13567323 0 100 RNG0000011307 RNG000011307 RNG000011307 RNG000011307 RNG0000011307 RNG0000011307 RNG0000011307 RNG0000011307 RNG0000011307 RNG0000011475 RNG00000011475 RNG0000011475 RNG0000011475 RNG0000011475 RNG0000011475 RNG0000011475 RNG0000011475 RNG0000011475 RNG00000011475 RNG0000011475 RNG00000011475 RNG00000011475 RNG0000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG00000011475 RNG000000014475 RNG000000014475 RNG000000014475 RNG000000014475 RNG000000000000000000000000000000000000 | ENSG00000126456 | | | | | | | | | 100 | | | | | | | | | 97.222222 | | RAGGPS2 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.6648645 -1.6648645 -1.6648645 -1.664865 -1.6648645 -1.664865 -1.6648645 -1.664865 -1.6648645 -1.664865 -1.6648645 -1.664865 -1.6648645 -1.664865 - | ENSG00000141753 | IGFBP4 | -2.4025801 | 2.20643299 | 594.870362 | 2.19E-131 | 1.90E-130 | -2.2607222 | 100 | 0 | IGFBP4 | -2.3884195 | 2.12182996 46 | 50.848451 | 3.14E-102 | 2.98E-101 | -2.3988822 | 100 | 0 | | ENGGO000174171 ENGGO000148175 ENGGO000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO0000148175 ENGGO000014676 ENGGO00014676 ENGGO00014676 ENGGO000014676 ENGGO000014676 ENGGO000014676 ENGGO000014676 ENGGO00014676 ENGGO00014676 ENGGO00014676 ENGGO00014676 ENGGO00014676 ENGGO00014676 ENGGO | ENSG00000149925 | | | | | | | | | 0 | | -1.1982979 | | | | | | 100 | 0 | | ENGCOMMODITION SIRPB1 -2.2238406 2.83156571 576.541655 2.12E-127 1.81E-126 -2.2318921 94.2857143 5.71428571 5.18PB1 -2.7636173 2.8474764 70.5987617 1.45E-155 1.98E-154 3.0527797 1.00 0.0 0 | ENSG00000116191 | RALGPS2 | -1.6648645 | 4.71003396 | 582.423212 | | 9.58E-128 | -1.4617499 | 100 | 0 | | | | | | | | 100 | 0 | | ENSGO0000148175 STOM -1.5973405 4.92638675 575.584113 3.42E-127 2.92E-126 -1.6141493 100 10 STOM -0.7323504 5.185013 108.288451 2.32E-25 7.39E-25 0.6426165 97.222222 2.77777778 ENSGO0000127124 HVEP3 -1.6117777 4.65289902 571.731924 2.36E-126 1.99E-125 -1.5361385 100 0 HWEP3 -1.895643 4.54842115 626.298536 3.19E-138 3.89E-138 3.89E-133 1.85E-126 1.99E-125 -1.5361385 100 0 HWEP3 -1.895643 4.54842115 626.298536 3.19E-138 3.89E-138 3.89 | | | | | | | | | - | | | | | | | | | 0 | 100 | | ENSGO0000111674 ENQ | | | | | | | | | | 5.71428571 | | | | | | | | | 0 | | ENSGO0000127124 HIVEP3 -1.6117777 4.6528990 571.731924 2.36E-126 1.99E-125 -1.5361385 100 0 HIVEP3 -1.895643 4.54342115 626.298536 3.19E-138 3.88E-137 -1.8651003 100 0 ENSGO0000134079 HZ -1.5865332 4.24886792 567.092213 2.41E-125 1.05E-124 -1.3743404 100 0 BCL2L11 -1.2735082 7.3307872 344.03617 8.44E-77 6.16E-76 -1.3083074 100 0 MAP1S -1.5865332 4.24886792 567.092213 2.41E-125 1.05E-124 -1.5152479 100 0 MAP1S -1.5865332 4.33617 8.44E-77 6.16E-76 -1.3083074 100 0 ENSGO0000137802 HZ -1.5865332 4.24886792 567.092213 5.96E-125 4.97E-124 1.65548365 0 100 MAPKBP1 1.52694474 4.1485585 385.233098 9.03E-86 7.31E-85 1.44405078 0 100 ENSGO0000110324 HZ -1.466548165 0 100 MAPKBP1 1.52694474 4.1485585 385.233098 9.03E-86 7.31E-85 1.44405078 0 100 ENSGO0000114561 TEB -1.7510454 3.9398794 561.863849 3.0E-124 2.74E-123 -1.6964342 100 0 TEB -1.5309834 3.991519 38.08709367 389.745433 9.40E-87 7.70E-86 -1.3482058 100 0 ENSGO0000149332 TLE3 -1.4628337 8.0920998 558.23167 2.04E-123 1.68E-122 -1.3566954 100 0 FLIB2 -1.9480429 6.06366969 759.761214 3.03E-124 3.0E-124 1.0E-124 1.0E | | | | | | | | | | 0 | | | | | | | | 97.222222 | | | ENSG00000153094 BCL2L11 -1.482272 7.37726063 568.400514 1.25E-125 1.05E-124 -1.3743404 100 0 BCL2L11 -1.2735082 7.3307872 344.033617 8.44E-77 6.16E-76 -1.3083074 100 0 MAPIS -1.5865332 4.82486792 567.092213 2.41E-125 2.02E-124 -1.5152479 100 0 MAPIS -1.1578852 4.89303455 258.817062 3.11E-58 1.80E-57 -1.3435071 97.222222 2.77777778 ENSG00000110324 LI10RA -1.4659714 8.06527535 562.55826 2.33E-124 1.94E-123 -1.3511249 100 0 LI10RA -1.399158 8.08709367 389.745978 9.40E-87 7.70E-86 -1.3482058 100 0 ENSG00000147872 PLIN2 -1.5039937 6.23766301 559.818009 9.21E-124 7.63E-123 -1.3796254 100 0 PLIN2 -1.9480429 6.06366962 759.761214 3.03E-167 4.26E-166
-1.9212682 100 0 ENSG0000016949 SMAD3 -1.4850187 6.1450974 556.912537 3.5E-123 3.24E-122 -1.4613492 100 0 ENSG0000016244 CYB561A3 -1.5497062 4.95127377 556.912537 3.95E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 558.28167 2.04E-123 3.25E-124 3.25E-124 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 559.25157 2.04E-123 3.25E-124 3.25E-124 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 556.31859 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 556.31859 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 556.31859 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 556.31859 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554399 556.31859 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554499 556.316893 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554499 556.316893 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG00000122600 PRIM7 1.76808615 3.84554499 556.316893 5.32E-123 3.24E-122 -1.4613492 100 0 ENSG0000012212 SASH3 -1.464978 7.2377127 555.437491 2.25E-122 3.43E-121 -1.3927796 100 0 FRIM7 1.42199774 3.52626526 281.210691 4.09E-63 2.52E-62 1.3499686 2.77777778 4.52E-02 3.67E-121 -1.4792994 100 0 PRIMACA -1.3205473 5.0590162 31.666667 8.33333333 ENSG000001 | | | | | | | | | | 100 | | | | | | | | | 100 | | ENSGO0000137802 MAPIS | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO0000117802 MAPKBP1 1.66588572 4.3103679 565.282353 5.96E-125 4.97E-124 1.65648365 0 100 MAPKBP1 1.52694474 4.14855856 385.233098 9.03E-86 7.31E-85 1.44405078 0 100 ENSGO00001102561 TFEB -1.7510454 3.93989749 561.863849 3.30E-124 7.46E-123 -1.6964342 100 0 TFEB -1.5309834 3.9915194 368.405922 4.16E-82 3.22E-81 -1.6420194 97.222222 2.77777778 ENSGO000147872 PUN2 -1.5039937 6.23766301 559.818009 9.21E-124 7.63E-123 -1.3766254 100 0 PUN2 -1.940429 6.06366962 759.76E214 3.46E-30 -0.8546698 97.222222 2.77777778 ENSGO00016949 MAD3 -1.4850187 6.14503924 557.09214 3.61E-123 2.97E-122 -1.4304018 100 0 SMAD3 -2.1139174 5.95638455 902.127796 3.38E-198 5.40E-197 -2.0945874 100 0 ENSGO0000184232 OAF -2.1022572 2.9766058 556.704209 4.38E-123 3.24E-122 -1.4613492 100 0 CYB561A3 -1.2839284 4.9363001 322.592165 3.95E-72 2.75E-71 -1.3290807 100 0 ENSGO0000132600 PRMT7 1.76808615 3.84544949 556.316893 5.32E-123 4.36E-122 1.81916704 0 100 PRMT7 1.4199774 3.52662552 ENSG0000122122 SASH3 -1.464978 7.237712 553.437491 2.25E-122 1.83E-121 -1.3650379 100 0 ENSG00000175348 ENSG00000175348 TMEM98 -1.4962228 5.61085007 552.18953 4.20E-122 3.61E-121 -1.3927796 100 0 FNSG000000102844 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.886566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.886566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.886514 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865214 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.886514 3.05E2484 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ -1.8865266 3.0842844 387.208266 3.3 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO0000110324 IL10RA -1.4659714 8.06527535 562.55826 2.33E-124 1.94E-123 -1.3511249 100 0 IL10RA -1.3939158 8.08709367 389.745433 9.40E-87 7.70E-86 -1.3482058 100 0 ENSGO0000112561 TFEB -1.7510454 3.93989749 561.863849 3.0E-124 2.74E-123 -1.6964342 100 0 TFEB -1.5309834 3.9915194 368.405922 4.16E-82 3.22E-81 -1.6420194 97.222222 2.7777778 ENSGO000140732 PLIN2 -1.5039937 6.23766301 559.818009 9.21E-124 7.63E-123 -1.3796254 100 0 PLIN2 -1.9480429 6.0866962 759.761214 3.03E-167 4.26E-166 -1.9212682 100 0 ENSGO0000140332 PLS -1.4620337 8.09209958 558.23167 2.04E-123 1.68E-122 -1.3566954 100 0 TL83 -0.8071703 8.23978196 132.879737 9.61E-31 3.46E-30 -0.8546698 97.222222 2.77777778 ENSGO000166949 SMAD3 -1.4850187 6.14503924 557.09214 3.61E-123 2.97E-122 -1.4304018 100 0 SMAD3 -2.1139174 5.95638455 902.127796 3.38E-198 5.40E-197 -2.0945874 100 0 ENSGO0000162144 CYB561A3 -1.5497062 4.9512737 556.912537 3.95E-123 3.24E-122 -1.4613492 100 0 CYB561A3 -1.2839284 4.9363001 322.592165 3.95E-72 2.75E-71 -1.3290807 100 0 ENSGO000184232 OAF -2.1022572 2.79760558 556.704209 4.38E-123 3.59E-123 3.59E-123 3.59E-123 3.59E-123 1.58E-123 1.589706 | ENSG00000130479 | MAP1S | | | | | | | | 0 | _ | | | | | | | 97.222222 | | | ENSG00000112561 TFEB | | | | | | | | | | 100 | | | | | | | | _ | 100 | | ENSG0000147872 PLIN2 -1.5039937 6.23766301 559.818009 9.21E-124 7.63E-123 -1.3796254 100 0 PLIN2 -1.9480429 6.06366962 759.761214 3.03E-167 4.26E-166 -1.9212682 100 0 PLINS -1.4628337 8.09209958 558.23167 2.04E-123 1.68E-122 -1.3566954 100 0 TLE3 -0.8071703 8.23978196 132.879737 9.61E-31 3.46E-30 -0.8546698 97.222222 2.77777778 1.00000166949 SMAD3 -1.4850187 6.14503924 557.09214 3.61E-123 2.97E-122 -1.4304018 100 0 SMAD3 -2.1139174 5.95638455 902.127796 3.38E-198 5.40E-197 -2.0945874 100 0 PLINS -1.5497062 4.95127377 556.912537 3.95E-123 3.24E-122 -1.4613492 100 0 CYB561A3 -1.2839284 4.9363001 322.592165 3.95E-72 2.75E-71 -1.3290807 100 0 PLINS -1.20000166949 SMAD3 -2.102572 2.79760658 556.704209 4.38E-123 3.59E-122 -2.0442356 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 PLINS -1.76808615 3.84544949 556.316893 5.32E-123 4.36E-122 1.81916704 0 100 PRMT7 1.42199774 3.5266526 281.10691 4.09E-63 2.52E-62 1.3499686 2.77777778 97.2222222 ENSG00000125122 SASH3 -1.4962228 5.61085007 552.18953 4.20E-122 3.41E-121 -1.3650379 100 0 SASH3 -1.1726268 7.24498659 292.592028 1.35E-65 -1.2754826 100 0 PRMSG00000072062 PRKACA -1.5421393 5.01341075 552.075737 4.45E-122 3.61E-121 -1.4972994 100 0 PRKACA -1.3202443 5.05901962 341.663809 2.77E-76 2.01E-75 -1.330173 100 0 PRNSG0000014324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.755126 100 0 PRNSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.755126 100 0 PRNSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.755126 100 0 PRNSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.755126 100 0 PRNSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG0000140332 TLE3 | | | | | | | | | | 0 | | | | | | | | | 2.77777778 | | ENSG0000166949 SMAD3 -1.4850187 6.14503924 557.09214 3.61E-123 2.97E-122 -1.4304018 100 0 SMAD3 -2.1139174 5.95638455 902.127796 3.38E-198 5.40E-197 -2.0945874 100 0 CYB56103 -1.5497062 4.95127377 556.912537 3.95E-123 3.24E-122 -1.4613492 100 0 CYB561A3 -1.2839284 4.9363001 322.592165 3.95E-72 2.75E-71 -1.3290807 100 0 CYB560000184232 OAF -2.1022572 2.7976058 556.704209 4.38E-123 3.59E-122 -2.0442356 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 CPRMT7 1.76808615 3.84544949 556.316893 5.32E-123 4.36E-122 1.81916704 0 100 PRMT7 1.4219974 3.5262652 281.210691 4.09E-63 2.52E-62 1.3499686 2.77777778 97.2222222 SASH3 -1.466978 7.2377127 553.437491 2.25E-122 1.83E-121 -1.3650379 100 0 SASH3 -1.1726268 7.24498659 292.590208 1.35E-65 8.67E-65 -1.2754826 100 0 SASH3 TMEM9B -1.4962228 5.61085007 552.18953 4.20E-122 3.41E-121 -1.3927796 100 0 PRMMPB -0.8145181 5.76590361 742.564063 7.32E-33 2.76E-32 -0.816372 100 0 PRMS00000072062 PRKACA -1.5421393 5.01341075 552.075737 4.45E-122 3.67E-121 -1.467208 100 0 PRMS00000002834 LASP1 -1.4607541 7.06333043 552.038792 4.53E-122 3.67E-121 -1.467208 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 CPQ | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG0000162144 CYB561A3 -1.5497062 4.95127377 556.912537 3.95E-123 3.24E-122 -1.4613492 100 0 CYB561A3 -1.2839284 4.9363001 322.592165 3.95E-72 2.75E-71 -1.3290807 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097
100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 0 OAF -1.9190667 2.83634122 3.98E-86 -1.9526097 100 OAF -1.919067 2.846540 3.25E-122 3.61E-121 1.4972994 100 OAF -1.9190667 2.83634122 3.98E-86 1.00 O | | | | | | | | | | 0 | | | | | | | | | 2.77777778 | | ENSG0000184232 OAF -2.1022572 2.79760658 556.704209 4.38E-123 3.59E-122 -2.0442356 100 OAF -1.9190667 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 OAF -1.9190607 2.8363412 389.308015 1.17E-86 9.58E-86 -1.9526097 100 OAF -1.9190607 2.83634122 389.308015 1.17E-86 9.58E-86 -1.9526097 100 OAF -1.9190607 2.8464949 2.92.59269 2.92.592028 1.35E-65 8.67E-65 -1.2754826 100 OAF -1.9190607 2.8464949 -1.2 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG00000132600 PRMT7 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG0000122122 SASH3 -1.464978 7.2377127 553.437491 2.25E-122 1.83E-121 -1.3650379 100 0 SASH3 -1.1726268 7.24498659 292.592028 1.35E-65 8.67E-65 -1.2754826 100 0 TMEM9B -1.4962228 5.61085007 552.18953 4.20E-122 3.41E-121 -1.3927796 100 0 TMEM9B -0.8145181 5.76396317 142.564063 7.32E-33 2.76E-32 -0.816372 100 0 PRKACA -1.5421393 5.01341075 552.075737 4.45E-122 3.61E-121 -1.4792994 100 0 PRKACA -1.3202443 5.05901962 341.663809 2.77E-76 2.01E-75 -1.330173 100 0 PRKACA -1.4607541 7.06333043 552.038792 4.53E-122 3.67E-121 -1.4267208 100 0 PRKACA -1.5205423 100 0 PRKACA -1.5421393 5.01341075 552.075737 4.45E-122 3.67E-121 -1.4267208 100 0 PRKACA -1.5421393 5.05901962 7.31660224 74.7315838 5.39E-18 1.39E-17 -0.5364662 91.6666667 8.33333333 PRASSENSION OF | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG00000175348 TMEM9B | | | | | | | | | | 100 | | | | | | | | | 97.222222 | | ENSG00000072062 PRKACA -1.5421393 5.01341075 552.075737 4.45E-122 3.61E-121 -1.4792994 100 0 PRKACA -1.3202443 5.05901962 341.663809 2.77E-76 2.01E-75 -1.330173 100 0 PRKACA -1.54000000002834 LASP1 -1.4607541 7.06333043 552.038792 4.53E-122 3.67E-121 -1.4267208 100 0 LASP1 -0.5905621 7.31660224 74.7315838 5.39E-18 1.39E-17 -0.5364662 91.6666667 8.33333333 PRACE P | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG00000002834 LASP1 -1.4607541 7.06333043 552.038792 4.53E-122 3.67E-121 -1.4267208 100 0 LASP1 -0.5905621 7.31660224 74.7315838 5.39E-18 1.39E-17 -0.5364662 91.6666667 8.33333333 ENSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG00000104324 CPQ -1.9886214 3.05824879 549.745978 1.43E-121 1.16E-120 -1.937543 100 0 CPQ -1.8165566 3.0842844 387.208266 3.35E-86 2.73E-85 -1.7535126 100 0 | | | | | | | | | | 0 | | | | | | | | | 0 | | | | _ | | | | | | | | 0 | | | | | | | | | 8.3333333 | | ENSG00000100445 SDR39U1 1.98551431 3.13519355 547.751233 3.88E-121 3.13E-120 1.84709082 0 100 SDR39U1 1.63763357 2.80937911 282.848 1.80E-63 1.11E-62 1.48770871 2.77777778 97.2222222 | | | | | | | | | | 0 | | | | | | | | | 0 | | | ENSG00000100445 | SDR39U1 | 1.98551431 | 3.13519355 | 547.751233 | 3.88E-121 | 3.13E-120 | 1.84709082 | 0 | 100 | SDR39U1 | 1.63763357 | 2.80937911 | 282.848 | 1.80E-63 | 1.11E-62 | 1.48770871 | 2.77777778 | 97.222222 | | I | | | | | | | | | | | | | | | | | | |------------------------------------|----------------|-----------|------------------------------|--------------------------|------------------------|--------------------------|------------|------------|--------------------|------------|----------|--|----------------------|----------|--------------------------|------------|------------| | ENSG00000168758 | SEMA4C | | | 546.845935 | 6.11E-121 | 4.92E-120 1 | | 0 | 100 SEMA4C | | | 4.06171313 161.000703 | 6.84E-37 | | | 5.5555556 | 94.444444 | | ENSG 00000124783 | SSR1 | | 3 6.27652768 | | 2.22E-120 | 1.78E-119 - | | 100 | 0 SSR1
0 RIT1 | | | 6.33443659 275.762383 | 6.30E-62 | | -1.1783604 | 100 | 0 | | ENSG 00000143622 | RIT1 | | | 544.100154 | 2.42E-120 | 1.94E-119 - | | 100 | | | | 6.45300333 278.049583 | 2.00E-62
2.71E-40 | | -1.1457752 | 100 | 0 | | ENSG00000147119
ENSG00000165312 | CHST7
OTUD1 | | 2 2.65563373
6 6.66445211 | | 9.45E-120
1.77E-119 | 7.54E-119
1.41E-118 - | -2.119108 | 100
100 | 0 CHST7
0 OTUD1 | | | 2.82621836 176.575291
6.54863198 646.49446 | | | -1.2529625
-1.8257405 | 100
100 | 0 | | | ZFP36L1 | | | | 3.97E-119 | 3.16E-118 - | | 100 | 0 ZFP36L1 | | | | 3.89E-82 | | | 100 | 0 | | ENSG00000185650
ENSG00000110911 | SLC11A2 | | | 538.513608
537.116621 | 7.99E-119 | 6.34E-118 1 | | 0 | 100 SLC11A2 | | | 8.15002228 368.542005
3.99558169 172.315331 | 2.31E-39 | | -1.3201425 | 2.7777778 | 07 222222 | | ENSG00000110911 | NPHP3 | | | 537.110021 | 1.58E-118 | 1.25E-117 1 | | 0 | 100 SECTIA2 | | | 4.26078892 254.789883 | 2.31E-39
2.35E-57 | | 1.16429354 | 2.77777778 | 100 | | ENSG00000113971 | LAT | | | 534.892492 | 2.44E-118 | 1.93E-117 1 | | 0 | 100 NPHPS | | | 2.9078865 424.699331 | 2.33E-37
2.32E-94 | | 1.9390286 | 0 | 100 | | ENSG00000213038 | TRAF1 | | 1 5.88961306 | | 5.79E-118 | 4.56E-117 1 | | 0 | 100 TRAF1 | | | 5.34199886 112.269005 | 3.12E-26 | | | 5.55555556 | | | ENSG00000030338 | LIMK1 | | | 532.187278 | 9.44E-118 | 7.42E-117 - | | 100 | 0 LIMK1 | - | | 4.56789915 218.031494 | 2.43E-49 | | -1.0765384 | 100 | 0 | | ENSG00000100003 | ZNF512B | | 3 5.33179486 | | 3.64E-117 | 2.86E-116 1 | | 0 | 100 ZNF512B | | | 4.76827861 97.1909111 | 6.30E-23 | | | 5.55555556 | 94 444444 | | ENSG00000177239 | MAN1B1 | | 7 5.55654603 | | 4.69E-117 | 3.67E-116 1 | | 0 | 100 MAN1B1 | | | 5.42261375 344.695473 | 6.06E-77 | | 1.32404339 | 0.5555555 | 100 | | ENSG00000177233 | IFIT2 | | 1 3.63264286 | | 2.25E-116 | 1.76E-115 - | | 100 | 0 IFIT2 | | | 3.7603885 347.91851 | 1.20E-77 | | | 97.2222222 | | | ENSG00000115322 | CCDC64 | | 7 5.43148434 | | 2.74E-116 | 2.14E-115 1 | | 0 | 100 CCDC64 | | | 5.33115969 413.600778 | 6.03E-92 | | 1.39611507 | 0 | 100 | | ENSG00000133127 | P4HTM | | 2 3.76867583 | | 4.67E-116 | 3.63E-115 1 | | 0 | 100 P4HTM | | | 3.47928584 266.17109 | 7.75E-60 | | 1.28196356 | 0 | 100 | | ENSG00000170407 | REPIN1 | | 8 5.55847961 | | 9.35E-116 | 7.26E-115 - | | 100 | 0 REPIN1 | | | 5.51251639 406.79409 | 1.83E-90 | | -1.4799751 | 100 | 0 | | ENSG00000155252 | PI4K2A | | 5 5.79411464 | | 1.35E-115 | 1.05E-114 - | | 100 | 0 PI4K2A | | | 5.91114335 164.575726 | 1.13E-37 | | -0.8858587 | 100 | 0 | | ENSG00000133232 | ATM | | 4 7.40806929 | | 5.52E-115 | 4.27E-114 1 | | 0 | 100 ATM | | | 7.08497298 235.292648 | | | | | 88.8888889 | | ENSG00000105519 | CAPS | | | 519.379702 | 5.77E-115 | 4.47E-114 1 | | 0 | 100 CAPS | | | 3.74963185 247.378888 | 9.68E-56 | | | | 97.222222 | | ENSG00000180530 | NRIP1 | | | 518.928822 | 7.24E-115 | 5.59E-114 - | | 100 | 0 NRIP1 | | | 7.24794843 377.080168 | 5.38E-84 | | -1.3412617 | 100 | 0 | | ENSG00000058600 | POLR3E | | 3 6.53836801 | | 8.21E-115 | 6.34E-114 | | 0 | 100 POLR3E | | | 6.34099086 364.88328 | 2.43E-81 | | 1.19408608 | 0 | 100 | | ENSG00000163754 | GYG1 | | 6 3.85658377 | | 8.27E-115 | 6.38E-114 - | | 100 | 0 GYG1 | | | 4.03260469 162.51204 | 3.20E-37 | | -0.9428228 | 100 | 0 | | ENSG00000215041 | NEURL4 | | 3 3.98739874 | | 1.78E-114 | 1.37E-113 1 | | 0 | 100 NEURL4 | | | 3.78167062 314.054085 | 2.86E-70 | | | 2.7777778 | 97.222222 | | ENSG00000168159 | RNF187 | | 3 4.90234802 | | 4.60E-114 | 3.52E-113 - | | 100 | 0 RNF187 | | | 4.97076059 288.784902 | 9.15E-65 | 5.78E-64 | -1.302288 | 100 | 0 | | ENSG00000105355 | PLIN3 | | 1 5.3495126 | | 8.74E-114 | 6.67E-113 - | | 100 | O PLIN3 | | | 5.27439897 627.60537 | 1.66E-138 | | -1.8973946 | 100 | 0 | | ENSG00000151748 | SAV1 | | 8 3.95705948 | | 9.26E-114 | 7.05E-113 - | | 100 | 0 SAV1 | | | 3.86715157 437.137272 | 4.54E-97 | | | 97.222222 | 2.7777778 | | ENSG00000105717 | PBX4 | 1.8863107 | 5 3.1861708 | 512.841547 | 1.53E-113 | 1.16E-112 1 | 1.91470386 | 0 | 100 PBX4 | 1.49 | 5798244 | 2.8483108 240.522189 | 3.03E-54 | 1.66E-53 | 1.38778261 | 0 | 100 | | ENSG00000223509 | RP11-632K20.7 | | 8 5.04654152 | | 1.77E-113 | 1.34E-112 1 | | 0 | | | | 4.79630542 266.673551 | 6.02E-60 | 3.55E-59 | | 2.77777778 | 97.222222 | | ENSG00000100092 | SH3BP1 | -1.479379 | 2 5.03177688 | 512.007019 | 2.32E-113 | 1.76E-112 - | 1.4418377 | 100 | 0 SH3BP1 | -1.0 | .0645251 | 5.16687802 225.489785 | 5.74E-51 | 3.01E-50 | -1.0786455 | 97.222222 | 2.7777778 | | ENSG00000135956 | TMEM127 | | 7 7.13652121 | | 1.37E-112 | 1.03E-111 - | | 100 | 0 TMEM127 | | | 7.15032204 297.055265 | 1.44E-66 | 9.36E-66 | -1.24937 | 100 | 0 | | ENSG00000002919 | SNX11 | -1.550576 | 1 4.39055084 | 507.918277 | 1.80E-112 | 1.35E-111 - | 1.4296089 | 100 | 0 SNX11 | -0.8 | .8252764 | 4.56341549 129.273675 | 5.91E-30 | 2.09E-29 | -0.8578553 | 100 | 0 | | ENSG00000101421 | CHMP4B | -1.393964 | 4 7.14499865 | 504.008893 | 1.28E-111 | 9.54E-111 - | 1.3402797 | 100 | 0 CHMP4B | -1.3 | .1038262 | 7.18066254 259.899217 | 1.81E-58 | 1.05E-57 | -1.1932909 | 100 | 0 | | ENSG00000066322 | ELOVL1 | -1.561378 | 3 4.30173624 | 503.715312 | 1.48E-111 | 1.10E-110 - | 1.4611344 | 100 | 0 ELOVL1 | -0.8 | .8373381 | 4.49639367 131.092929 | 2.36E-30 | 8.40E-30 | -0.8786324 | 100 | 0 | | ENSG00000175463 | TBC1D10C | 1.4105717 | 4 6.62199208 | 503.064333 | 2.05E-111 | 1.53E-110 1 | 1.44942674 | 0 | 100 TBC1D100 | C 0.93 | 3667028 | 6.21555245 186.356716 | 1.98E-42 | 9.00E-42 | 0.81042135 | 0 | 100 | | ENSG00000082153 | BZW1 | -1.378422 | 5 8.08332461 | 501.991542 | 3.50E-111 | 2.61E-110 - | 1.2524511 | 100 | 0 BZW1 | -0.7 | .7267148 | 8.22586206 108.582318 | 2.00E-25 | 6.39E-25 | -0.7049773 | 100 | 0 | | ENSG00000134574 | DDB2 | 1.6761182 | 3.81421645 | 501.12119 | 5.42E-111 | 4.03E-110 1 | 1.77581069 | 0 | 100 DDB 2 | 1.04 | 4715898 | 3.33329005 148.150376 | 4.40E-34 | 1.70E-33 | 0.99593828 | 0 | 100 |
 ENSG00000215302 | CTD-3092A11.1 | 1.8102313 | 4 3.32337799 | 500.486433 | 7.45E-111 | 5.54E-110 1 | 1.96609438 | 0 | 100 CTD-3092 | 2A11. 1.20 | 0203917 | 2.89160558 167.564411 | 2.52E-38 | 1.06E-37 | 1.11476066 | 0 | 100 | | ENSG00000181852 | RNF41 | -1.449262 | 3 5.12808429 | 500.329536 | 8.06E-111 | 5.98E-110 - | 1.3194771 | 100 | 0 RNF41 | -0.9 | .9495396 | 5.20925812 186.274289 | 2.07E-42 | 9.37E-42 | -0.9466207 | 100 | 0 | | ENSG00000157350 | ST3GAL2 | -1.684952 | 1 3.76718534 | 499.895433 | 1.00E-110 | 7.42E-110 - | 1.5714884 | 100 | 0 ST3GAL2 | -1.7 | .7063396 | 3.74414883 427.008735 | 7.28E-95 | 6.42E-94 | -1.7008813 | 100 | 0 | | ENSG00000111229 | ARPC3 | -1.391427 | 3 7.01581782 | 499.341376 | 1.32E-110 | 9.79E-110 - | 1.3321226 | 100 | 0 ARPC3 | -1.0 | .0762195 | 7.05258629 246.99074 | 1.18E-55 | 6.58E-55 | -1.1486092 | 100 | 0 | | ENSG00000106665 | CLIP2 | -1.734743 | 7 3.59759947 | 498.842748 | 1.70E-110 | 1.26E-109 - | 1.7298115 | 100 | 0 CLIP2 | -1.5 | .5870466 | 3.61069536 359.265743 | 4.07E-80 | 3.07E-79 | -1.6751845 | 100 | 0 | | ENSG00000134899 | ERCC5 | 1.443148 | 1 5.12322142 | 498.100456 | 2.46E-110 | 1.82E-109 1 | 1.52329507 | 0 | 100 ERCC5 | 1.3 | .1566601 | 4.89117092 263.637423 | 2.76E-59 | 1.61E-58 | 1.09524783 | 0 | 100 | | ENSG00000180376 | CCDC66 | 1.4654072 | 1 4.85396992 | 495.244418 | 1.03E-109 | 7.57E-109 1 | 1.53072359 | 0 | 100 CCDC66 | 1.0 | .0147191 | 4.47805058 189.105294 | 4.98E-43 | 2.29E-42 | 0.92448841 | 2.77777778 | 97.222222 | | ENSG00000162241 | SLC25A45 | | 4 4.40408461 | | 2.28E-109 | 1.67E-108 1 | 1.61454431 | 0 | 100 SLC25A45 | 5 1.13 | 1477675 | 4.02563055 201.51949 | 9.73E-46 | 4.65E-45 | 0.96361221 | 2.77777778 | 97.222222 | | ENSG00000079616 | KIF22 | | 9 6.03544032 | | 2.29E-109 | 1.68E-108 1 | | 0 | 100 KIF22 | | | 6.0014604 434.65501 | 1.58E-96 | | 1.29496404 | 0 | 100 | | ENSG00000137161 | CNPY3 | | 6 5.85661109 | | 8.24E-109 | 6.03E-108 - | | 100 | 0 CNPY3 | | | 5.88965577 308.488964 | 4.66E-69 | | -1.3163462 | 100 | 0 | | ENSG00000143862 | ARL8A | | 2 5.59766581 | | 1.03E-108 | 7.50E-108 - | | 100 | O ARL8A | | | 5.62469883 277.10233 | 3.21E-62 | | -1.1619859 | 100 | 0 | | ENSG00000137404 | NRM | | 3 2.08510568 | | 2.35E-108 | 1.71E-107 - | | 100 | 0 NRM | | | 2.02507787 427.823815 | 4.84E-95 | 4.27E-94 | -2.414174 | 100 | 0 | | ENSG00000162408 | NOL9 | | 6 6.27820796 | | 2.36E-108 | 1.71E-107 1 | | 0 | 100 NOL9 | | | 6.02744053 282.792615 | 1.85E-63 | | 1.02636837 | 0 | 100 | | ENSG00000160305 | DIP2A | | 2 5.80140431 | | 6.04E-108 | 4.37E-107 | | 0 | 100 DIP2A | | | 5.91573087 509.680598 | | | 1.44678201 | 0 | 100 | | ENSG00000137486 | ARRB1 | | 8 4.24864632 | | 1.55E-107 | | 1.3802865 | 100 | 0 ARRB1 | | | 4.09954737 795.983923 | 4.03E-175 | | -2.2176475 | 100 | 0 | | ENSG 00000126264 | HCST | -1.462902 | 9 4.77488444 | 483.992043 | 2.89E-107 | 2.08E-106 - | -1.3237388 | 100 | 0 HCST | -0.4 | .4434976 | 5.08338952 40.1007745 | 2.41E-10 | 4.84E-10 | -0.546344 | 86.1111111 | 13.8888889 | | ENSGO0000117795 FINDS 1.44506129 | 100
1444444 | |--|----------------| | ENSG00000184939 ZFP90 | | | ENSGO0000111712 C12cr489 -1.4509185 4.80957835 479.23277 3.14E-106 2.24E-105 -1.344752 100 0 C12cr489 -0.8374158 4.90627129 140.009677 2.65E-32 9.89E-32 -0.812503 100 0 ENSGO0000175055 (CDC57 1.39733379 5.93877818 473.199066 6.45E-105 3.14E-104 1.2325449 100 0 GNA13 -0.6613966 8.77796087 87.3390533 9.14E-21 2.58E-20 -0.600009 100 0 ENSGO0000176155 (CDC57 1.39733379 5.39877818 473.199066 6.45E-105 4.58E-104 1.52581977 0 100 CDC57 1.59666783 5.46064112 520.192545 3.84E-115 4.05E-114 1.46287147 0 ENSGO00001809002 ENSGO0000180902 ENSGO0000180902 ENSGO0000180902 ENSGO0000180902 ENSGO0000180902 ENSGO0000180902 ENSGO0000180902 ENSGO000018090 ENSGO000 | 0 | | ENSGO0000177595 PIDD1 1.44366629 4.79451272 476.12451 1.49E-105 1.06E-104 1.48258725 0 100 PIDD1 1.20720432 4.57348713 269.798279 1.26E-60 7.45E-60 1.07058686 0 ENSGO0000175155 CCDC57 1.3933379 5.39877818 473.199066 6.42E-105 3.14E-104 1.125281497 0 100 CCDC57 1.59666788 5.46064112 520.192545 3.84E-114 0.65E-114 1.46287147 0 ENSGO000018902 D2HGDH 1.64156054 3.81356352 471.479472 1.53E-104 1.08E-103 1.66173363 0 100 D2HGDH 1.31967327 3.55552878 241.667427 1.70E-54 9.36E-54 1.12554571 0 ENSGO0000197586 ENTPD6 1.38922231 5.29214875 465.638485 2.85E-104 3.48E-103 1.25226673 100 0 LTAH - 1.2385417 5.76371015 319.639022 1.74E-72 1.4E-72 4.6E-72 0.725251 100 ENSGO0000197586 ENTPD6 1.38922231 5.29214875 465.638485 2.85E-104 3.20E-102 1.3420898 0 100 ENTPD6 0.70137208 4.77699961 95.547927 1.4E-72 1.4E-72 4.6E-72 0.725251 100 ENTPD6 0.70137208 4.77699961 95.547927 1.4E-72 1.4E-72 1.4E-72 1.70E-70 1.72754251 100 ENSGO0000195908 GRR183 - 1.3487561 6.42080603 465.38748 3.23E-103 2.26E-102 1.3850396 0 100 GLG1 1.02168853 6.1524891 223.689217 1.4E-50 7.36E-50 0.97997996 5.55555559 MENGGO000103245 NARFL 1.82434882 3.05106891 463.448884 8.54E-103 5.96E-102 1.82001205 0 100 NARFL 1.43328643 2.74546684 219.830907 9.85E-50 5.06E-49 1.41609346 0 ENSGO0000103245 NARFL 1.82434882 3.05106891 463.448884 8.54E-103 5.96E-102 1.1240414 100 0 ECE1 -0.9936696 7.1291393 211.2838793 4.15E-48 2.08E-47 -0.9604076 100 ENSGO0000105554 PROSE -1.3315292 7.06273581 463.437385 8.59E-103 5.09E-102 -1.1545409 100 0 FNSGO0000105594 RARA -1.33358071 6.93355029 462.383005 1.46E-102 1.01E-101 -1.2845643 100 0 FNSGO0000106554 PROSE -1.3315297 7.06273581 461.616476 2.35660659 463.430778 8.62E-103 6.00E-102 -1.5455409 100 0 FNSGO0000106554 PROSE -1.3315297 7.06273581 461.616476 2.35660659 463.43078 8.62E-103 6.00E-102 -1.5455409 100 0 FNSGO000010660 PROSE -1.3385071 6.93355029 462.383005 1.46E-102 1.47E-101 1.48760054 0 100 PROSE -1.7382404 4.7725993 100 PROSE -1.2481010 PROSE -1.2481010 PROSE -1.2481010 PROSE -1.2481010 PROSE -1.2481010 PROSE -1.2481010 PROS | | | ENSGO0000120063 CDCS7 1.39733379 5.3987818 473.199066 6.45E-105 3.14E-104 1.2352449 100 0 CDCS7 1.59666783 5.46064112 5.2012525 3.48E-114 1.6287147 0 ENSGO0000110144 1.64156054 3.81356352 471.479472 1.53E-104 1.08E-103 1.66173363 0 100 D2HGDH 1.31967327 3.555252878 241.667427 1.70E-54 9.36E-54 1.1255471 0 ENSGO0000111144 1.3728364 5.78697422 468.931334 5.47E-104 3.84E-103 1.61273663 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-71 1.20E-70 1.2754251 100 0 LTAHH 1.2388417 5.76371015 319.639022 1.74E-71 1.20E-70 1.2754251 100 0 LTAHH 1.2388417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.2754251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.75F4251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.7254251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574251 100 0 LTAHH 1.2385417 5.76371015 319.639022 1.74E-72 1.70E-70 1.72574 | 100 | | ENSGO0000176155 CCCCS7 | 0 | | ENSGO0000180902 D2HGDH 1.64156054
3.81356352 471.479472 1.53E-104 1.08E-103 1.66173363 0 100 D2HGDH 1.31967327 3.55252878 241.667427 1.70E-54 9.36E-54 1.12554571 0 0 0 0 0 0 0 0 0 | 100 | | ENSGO0000111144 LTA4H | 100 | | ENSG00000197586 ENTPD6 1.38922301 5.29214875 465.638485 2.85E-103 2.00E-102 1.34208998 0 100 ENTPD6 0.70137208 4.77699961 95.5472972 1.44E-22 4.26E-22 0.52902308 8.33333333 91 91 91 91 91 91 | 0 | | ENSG00000169508 GLG1 1.3487561 6.42080603 465.38748 3.23E-103 2.26E-102 1.3850396 0 100 GLG1 1.02168853 6.15284891 223.689217 1.42E-50 7.36E-50 0.97997996 5.55555556 94 ENSG0000013245 FRIST 1.82E-483882 3.05106891 463.448884 8.54E-103 5.96E-102 1.82001205 0 100 NARFL 1.43328643 2.74546684 219.830907 9.85E-50 5.06E-49 1.41609346 0 ENSG0000017298 ECE1 1.3315292 7.06273581 463.448884 8.54E-103 5.99E-102 1.2140414 100 0 ECE1 -0.9936696 7.1291938 212.383793 4.15E-48 2.08E-47 -0.9604076 100 ENSG00000131799 ENSG00000131799 RARA -1.3358071 6.93355029 462.383005 1.46E-102 1.01E-101 -1.2845643 100 0 RARA -0.6954265 7.09728967 105.343322 1.03E-24 3.20E-24 -0.7947323 97.222222 2. ENSG00000133079 ENSG0000013507 ENSG0000013507 ENSG0000013507 ENSG0000013507 ENSG0000013507 ENSG00000140931 ENSG00000140931 ENSG00000140931 FIRST 1.3524426 1.825668 2.56E-101 1.71E-102 1.48E-101 1.48E-101 1.48E-101 1.485603 100 ENSG00000140931 ENSG00000140931 FIRST 1.3524426 1.825682 3.58811873 456.724549 2.48E-101 1.71E-100 1.48F00753 0 100 ENSG0000014893 | 5666667 | | ENSG00000169508 GPR183 | | | ENSGO000013245 NARFL 1.82443882 3.05106891 463.448884 8.54E-103 5.96E-102 1.82001205 0 100 NARFL 1.43328643 2.74546684 219.830907 9.85E-50 5.06E-49 1.41609346 0 ENSGO000017298 ECE1 -1.3315292 7.06273581 463.437385 8.59E-103 5.99E-102 -1.2140414 100 0 ECE1 -0.9936696 7.1291938 212.383793 4.15E-48 2.08E-47 -0.9604076 100 ENSGO0000131759 RARA -1.3358071 6.93355029 463.430778 8.62E-103 6.00E-102 -1.5455469 100 0 TPD52 -1.7382946 3.47285794 409.311623 5.18E-91 4.42E-90 -1.79604076 100 ENSGO000010401 RANGAP1 1.33317707 7.48899126 461.63968 2.11E-102 1.47E-101 1.48760054 0 100 RANGAP1 1.4716026 7.51470503 450.091269 6.89E-100 6.44E-99 1.26907408 0 ENSGO0000170322 PRISE 1.35700296 5.69488714 461.144145 2.71E-102 1.48E-101 -1.3393855 100 0 CYB5R4 -1.0774164 4.73684161 224.141104 1.13E-50 5.88E-50 -1.0765696 100 ENSGO0000170322 PRISE 1.35700296 5.69488714 461.144145 2.71E-102 1.88E-101 1.41274695 0 100 NFRKB 0.69628618 5.18357949 100.68293583 1.08E-23 3.28E-23 0.62955305 5.55555556 94 ENSGO0000110660 SLC35F2 -1.6805802 3.55610473 4588.74316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.58351873 9 6.36E-80 4.78E-79 -1.5718061 100 ENSG0000018503 ENSGO000018503 ENSGO0000 | 0 | | ENSG00000117298 ECE1 | 100 | | ENSG0000076554 TPD52 -1.6616462 3.59606659 463.430778 8.62E-103 6.00E-102 -1.5455469 100 0 TPD52 -1.7382946 3.47285794 409.311623 5.18E-91 4.42E-90 -1.7599235 100 ENSG00000131759 RARA -1.3358071 6.93355029 462.383005 1.46E-102 1.01E-101 -1.2845643 100 0 RARA -0.6954265 7.09728967 105.343322 1.03E-24 3.20E-24 -0.7947323 97.222222 2. ENSG000010401 ENSG0000016041 1.33317707 7.48899126 461.63968 2.11E-102 1.47E-101 1.48760054 0 100 RANGAP1 1.4716026 7.51470503 450.091269 6.89E-100 6.44E-99 1.26907408 0 ENSG00000170322 NFRKB 1.35700296 5.69488714 461.144145 2.71E-102 1.48E-101 -1.3393855 100 0 CYB5R4 -1.0774164 4.73684161 224.141104 1.3E-50 5.88E-50 5.88E-50 1.00E-103.00E-10 | 0 | | ENSGO0000131759 RARA -1.3358071 6.93355029 462.383005 1.46E-102 1.01E-101 -1.2845643 100 0 RARA -0.6954265 7.09728967 105.343322 1.03E-24 0.7947323 97.222222 2. ENSGO000100401 RANGAP1 1.33317707 7.48899126 461.63968 2.11E-102 1.47E-101 1.48760054 0 100 RANGAP1 1.4716026 7.51470503 450.091269 6.89E-100 6.44E-99 1.26907408 0 ENSGO0000170322 NFRKB 1.35700296 5.69488714 461.144145 2.71E-102 1.48E-101 -1.3393855 100 0 CYB5R4 -1.0774164 4.73684161 224.141104 1.13E-50 5.88E-50 -1.0765696 100 NFRKB 1.35700296 5.69488714 461.144145 2.71E-102 1.88E-101 1.41274695 0 100 NFRKB 0.69628618 5.18357949 100.685988 1.08E-23 3.28E-23 0.62955305 5.55555556 94 NFRKB 1.35700296 5.69488714 459.855829 5.77E-102 3.57E-101 -1.8537347 100 0 BCKDK -1.3542421 2.794728221 196.233532 1.39E-44 6.47E-44 -1.3502838 100 ENSGO0000110660 SLC35F2 -1.6805802 3.53610473 458.774316 8.8E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6480337 3.4328262 358.75479 6.36E-80 4.78E-79 -1.5718061 100 ENSGO0000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.71E-100 1.49407573 0 100 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.3524142 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 1.0119239 418.515988 5.13E-93 4.46E-92 1.81816187 0 ENSGO0000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.2222222 2. ENSGO000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.2222222 2. ENSGO000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.2222222 2. ENSGO000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.3059876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.2222222 2. EN | 0 | | ENSGO00010401 RANGAP1 1.3331770 7.48899126 461.63968 2.11E-102 1.47E-101 1.48760054 0 100 RANGAP1 1.4716026 7.5147050 450.091269 6.89E-100 6.44E-99 1.26907408 0 ENSGO0000170322 NFRKB 1.35700296 5.69488714 461.144145 2.71E-102 1.88E-101 1.41274695 0 100 NFRKB 0.69628618 5.18357949 100.685988 1.08E-23 3.28E-23 0.62955305 5.5555555 94 ENSGO000103507 ENSGO0000103507 ENSGO0000110660 SLC35F2 -1.688020 3.53610473 458.774316 8.8E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6480337 3.4328262 358.375479 6.36E-80 4.78E-79 -1.5718061 100 ENSGO0000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.71E-100 -1.3674731 100 0 RANGAP1 1.4716026 7.51470503 450.091269 6.89E-100 6.44E-99 1.26907408 0 100 NFRKB 0.69628618 5.18357949 100.685988 1.08E-23 3.28E-23 0.62955305 5.55555556 94 1.08E-24 1.2600000103507 ENSGO0000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.71E-100 -1.3674731 100 0 CMTM3 -1.2679903 5.83750746 338.865318 1.23E-75 8.90E-75 -1.2195074 100 ENSGO00000148392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3221723 100 0 RRM2B -1.260289 4.73523119 302.379483 9.99E-68 6.62E-67 -1.2957685 100 ENSGO0000121579 NAA50 -1.3360731 6.22918501 453.707493 1.13E-100 7.07E-100 -1.2812376 100 0 CD99 -1.0820046 6.3059876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.2222222 2. | 1777778 | | ENSG00000170322 NFRKB 1.35700296 5.69488714 461.1614745 2.71E-102 1.48E-101 1.41274695 0 100 NFRKB 0.69628618 5.18357949 100.685988 1.08E-23 3.28E-23 0.6295505 5.5555555 94 ENSG0000103507 BCKDK -1.957236 2.56825174 459.853829 5.17E-102 3.57E-101 -1.8537347 100 0 BCKDK -1.3542421 2.70972521 196.233532 1.39E-44 6.47E-44 -1.3502838 100 ENSG00000110660 SLG35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6805802 3.5350479 6.36E-80 4.78E-79 -1.5718061 100 ENSG00000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 12.0119239 418.515988 5.13E-93 4.46E-92 -1.2950748 100 ENSG00000048392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3246967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG0000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.222222 2. | 100 | | ENSG00000170322 NFRKB 1.35700296 5.69488714 461.144145 2.71E-102 1.88E-101 1.41274695 0 100 NFRKB 0.69628618 5.18357949 100.685988 1.08E-23 3.28E-23 0.62955305 5.55555556 94 ENSG00000103507 BCKDK -1.957236 2.56825174 459.853829 5.17E-102 3.57E-101 -1.8537347 100 0 BCKDK -1.3542421 2.70972521 196.233532 1.39E-44 6.47E-44 -1.3502838 100 ENSG00000110660 SLG35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6480337 3.43288262 358.375479
6.36E-80 4.78E-79 -1.5718061 100 ENSG00000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 12.011929 418.515988 1.28E-75 8.90E-75 -1.2195074 100 ENSG000000121579 NAA50 -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3246967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG0000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.2222222 2. | 0 | | ENSG00000103507 BCKDK -1.957236 2.56825174 459.853829 5.17E-102 3.57E-101 -1.8537347 100 0 BCKDK -1.3542421 2.70972521 196.233532 1.39E-44 6.47E-44 -1.3502838 100 ENSG00000110660 5LC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6480337 3.43288262 358.375479 6.36E-80 4.78E-79 -1.5718061 100 ENSG00000140931 TNFAIP3 1.3465073 5.83311873 456.724549 2.48E-101 1.71E-100 -1.3674731 100 0 CMTM3 -1.2679903 5.83750746 338.685318 1.23E-75 8.90E-75 -1.2195074 100 ENSG00000148503 ENSG0000048392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3221723 100 0 RRM2B -1.260289 4.73523119 302.379483 9.99E-68 6.62E-67 -1.2957685 100 ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2812376 100 0 DRAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.8047138 97.222222 9 | 1444444 | | ENSG00000110660 SLC35F2 -1.6805802 3.53610473 458.774316 8.88E-102 6.12E-101 -1.6243101 100 0 SLC35F2 -1.6480337 3.43288262 358.375479 6.36E-80 4.78E-79 -1.5718061 100 ENSG00000140931 -1.3465073 5.83311873 456.724549 2.48E-101 1.71E-100 -1.3674731 100 0 CMTM3 -1.2679903 5.83750746 338.685318 1.23E-75 8.90E-75 -1.2195074 100 ENSG00000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 12.0119239 418.515988 5.13E-93 4.46E-92 1.81816187 0 ENSG0000048392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3221723 100 0 RRM2B -1.260289 4.73523119 302.379483 9.99E-68 6.62E-67 -1.2957685 100 ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2.81816187 0 NAA50 -0.7636218 6.9730553 | 0 | | ENSG00000140931 CMTM3 -1.3465073 5.83311873 456.724549 2.48E-101 1.71E-100 -1.3674731 100 0 CMTM3 -1.2679903 5.83750746 338.685318 1.23E-75 8.90E-75 -1.2195074 100 ENSG00000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 12.0119239 418.515988 5.13E-93 4.46E-92 1.81816187 0 ENSG0000048392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3221723 100 0 RRM2B -1.260289 4.73523119 302.379483 9.99E-68 6.62E-67 -1.2957685 100 ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG0000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.222222 2. | 0 | | ENSG00000118503 TNFAIP3 1.35241426 11.8256087 456.681212 2.54E-101 1.74E-100 1.49407573 0 100 TNFAIP3 1.70412188 12.0119239 418.515988 5.13E-93 4.46E-92 1.81816187 0 ENSG00000048392 ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG0000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.222222 2. | 0 | | ENSG00000048392 RRM2B -1.4183322 4.76401627 456.118013 3.36E-101 2.31E-100 -1.3221723 100 0 RRM2B -1.260289 4.73523119 302.379483 9.99E-68 6.62E-67 -1.2957685 100 ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG0000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.222222 2. | 100 | | ENSG00000121579 NAA50 -1.3207934 6.86683298 453.881288 1.03E-100 7.03E-100 -1.2346967 100 0 NAA50 -0.7636218 6.97305533 126.787448 2.07E-29 7.22E-29 -0.8047138 97.222222 2. ENSG00000002586 CD99 -1.3360731 6.22918501 453.707493 1.13E-100 7.67E-100 -1.2812376 100 0 CD99 -1.0820046 6.30598876 246.001735 1.93E-55 1.08E-54 -1.1501606 97.222222 2. | 0 | | | 1777778 | | ENCCOMMONICATAL TRAIN 1 2401007 E 02210127 AE1 76AE0 2 00E 100 2 02E 00 1 21EE200 400 AEDIN 1 400C022 E 020C027 20C E20C27 4 00E CC 4 24E CE 4 22C027 27 22C0222 2 | 1777778 | | ENSG00000063245 EPN1 -1.3401997 5.83218127 451.764458 2.98E-100 2.02E-99 -1.3155398 100 0 EPN1 -1.1866322 5.8696876 296.530277 1.88E-66 1.21E-65 -1.2363787 97.222222 2. | 1777778 | | ENSG00000169442 CD52 -1.3160424 7.24475055 451.33271 3.70E-100 2.51E-99 -1.325078 100 0 CD52 -1.3383923 7.17720438 373.428058 3.36E-83 2.64E-82 -1.3941432 100 | 0 | | ENSG00000103064 SLC7A6 1.35581794 5.42444412 451.188234 3.98E-100 2.70E-99 1.35669512 0 100 SLC7A6 0.8310957 5.02264386 139.234134 3.91E-32 1.45E-31 0.75702253 8.33333333 91 | 5666667 | | ENSG00000068697 LAPTM4A -1.3120461 7.10242079 450.557108 5.46E-100 3.70E-99 -1.1992847 100 0 LAPTM4A -0.998976 7.1672107 213.214769 2.73E-48 1.37E-47 -0.9609758 100 | 0 | | ENSG00000109618 SEPSECS 1.44955288 4.4872274 446.916612 3.38E-99 2.28E-98 1.50365577 0 100 SEPSECS 1.13977202 4.28331894 224.638371 8.80E-51 4.59E-50 1.06928084 2.77777778 97 | 222222 | | ENSG00000091317 CMTM6 -1.3016692 7.72826421 446.8702 3.46E-99 2.33E-98 -1.2006179 100 0 CMTM6 -1.5078271 7.63071029 467.174123 1.32E-103 1.27E-102 -1.5336898 100 | 0 | | ENSG00000134287 ARF3 -1.3513682 5.32909475 445.433781 7.11E-99 4.77E-98 -1.2715835 100 0 ARF3 -0.7463782 5.50884688 118.357607 1.45E-27 4.85E-27 -0.7502326 100 | 0 | | ENSG00000126602 TRAP1 1.50402938 4.14880236 441.748563 4.51E-98 3.02E-97 1.51665453 0 100 TRAP1 1.05030246 3.76076583 166.637736 4.01E-38 1.68E-37 0.87909802 2.77777778 97 | 222222 | | ENSG00000204316 MRPL38 1.49392435 4.14108138 441.557974 4.96E-98 3.32E-97 1.44369547 0 100 MRPL38 1.44721042 4.05534483 341.765235 2.63E-76 1.91E-75 1.33520557 0 | 100 | | ENSG00000163558 PRKCI 1.62264143 3.58235513 441.053723 6.38E-98 4.26E-97 1.70467299 0 100 PRKCI 1.43445534 3.38515664 276.540112 4.26E-62 2.57E-61 1.48205577 0 | 100 | | ENSG00000139370 SLC15A4 -1.3647626 5.01486048 440.98728 6.60E-98 4.40E-97 -1.3466919 100 0 SLC15A4 -0.7870721 5.1155637 126.474077 2.42E-29 8.44E-29 -0.9122286 100 | 0 | | ENSG00000111328 CDK2AP1 -1.8210843 2.8723088 438.227441 2.63E-97 1.75E-96 -1.8484806 100 0 CDK2AP1 -1.9131905 2.82997264 396.013792 4.06E-88 3.39E-87 -1.9245295 100 | 0 | | ENSG00000112977 DAP -1.3294603 5.44050746 436.991405 4.89E-97 3.24E-96 -1.1747876 100 0 DAP -1.1376476 5.45917695 271.088601 6.57E-61 3.92E-60 -1.2207333 100 | 0 | | ENSG00000114650 SCAP 1.32740054 5.45690166 436.754541 5.51E-97 3.65E-96 1.40235924 0 100 SCAP 1.24906908 5.36580212 322.245892 4.70E-72 3.27E-71 1.16432717 0 | 100 | | ENSG00000155926 SLA -1.334134 5.60061987 434.635249 1.59E-96 1.05E-95 -1.3249213 100 0 SLA -1.0395418 5.69188781 220.124712 8.50E-50 4.37E-49 -1.1155176 97.222222 2. | /777778 | | ENSG00000053900 ANAPC4 1.59613669 3.64814869 434.627871 1.60E-96 1.06E-95 1.67679072 0 100 ANAPC4 1.41011495 3.43269808 271.023434 6.79E-61 4.04E-60 1.35595975 0 | 100 | | ENSG00000105851 PIK3CG -1.3105195 5.77998337 430.285315 1.41E-95 9.27E-95 -1.1977922 100 0 PIK3CG
-0.6716337 5.95866845 96.3663372 9.55E-23 2.83E-22 -0.6051852 97.222222 2. | /777778 | | ENSG00000180694 TMEM64 -1.5173155 3.96653619 429.964842 1.65E-95 1.09E-94 -1.4029372 100 0 TMEM64 -1.3497769 3.95147728 288.90774 8.60E-65 5.43E-64 -1.396757 100 | 0 | | ENSG00000137492 PRKRIR -1.2854605 6.78369989 429.447392 2.14E-95 1.41E-94 -1.2519237 100 0 PRKRIR -0.7926455 6.87071971 137.208704 1.09E-31 3.99E-31 -0.7581684 100 | 0 | | ENSG00000115687 PASK 1.292119 7.06918769 429.142272 2.50E-95 1.64E-94 1.41553178 0 100 PASK 1.71499764 7.29876805 602.88798 3.94E-133 4.62E-132 1.57310886 0 | 100 | | ENSG00000136286 MYO1G -1.2916324 6.32516425 428.886952 2.84E-95 1.86E-94 -1.2689557 100 0 MYO1G -0.8092913 6.45492554 139.29645 3.79E-32 1.41E-31 -0.888265 91.6666667 8. | 333333 | | ENSG00000179833 SERTAD2 -1.2820985 6.7373765 427.975548 4.48E-95 2.93E-94 -1.2107166 100 0 SERTAD2 -0.9604708 6.77985833 199.438918 2.77E-45 1.31E-44 -0.9839998 100 | 0 | | | 1111111 | | ENSG00000143110 Clorf162 -1.5520294 3.77910025 427.840266 4.80E-95 3.13E-94 -1.4612862 100 0 Clorf162 -2.0141841 3.68524937 570.449574 4.48E-126 5.01E-125 -2.0131521 100 | 0 | | ENSG00000254999 BRK1 -1.3272762 5.27096781 426.759622 8.24E-95 5.37E-94 -1.2627995 100 0 BRK1 -1.1246637 5.28833183 259.644289 2.05E-58 1.19E-57 -1.1809084 100 | 0 | | | | | ENSG00000152256 PDK1 1.3111371 5.83751174 425.75067 1.37E-94 8.89E-94 1.44142658 0 100 PDK1 0.69208681 5.38038111 99.4191139 2.04E-23 6.16E-23 0.75755385 8.3333333 91 | 5555556 | | ENSG00000090006 | LTBP4 | 1.47964264 4.14176 | 714 424.53846 | 1 2.51E-94 | 1.63F-93 | 1.53273514 | 0 | 100 | LTBP4 | 1.16234956 | 3.93633825 209.427506 | 1.83E-47 | 9.08F-47 | 1.07288966 | 2.77777778 | 97.2222222 | |--------------------------------------|--------------|--|----------------|------------|----------|--------------------------|------------|-------------|------------------|------------|--|----------|-----------|------------|-------------------|--| | ENSG00000198431 | TXNRD1 | -1.3099943 5.66248 | | | | -1.3857994 | 100 | 0 | TXNRD1 | | 5.77689716 139.840819 | | | | 94,4444444 | | | ENSG00000139433 | GLTP | -1.3130249 5.38626 | | | | -1.2734193 | 100 | 0 | GLTP | | 5.5672141 92.0161336 | | | -0.6587834 | 100 | 0 | | ENSG00000107317 | PTGDS | -2.1597521 1.89445 | | | | | 97.1428571 | | | | 2.24454315 144.443021 | | | | 80.555556 | 19.444444 | | ENSG00000137509 | PRCP | -1.4712276 4.10243 | | | | -1.2807987 | 100 | | PRCP | | 4.32988106 78.5100071 | | | | 88.8888889 | | | ENSG00000262319 | CTC-457L16.2 | 1.65007177 3.40934 | | | | 1.64242983 | 0 | _ | | | 2.75249251 59.7724536 | | | | 13.8888889 | | | ENSG00000125731 | SH2D3A | 1.42246106 4.33586 | | | | 1.51490454 | 0 | | SH2D3A | | 3.9633898 172.899469 | | | | 2.77777778 | | | ENSG00000067225 | PKM | -1.2661484 7.40935 | | | | -1.1624228 | 100 | | PKM | | 7.23871685 708.43757 | | | -1.8322271 | 100 | 0 | | ENSG00000117500 | TMED5 | -1.2885398 5.73397 | | | | -1.1929699 | 100 | 0 | TMED5 | | 5.78342889 201.250496 | | | -0.8975613 | 100 | o | | ENSG00000173991 | TCAP | 1.79485029 2.8162 | | | | 1.76861392 | 0 | 100 | | | 2.50603299 204.979735 | | | 1.44542168 | 0 | 100 | | ENSG00000104904 | OAZ1 | -1.2716795 7.29958 | | | | -1.327834 | 100 | | OAZ1 | | 7.27618991 348.119573 | | | -1.4642622 | 100 | 0 | | ENSG00000023892 | DEF6 | 1.27407194 6.30771 | | | | 1.33002172 | 0 | | DEF6 | | 6.20413979 300.379316 | | | | 2.77777778 | 97.222222 | | ENSG00000122986 | HVCN1 | -1.671055 3.27207 | | | | -1.5027652 | 100 | | HVCN1 | | 3.07198633 524.62573 | | | -2.1786083 | 100 | 0 | | ENSG00000162909 | CAPN2 | -1,2678702 6,20816 | | | | -1.2329246 | 100 | 0 | CAPN2 | | 6.24912369 267.07374 | | | -1.1440504 | 100 | 0 | | ENSG00000102503 | CROCCP2 | 1.36951461 4.54720 | | | | 1.35838431 | 0 | 100 | CROCCP2 | | 4.52746087 384.228983 | | | 1.39444905 | 0 | 100 | | ENSG00000215908 | CROCCP2 | 1.36951461 4.54720 | | | | 1.35838431 | 0 | | CROCCP2 | | 4.45627587 203.913016 | | | 1.39444905 | 0 | 100 | | ENSG00000242372 | EIF6 | -1.3229723 4.90571 | | | | -1.3073026 | 100 | | EIF6 | | 5.01537208 138.509618 | | | -0.9214182 | 100 | 0 | | ENSG00000242372 | SCRN1 | -1.4489937 4.13483 | | | | -1.2860878 | 100 | 7 | SCRN1 | | 4.26834529 131.84353 | | 5.79E-30 | | 97.2222222 | 2 7777778 | | ENSG00000136133 | CASP7 | -1.4542701 4.00207 | | | | -1.3408262 | 100 | | CASP7 | | 4.09242284 145.97584 | | 5.04E-33 | | 100 | 0 | | ENSG00000160404 | TOR2A | -1.5757455 3.4928 | | | | -1.4470027 | 100 | | TOR2A | | 3.65447888 142.735625 | | | -1.0168051 | 100 | 0 | | ENSG000001103454 | SNX3 | -1.2619066 6.06925 | | | | -1.2433538 | 100 | | SNX3 | | 6.02728507 301.618848 | | | -1.2448839 | 100 | 0 | | ENSG00000112333 | AFF3 | -1.3145681 5.01043 | | | | -1.1604951 | 100 | | AFF3 | | 4.61729811 1071.38805 | | | -2.4936975 | 100 | 0 | | ENSG00000144218 | MAN2B1 | -1.2487487 6.61140 | | | 4.03E-89 | | 100 | _ | MAN2B1 | | 6.55315428 407.213865 | | | -1.4310731 | 100 | 0 | | ENSG00000104774 | CBX7 | 1.32349007 4.88401 | | | | 1.33649593 | 0 | | CBX7 | | 4.45153048 88.467436 | | | | 5.55555556 | 04 444444 | | ENSG00000100307 | RNF216 | 1.24174987 6.7731 | | | | 1.29772671 | 0 | | RNF216 | | 6.76156279 351.354834 | | | 1.19681372 | 0.55555556 | 100 | | ENSG00000011273 | SVIL | 1.30738067 4.96550 | | | | 1.39178345 | 0 | | SVIL | | 4.51233232 96.4003127 | | | | 8.33333333 | | | ENSG00000197321
ENSG00000068831 | RASGRP2 | 1.23025874 8.23844 | | | | 1.27686705 | 0 | 100 | RASGRP2 | | 7.84013556 118.211984 | | | 0.59502214 | 0.33333333 | | | | ABTB1 | | | | | | 0 | | | | | | | | _ | 100 | | ENSG 00000114626
ENSG 00000182158 | CREB3L2 | 1.25999398 5.76427
-1.3848294 4.27911 | | | | 1.32919883
-1.3064813 | 100 | 100 | ABTB1
CREB3L2 | | 5.44157659 145.465243
4.22017168 355.93437 | | | -1.4217445 | 8.33333333
100 | 91.0000007 | | ENSG00000182138 | STK38 | 1.27766869 5.35223 | | | | | 0 | 100 | STK38 | | | | | | 2.77777778 | 07 222222 | | ENSG00000112079 | KIAA0247 | -1.2280907 6.88383 | | | | 1.27943694
-1.1216465 | 100 | 100 | KIAA0247 | | 4.97354469 141.651571
6.92889406 159.856944 | | | -0.8197555 | 100 | 97.222222 | | ENSG00000100647 | CCAR2 | 1.23442651 6.72826 | | | | 1.21533247 | 0 | 100 | CCAR2 | 1.22760833 | | | | 1.0905944 | 0 | 100 | | ENSG00000138941 | RGS1 | 1.24792258 9.70485 | | | | 1.35763971 | 0 | | RGS1 | | 9.41942573 151.73699 | | | | 11.1111111 | | | ENSG00000030104 | FBXO6 | -2.0386879 1.78925 | | | | -1.9576968 | 100 | 100 | FBXO6 | -1.1824501 | | | | -1.1979345 | 100 | 00.000009 | | ENSG00000110003 | ULK3 | 1.29623238 4.99599 | | | | 1.28099907 | 0 | 100 | ULK3 | | 4.7255173 211.03721 | | | 0.90451542 | 0 | 100 | | ENSG00000140474 | WBP1 | 1.49871978 3.71234 | | | | 1.5198912 | 0 | | WBP1 | | 3.25286389 108.752053 | | | 0.7883306 | 0 | 100 | | ENSG00000106868 | SUSD1 | -1.7671019 2.6604 | | | | -1.6212929 | 100 | | SUSD1 | | 2.84715885 122.629791 | | | | 97.2222222 | | | ENSG00000134590 | FAM127A | -2.1089753 1.55971 | | | | -2.0764591 | 100 | 0 | FAM127A | | 1.6701146 159.679643 | | | -1.4599402 | 100 | 2.7777778 | | ENSG00000154550 | CROCC | 1.32579659 4.65137 | | | | 1.35702436 | 0 | 100 | CROCC | | 4.51927447 292.294431 | | 1.01E-64 | | 2.7777778 | 97 222222 | | ENSG00000038433 | PPIE | 1.32637365 4.66590 | | | | 1.39408649 | 0 | | PPIE | | 4.59262093 302.23148 | | | 1.27278049 | 0 | 100 | | ENSG00000034072 | ALOX5AP | -1.4940742 3.67644 | | | | -1.3770913 | 100 | | ALOX5AP | | 3.47940326 638.945366 | | 7.05E-140 | | 100 | 0 | | ENSG00000132905 | ERP27 | 1.6243877 3.14704 | | | | 1.67591033 | 0 | _ | ERP27 | | 2.75684293 157.841907 | | | 1.08567198 | 0 | 100 | | ENSG00000150093 | ITGB1 | -1.2213479 6.44779 | | | | -1.1492372 | 100 | 100 | ITGB1 | | 6.41020357 260.232845 | | | -1.0666477 | 100 | | | ENSG00000178498 | DTX3 | 1.40241341 4.09751 | | | | 1.40648012 | 0 | 100 | DTX3 | | 4.28368811 511.068979 | | | 1.72947782 | 0 | 100 | | ENSG00000178438 | CYBA | -1.2239912 6.54853 | | | | -1.1520192 | 100 | | CYBA | | 6.80462007 44.1933369 | | | | 72.222222 | | | ENSG00000031323 | KIAA0319L | 1.29687307 4.79233 | | | | 1.3717067 | 0 | | KIAA0319L | | 4.40086958 111.990808 | | | | 2.77777778 | | | ENSG00000142087 | HMHA1 | 1.20527282 8.99779 | | | | 1.28456416 | 0 | | HMHA1 | | 8.83062119 203.831384 | | | | 2.77777778 | | | ENSG00000171606 | ZNF274 | 1.2266248 5.95423 | | | | 1.21196823 | 0 | 100 | ZNF274 | | 5.57490465 109.095416 | | | | 5.55555556 | | | ENSG00000171000
ENSG00000135905 | DOCK10 | 1.20295947 7.34458 | | | | 1.19045725 | 0 | | DOCK10 | 0.76060321 | | | | | 5.55555556 | | | ENSG00000133303 | DUSP1 | -1.2347549 9.90484 | | | | | 94.2857143 | | DUSP1 | | 10.0796048 85.7500265 | | 5.70E-20 | | 83.3333333 | | | ENSG00000120129 | RRAGC | -1.2479865 5.30611 | | | | -1.0761202 | 100 | | RRAGC | | 5.30307235 220.323592 | | | -1.0234865 | 100 | 0.0000007 | | ENSG00000116954 | MAPK6 | -1.2479865 5.30611 | | | 5.35E-84 | | 100 | 0 | MAPK6 | | 6.08232226 376.016482 | | 7.24E-83 | | 100 | č | | ENSG00000069849 | ATP1B3 | -1.3185972 4.6256 | | | | | 97.1428571 | 2 8571/1296 | | | 4.93862725 24.3906512 | | | | 77.777778 | 22 222222 | | EN300000003649 | AIF103 | -1.3103372 4.0230 | JJ4 J00.101000 | 3 1.130-04 | 3.73E-64 | -1.3321090 | 37.14203/1 | 2.03/14200 | ATT 103 | -0.5510515 | 4.55002725 24.5900512 | 7.00E-07 | 1.346-00 | -0.3033039 | 11.1111110 | LL. LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL | | ENSG00000154845 | PPP4R1 | 1 2476250 5 17020070 270 072112 | 2.005.04 | 1 225 92 1 1001144 | 100 | 0 000401 | 0.7050007 5.26722227 122 501506 | 1 125 20 | 4.015.30 | 0.7020604 | 100 | ام | |------------------------------------|------------|--|----------|--|------------|--------------------|--
----------------------|-----------|--------------------------|------------|------------| | ENSG00000134845
ENSG00000137076 | TLN1 | -1.2476359 5.17828979 378.972112
-1.2010647 7.13414186 377.810038 | | 1.22E-83 -1.1901144
2.19E-83 -1.0574214 | 100
100 | O PPP4R1
O TLN1 | -0.7950807 5.26723337 132.581586
-1.0065422 7.16304435 215.956704 | 1.12E-30
6.89E-49 | | -0.7828684
-1.0396366 | 100
100 | 0 | | ENSG00000137078 | ERMARD | 1.64920644 2.96846173 374.721557 | | 1.03E-82 1.68271497 | 0 | 100 ERMARD | 1.44546412 2.75347706 226.66668 | 3.18E-51 | | 1.41149408 | 0 | 100 | | ENSG00000130023 | IMPDH1 | -1.2824334 4.75894672 374.47675 | | 1.16E-82 -1.1615853 | 100 | 0 IMPDH1 | -1.5503204 4.66758568 439.315236 | 1.53E-97 | | -1.5292158 | 100 | 100 | | ENSG00000164039 | BDH2 | 1.48996301 3.54352315 372.864627 | | 2.60E-82 1.48723158 | 0 | 100 BDH2 | 1.32577231 3.32991349 233.968096 | 8.13E-53 | | | 2.77777778 | 97 222222 | | ENSG00000104033 | COG1 | 1.24603511 5.04082992 371.730079 | | 4.58E-82 1.30667686 | 0 | 100 COG1 | 1.16866821 4.95942508 272.533693 | 3.18E-61 | | 1.09848555 | 0 | 100 | | ENSG00000100083 | ABHD4 | -1.7891382 2.37164587 371.073785 | | 6.35E-82 -1.6813255 | 100 | 0 ABHD4 | -0.5750613 2.70511461 36.9521646 | 1.21E-09 | | | 94.4444444 | | | ENSG00000155640 | C10orf12 | -1.4444065 3.76862282 370.18842 | | 9.90E-82 -1.4038519 | 100 | 0 C10orf12 | -0.8626555 3.90816442 118.507088 | 1.34E-27 | | | 97.2222222 | | | ENSG00000193040 | POLRMT | 1.2775596 4.72909788 369.592896 | | 1.33E-81 1.29009216 | 0 | 100 POLRMT | 1.02946431 4.49701983 193.793483 | 4.72E-44 | | | 2.77777778 | | | ENSG00000033321 | EHMT2 | 1.24081295 5.0715193 369.236038 | | 1.59E-81 1.34269009 | 0 | 100 EHMT2 | 1.26891361 5.02083148 319.076706 | 2.30E-71 | | | 2.77777778 | | | ENSG00000099991 | CABIN1 | 1.20556437 5.77148677 368.493792 | | 2.30E-81 1.33358424 | 0 | 100 CABIN1 | 1.30660791 5.79667804 360.221993 | 2.52E-80 | | 1.22063854 | 0 | 100 | | ENSG00000232533 | AC093673.5 | -2.1871138 1.13379707 368.364549 | | 2.45E-81 -2.0965804 | 100 | 0 AC093673.5 | -1.3149813 1.26797998 113.971519 | 1.32E-26 | | -1.3228422 | 100 | 0 | | ENSG00000164896 | FASTK | 1.25026359 4.92129317 368.186402 | | 2.68E-81 1.27946904 | 0 | 100 FASTK | 0.9339783 4.66248594 166.93057 | 3.46E-38 | | 0.84918565 | 0 | 100 | | ENSG00000136238 | RAC1 | -1.1879367 6.59262472 366.334834 | | 6.75E-81 -1.1937466 | 100 | 0 RAC1 | -1.0485134 6.59139534 238.343835 | 9.03E-54 | | -1.088647 | 100 | 0 | | ENSG00000103966 | EHD4 | -1.2064423 5.97337831 365.49081 | | 1.03E-80 -1.2244064 | 100 | 0 EHD4 | -1.0842844 5.96413835 245.87013 | 2.06E-55 | | | 97.222222 | 2.7777778 | | ENSG00000169718 | DUS1L | 1.20251499 6.01183795 365.05594 | 2.23E-81 | 1.28E-80 1.18547395 | 0 | 100 DUS1L | 1.0058274 5.83340974 212.092997 | 4.80E-48 | 2.40E-47 | 0.89659804 | 5.5555556 | 94.444444 | | ENSG00000105486 | LIG1 | 1.34667728 4.32348014 364.695091 | 2.67E-81 | 1.53E-80 1.30888524 | 0 | 100 LIG1 | 0.94441723 4.00345383 142.657956 | 6.98E-33 | | | 2.77777778 | | | ENSG00000133961 | NUMB | -1.2362716 5.0620159 364.59112 | 2.82E-81 | 1.61E-80 -1.2091504 | 100 | 0 NUMB | -1.6237882 4.93284794 508.523257 | 1.33E-112 | 1.37E-111 | -1.6643541 | 100 | 0 | | ENSG00000230989 | HSBP1 | -1.2484711 4.93346141 364.265881 | 3.32E-81 | 1.89E-80 -1.2136153 | 100 | 0 HSBP1 | -1.534986 4.84928716 445.689078 | 6.26E-99 | 5.80E-98 | -1.5417294 | 100 | 0 | | ENSG00000057608 | GDI2 | -1.2012774 5.81794718 364.1019 | 3.60E-81 | 2.04E-80 -1.0487057 | 100 | 0 GDI2 | -1.2242719 5.75710551 315.143981 | 1.65E-70 | 1.14E-69 | -1.2315145 | 100 | 0 | | ENSG00000131067 | GGT7 | 1.43011764 3.76211875 363.741035 | 4.32E-81 | 2.45E-80 1.48397057 | 0 | 100 GGT7 | 0.64704294 3.18620253 54.3351111 | 1.69E-13 | 3.82E-13 | 0.57587659 | 11.1111111 | 88.888889 | | ENSG00000162704 | ARPC5 | -1.2644961 4.79577686 362.963807 | 6.37E-81 | 3.61E-80 -1.1675861 | 100 | 0 ARPC5 | -1.2463441 4.7961106 297.072674 | 1.43E-66 | 9.29E-66 | -1.2184245 | 100 | 0 | | ENSG00000159335 | PTMS | -1.9417871 1.88314562 362.295677 | 8.91E-81 | 5.03E-80 -1.9024523 | 100 | 0 PTMS | -1.6964576 2.05071662 219.183522 | 1.36E-49 | 6.99E-49 | -1.4420604 | 91.6666667 | 8.33333333 | | ENSG00000185187 | SIGIRR | 1.19617729 6.08395867 362.004159 | 1.03E-80 | 5.82E-80 1.18655337 | 0 | 100 SIGIRR | 0.82237314 5.8169085 143.200666 | 5.31E-33 | 2.01E-32 | 0.64656415 | 0 | 100 | | ENSG00000129968 | ABHD17A | 1.18432799 6.75341847 360.434438 | 2.26E-80 | 1.28E-79 1.2139384 | 0 | 100 ABHD17A | 1.57055364 6.98509773 507.109062 | 2.70E-112 | 2.78E-111 | 1.47864549 | 0 | 100 | | ENSG00000171161 | ZNF672 | -1.4217022 3.72171305 359.865477 | 3.01E-80 | 1.70E-79 -1.3971168 | 100 | 0 ZNF672 | -1.0215287 3.78391295 162.448891 | 3.30E-37 | 1.35E-36 | -1.102945 | 100 | 0 | | ENSG00000163050 | ADCK3 | 1.17775319 6.54165744 359.368229 | 3.87E-80 | 2.17E-79 1.15281367 | 0 | 100 ADCK3 | 0.97191896 6.37431155 202.700824 | 5.38E-46 | 2.59E-45 | 0.92454844 | 0 | 100 | | ENSG00000140511 | HAPLN3 | 1.20092806 5.64724916 358.284002 | 6.66E-80 | 3.74E-79 1.1917342 | 0 | 100 HAPLN3 | 0.76855541 5.30138144 123.391895 | 1.14E-28 | 3.92E-28 | 0.81388461 | 5.5555556 | 94.444444 | | ENSG00000167996 | FTH1 | -1.1750166 10.0084805 358.138828 | 7.16E-80 | 4.02E-79 -1.0976393 | 100 | 0 FTH1 | -0.8958038 10.0568492 140.890661 | 1.70E-32 | 6.38E-32 | -0.9625466 | 97.222222 | 2.7777778 | | ENSG00000167202 | TBC1D2B | 1.20399779 5.36784408 356.971943 | 1.29E-79 | 7.20E-79 1.16840906 | 0 | 100 TBC1D2B | 1.02663397 5.20849158 213.364095 | 2.53E-48 | 1.27E-47 | 1.02485356 | 2.77777778 | 97.222222 | | ENSG00000158863 | FAM160B2 | 1.22832296 4.95849987 356.285409 | 1.81E-79 | 1.01E-78 1.29628501 | 0 | 100 FAM160B2 | 0.95814876 4.71971083 176.952155 | 2.24E-40 | 9.89E-40 | 0.87615961 | 0 | 100 | | ENSG00000134996 | OSTF1 | -1.5286533 3.25845341 355.605842 | 2.55E-79 | 1.42E-78 -1.4754053 | 100 | 0 OSTF1 | -0.9735215 3.37303048 128.443613 | 8.98E-30 | 3.16E-29 | -1.0867242 | 100 | 0 | | ENSG00000118515 | SGK1 | -1.1662469 8.07605382 354.554917 | 4.32E-79 | 2.41E-78 -0.9938254 | 100 | 0 SGK1 | -1.7044323 7.88700998 555.168028 | 9.46E-123 | 1.04E-121 | -1.7921392 | 100 | 0 | | ENSG00000130299 | GTPBP3 | 1.51390687 3.29529338 354.325969 | 4.84E-79 | 2.70E-78 1.500279 | 0 | 100 GTPBP3 | 1.29098184 3.0802501 204.990562 | 1.70E-46 | 8.29E-46 | 1.16861431 | 0 | 100 | | ENSG00000123131 | PRDX4 | -1.740511 2.39536434 353.052445 | 9.17E-79 | 5.09E-78 -1.6581975 | 100 | 0 PRDX4 | -1.7918478 2.32543571 296.94011 | 1.53E-66 | 9.90E-66 | -1.9665419 | 100 | 0 | | ENSG00000247596 | TWF2 | -1.4136808 3.70873231 352.928683 | 9.76E-79 | 5.41E-78 -1.3958911 | 100 | 0 TWF2 | -0.6578541 3.96375745 70.191935 | 5.38E-17 | 1.35E-16 | -0.7372732 | 91.6666667 | 8.3333333 | | ENSG00000213281 | NRAS | -1.1526138 7.25555266 351.571997 | | 1.07E-77 -1.1370569 | 100 | 0 NRAS | -0.6492083 7.3436859 91.1259345 | 1.35E-21 | | -0.6364057 | 100 | 0 | | ENSG00000008282 | SYPL1 | -1.1841919 5.4868062 351.094734 | | 1.36E-77 -1.1022633 | 100 | 0 SYPL1 | -1.0833883 5.45236951 244.514061 | 4.08E-55 | | -1.0210551 | 100 | 0 | | ENSG00000162302 | RPS6KA4 | -1.3945274 3.79036421 350.934408 | | 1.47E-77 -1.3732819 | 100 | 0 RPS6KA4 | -1.4777979 3.76304304 321.758514 | 6.00E-72 | | -1.5928393 | 100 | 0 | | ENSG00000160213 | CSTB | -1.3550032 4.00823229 350.251066 | | 2.07E-77 -1.3512442 | 100 | 0 CSTB | -1.5248949 3.91173732 357.514565 | 9.79E-80 | | -1.5467949 | 100 | 0 | | ENSG00000172671 | ZFAND4 | 1.24209132 4.70713901 350.196539 | | 2.12E-77 1.2712629 | 0 | 100 ZFAND4 | 1.01252975 4.50512529 188.67438 | 6.19E-43 | | | 5.5555556 | | | ENSG00000131797 | CLUHP3 | 1.2087334 5.13693349 348.456227 | | 5.06E-77 1.16928186 | 0 | 100 CLUHP3 | 1.04176139 4.87086534 211.849473 | 5.42E-48 | | | 2.77777778 | | | ENSG00000174227 | PIGG | 1.2180416 4.90285832 348.279685 | | 5.52E-77 1.37021676 | 0 | 100 PIGG | 1.01366974 4.72823714 199.089281 | 3.30E-45 | | 0.94662946 | 0 | 100 | | ENSG00000182541 | LIMK2 | 1.14724641 7.1048261 346.934867 | | 1.08E-76 1.17732602 | 0 | 100 LIMK2 | 0.91851932 6.93449257 182.836624 | 1.16E-41 | | 0.83575479 | 0 | 100 | | ENSG00000176871 | WSB2 | -1.2764971 4.38757681 346.607232 | | 1.27E-76 -1.1489043 | 100 | 0 WSB2 | -0.9697818 4.46096422 172.973395 | 1.66E-39 | | -0.983996 | 100 | 0 | | ENSG00000159461 | AMFR | -1.1430585 7.14686139 345.685503 | | 2.02E-76 -1.0864339 | 100 | 0 AMFR | -0.9766104 7.13923952 205.993245 | 1.03E-46 | | -1.0388822 | 100 | 0 | | ENSG00000197150 | ABCB8 | 1.44070761 3.56499848 345.641251 | | 2.06E-76 1.50948652 | 0 | 100 ABCB8 | 1.32799397 3.40745537 236.338743 | 2.47E-53 | | | 2.77777778 | 97.222222 | | ENSG00000140612 | SEC11A | -1.1680207 5.78185035 344.891039 | | 3.00E-76 -1.1417933 | 100 | 0 SEC11A | -1.1275749 5.76239054 270.927038 | 7.13E-61 | | -1.2033137 | 100 | 0 | | ENSG00000187742 | SECISBP2 | 1.14893765 6.58080239 344.680752 | | 3.32E-76 1.1652253 | 0 | 100 SECISBP2 | 0.74605947 6.25728236 122.137823 | 2.15E-28 | | 0.65105126 | 0 | 100 | | ENSG00000114353 | GNAI2 | -1.1421408 7.72081645 343.82482 | | 5.10E-76 -1.0251978 | 100 | 0 GNAI2 | -0.9769614 7.75956893 198.586718 | 4.25E-45 | | -1.0188545 | 100 | 0 | | ENSG00000182199 | SHMT2 | -1.2627817 4.44538074 343.746309 | | 5.30E-76 -1.1340621 | 100 | 0 SHMT2 | -1.3040758 4.35320765 299.819212 | 3.61E-67 | | -1.3728789 | 100 | 0 | | ENSG00000120992 | LYPLA1 | -1.2096745 4.86263067 342.158281 | | 1.17E-75 -1.0177125 | 100 | 0 LYPLA1 | -1.183218 4.81584228 273.201401 | 2.28E-61 | | -1.2342867 | 100 | 0 | | ENSG00000168118 | RAB4A | -1.3170445 4.05491088 341.112233 | 3.65E-76 | 1.98E-75 -1.2146085 | 100 | 0 RAB4A | -0.7192173 4.20732802 90.4265423 | 1.92E-21 | 5.50E-21 | -0.7951161 | 97.222222 | 2.7777778 | | ENCCOOCOOTECAA | ACTD | 1 1 400 400 10 4222472 240 527675 | 4.075.76 | 2.645.75 1.0510562 | 100 | O ACTD | 0.5400024 40.5750707 50.7442500 | C 755 17 | 1 005 10 0 0700224 04 444444 5 5555555 |
--------------------------------------|-------------------|--|----------------------|--|------------|--------------------------|--|-----------------------|---| | ENSG00000075624 | ACTB | -1.1480486 10.4322473 340.537675 | 4.87E-76 | 2.64E-75 -1.0519563 | 100 | 0 ACTB | -0.6408921 10.5759797 69.7442688 | 6.75E-17
7.94E-14 | 1.69E-16 -0.6700234 94.4444444 5.55555556 | | ENSG 00000198624
ENSG 00000197694 | CCDC69
SPTAN1 | -1.1311051 7.39449554 340.062266
1.13120418 7.28851939 339.569072 | 6.18E-76
7.92E-76 | 3.34E-75 -1.0584481
4.28E-75 1.1734927 | 100
0 | 0 CCDC69
100 SPTAN1 | -0.5082992 7.58900026 55.820406
1.17577815 7.25107669 294.664717 | 7.94E-14
4.79E-66 | 1.81E-13 -0.5573053 97.2222222 2.77777778
3.08E-65 1.15337953 0 100 | | ENSG00000197694
ENSG00000110274 | CEP164 | 1.34912162 3.93085895 338.822671 | 1.15E-75 | 6.22E-75 1.36349534 | 0 | 100 SPTAN1
100 CEP164 | 1.10159187 3.68832467 178.627028 | 9.67E-41 | 3.08E-65 1.15337953 0 100
4.28E-40 1.04230173 2.77777778 97.2222222 | | ENSG00000110274
ENSG00000136068 | FLNB | 1.13833465 7.13719989 338.182725 | 1.15E-75
1.59E-75 | 8.56E-75 1.21901756 | 0 | 100 CEP164
100 FLNB | 1.33171633 7.28927132 371.596736 | 8.40E-83 | 6.56E-82 1.26895341 0 100 | | ENSG00000130008 | SCAMP4 | -1.4059613 3.58395735 338.11581 | 1.64E-75 | 8.85E-75 -1.3873758 | 100 | 0 SCAMP4 | -0.9543143 3.72332791 138.006598 | 7.26E-32 | 2.68E-31 -0.9605898 97.2222222 2.7777778 | | ENSG00000227300 | EXTL3 | -1.2875279 4.20771798 336.086247 | 4.54E-75 | 2.44E-74 -1.2330705 | 100 | 0 EXTL3 | -0.5825085 4.43083466 62.6847916 | 2.43E-15 | 5.82E-15 -0.6330445 97.2222222 2.7777778 | | ENSG00000012232 | BCL6 | -1.1402581 6.47159049 335.656232 | 5.63E-75 | 3.02E-74 -1.0763625 | 100 | 0 BCL6 | -1.1500884 6.35841074 282.054119 | 2.43E-13
2.68E-63 | 1.65E-62 -1.0820269 100 0 | | ENSG00000113916 | AP2S1 | -1.2846034 4.23821424 335.482668 | 6.15E-75 | 3.30E-74 -1.1872204 | 100 | 0 AP2S1 | -0.8756976 4.34528855 136.101597 | 1.90E-31 | 6.92E-31 -0.9157741 97.2222222 2.77777778 | | ENSG00000042733 | VPS18 | -1.1660497 5.29366017 334,900063 | 8.23E-75 | 4.41E-74 -1.1075975 | 100 | 0 VPS18 | -0.8886162 5.32780316 165.5127 | 7.07E-38 | 2.95E-37 -0.9459826 100 0 | | ENSG00000104142 | BCL2L1 | -1.2705646 4.29793947 334.786341 | 8.72E-75 | 4.66E-74 -1.2347663 | 100 | 0 BCL2L1 | -1.0747414 4.32449313 204.881796 | 1.80E-46 | 8.74E-46 -1.1053408 100 0 | | ENSG00000171332 | ARL5A | -1.1546077 5.58361298 334.552965 | 9.80E-75 | 5.23E-74 -1.1586022 | 100 | 0 ARL5A | -1.0118862 5.56128036 216.148988 | 6.26E-49 | 3.18E-48 -1.0079414 100 0 | | ENSG00000162980 | VPS28 | 1.144716 6.06708509 334.519062 | 9.80E-75
9.97E-75 | 5.32E-74 1.18038625 | 0 | 100 VPS28 | 0.92470096 5.83619251 180.494828 | 3.78E-41 | 1.69E-40 0.92348757 2.77777778 97.2222222 | | ENSG00000119723 | COQ6 | 1.46515669 3.28031405 334.47582 | 1.02E-74 | 5.43E-74 1.50793302 | 0 | 100 VF328 | 1.2693172 3.09534948 200.766401 | 1.42E-45 | 6.77E-45 1.23689666 0 100 | | ENSG00000119723
ENSG00000185883 | ATP6V0C | -1.1719455 5.19826672 334.262524 | 1.02E-74
1.13E-74 | 6.04E-74 -1.0931612 | 100 | 0 ATP6V0C | -0.9119273 5.24763529 171.098607 | 4.26E-39 | 1.82E-38 -0.9398048 100 0 | | ENSG00000183883 | | -1.7185619 2.49297403 333.874637 | 1.13E-74
1.38E-74 | 7.34E-74 -1.5930351 | | 5.71428571 HLA-DOB | | 1.69E-61 | 1.01E-60 -1.9281322 97.2222222 2.77777778 | | ENSG00000241106
ENSG00000197969 | HLA-DOB
VPS13A | 1.16667393 5.36522607 333.741844 | 1.36E-74
1.47E-74 | 7.84E-74 1.26991982 | 94.265/145 | 100 VPS13A | -1.7748435 2.36609973 273.795905
1.32490917 5.405364 356.657166 | 1.50E-79 | 1.13E-78 1.18579232 0 100 | | | | | | | 100 | | | 1.70E-80 | | | ENSG00000133318 | RTN3
SP1 | -1.2105862 4.7647847 333.67966
-1.1425211 6.00402569 333.507107 | 1.52E-74
1.66E-74 | 8.08E-74 -1.1079081 | 100 | 0 RTN3
0 SP1 | -1.3919202 4.69406394 361.008487
-1.0292541 5.98023229 227.989103 | 1.70E-80
1.64E-51 | 1.29E-79 -1.4252726 100 0
8.64E-51 -1.0822413 100 0 | | ENSG00000185591 | | | | 8.80E-74 -1.0743276 | | | | | | | ENSG00000136720 | HS6ST1
LRRC37B | -1.2597572 4.35364412 333.277868
1.14179756 5.83194388 332.550751 | 1.86E-74
2.67E-74 | 9.87E-74 -1.2386483 | 100 | 0 HS6ST1
100 LRRC37B | -1.3379641 4.29151353 307.429522 | 7.93E-69
1.82E-38 | 5.34E-68 -1.4002836 100 0
7.68E-38 0.80659522 0 100 | | ENSG00000185158 | | | | 1.42E-73 1.24327961 | 0 | | 0.8870512 5.60313062 168.211096 | | | | ENSG00000198899 | MT-ATP6 | -1.1380042 11.2899034 332.102506 | 3.35E-74 | 1.77E-73 -1.0827802 | 100 | 0 MT-ATP6 | -0.6553584 11.432162 67.7528808 | 1.85E-16
9.67E-43 | 4.60E-16 -0.7330409 94.4444444 5.55555556 | | ENSG00000170088 | TMEM192 | -1.3177136 3.94160357 330.596003 | 7.13E-74 | 3.76E-73 -1.2018418 | 100 | 0 TMEM192 | -1.0754117 3.94751515 187.786962 | | 4.41E-42 -1.0866171 100 0 | | ENSG00000116406 | EDEM3 | 1.23135585 4.48284264 329.762301 | 1.08E-73 | 5.70E-73 1.30595088 | 0 | 100 EDEM3 | 0.7130777 4.14704317 87.2977903 | 9.34E-21 | 2.63E-20 0.68729777 13.8888889 86.1111111
2.28E-200 2.12577161 0 100 | | ENSG00000169710 | FASN | 1.13326787 7.31141873 329.661422 | 1.14E-73 | 5.99E-73 1.04448813 | _ | 100 FASN | 2.19237761 7.99645594 917.694674 | 1.40E-201 | 2.202 200 2.12377101 | | ENSG00000103091 | WDR59 | 1.29770732 4.06270508 329.159848 | 1.46E-73
1.77E-73 | 7.70E-73 1.43838439 | 0 | 100 WDR59
0 GCA | 1.0617621 3.79922151 174.23538 | 8.79E-40
1.06E-123 | 3.82E-39 1.07872802 2.77777778 97.2222222 | | ENSG00000115271 | GCA | -1.624431 2.58850021 328.783144 | | 9.28E-73 -1.647737 | 100 | | -2.4815324 2.44363938 559.536069 | | 1.17E-122 -2.5307749 100 0 | | ENSG 00000159720
ENSG 00000168297 | ATP6V0D1
PXK | -1.1319967 5.98899556 328.307224
-1.2278986 4.47470752 327.983492 | 2.25E-73
2.64E-73 | 1.18E-72 -1.0063832
1.38E-72 -1.1441475 | 100
100 | 0 ATP6V0D1
0 PXK | -0.7647416 6.08946951 126.84128
-0.5873607 4.66467414 66.7209958 | 2.01E-29
3.13E-16 | 7.03E-29 -0.8470332 100 0
7.70E-16 -0.7138414 94.4444444 5.55555556 | | | | | | | 100 | | | 1.05E-88 | | | ENSG 00000140853
ENSG 00000108771 | NLRC5
DHX58 | 1.10983594 7.78413125 327.94326
1.3638414 3.6828541 327.190558 | 2.70E-73
3.93E-73 | 1.41E-72 1.19689166
2.06E-72 1.45426347 | 0 | 100 NLRC5
100 DHX58 | 1.39730036 7.95158454 398.709878
0.7496616 3.24266893 74.4603243 | 6.19E-18 | 8.81E-88 1.34859041 0 100
1.59E-17 0.6985661 8.33333333 91.6666667 | | ENSG00000108771 | RFTN1 | -1.1325862 5.88677338 327.100013 | 4.12E-73 | 2.15E-72 -1.062917 | 100 | 0 RFTN1 | -0.5909877 6.03104937 76.3886448 | 2.33E-18 | 6.09E-18 -0.5920317 100 0 | | ENSG00000131378 | TCOF1 | 1.15476864 5.42898497 327.006428 | 4.12E-73
4.31E-73 | 2.25E-72 1.27116547 | | 97.1428571 TCOF1 | 1.13865894 5.36402638 265.374589 | 1.16E-59 | 6.77E-59 1.13338878 2.77777778 97.2222222 | | ENSG00000070814 | MYO5A | -1.1366585 5.6664114 326.964033 | 4.41E-73 | 2.30E-72 -1.0266045 | 100 | 0 MYO5A | -0.6031424 5.81572711 78.4410328 | 8.24E-19 | 2.19E-18 -0.5955393 100 0 | | ENSG00000137333 | PLEKHO1 | -1.1197572 6.85946871 326.823293 | 4.73E-73 | 2.47E-72 -0.9435749 | 100 | 0 PLEKHO1 | -1.0857516 6.85744637 252.848171 | 6.22E-57 | 3.52E-56 -1.0545712 100 0 | | ENSG00000023302 | NA NA | -1.1449991 5.4850573 326.08887 | 6.83E-73 | 3.56E-72 -1.1125961 | 100 | 0 NA | -1.3416323 5.34097746 370.913768 | 1.18E-82 | 9.22E-82 -1.4663164 100 0 | | ENSG00000165508 | MCM7 | 1.1168997 6.51158229 325.975633 | 7.23E-73 | 3.77E-72 1.20263962 | 0 | 100 MCM7 | 0.88281229 6.29899406 168.752289 | 1.39E-38 | 5.86E-38 0.79934384 2.77777778 97.2222222 | | ENSG00000137309 | HMGA1 | -1.1103102 7.50737464 324.633245 | 1.42E-72 | 7.37E-72 -0.9781066 | 100 | 0 HMGA1 | -1.0425059 7.45978988 228.639426 | 1.18E-51 | 6.26E-51 -1.0718464 100 0 | | ENSG00000137303 | CPT1A | -1.2977547 4.01165449 324.547507 | 1.48E-72 | 7.69E-72 -1.2569722 | 100 | 0 CPT1A | -0.8208904 4.1526612 112.718441 | 2.49E-26 | 8.07E-26 -0.9029872 97.2222222 2.77777778 | | ENSG00000174606 | ANGEL2 | 1.160805 5.12083413 323.816313 | 2.14E-72 | 1.11E-71 1.25349354 | 0 | 100 ANGEL2 | 1.17527021 5.10357517 277.941998 | 2.11E-62 | 1.28E-61 1.14202666 0 100 | | ENSG00000131748 | STARD3 | 1.12829792 5.94161256 323.589594 | 2.39E-72 | 1.24E-71 1.20180859 | 0 | 100 STARD3 | 0.9100325 5.76128592 176.139651 | 3.38E-40 | 1.48E-39 0.86724598 2.77777778 97.2222222 | | ENSG00000131748 | ZNF839 | 1.25630224 4.21493154 323.229731 | 2.87E-72 | 1.48E-71 1.27776969 | 0 | 100 ZNF839 | 0.93429172 3.97002402 142.884297 | 6.23E-33 | 2.35E-32 0.83467603 0 100 | | ENSG00000169410 | PTPN9 | -1.4745054 3.12441348 321.904044 | 5.57E-72 | 2.88E-71 -1.3119262 | 100 | 0 PTPN9 | -1.3298105 3.16464981 221.993608 | 3.32E-50 | 1.72E-49 -1.3197377 100 0 | | ENSG00000183283 | DAZAP2 | -1.0986702 9.16337564 321.125272 | 8.24E-72 | 4.24E-71 -1.0386922 | 100 | 0 DAZAP2 | -0.771811 9.23070495 114.801812 | 8.70E-27 | 2.86E-26 -0.7849336 100 0 | | ENSG00000177700 | POLR2L | -1.3221458 3.82581877 319.758809 | 1.63E-71 | 8.40E-71 -1.2631671 | 100 | 0 POLR2L | -0.7295456 4.00014802 87.5663223 | 8.15E-21 | 2.30E-20 -0.7879425 91.6666667 8.333333333 | | ENSG00000130725 | UBE2M | -1.2307943 4.32753992 319.621195 | 1.75E-71 | 8.98E-71 -1.2076352 | 100 | 0 UBE2M | -0.4771798 4.55374502 43.2748214 | 4.76E-11 | 9.78E-11 -0.5332651 97.2222222 2.77777778 | | ENSG00000165699 | TSC1 | 1.13259813 5.38929826 318.797513 | 2.65E-71 | 1.35E-70 1.15800476 | 0 | 100 TSC1 | 0.93194144 5.20601899 179.186754 | 7.29E-41 | 3.24E-40 | | ENSG00000224531 | SMIM13 | -1.3989215 3.41188388 318.694681 | 2.79E-71 | 1.43E-70 -1.3350879 | 100 | 0 SMIM13 | -0.740002 3.53172139 79.6965652 | 4.37E-19 |
1.17E-18 -0.7669154 97.2222222 2.77777778 | | ENSG00000167004 | PDIA3 | -1.0910887 7.93900532 318.541332 | 3.01E-71 | 1.54E-70 -1.0499856 | 100 | 0 PDIA3 | -0.8626166 7.96140313 156.055964 | 8.23E-36 | 3.30E-35 -0.8459358 100 0 | | ENSG00000155368 | DBI | -1.1714396 4.79784448 317.957124 | 4.04E-71 | 2.06E-70 -1.1362494 | 100 | O DBI | -0.5480839 4.97009205 60.8120426 | 6.28E-15 | 1.49E-14 -0.5830043 88.8888889 11.1111111 | | ENSG00000090432 | MUL1 | -1.1560389 4.9759825 317.718247 | 4.55E-71 | 2.32E-70 -1.0993271 | 100 | 0 MUL1 | -0.8397254 5.02890114 143.591314 | 4.36E-33 | 1.66E-32 -0.9202165 100 0 | | ENSG00000122417 | ODF2L | 1.20020026 4.51415703 316.215077 | 9.67E-71 | 4.92E-70 1.26033096 | 0 | 100 ODF2L | 1.29373265 4.50110189 304.682483 | 3.15E-68 | 2.11E-67 1.26062124 2.77777778 97.2222222 | | ENSG00000239911 | PRKAG2-AS1 | -2.0253829 1.07327983 314.925756 | 1.85E-70 | 9.36E-70 -1.9252991 | 100 | | -2.0882363 0.99716145 245.438651 | 2.56E-55 | 1.43E-54 -2.1452531 100 0 | | | | | | | _*** | | | | • | | ENSGO0000132824 SERING3 1.10342253 6.21043474 314.177399 2.69E-70 1.36E-69 1.17849494 0 100 SERING3 0.8617855 5.98295754 161.038406 6.71E-37 2.74E-36 0.84450588 5.55555556 94.4444 ENSGO0000110429 FBXO3 1.10389985 6.19863475 312.308989 6.14E-70 3.10E-69 1.17962566 0 100 MPHOSPH9 1.10850038 5.12190088 250.081346 2.49E-47 1.23E-46 0.9105333 2.7777777777777777777777777777777777 | 100
222222
100 | |---|----------------------| | ENSG00000110429 FBXO3 | 222222
100 | | ENSG00000241058 NSUN6 1.55591155 2.7052192 311.357991 1.11E-69 5.55E-69 1.53890695 0 100 NSUN6 1.20043144 2.37343215 140.226488 2.38E-32 8.88E-32 1.11658529 0 ENSG0000040199 PHLPP2 -1.1602527 4.77099598 310.129786 2.05E-69 1.03E-68 -1.0220629 100 0 PHLPP2 -0.7278843 4.80322111 104.211217 1.82E-24 5.62E-24 -0.7531989 97.222222 2.77777 ENSG00000138814 PPP3CA -1.1669117 4.67981485 310.058877 2.12E-69 1.06E-68 -1.0895394 100 0 PPP3CA -0.5824599 4.80538489 67.3887496 2.23E-16 5.52E-16 -0.6193049 100 ENSG00000178741 COX5A -1.1624844 4.70350908 308.880035 3.83E-69 1.91E-68 -1.0443205 100 0 COX5A -0.6925932 4.8203158 94.9533851 1.95E-22 5.74E-22 -0.8130767 97.222222 2.77777 ENSG0000025828 FAM229A 1.31647686 3.7249336 308.219061 5.34E-69 2.66E-68 1.40478269 0 100 FAM229A 0.82379434 3.3712163 93.62781 3.81E-22 1.11E-21 0.75568204 0 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.476033 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3066991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555555 | 100 | | ENSG0000040199 PHLPP2 -1.1602527 4.77099598 310.129786 2.05E-69 1.03E-68 -1.0220629 100 0 PHLPP2 -0.7278843 4.80322111 104.211217 1.82E-24 5.62E-24 -0.7531989 97.222222 2.77777 ENSG00000138814 PPP3CA -1.1669117 4.67981485 310.058877 2.12E-69 1.06E-68 -1.0895394 100 0 PPP3CA -0.5824599 4.80538489 67.3887496 2.23E-16 5.52E-16 -0.6193049 100 ENSG00000156639 EAND -1.0988436 5.82330247 309.042306 3.53E-69 1.77E-68 -0.9952247 100 0 ZFAND3 -0.7336628 5.93551665 116.921878 2.99E-27 9.90E-27 -0.7509829 100 ENSG00000178741 COXSA -1.1624844 4.70350908 308.880035 3.83E-69 1.91E-68 -1.0443205 100 0 COXSA -0.6925932 4.8203158 94.9533851 1.95E-22 5.74E-22 -0.813076 97.222222 2.77777 ENSG0000025828 FAM229A 1.31647686 3.7249336 308.219061 5.34E-69 2.66E-68 1.40478269 0 100 FAM229A 0.8237943 3.3712163 93.62781 3.81E-22 1.11E-21 0.75368204 0 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555551 | | | ENSG00000138814 PPP3CA -1.1669117 4.67981485 310.058877 2.12E-69 1.06E-68 -1.0895394 100 0 PPP3CA -0.5824599 4.80538489 67.3887496 2.23E-16 5.52E-16 -0.6193049 100 PPP3CA -0.098436 5.82330247 309.042306 3.53E-69 1.77E-68 -0.9952247 100 0 ZFAND3 -0.7336628 5.93551665 116.921878 2.99E-27 9.90E-27 -0.7509829 100 PPP3CA -0.098436 5.82330247 309.042306 3.53E-69 1.77E-68 -0.9952247 100 0 ZFAND3 -0.7336628 5.93551665 116.921878 2.99E-27 9.90E-27 -0.7509829 100 PPP3CA -0.098593849 67.3887496 2.23E-16 5.52E-16 -0.6193049 100 PPP3CA -0.0985934 | /7/778 | | ENSG00000156639 ZFAND3 -1.0988436 5.82330247 309.042306 3.53E-69 1.77E-68 -0.9952247 100 0 ZFAND3 -0.7336628 5.93551665 116.921878 2.99E-27 9.90E-27 -0.7509829 100 ENSG00000178741 COX5A -1.1624844 4.70350908 308.880035 3.83E-69 1.91E-68 -1.0443205 100 0 COX5A -0.6925932 4.8203158 94.9533851 1.95E-22 5.74E-22 -0.8130767 97.222222 2.77777 ENSG0000025828 FAM229A 1.31647686 3.7249336 308.219061 5.34E-69 2.66E-68 1.40478269 0 100 FAM229A 0.82379434 3.37121631 93.62781 3.81E-22 1.11E-21 0.75368204 0 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.306691 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555559 | 0 | | ENSG00000225828 FAM229A 1.31647686 3.7249336 308.219061 5.34E-69 2.66E-68 1.40478269 0 100 FAM229A 0.82379434 3.37121631 93.62781 3.81E-22 1.11E-21 0.75368204 0 ENSG0000105656 ELL -1.1010304 5.55224309 304.762438 3.02E-68 1.50E-67 -1.0539166 100 0 ELL -0.5019767 5.70520803 54.0815965 1.92E-13 4.33E-13 -0.6563352 88.8888889 11.1112 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555559 | 0 | | ENSG00000225828 FAM229A 1.31647686 3.7249336 308.219061 5.34E-69 2.66E-68 1.40478269 0 100 FAM229A 0.82379434 3.37121631 93.62781 3.81E-22 1.11E-21 0.75368204 0 ENSG0000105656 ELL -1.1010304 5.55224309 304.762438 3.02E-68 1.50E-67 -1.0539166 100 0 ELL -0.5019767 5.70520803 54.0815965 1.92E-13 4.33E-13 -0.6563352 88.8888889 11.1112 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555559 | 177778 | | ENSG00000105656 ELL -1.1010304 5.55224309 304.762438 3.02E-68 1.50E-67 -1.0539166 100 0 ELL -0.5019767 5.70520803 54.0815965 1.92E-13 4.33E-13 -0.6563352 88.8888889 11.1111 ENSG00000171791 BCL2 -1.104023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.555559 | 100 | | ENSG00000171791 BCL2 -1.1044023 5.64685996 304.671041 3.16E-68 1.57E-67 -0.9896708 100 0 BCL2 -1.4760333 5.43298412 441.39247 5.39E-98 4.94E-97 -1.541815 100 ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.55555 | 111111 | | ENSG00000184678 HIST2H2BE -1.3623143 3.49981213 303.917084 4.62E-68 2.28E-67 -1.3006991 97.1428571 2.85714286 HIST2H2BE -0.7109864 3.58468594 73.3311568 1.10E-17 2.80E-17 -0.7708101 94.4444444 5.55555 | 0 | | | 555556 | | ENSG00000152492 CCDC50 -1.0952001 6.15679525 303.878175 4.71E-68 2.33E-67 -1.0158212 100 0 CCDC50 -1.2668421 6.03458884 335.719498 5.46E-75 3.90E-74 -1.2784614 100 | 0 | | ENSG00000185989 RASA3 1.06895684 7.71641114 303.84322 4.79E-68 2.37E-67 1.07598961 0 100 RASA3 0.85906772 7.53223163 157.153533 4.74E-36 1.91E-35 0.71358196 2.77777778 97.2222 | 222222 | | ENSG00000123607 TTC21B 1.29953719 3.74451199 303.320971 6.23E-68 3.07E-67 1.2935835 0 100 TTC21B 1.25455085 3.67921937 233.275882 1.15E-52 6.16E-52 1.18823515 2.77777778 97.2223 | | | ENSG00000143549 TPM3 -1.0634093 8.4265238 303.124 6.87E-68 3.39E-67 -1.0720023 100 0 TPM3 -0.7247386 8.50200577 106.851871 4.80E-25 1.51E-24 -0.7041496 100 | 0 | | ENSG00000153310 FAM49B -1.0792778 6.2862833 303.027158 7.22E-68 3.56E-67 -0.9768868 100 0 FAM49B -0.674443 6.39801574 99.7988932 1.69E-23 5.10E-23 -0.6651564 100 | 0 | | ENSG00000182220 ATP6AP2 -1.0800275 6.47270874
302.654695 8.70E-68 4.29E-67 -0.9384396 100 0 ATP6AP2 -1.1413588 6.43025857 279.334629 1.05E-62 6.42E-62 -1.1290208 100 | 0 | | ENSG00000132879 FBX044 1.34337672 3.57262012 301.890879 1.28E-67 6.28E-67 1.32407187 0 100 FBX044 0.76639953 3.12693574 73.1763067 1.19E-17 3.03E-17 0.57551157 11.1111111 88.8881 | 388889 | | ENSG00000164941 INTS8 1.13114802 4.86783039 301.423084 1.61E-67 7.93E-67 1.17382447 0 100 INTS8 0.68977436 4.51770713 89.5474504 2.99E-21 8.56E-21 0.59611456 2.77777778 97.2222 | | | ENSG00000160712 ILGR -1.1416015 4.95532057 300.839987 2.16E-67 1.06E-66 -1.0844786 100 0 ILGR -3.4967655 4.58042046 1796.49369 0 0 -3.4324156 100 | 0 | | ENSG00000164327 RICTOR 1.06144301 8.09344564 299.20707 4.90E-67 2.40E-66 1.07091327 0 100 RICTOR 1.00930516 8.02798514 207.636714 4.50E-47 2.22E-46 1.00144058 5.55555556 94.444 | 144444 | | ENSG00000095059 DHPS 1.16925499 4.57524601 298.993631 5.46E-67 2.67E-66 1.24349188 0 100 DHPS 0.92990269 4.34463562 151.862082 6.79E-35 2.68E-34 0.76736909 5.55555556 94.4444 | | | ENSG00000180304 OAZ2 -1.0991557 5.35559796 298.633083 6.54E-67 3.20E-66 -1.044038 100 0 OAZ2 -0.8285837 5.4244476 144.739934 2.45E-33 9.33E-33 -0.8508398 100 | 0 | | ENSG00000100429 HDAC10 1.49127139 2.83865704 298.061534 8.71E-67 4.26E-66 1.54986265 0 100 HDAC10 1.2402647 2.58398794 157.969209 3.14E-36 1.27E-35 1.02819822 2.77777778 97.2222 | 222222 | | ENSG00000118689 FOXO3 -1.0710145 6.48863253 297.043549 1.45E-66 7.09E-66 -0.9547959 100 0 FOXO3 -1.2986284 6.34118063 360.742369 1.94E-80 1.47E-79 -1.2325755 100 | 0 | | ENSG00000143753 DEGS1 -1.0858171 5.49682888 296.834805 1.61E-66 7.87E-66 -0.9827786 100 0 DEGS1 -0.9117834 5.49102368 176.00235 3.62E-40 1.58E-39 -0.8556394 100 | 0 | | ENSG00000213995 CARKD 1.1341532 4.72830323 295.624025 2.96E-66 1.44E-65 1.15769369 0 100 CARKD 0.88549224 4.5149683 146.188804 1.18E-33 4.53E-33 0.84523794 0 | 100 | | ENSG00000153107 ANAPC1 1.12353302 4.83694791 295.515977 3.12E-66 1.52E-65 1.10332097 0 100 ANAPC1 1.02778659 4.73270617 204.415532 2.27E-46 1.10E-45 0.92257706 0 | 100 | | ENSG00000266777 SH3GL1P1 1.63679764 2.27965812 295.484729 3.17E-66 1.54E-65 1.69478685 0 100 SH3GL1P1 1.83205103 2.35184929 309.114537 3.41E-69 2.30E-68 1.80771323 0 | 100 | | ENSG00000067836 ROGDI -1.4689704 2.89509774 295.274151 3.53E-66 1.71E-65 -1.4137242 100 0 ROGDI -1.853635 2.79743316 360.797948 1.89E-80 1.43E-79 -2.0046286 97.2222222 2.77777 | 777778 | | ENSG00000102897 LYRM1 -1.4244274 3.03682364 294.951596 4.15E-66 2.01E-65 -1.3486027 100 0 LYRM1 -0.8324025 3.1707987 90.4990691 1.85E-21 5.31E-21 -0.881712 100 | 0 | | ENSG00000187667 NA 1.1191648 4.88728003 294.642981 4.84E-66 2.34E-65 1.16513491 0 100 NA 1.24855999 4.93476324 306.359823 1.36E-68 9.12E-68 1.12237003 0 | 100 | | ENSG00000188522 FAM83G -1.3032587 3.68891266 294.063459 6.47E-66 3.13E-65 -1.2415701 100 0 FAM83G -0.7733761 3.80146429 91.4501121 1.14E-21 3.30E-21 -0.8070373 91.6666667 8.33333 | 333333 | | ENSG00000132781 MUTYH 1.35486812 3.34345659 293.927009 6.93E-66 3.35E-65 1.3764478 0 100 MUTYH 1.06051376 3.08410837 141.879392 1.03E-32 3.89E-32 1.03228729 0 | 100 | | ENSG00000013810 TACC3 1.06782566 6.01962837 293.903851 7.01E-66 3.38E-65 1.15764347 0 100 TACC3 0.73266247 5.74048846 116.065346 4.60E-27 1.52E-26 0.6564707 0 | 100 | | ENSG00000263826 RP11-573D15.5 1.38690091 3.23480755 293.721812 7.68E-66 3.70E-65 1.43608455 0 100 RP11-573D15. 1.29598508 3.1006689 205.795595 1.14E-46 5.56E-46 1.26993375 2.77777778 97.2222 | 22222 | | ENSG00000164823 OSGIN2 -1.1375366 4.65587823 293.509828 8.55E-66 4.12E-65 -1.0681489 100 OSGIN2 -1.0572286 4.62849342 211.10833 7.87E-48 3.92E-47 -1.0542656 100 | 0 | | ENSG00000151498 ACAD8 1.31829684 3.56788868 292.921601 1.15E-65 5.52E-65 1.40795264 0 100 ACAD8 1.41217758 3.5958779 282.526709 2.11E-63 1.31E-62 1.31565658 0 | 100 | | ENSG00000249115 HAUS5 1.29419149 3.68434601 292.309214 1.56E-65 7.49E-65 1.41080134 0 100 HAUS5 1.10497202 3.45575655 168.696585 1.43E-38 6.03E-38 0.97464188 2.77777778 97.222 | 22222 | | ENSG00000095209 TMEM38B -1.385753 3.18742304 292.115811 1.72E-65 8.24E-65 -1.2578704 100 0 TMEM38B -1.3354891 3.13918643 224.727923 8.42E-51 4.39E-50 -1.41331 100 | 0 | | ENSG00000198721 ECI2 1.36688795 3.27279245 291.690862 2.13E-65 1.02E-64 1.39455297 0 100 ECI2 1.24183923 3.14025612 194.495892 3.32E-44 1.54E-43 1.19829046 0 | 100 | | ENSG00000198728 LDB1 1.06659431 5.87633217 291.081672 2.89E-65 1.38E-64 1.11708643 0 100 LDB1 0.93357211 5.73707032 185.603049 2.90E-42 1.31E-41 0.84009292 2.77777778 97.222 | 222222 | | ENSG00000148384 INPPSE 1.30842664 3.58333589 290.882073 3.19E-65 1.53E-64 1.36624402 0 100 INPPSE 0.77960451 3.14529391 78.1590446 9.51E-19 2.52E-18 0.69147243 2.77777778 97.2223 | 222222 | | ENSG00000142188 TMEM50B 1.15123858 4.56771947 290.4615 3.94E-65 1.88E-64 1.09846013 0 100 TMEM50B 0.92479086 4.34345351 152.097593 6.03E-35 2.38E-34 0.85453354 2.77777778 97.222 | 222222 | | ENSG00000102580 DNAJC3 -1.0577363 6.17353294 290.366809 4.14E-65 1.97E-64 -0.9735319 100 0 DNAJC3 -0.4959978 6.3092030 54.1526318 1.86E-13 4.18E-13 -0.5071632 97.222222 2.77777 | 177778 | | ENSG00000108773 KAT2A 1.21061607 4.22435456 290.29688 4.28E-65 2.04E-64 1.11950007 0 100 KAT2A 0.92921504 3.92209409 133.38552 7.45E-31 2.68E-30 0.73936739 2.77777778 97.222 | 222222 | | ENSG00000136490 LIMD2 1.04214145 8.98286067 290.239662 4.41E-65 2.10E-64 1.10561071 0 100 LIMD2 0.84105513 8.80732385 140.041878 2.61E-32 9.74E-32 0.76041206 2.77777778 97.2223 | 22222 | | ENSG00000131669 NINJ1 -1.0473586 7.5178197 289.990885 5.00E-65 2.37E-64 -0.8969077 100 0 NINJ1 -0.8659032 7.53309717 157.77946 3.46E-36 1.39E-35 -1.0204326 100 | 0 | | ENSG00000158805 ZNF276 1.06031243 6.02640589 289.774091 5.57E-65 2.64E-64 1.11410326 0 100 ZNF276 1.18760653 6.09263804 302.000186 1.21E-67 7.97E-67 1.17862539 0 | 100 | | ENSG00000137501 SYTL2 1.27995126 3.72489587 289.429041 6.62E-65 3.14E-64 1.34285147 0 100 SYTL2 1.86854435 4.14526235 559.38261 1.15E-123 1.27E-122 1.73646017 0 | 100 | | ENSG00000119632 IF127L2 -1.5445461 2.49204727 288.526077 1.04E-64 4.93E-64 -1.4716642 100 0 IF127L2 -1.0303102 2.62133871 111.166577 5.44E-26 1.75E-25 -0.9985406 97.2222222 2.77777 | | | ENSG00000149781 FERMT3 -1.061278 5.83258048 286.243278 3.27E-64 1.54E-63 -1.042619 100 0 FERMT3 -1.2585112 5.77713449 323.771487 2.18E-72 1.53E-71 -1.3396708 97.222222 2.77777 | /77778 | | ENSG00000091527 | CDV3 | 1 0221111 | 8.33009233 | 206 200600 | 3.35E-64 | 1 EQE 63 | -0.9609476 | 100 | ام | CDV3 | 0.5710796 | 8.42880447 | 67 1667901 | 2.49E-16 | 6 16E 16 | -0.5681671 | 100 | ام | |-----------------|---------------|------------|------------|------------|----------|----------|------------|------------|------------|--------------|------------|------------|------------|-----------|----------|------------|------------|------------| | ENSG00000031327 | P4HB | | 7.17046538 | | 3.37E-64 | | -0.9835277 | 100 | | P4HB | | 7.29048859 | | 2.43E-20 | | | 97.2222222 | 2 7777779 | | ENSG00000164338 | | | 4.6911816 | | 6.61E-64 | | 1.17913245 | 0 | _ | UTP15 | | 4.4345288 | | 1.60E-31 | | 0.76812486 | 0 | 100 | | ENSG00000173281 | PPP1R3B | | 4.25071437 | | 7.52E-64 | | -1.0031404 | 100 | 100 | PPP1R3B | | 4.06943814 | | 2.41E-101 | | -1.6728569 | 100 | 0 | | ENSG00000173201 | NR4A1 | | 6.45922856 | | 1.14E-63 | | | | 11.4285714 | | | 6.3829689 | | 6.28E-39 | | | 91.6666667 | 8 33333333 | | ENSG00000125338 | SSH1 | | 6.46356108 | | 1.83E-63 | | -0.9731236 | 100 | | SSH1 | | 6.49202379 | | 3.10E-32 | | -0.7334738 | 100 | 0.5555555 | | ENSG00000004112 | PELP1 | | 4.90663303 | | 3.53E-63 | | 1.11830314 | 0 | | PELP1 | | 4.80527923 | | 3.05E-40 | | | 2.77777778 | 97.222222 | | ENSG00000141430 | TMEM164 | | 4.23951686 | | 4.81E-63 | | -1.0698885 | 100 | 0 | TMEM164 | | 4.18553437 | | 1.98E-55 | | -1.2287581 | 100 | 0 | | ENSG00000137642 | SORL1 | | 8.03160906 | | 5.57E-63 | | 1.11045777 | 0 | 100 | SORL1 | | 7.76654999 | | 3.04E-22 | | | 8.33333333 | 91 6666667 | | ENSG00000137642 | PQLC1 | | 5.73916485 | | 6.75E-63 | | -0.9688259 | 100 | | PQLC1 | | 5.81709641 | | 1.77E-30 | | | 97.2222222 | | | ENSG00000122430 | UBR2 | | 5.57607042 | | 1.01E-62 | | 1.03040647 | 0 | | UBR2 | | 5.46633862 | | 7.02E-37 | | 0.79733234 | 0 | 100 | | ENSG00000024048 | PCM1 | | 7.10762411 | | 1.09E-62 | | 1.08106646 | 0 | | PCM1 | | 7.00244708 | | 3.55E-44 | | | 5.5555556 | | | ENSG0000007047 | MARK4 | -1.2299997 | | 279.165879 | 1.14E-62 | | -1.2000082 | 100 | 0 | MARK4 | | 3.96336015 | | 8.53E-20 | | | 97.2222222 | | | ENSG00000156931 | VPS8 | | 4.72313529 | | 2.81E-62 | | 1.14188027 | 0 | 100 | VPS8 | | 4.37178074 | | 3.79E-21 | | | 8.33333333 | | | ENSG00000035403 | VCL | | 3.84417614 | | 3.11E-62 | | -1.1223127 | 100 | 0 | VCL | | 3.73705583 | | 5.14E-67 | | -1.5504243 | 100 | 0 | | ENSG00000140264 | SERF2 | | 6.83170503 | 275.7784 | 6.25E-62 | | -0.9662161 | 100 | 0 | SERF2 | | 6.79796698 | | 5.24E-45 | | | 97.2222222 | 2 7777778 | | ENSG00000198736 | MSRB1 | | 1.69775104 | | 6.38E-62 | | -1.480843 | 100 | | MSRB1 | | 1.71690697 | | 1.13E-54 | | -1.7651515 | 100 | 0 | | ENSG00000125746 | EML2 | | 3.30016955 | | 8.49E-62 | | 1.48571391 | 0 | | EML2 | | 2.96802943 | | 3.03E-25 | | | 8.33333333 | 91 6666667 | | ENSG00000125748 | APPL2 | | 5.75075319 | | 1.09E-61 | | 1.09137176 | 0 | | APPL2 | | 5.62422126 | | 3.85E-43 | | 0.84574342 | 0.5555555 | 100 | | ENSG00000157500 | APPL1 | | 5.29430419 | | 1.37E-61 | | -0.9891075 | 100 | | APPL1 | | 5.27155846 | | 1.47E-40 | | -0.9422305 | 100 | 0 | | ENSG00000137500 | PICK1 | 1.43939092 | 2.743737 | | 1.93E-61 | | 1.45510024 | 0 | _ | PICK1 | | 2.62583622 | | 8.01E-46 | | 1.32996654 | 0 | 100 | | ENSG00000113719 | ERGIC1 | | 6.15447828 | | 2.33E-61 | | -0.9934342 | 100 | | ERGIC1 | | 6.2469932 | | 2.21E-22 | | -0.6711252 | 100 | 0 | | ENSG00000188725 | SMIM15 | | 4.24855384 | 273.02741 | 2.48E-61 | 1.13E-60 | -1.06932 | 100 | | SMIM15 | | 4.19098751 | | 1.15E-49 | 5.92E-49 | -1.104339 | 100 | 0 | | ENSG00000164808 | SPIDR | |
3.95267848 | | 2.56E-61 | | -1.1740113 | 100 | | SPIDR | | 3.87232972 | | 1.20E-57 | 6.90E-57 | -1.285689 | 100 | 0 | | ENSG00000108518 | PFN1 | | 8.38636456 | | 3.75E-61 | | -0.9526975 | 100 | - | PFN1 | | 8.42487737 | | 2.39E-27 | | | 97.2222222 | 2.7777778 | | ENSG00000140545 | MFGE8 | | 3.64932377 | | 1.26E-60 | | 1.2708296 | 0 | | MFGE8 | | 3.73026409 | | 8.43E-74 | | 1.36265614 | 0 | 100 | | ENSG00000186660 | ZFP91 | | 7.17855248 | | 1.50E-60 | | -0.9373357 | 100 | | ZFP91 | | 7.1848717 | | 7.79E-29 | | -0.7850387 | 100 | 0 | | ENSG00000025156 | HSF2 | | 5.43090002 | | 2.24E-60 | | 1.05921644 | 0 | 100 | HSF2 | | 5.33096791 | | 3.84E-47 | | | 2.77777778 | 97.222222 | | ENSG00000125827 | TMX4 | | 6.71582184 | | 2.94E-60 | | -0.9034241 | 100 | 0 | TMX4 | | 6.78844125 | | 1.71E-19 | | | 97.222222 | | | ENSG00000144535 | DIS3L2 | 1.06615664 | 4.83973711 | 267.926919 | 3.21E-60 | 1.45E-59 | 1.10689122 | 0 | 100 | DIS3L2 | 0.93318634 | 4.68405965 | 168.516597 | 1.56E-38 | 6.59E-38 | 0.89726949 | 0 | 100 | | ENSG00000101224 | CDC25B | 1.02253285 | 6.25825924 | 267.131557 | 4.79E-60 | 2.15E-59 | 1.15048549 | 2.85714286 | 97.1428571 | CDC25B | 1.2231151 | 6.29366551 | 314.119587 | 2.77E-70 | 1.90E-69 | 1.16752974 | 2.77777778 | 97.222222 | | ENSG00000162695 | SLC30A7 | 1.07470586 | 4.77336251 | 266.604101 | 6.24E-60 | 2.80E-59 | 1.12110196 | 0 | 100 | SLC30A7 | 0.64246441 | 4.48152918 | 76.6376036 | 2.05E-18 | 5.38E-18 | 0.57681275 | 5.5555556 | 94.444444 | | ENSG00000114978 | MOB1A | -0.9886979 | 8.21917518 | 263.482565 | 2.99E-59 | 1.33E-58 | -0.9161638 | 100 | 0 | MOB1A | -0.616033 | 8.27492431 | 78.7517244 | 7.04E-19 | 1.88E-18 | -0.6210581 | 100 | 0 | | ENSG00000129292 | PHF20L1 | 1.00747407 | 6.01727874 | 262.580385 | 4.70E-59 | 2.09E-58 | 1.14258777 | 0 | 100 | PHF20L1 | 0.80011973 | 5.85744031 | 138.605925 | 5.37E-32 | 1.99E-31 | 0.77796369 | 2.77777778 | 97.222222 | | ENSG00000167325 | RRM1 | 1.04285188 | 5.03787047 | 262.064247 | 6.09E-59 | 2.71E-58 | 1.15033568 | 0 | 100 | RRM1 | 1.10283311 | 4.99293888 | 243.147574 | 8.10E-55 | 4.47E-54 | 1.00408258 | 2.77777778 | 97.222222 | | ENSG00000108515 | ENO3 | 1.4851498 | 2.41541724 | 261.773517 | 7.05E-59 | 3.13E-58 | 1.51019886 | 0 | 100 | ENO3 | 1.15931037 | 2.08172178 | 119.250307 | 9.23E-28 | 3.11E-27 | 1.04166785 | 0 | 100 | | ENSG00000011258 | MBTD1 | 1.01225793 | 5.76243265 | 261.726635 | 7.21E-59 | 3.20E-58 | 1.05456446 | 0 | 100 | MBTD1 | 0.87350998 | 5.6208948 | 162.565294 | 3.11E-37 | 1.28E-36 | 0.8518903 | 0 | 100 | | ENSG00000158710 | TAGLN2 | -0.9872459 | 8.3891546 | 260.950323 | 1.07E-58 | 4.71E-58 | -0.888173 | 100 | 0 | TAGLN2 | -0.8054601 | 8.37634741 | 131.456624 | 1.97E-30 | 7.02E-30 | -0.8392002 | 100 | 0 | | ENSG00000112679 | DUSP22 | -1.130622 | 4.19663158 | 260.343982 | 1.44E-58 | 6.38E-58 | -1.0746767 | 100 | 0 | DUSP22 | -0.8947388 | 4.19273068 | 136.957135 | 1.23E-31 | 4.52E-31 | -0.9987395 | 97.222222 | 2.7777778 | | ENSG00000100034 | PPM1F | -1.0570596 | 4.85715435 | 259.640344 | 2.06E-58 | 9.05E-58 | -1.0656199 | 100 | 0 | PPM1F | -1.4726958 | 4.74016752 | 406.656047 | 1.96E-90 | 1.66E-89 | -1.52777 | 100 | 0 | | ENSG00000159082 | SYNJ1 | 1.04962976 | 4.88053851 | 259.622925 | 2.07E-58 | 9.12E-58 | 1.07472205 | 0 | 100 | SYNJ1 | 0.74287999 | 4.67003065 | 106.116023 | 6.95E-25 | 2.18E-24 | 0.68077865 | 2.77777778 | 97.222222 | | ENSG00000165915 | SLC39A13 | 1.03776663 | 4.97392246 | 258.221252 | 4.19E-58 | 1.84E-57 | 1.08650039 | 0 | 100 | SLC39A13 | 0.68062826 | 4.70847499 | 90.4356879 | 1.91E-21 | 5.48E-21 | 0.64643307 | 2.77777778 | 97.222222 | | ENSG00000254912 | RP11-632K20.2 | 1.63389974 | 1.81547454 | 257.643274 | 5.60E-58 | 2.45E-57 | 1.68007392 | 0 | 100 | RP11-632K20. | 1.21614361 | 1.57846953 | 107.318388 | 3.79E-25 | 1.20E-24 | 1.16514383 | 0 | 100 | | ENSG00000138293 | NA | -0.984349 | 7.05532177 | 257.57899 | 5.78E-58 | 2.53E-57 | -0.9627052 | 100 | 0 | NA | -0.8072432 | 7.07155874 | 141.946687 | 9.99E-33 | 3.76E-32 | -0.8210351 | 100 | 0 | | ENSG00000028528 | SNX1 | 1.03623445 | 5.06214349 | 257.137486 | 7.22E-58 | 3.16E-57 | 1.08873795 | 0 | 100 | SNX1 | 0.79066805 | 4.83377778 | 123.285365 | 1.21E-28 | 4.13E-28 | 0.69130322 | 2.77777778 | 97.222222 | | ENSG00000136810 | TXN | -1.1059201 | 4.29670704 | 256.822955 | 8.45E-58 | 3.69E-57 | -1.1546776 | 100 | 0 | TXN | -1.3258862 | 4.19397232 | 298.293835 | 7.75E-67 | 5.05E-66 | -1.3879994 | 100 | 0 | | ENSG00000196757 | ZNF700 | | 2.98130404 | | 1.65E-57 | | | | 97.1428571 | ZNF700 | | 2.77391093 | | 5.53E-30 | | | 5.5555556 | 94.444444 | | ENSG00000172301 | COPRS | | 1.44849776 | | 2.34E-57 | | -1.6313013 | 100 | 0 | COPRS | | 1.38374217 | | 2.32E-39 | | -1.5737131 | 100 | 0 | | ENSG00000167785 | | | 3.45801767 | | 2.41E-57 | | 1.16445207 | 0 | | ZNF558 | | 3.0828414 | | 7.79E-18 | | | 8.33333333 | | | ENSG00000196839 | ADA | | 4.41291474 | | 2.71E-57 | | | | 97.1428571 | ADA | | 4.12463526 | | 9.17E-22 | | | 8.33333333 | 91.6666667 | | ENSG00000166887 | | | 6.68787787 | | 3.32E-57 | | 1.05060713 | 0 | 100 | VPS39 | 0.90630866 | | | 8.00E-41 | | 0.86886335 | 0 | 100 | | ENSG00000107341 | UBE2R2 | -0.9934108 | 5.9292875 | 253.85408 | 3.75E-57 | | -0.9169522 | 100 | 0 | UBE2R2 | | 5.88627825 | | 1.82E-51 | | -1.0986365 | 100 | 0 | | ENSG00000073921 | PICALM | -0.984908 | 6.43755139 | 253.460685 | 4.57E-57 | 1.97E-56 | -0.9547687 | 100 | 0 | PICALM | -1.0788087 | 6.39990466 | 252.386806 | 7.84E-57 | 4.44E-56 | -1.0654848 | 100 | 0 | | PROSECURIOSISPAY PROB 0,977,2223 57,744602 25,357,713 47,657 26,575,756,736 20,575,756 20,5 | ENC C 00000100004 | DVCD | 0.0072220 | 1 5 72444602 | 252 207242 | 4 745 57 | 2.055.56 | 0.07056306 | | 100 | DVCD | 0.73530544 | E E2062242 | 111 000701 | 2 705 26 | 1 225 25 | 0.00411071 | | 100 | |--|-------------------|------|-----------|--------------|------------|----------|----------|------------|---|------------|------|------------|------------|------------|----------|----------|------------|-----------|-----------| | Medical Control March Ma | ENSG00000100994 | PYGB | | | | 4.74E-57 | | | 0 | | _ | | | | 3.79E-26 | | | 0 | 100 | | MACHONGOODISTOR MACHON 1.1117157 4.1735262 2.234900 7.996 7.996 7.996 8.165 6.9051572 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0. | | | | | | | | | | 100 | | | | | | | | • | 100 | | MARCEST GASSAN ASSANCE GASSAN ASSANCE GASSAN CASCALLA GASSAN ASSANCE GASSAN CASCALLA GASSAN ASSANCE GASSAN CASCALLA | | | | | | | | | | 100 | | | | | | | | | 100 | | Medical Control Medical Medica | | | | | | | | | | 100 | | | | | | | | • | 100 | | Marging Marg | | | | | | | | | | 0 | | | | | | | | | 0 | | Medicol Medi | | | | | | | | | | 0 | | | | | | | | | 0 | | Mediconocology Micro 0.9500179 20000798 20100757 20100170 20100709 2010 | | | | | | | | | | 100 | | | | | | | | | 100 | | SMSC0000025947 SMSC10 | | | | | | | | | | 100 | | | | | | | | _ | 100 | | MSG0000019391 MSG81 | | | | | | | | | | 0 | | | | | | | | | 2 7777770 | | MAGRO000009999 MAGRS -1.211288 3.15698644 24870481 488754 2.111-55 5.11570539 0 100 MAGRS -0.7810665 3.09813073 85.0991209 2.078-39 1.078-83 1.111-55 1.0081000000000000000000000000000000000 | | | | | | | | | | 0 | | | | | | | | | 2.//////8 | | MSGC000001419 MSGC MSGC00001419 MSGC0001419 MSGC0001419 MSGC00001419 MSGC000001419 MSGC00001419 MSGC00004419 MSGC0004419 MSGC0004419 MSGC0004419 MSGC0004419 MSGC00044 | | | | | | | | | | 0 | | | | | | | | | 0 | | MSG00000014917 MPAZ | | | | | | | | | | 100 | | | | | | | | | | | RMSCO0000198712 CHRACI | | | | | | | | | | 100 | | | | | | | | _ | 100 | | RNSCO000019472 CHRCL | | | | | | | | | | 0 | | | | | | | | | 0 | | MRC00000198712 MRC0000198712 MRC002 | | | | | | | | | | 100 | | | | | | | | | 100 | | RNSCO000012535 SMDIA 1.0050783 5.1180407 24476134 328155 1.366-54 0.79462568 0 1.005 NEDIA 0.87818637 4.9817212 15.1856985 2.44-835 0.9848761 2.7777778 9.22222222 RNSCO000027218 RP11-2031248 1.4172631 2.3815381 2.44817643 3.78-55 1.465-54 1.2146054 0 0 1.00 RP11-203124 1.1153133 2.1229139 11.055155 7.04-26 2.776-25 1.073929 2.7777778 9.222222 2.2222 2.22222 2. | | | | | | | | | | 0 | | | | | | | | | 0 | | MSCOCCOOLIGNES MFINE 0.987840 5.987800 2.449870 3.285-5 1.38E-54 0.3661017 100 0.8191033184 1.1513131 2.121299 11.055555 5.76E-54 0.72122222 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.7850000149187 1.78500000149187 1.7850000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.78500000149187 1.785000000149187 1.785000000149187 1.785000000149187 1.785000000149187 1.7850000000149187 1.7850000000149187 1.7850000000014918 1.785000000000000000000000000000000000000 | RESCOROUZIZIS RESC | | | | | | | | | | 100 | | | | | | | | | 97.222222 | | MRSCO0000164918 Tell 0.9657542 6.84101528 244.789644 3.55555566 3.455.65 3.655.65 3.055.65 | | | | | | | | | | 0 | | | | | | | | | 0 | | EMSCO000017693 SEC61B 0.9942546 5.22479746 244701294 3.71E-55 1.55E-54 0.9251843 1.00 0.5EC61B 0.4755188 5.34222024 47.9968696 4.2F-12 0.5411049 9.444444 5.55555566 | | | | | | | | | _ | | | | | | | | | | | | ENSCO000017343 ENSCO000017343 ENSCO000017343 ENSCO000017343 ENSCO000017343 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000008990 ENSCO000017341 ENSCO0 | | | | | | | | | | 100 | | | | | | | | | | | EMSCO0000123151 OK -0.957366 6.92756607 244,076056 5.0816-55 2.152-54 0.8746718 1.00 OK OK 0.000013319 OK 0.053 -0.968519 6.25866019 243,42009 7.061-55 2.264-54 -0.818127 1.00 OK 0.053 -0.7480594 6.2987144 11.999072 6.367-28 2.161-57 -0.748279 0.10 OK 0.053 -0.7480594 0.2987144 11.999072 6.367-28 2.152-77 -0.748279 0.10 OK 0.000017333 0.7480594 0.2987144 11.999072 4.364-64 0.318255 0.777778 0.7222222 0.8560000017333 0.808714 -1.159978 0.0000017333 0.12879158 0.2282002 0.518-55 0.968-54 -1.1460744 0.00 0.0000017334 0.0000010333 0.0000017334 0.0000017334 0.0000017334 0.00000017334 0.0000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.00000017334 0.000000017334 0.000000017334 0.0000000000000000000000000000000000 | | | | | | | | | | 0 | | | | | | | | | | | ENSCORDOOMOORS902
ROORS | | | | | | | | | _ | 100 | | | | | | | | | 100 | | MSG00000014319 | | | | | | | | | | 0 | | | | | | | | | 0 | | RESCONDOURGINGS REDIGIO COUNTRY SAMPI | | | | | | | | | | 2.85714286 | | | | | | | | | 5.5555556 | | RANGEOMOOTINGS AMPT | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSCO000016605 ENVRA -1.2675402 3.18797185 242.7876755 9.71.555 4.04E.54 -1.1460474 1.00 0 0 0 0 0 0 0 0 0 | | | | | | | | | | 100 | | | | | | | | | | | INSTRUCTION | | | | | | | | | | 0 | | | | | | | | | 8.3333333 | | ENSGO000157520 LPPR2 -1.2547024 3.3625807 241.468019 1.88E-54 7.82E-54 -1.282318 88.571428 11.4285714 LPPR2 -2.0983669 3.19326984 499.37094 1.30E-110 1.33E-109 -2.2512157 94.444444 5.55555556 ENSGO000018294 APHIA -0.9511876 7.20194163 241.456041 1.98E-54 7.88E-54 -0.8574797 100 0 APHIA -0.6671235 7.26297117 96.7757046 7.76E-23 2.31E-22 0.77757785 ENSGO000018290 COXBA -0.9781842 5.48642857 240.223123 3.52E-54 1.45E-53 -0.9888457 100 0 NA -0.66783755 5.04318142 93.5523868 3.59E-22 1.15E-5555556 ENSGO0000176340 COXBA -0.9781842 5.48642857 240.223123 3.52E-54 1.45E-53 -0.9888457 100 0 COXBA -0.701191 5.5630325 10.4742003 1.39E-24 4.32E-24 -0.7545266 94.444444 5.55555556 ENSGO000017555 CKLF -1.5199763 1.95825428 238.94129 6.69E-54 2.75E-53 1.2891039 0 0 CKLF -1.8091284 1.88376923 259.015964 2.81E-58 1.63E-79 1.00 0 ENSGO0000141429 GAINT1 -0.9592316 6.30446747 248.887763 6.69E-54 2.75E-53 1.054718 100 0 SMS -1.261827 24.252886 6.8884107 2.44E-59 1.42E-58 -1.381593 1.0154718 100 0 SMS -1.261827 24.252886 6.8884107 2.44E-59 1.42E-58 -1.381593 1.0154718 100 0 SMS -1.261827 24.252886 6.8884107 2.44E-59 1.42E-58 -1.381593 1.0154718 100 0 SMS -1.261827 24.252886 6.8884107 2.44E-59 1.42E-58 -1.381593 1.00 0 ENSGO0000148803 FUOM -1.7332201 1.08476736 236.994507 7.18E-53 9.93E-53 1.05501477 100 0 SERPINBB -1.1533329 4.33849639 234.039428 7.84E-53 4.22E-53 -0.988673 100 0 SERPINBB -1.1533329 4.33849639 234.039428 7.84E-59 4.22E-58 -1.3150555556 ENSGO0000125245 GPR1B -1.0999277 4.04718816 235.91569 3.05E-53 1.21E-52 0.9901654 100 0 GED1A 0.90525095 4.06723158 13.3701312 6.35E-51 1.60E-50 -2.0158132 100 0 ENSGO0000125245 GPR1B -1.0999277 4.04718816 235.91569 3.05E-53 1.21E-52 0.9901654 100 0 GYSTM1 -1.5993228 1.68148022 24375302 23.34F525 23.34F525 2.59.93829 100 0 STRSIMA -1.119714 4.1476002 4.0666979 1.77E-54 1.52E-53 -1.1765977 97.222222 2.77777778 ENSGO000016615 RHE -0.9068575 2.4483059 23.34F525 2.345063 23.34F525 2.5555556 2.098927 97.1428571 1.00900014254 5.00960001621 24.546600001621 24.546600001621 24.546600001621 24.54 | | | | | | | | | | 0 | | | | | | | | 100 | 0 | | ENSGO000173624 NA -0.951876 7.20194163 241.450.24 1.90E-54 7.88E-54 -0.8574797 100 0 NA -0.6671235 7.6297117 96.7757066 7.76E-32 2.31E-22 -0.7313942 97.222222 2.77777778 ENSGO0000176340 CXSA -0.9781842 5.486642657 240.223123 3.52E-54 1.48E-53 0.9888457 100 0 CXSA -0.701191 5.5690325 104,742003 1.91E-44 1.0868782 94.4444444 5.5555556 ENSGO000018796 TMEM1988 1.19540507 3.52036985 240.1843 3.59E-54 1.48E-53 1.22813803 0 100 TMEM1988 0.8753293 3.21109484 100.621667 1.11E-23 3.39E-23 0.81617318 0 100 ENSGO000011755 KJ -1.519976 3.195825248 238.411289 6.69E-54 2.77E-53 1.29813803 0 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519976 3.195825248 238.41128 9 6.69E-54 2.77E-53 1.29813803 0 CXLF -1.519978 1.9882525 29.015964 2.81E-58 1.69E-57 1.87E-57977 10 CXLF -1.519978 1.9882525 2.81E-58 1.31901 0 CXLF -1.519978 1.9882525 2.81E-58 1.31901 1.00 CXLF -1.51918 CX | | | | | | | | | - | | | | | | | | | | | | NA -1.0086414 4.94343629 241.366901 1.98E-54 8.22E-54 -1.0235851 100 0 NA -0.678375 5.0431812 9.5523868 3.96E-22 1.15E-21 0.8068782 94.444444 5.5555556 5.5555556 5.5555556 5.5555556 5.5555556 5.5555556 5.555556 5.555556 | COMBA COMB | | | | | | | | | | 0 | | | | | | | | | | | ENSGO000182796 TMEM1988 1.19540507 3.52036985 240.1843 3.59E.54 1.48E-53 1.22813803 0 100 TMEM1988 0.87535293 3.2110948 100.621667 1.11E-23 3.39E-23 0.81617318 0 100 ENSGO000141429 GAINT1 0.9592316 6.3046747 23.8887673 6.86F-54 2.75E-53 -1.3991063 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-53 1.63E-57 1.67E-57 -1.8715937 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-53 1.63E-57 1.8715937 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-58 1.63E-57 1.67E-57 1.8715937 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-58 1.63E-57 1.67E-57 1.8715937 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-58 1.63E-57 1.67E-57 1.8715937 100 0 CKLF -1.8091284 1.8837692 259.015964 2.81E-58 1.63E-57 1.67E-57 1.8715937 100 0 CKLF -1.8091284 1.8837692 2.825864 2.81E-58 1.63E-57 1.60E-57 2.046088 4.444444 5.55555555 4.865000012472 5.8654094 2.75E-53 1.65E-57 7.9E-53 1.60E-57 7.9E-53 7 | | | | | | | | | | 0 | | | | | | | | | | | ENSGO00001217555 | | | | | | | | | | 0 | | | | | | | | | | | ENSGO0000141429 GALNT1 | | | | | | | | | | 100 | | | | | | | | _ | 100 | | ENSGO0000102172 SMS -1.0630386 4.31004392 238.684079 7.61E-54 3.13E-53 -1.0154718 100 0 SMS -1.2361827 4.2352886 263.884107 2.44E-59 1.42E-58 -1.313011 100 0 ENSGO000016401 SERPINB8 -1.0467632 24.4274528 236.568082 2.20E-53 9.03E-53 1.6501477 100 0 SERPINB8 -1.0467636 4.4274528 236.568082 2.20E-53 9.03E-53 1.0598637 100 0 SERPINB8 -1.04676352 4.48032239 236.427146 2.36E-53 9.69E-53 1.01236388 0 100 NSUNSP1 0.69084485 4.71291441 82.3547773 1.14E-19 3.10E-19 0.6082312 5.5555556 94.4444444 ENSGO000132635 PCEDIA 1.08089264 4.2472329 236.38187 2.47E-53 1.01E-52 1.01526029 0 100 PCEDIA 0.9025095 4.06723158 133.701312 6.35E-31 2.29E-30 0.73882082 2.77777778 97.222222 ENSGO000120366 CPSTM1 -1.5932228 1.6814802 23.495445 4.95E-53 2.02E-52 -0.9629107 97.1428571 2.85714286 GPR18 -0.8558355 4.11586454 4.7193451 2.77E-54 1.52E-53 -1.1715518 100 0 STRSIAM -1.0999177 4.4450000119373 ENSGO000015212 RASAL3 0.9648254 5.368282 23.394922 8.21E-53 3.34E-52 -0.9682847 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 STRSIAM -1.099367 5.2465039 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 STRSIAM -1.099367 5.2465039 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 100 0 STRSIAM -1.119271 4.745082 240.696791 2.77E-54 1.52E-53 -1.717518 1.00E- | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO0000148803 FUOM -1.7332201 1.08476736 236.994507 1.78E-53 7.29E-53 -1.6501477 100 0 FUOM -1.9831872 1.01272651 226.748826 3.05E-51 1.60E-50 -2.0158132 100 0 ENSGO0000166401 SERPINB8 -1.046386 4.2745288 236.568082 2.20E-53 9.03E-53 1.01236388 0 100 NSUNSP1 1.04376352 4.48032239 236.427146 2.36E-53 9.05E-53 1.01E-52 1.01526029 0 100 PCEDIA 1.08089264 4.2472392 236.338187 2.47E-53 1.01E-52 1.01526029 0 100 PCEDIA 1.08089264 4.2472392 236.338187 2.47E-53 1.01E-52 1.01526029 0 100 PCEDIA 1.09E-74 1.010279358 4.57125325 235.98348 2.95E-53 1.21E-52 -0.9901654 100 0 UBE2F -1.3110217 4.44250247 3309.0656 3.49E-69 2.36E-68 -1.2845639 100 0 ENSGO0000120306 CNSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.285E-53 2.29E-53 2.29E-53 2.29E-53 2.29E-53 2.29E-53 2.29E-54 4.95E-53 2.29E-54 4.95E-53 2.29E-54 4.95E-53 2.29E-54 4.95E-55 2.99E-554 5.29E-554 5.99E-554 5.99E-554 5.99E-5555556 ENSGO000120306 CNSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.29E-53 2.29E-54 -1.5717811 100 0 CNSTM1 -1.174926 1.74411134 105.353614 1.02E-24 3.19E-24 1.1163964 94.4444444 5.55555556 ENSGO000016946 THAP4 -1.0556829 4.30388243 233.949222 8.21E-53 3.34E-52 -0.9582829 100 0 STRSIA4 -1.119274 4.7164802 240.696791 2.77E-54 1.52E-53
1.1715518 100 ENSGO000016917 FIT3 -1.234549 3.8923502 233.702952 9.29E-53 3.77E-52 -0.9582847 2.85714286 91.428571 RASAI3 1.8224676 5.60882884 287.862055 1.45E-64 9.14E-64 1.1698356 2.7777778 97.222222 ENSGO000016515 RHE -0.976887 5.2463053 23.2475635 1.72E-52 6.97E-52 -0.98927 97.1428571 2.857142857 1.8571428571 2.85714286 RHEB -0.6055297 5.28523971 77.149203 3.09E-41 1.38E-04 -1.169151 100 0 CNSTM1 | | | | | | | | | | 0 | | | | | | | | | 5.5555556 | | ENSGO0000166401 SERPINB8 -1.046386 4.4274528 236.568082 2.02E-53 9.03E-53 -0.998637 100 0 SERPINB8 -1.1533329 4.33849639 234.039428 7.84E-53 4.22E-52 -1.1216351 100 0 ENSGO000023705 NSUNSP1 1.04376352 4.48032239 236.427146 2.36E-53 9.69E-53 1.01236388 0 100 NSUNSP1 0.69084485 4.17219441 82.3547773 1.14E-19 3.10E-19 0.6082312 5.55555556 94.4444444 ENSGO000132635 PCEDIA 1.08089264 4.2472329 236.338187 2.47E-53 1.01E-52 1.01526029 0 100 PCEDIA 0.90252095 4.06723158 133.701312 6.35E-31 2.29E-30 0.73882082 2.77777778 97.2222222 ENSGO0000125245 GPR18 -1.0999277 4.04718816 235.921569 3.05E-53 1.2E-52 -0.9629107 97.1428571 2.85714286 GPR18 -1.0590279 4.04718816 235.921569 3.05E-53 1.2E-52 -0.9629107 97.1428571 2.85714286 GPR18 -1.0536829 4.096791 2.77E-54 1.052E-33 -1.1163964 94.4444444 5.55555556 ENSGO0000115332 ST8SIA4 -1.0055877 4.76313123 234.241975 7.08E-53 2.89E-52 -0.9582829 100 0 0 ST8SIA4 -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSGO0000119917 FITT3 -1.253649 3.38923502 233.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 ENSGO0000119917 FITT3 -1.234549 3.38923502 233.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 ENSGO000116615 RHEB -0.9706857 5.5614382 52.4632053 232.475635 1.72E-52 6.09E-52 -0.989527 97.1428571 2.85714286 RHEB -0.6055378 7.2822379 7.1492807 7.1492871 2.85714286 RHEB -0.6055388 4.91515828 63.6552014 1.48E-15 3.58E-15 0.534542 2.77777778 97.222222 ENSGO000018229 PP4R1L 0.96781832 5.24631576 232.304904 2.14E-52 8.64E-52 -1.149879 100 0 PP4R1L 0.56032588 4.91515828 63.6552014 1.88E-53 0.964215 1.00 0 PP4R1L 0.96781832 5.24631576 232.304904 2.14E-52 8.64E-52 -1.149879 100 0 PP4R1L 0.56032588 4.91515828 63.6552014 1.88E-50 1.169151 100 0 PP4R222222 ENSGO0000188295 2.00669 -1.19187 3.38E-50 -1.169151 100 0 PP4R1L 0.56032588 4.91515828 63.6552014 1.88E-50 -1.169151 100 0 PP4R222222 ENSGO0000188295 2.00669 -1.19187 3.38E-50 -1.169151 100 0 PP4R1L 0.56032588 4.91515828 63.6552014 1.88E-50 -1.169151 100 0 PP4R2222222 ENSGO0000188295 2.00669 -1.19187 3.38 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO00001223705 NSUNSP1 1.04376352 4.48032239 236.427146 2.36E-53 9.69E-53 1.01236388 0 100 NSUNSP1 0.69084485 4.1721941 82.3547773 1.14E-19 3.10E-19 0.6082312 5.55555556 94.4444444 PCEDIA 1.08089264 4.2472329 236.338187 2.47E-53 1.01E-52 1.01526029 0 100 PCEDIA 0.90252095 4.06723158 133.701312 6.35E-31 2.29E-30 0.73882082 2.77777778 97.222222 ENSGO000184182 UBE2F -1.0279358 4.77125325 235.98348 2.95E-53 1.21E-52 -0.9901654 100 0 UBE2F -1.3110217 4.44250247 309.0555 3.49E-69 2.36E-68 -1.2845639 100 0 ENSGO0000125245 GPR18 -1.0992277 4.04718816 235.921569 3.05E-53 1.25E-52 -0.9692107 97.1428571 2.85714286 GPR18 -1.0536229 1.01E-14 6.76E-14 -0.545639 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO0000132635 PCED1A 1.08089264 4.24723292 236.338187 2.47E-53 1.01E-52 1.01526029 0 100 PCED1A 0.90252095 4.06723158 133.701312 6.35E-31 2.29E-30 0.73882082 2.77777778 97.2222222 ENSGO0000184182 UBE2F -1.0279358 4.57125325 235.98348 2.95E-53 1.21E-52 -0.9901654 100 0 UBE2F -1.3110217 4.44250247 309.0656 3.49E-69 2.36E-68 -1.2845639 100 0 ENSGO000125245 GPR18 -1.0999277 4.04718816 235.921569 3.05E-53 1.25E-52 -0.9629107 97.1428571 2.85714286 GPR18 -0.5855835 4.11586454 57.7939655 2.91E-14 6.76E-14 -0.5456174 94.4444444 5.55555556 ENSGO000120306 CYSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.02E-52 -1.5717811 100 0 CYSTM1 -1.174926 1.74411134 105.353614 1.02E-24 3.19E-24 -1.1163964 94.444444 5.55555556 ENSGO000176946 THAP4 -1.0558877 4.76313123 234.241975 7.08E-53 2.89E-52 -0.9852829 100 0 ST8SIAA -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSGO000119917 FIT3 -1.234549 3.38923502 333.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 IFIT3 -1.234549 3.38923502 333.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 IRST -1.3058161 3.4750575 217.713954 2.85E-49 1.45E-48 -1.3887857 86.1111111 31.8888889 ENSGO000015122 RASAL3 0.96482554 5.53611842 232.773114 1.48E-52 6.01E-52 0.99632847 2.85714286 97.1428571 RASAL3 1.8224767 5.60882884 287.862055 1.45E-64 9.14E-64 1.1693356 2.77777778 97.222222 ENSGO00016615 RHEB -0.9706857 5.24632053 23.2475635 1.72E-52 6.97E-52 0.9985287 97.1428571 2.85714286 RHEB -0.6055937 5.28523971 77.1492033 1.59E-18 4.17E-18 -0.6934036 100 0 ENSGO000124224 PPP4R1L 0.96781832 5.24831576 23.230604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4R1L 0.5603258 4.91515828 63.6552014 1.48E-15 3.58E-15 0.5345422 2.77777778 97.2222222 ENSGO000188295 2NF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.149879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-40 -1.1679151 100 0 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSGO000184182 UBE2F -1.0279358 4.57125325 235.98348 2.95E-53 1.21E-52 -0.9901654 100 0 UBE2F -1.3110217 4.44250247 309.0656 3.49E-69 2.36E-68 -1.2845639 100 0 ENSGO000125245 GPR18 -1.0999277 4.04718816 235.921569 3.05E-53 1.25E-52 -0.9629107 97.1428571 2.85714286 GPR18 -0.5855855 4.11586454 57.7939655 2.91E-14 6.76E-14 -0.5456174 94.4444444 5.55555556 ENSGO000120306 CYSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.02E-52 -1.5717811 100 0 CYSTM1 -1.174926 1.74411134 105.353614 1.02E-24 3.19E-24 -1.1163964 94.4444444 5.55555556 ENSGO000113532 ST8SIA4 -1.0055877 4.76313122 234.241975 7.08E-53 2.89E-52 -0.988289 100 0 ST8SIA4 -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSGO000119917 IFIT3 -1.0536829 4.30388243 233.949222 8.21E-53 3.34E-52 -0.9488741 100 0 THAP4 -0.8003265 4.34587746 114.182589 1.19E-26 3.88E-26 -0.7995353 97.2222222 2.77777778 ENSGO000119917 IFIT3 -1.234549 3.38923502 23.773114 1.48E-52 6.01E-52 0.9963247 2.85714286 97.1428571 IFIT3 -1.3058161 3.4750757 217.713954 2.85E-49 1.45E-48 -1.3887857 86.111111 13.8888889 ENSGO000016615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.998527 97.1428571 2.85714286 RHEB -0.6055937 5.28523971 77.1492033 1.59E-18 4.17E-18 -0.6933565 2.77777778 97.222222 ENSGO000018292 VPF81L 0.96781832 5.24831576 23.230604 1.86E-52 7.53E-52 1.0440636 0 100 PPP4R1L 0.5603258 4.91515828 63.6552014 1.48E-15 3.58E-15 0.534542 2.77777778 97.222222 ENSGO000188295 VPF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 VNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-04 -1.1679151 100 0 | ENSG0000125245 GPR18 -1.0999277 4.04718816 235.921569 3.05E-53 1.25E-52 -0.9629107 97.1428571 2.85714286 GPR18 -0.5855855 4.11586454 57.7939655 2.91E-14 6.76E-14 -0.5456174 94.4444444 5.55555556 ENSG0000123006 CYSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.02E-52 -1.5717811 100 0 CYSTM1 -1.174926 1.74411134 105.353614 1.02E-24 3.19E-24 -1.1163964 94.4444444 5.55555556 ENSG0000113532 ST8SIA4 -1.0055877 4.76313123 234.241975 7.08E-53 2.89E-52 -0.982829 100 0 ST8SIA4 -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSG0000119917 IFIT3 -1.235459 3.38923502 233.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 IFIT3 -1.3058161 3.4750575 217.713954 2.85E-49 1.45E-48 -1.3887857 86.111111 13.8888889 ENSG0000015122 ENSG0000016615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.989527 97.1428571 2.85714286 RHEB -0.955938 4.91515828 63.6552014 1.48E-15 3.58E-15 0.534542 2.77777778 97.222222 ENSG0000018295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.149879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-0 -1.1679151 100 0 | | | | | | | | | | 100 | | | | | | | | | 97.222222 | | ENSG0000120306 CYSTM1 -1.5932228 1.68148022 234.954445 4.95E-53 2.02E-52 -1.5717811 100 0 CYSTM1 -1.174926 1.74411134 105.353614 1.02E-24 3.19E-24 -1.1163964 94.4444444 5.55555556 ENSG0000113532 ST8SIA4 -1.0055877 4.76313123 234.241975 7.08E-53 2.89E-52 -0.9582829 100 0 5T8SIA4 -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSG00000176946 THAP4 -1.0536829 4.30388243 233.949222 8.21E-53 3.34E-52 -0.9488741 100 0 THAP4 -0.8003265 4.34587746 114.182589 1.19E-26 3.88E-26 -0.7995353 97.222222 2.77777778 ENSG0000119917 ENSG0000015122 RASAL3 0.96482554 5.53611842 232.773114 1.8E-52 6.01E-52 0.99632847 2.85714286 97.1428571 ENSG0000016615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 0.989527 97.1428571 2.85714286 RHEB -0.9505375 7.28523971 77.1492033 1.59E-18 4.17E-18 0.69354036 100 0 ENSG00000124224 PPP4RIL 0.96781832 5.24831576 232.304904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-0 -1.1679151 100 0 0 CONTROL OR CO | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG0000113532 ST8SIA4 -1.0055877 4.76313123 234.241975 7.08E-53 2.89E-52 -0.9582829 100 0 ST8SIA4 -1.1192714 4.71764082 240.696791 2.77E-54 1.52E-53 -1.1715518 100 0 ENSG00000176946 THAP4 -1.0536829 4.30388243 233.949222 8.21E-53 3.34E-52 -0.9488741 100 0 THAP4 -0.8003265 4.34587746 114.182589 1.19E-26 3.88E-26 -0.7995353 97.222222 2.77777778 ENSG0000119917 IFIT3 -1.234549 3.38923502 233.702952 9.29E-53 3.77E-52 -1.1488051 94.2857148 97.1428571 IFIT3 -1.3058161 3.4750575 217.713954 2.85E-49 1.45E-48 -1.3887857 86.111111 13.8888889 ENSG00000169615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.989327 97.1428571 2.85714286 RHEB -0.955937 7.1492033 1.59E-18 4.17E-18 -0.693456 2.77777778 97.222222 ENSG0000018295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.149879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-0 -1.1679151 100 0 | | | | | | | | | | 2.85714286 | | | | | | | | | | | ENGGO000176946 THAP4 -1.0536829 4.30388243
233.949222 8.21E-53 3.34E-52 -0.9488741 100 0 THAP4 -0.8003265 4.34587746 114.182589 1.19E-26 3.88E-26 -0.7995353 97.222222 2.77777778 ENGGO00019917 FIFT3 -1.234549 3.38923502 233.702952 9.29E-53 3.77E-52 -1.1488051 94.2857143 5.71428571 FIFT3 -1.3058161 3.4750575 217.713954 2.85E-49 1.45E-48 -1.3887857 86.111111 13.8888889 ENGGO000105122 RASAL3 0.96482554 5.3611842 232.773114 1.48E-52 6.01E-52 0.99632847 2.85714286 PHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.989527 97.1428571 2.85714286 PHEB -0.6055937 5.28523971 77.1492033 1.59E-18 4.17E-18 -0.6934036 100 0 ENGGO0001042244 PPP4R1L 0.96781832 5.24831576 232.320604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4R1L 0.56032588 4.91515828 63.6552014 1.48E-15 3.58E-15 0.5345422 2.77777778 97.2222222 ENGGO000188295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-04 -1.1679151 100 0 0 | | | | | | | | | | 0 | | | | | | | | | 5.5555556 | | ENSG00000119917 IFIT3 | | | | | | | | | | 0 | | | | | | | | | 0 | | ENSG00000105122 RASAL3 0.96482554 5.3611842 232.773114 1.48E-52 6.01E-52 0.9632847 2.85714286 97.1428571 RASAL3 1.18224767 5.60882884 287.862055 1.45E-64 9.14E-64 1.16983556 2.77777778 97.2222222 ENSG0000106615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.989527 97.1428571 2.85714286 RHEB -0.6055937 5.28523971 77.1492033 1.59E-18 4.17E-18 -0.6934036 100 0 ENSG00000124224 PPP4RIL 0.96781832 5.24831576 232.320604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4RIL 0.96781832 5.24831576 232.320604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4RIL 0.56032588 4.91515828 63.6552014 1.48E-15 3.58E-15 0.5345422 2.77777778 97.2222222 ENSG00000188295 2NF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-40 -1.1679151 100 0 | | | | | | | | | | 0 | | | | | | | | | | | ENSG00000106615 RHEB -0.9706857 5.24632053 232.475635 1.72E-52 6.97E-52 -0.989527 97.1428571 2.85714286 RHEB -0.6055937 5.28523971 77.1492033 1.59E-18 4.17E-18 -0.6934036 100 0 ENSG00000124224 PPP4R1L 0.96781832 5.24831576 232.320604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4R1L 0.56032588 4.91515828 63.6552014 1.48E-15 3.58E-15 0.5345422 2.77777778 97.2222222 ENSG00000188295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-40 -1.1679151 100 0 | ENSG00000124224 PPP4R1L 0.96781832 5.24831576 232.320604 1.86E-52 7.53E-52 1.04406363 0 100 PPP4R1L 0.56032588 4.91515828 63.6552014 1.48E-15 3.58E-15 0.5345422 2.77777778 97.2222222 ENSG00000188295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-40 -1.1679151 100 0 | | | | | | | | | | | | | | | | | | | 97.222222 | | ENSG00000188295 ZNF669 -1.191857 3.38651481 232.043904 2.14E-52 8.64E-52 -1.1499879 100 0 ZNF669 -1.1592464 3.32696194 180.89589 3.09E-41 1.38E-40 -1.1679151 100 0 | | | | | | | | | | | | | | | | | | | 0 | | | | | | | | | | | _ | 100 | | | | | | | | | 97.222222 | | ENSG00000187650 VMAC 1.27552154 2.92257056 229.806934 6.57E-52 2.65E-51 1.21824754 0 100 VMAC 0.83602847 2.57101181 74.3949473 6.40E-18 1.65E-17 0.74403256 5.55555556 94.4444444 | | | | | | | | | | 0 | | | | | | | | | 0 | | | ENSG00000187650 | VMAC | 1.2755215 | 4 2.92257056 | 229.806934 | 6.57E-52 | 2.65E-51 | 1.21824754 | 0 | 100 | VMAC | 0.83602847 | 2.57101181 | 74.3949473 | 6.40E-18 | 1.65E-17 | 0.74403256 | 5.5555556 | 94.444444 | | ENSG00000176624 | MEX3C | -0.9273303 7. | 1770204E | 220 666011 | 7.05E-52 | 2 0/15 51 | -0.8232212 | 100 | 0 | MEX3C | 0.62407 | 7 10127200 | 88.2604441 | 5.74E-21 | 1.63E-20 | -0.667225 | 100 | al | |------------------------------------|--------------|---------------|-----------|------------|----------------------|-----------|------------|------------|------------|--------------|---------|------------|------------|----------------------|----------------------|------------|------------|------------| | ENSG00000176624 | MBTPS1 | 0.92795662 6. | | | 7.05E-52
7.34E-52 | | 1.00751377 | 0 | | MBTPS1 | | | 141.450974 | 1.28E-32 | | 0.78443289 | 100 | 100 | | ENSG00000140943 | HPS4 | 0.95041533 5. | | | 7.54E-52
7.52E-52 | | 0.9968479 | 0 | | HPS4 | | | 155.870623 | 9.04E-36 | | 0.7506516 | 0 | 100 | | ENSG00000100099 | CTSA | -0.9876803 5. | | | 1.21E-51 | | | • | | CTSA | | | 76.9506276 | 1.75E-18 | | -0.8394418 | 75 | 25 | | ENSG000000101452 | DHX35 | 1.00941381 4. | | | 1.21E-51
1.29E-51 | | 1.06040432 | 0 | | DHX35 | | | 219.616402 | 1.10E-49 | | 0.92341901 | 73 | 100 | | ENSG00000101432 | TMX3 | 1.00341381 4. | | | 1.35E-51 | | 1.06063642 | 0 | | TMX3 | | | 144.612145 | 2.61E-33 | 9.95E-33 | | 2.77777778 | | | ENSG00000100479 | GIGYF2 | 0.94526689 5. | | 227.8688 | 1.74E-51 | | 0.93956336 | 0 | | GIGYF2 | | 5.42923398 | | 7.47E-25 | | | 2.77777778 | | | ENSG00000204120 | TBC1D5 | -1.0011862 4. | | | 2.09E-51 | | -0.8136261 | 100 | | TBC1D5 | | | 266.92468 | 5.31E-60 | 3.13E-59 | -1.220931 | 100 | 0 | | ENSG00000131374 | DDOST | -0.936821 6. | | | 2.39E-51 | | -0.8130201 | 100 | | DDOST | | | 92.8832272 | 5.55E-22 | | | 97.2222222 | 2 7777778 | | ENSG00000244038 | HKR1 | 1.00246733 4. | | | 2.47E-51 | | 0.99880961 | 0 | 100 | | | | 243.111509 | 8.25E-55 | | 1.09528147 | 0 | 100 | | ENSG00000131236 | CAP1 | -0.926705 7. | | | 2.72E-51 | | -0.7784789 | 100 | | CAP1 | | | 122.75636 | 1.58E-28 | | -0.8090483 | 100 | 100 | | ENSG00000131230 | PBXIP1 | 0.9178039 7. | | | 3.67E-51 | | 0.97577709 | 0 | | PBXIP1 | | 7.59430867 | | 1.08E-33 | | 0.72983498 | 100 | 100 | | ENSG00000103340 | DCHS1 | 0.94761171 5. | | | 4.51E-51 | | 0.96007127 | 0 | | DCHS1 | | | 314.402182 | 2.40E-70 | | | 2.77777778 | | | ENSG00000100341 | RP11-285F7.2 | 1.82285142 0. | | | 4.71E-51 | | 1.92003849 | 0 | | RP11-285F7.2 | | | | 4.15E-15 | | | 5.55555556 | | | ENSG00000242801 | HN1 | -1.1130408 3. | | | 4.71E-51
4.86E-51 | | | 97.1428571 | | HN1 | | 3.94982733 | | 2.40E-12 | | | 88.8888889 | | | ENSG00000162971 | TYW5 | 0.97742656 4. | | | 6.10E-51 | | | 2.85714286 | | TYW5 | | 4.85451234 | | 2.40E-12
2.08E-40 | | | 5.5555556 | | | ENSG00000182971 | NA | -1.2911949 2. | | 224.86035 | 7.88E-51 | | -1.2552981 | 100 | | NA . | | 2.90961866 | | 7.06E-10 | 1.39E-09 | | | | | ENSG00000184880 | SNX10 | -1.1076878 3. | | | 8.95E-51 | | | | 5.71428571 | | | 3.7509824 | | 3.75E-69 | | -1.4308383 | 100 | 11.1111111 | | ENSG00000088300 | RAB1A | -0.9239202 | | | 1.00E-50 | | -0.8614102 | 100 | | RAB1A | | | 148.951825 | 2.94E-34 | | -0.8622492 | 100 | 0 | | ENSG00000138009 | TSPYL4 | 0.93388965 5. | | | 1.00E-50 | | 0.98154964 | 0 | | TSPYL4 | | | 274.313918 | 1.30E-61 | | 1.09189783 | 0 | 100 | | ENSG00000187189 | PAFAH1B2 | -0.9305759 | | | 1.00E-50
1.09E-50 | | -0.9309513 | 100 | | PAFAH1B2 | | 5.98819992 | | 2.94E-23 | | -0.7191134 | 100 | 100 | | ENSG00000108032 | GTF3C3 | 1.02789432 4. | | | 1.31E-50 | | 1.10827782 | 0 | | GTF3C3 | | | 133.921785 | 5.68E-31 | | | 2.7777778 | 07 222222 | | ENSG00000119041
ENSG00000171608 | PIK3CD | 0.91040444 8. | | 223.82164 | 1.33E-50 | | 0.94799397 | 0 | | PIK3CD | | 7.92670729 | | 6.36E-19 | | | 2.77777778 | | | ENSG00000171008 | COMMD5 | -1.1389803 | | | 1.39E-50 | | -1.005337 | 100 | | COMMD5 | | | 76.5720602 | 2.12E-18 | | -0.7528527 | 100 | 0 | | ENSG00000170819 | GUCD1 | -0.9195036 6. | | | 1.39E-30
1.44E-50 | | -0.8633881 | 100 | | GUCD1 | | 6.61195108 | | 1.20E-32 | | -0.7328327 | 100 | 0 | | ENSG00000138867
ENSG00000235655 | H3F3AP4 | -1.011468 4. | | | 1.54E-50 | | -0.9911011 | 100 | | H3F3AP4 | | | 77.0860998 | 1.64E-18 | 4.31E-32
4.31E-18 | | 97.2222222 | 2 7777770 | | ENSG00000233633 | FAM118A | 0.93989078 5. | | | 1.54E-50
1.56E-50 | | 0.97638454 | 0 | | FAM118A | | | 162.020272 | 4.10E-37 | 1.68E-36 | 0.8658728 | 0 | 100 | | ENSG00000100370 | WDR45B | -0.9268131 6. | | | 2.24E-50 | | -0.8118652 | 100 | | WDR45B | | | 48.3262119 | 3.61E-12 | | | 91.6666667 | | | ENSG00000141380 | TBC1D10B | -1.041003 4. | | | 3.32E-50 | | -0.9419395 | 100 | | TBC1D10B | | | 45.4588573 | 1.56E-11 | 3.27E-11 | | 94.444444 | | | ENSG00000103221 | AVPI1 | -1.3137209 2. | | | 3.92E-50 | | | | 2.85714286 | | | | 59.9734955 | 9.61E-15 | | | 88.8888889 | | | ENSG00000119988 | DYNLT1 | 0.97589883 4. | | | 4.35E-50 | | 1.01320133 | 0 | | DYNLT1 | | 4.54890782 | | 5.07E-19 | | | 13.8888889 | | | ENSG00000140423 | SPAST | -1.020595 4. | | | 4.85E-50 | | -0.8157973 | 100 | | SPAST | | | 81.6868603 | 1.59E-19 | | | 94.444444 | | | ENSG00000021574 | DENND1A | -0.9676624 4. | | | 4.90E-50 | | -0.8321548 | 100 | | DENND1A | | 4.87151665 | | 8.81E-43 | | -1.0030283 | 100 | 0.55555550 | | ENSG00000115322 | ATG16L1 | 0.9212464 6. | | | 5.15E-50 | | 0.96996593 | 0 | | ATG 16L1 | | | 226.960098 | 2.74E-51 | 1.45E-50 | 0.9357809 | 0 | 100 | | ENSG00000135926 | TMBIM1 | -0.9207173 6. | | | 6.19E-50 | | -0.8385814 | 100 | | TMBIM1 | | 6.17959205 | | 2.35E-59 | | -1.1051468 | 100 | 0 | | ENSG00000133320 | SNN | -0.9171823 6. | | | 6.20E-50 | | -0.7360965 | 100 | | SNN | | 6.92433369 | | 1.90E-27 | | -0.8292792 | 100 | 0 | | ENSG00000103342 | GSPT1 | 0.90632705 7. | | | 7.89E-50 | | 0.94054609 | 0 | - | GSPT1 | | | 277.019099 | 3.35E-62 | | | 2.77777778 | 97 222222 | | ENSG00000115977 | AAK1 | 0.93733659 5. | | | 8.45E-50 | | 1.01355298 | 0 | | AAK1 | | | 85.2996035 | 2.56E-20 | | | 2.77777778 | | | ENSG00000169032 | MAP2K1 | -0.9462511 5. | | 219.93332 | 9.35E-50 | | -0.8884452 | 100 | | MAP2K1 | | | 68.4016706 | 1.33E-16 | | -0.5874134 | 100 | 0 | | ENSG00000256525 | POLG2 | 1.36491333 2. | | | 1.18E-49 | | 1.17711244 | 0 | | POLG2 | | | 106.110286 | 6.97E-25 | | | 2.77777778 | 97.222222 | | ENSG00000185324 | CDK10 | 1.12466447 3. | | 218.46433 | 1.96E-49 | | 1.10190686 | 0 | | CDK10 | | 3.34638581 | | 1.91E-29 | | 0.90587013 | 0 | 100 | | ENSG00000023041 | ZDHHC6 | 0.9945873 4. | | | 2.77E-49 | | 1.02726383 | 0
| | ZDHHC6 | | | 139.027723 | 4.34E-32 | | 0.84464701 | 0 | 100 | | ENSG00000134250 | NOTCH2 | -0.9066431 6. | | | 4.07E-49 | 1.57E-48 | | - | 2.85714286 | | | | 271.727288 | 4.77E-61 | | -1.1559027 | 100 | 0 | | ENSG00000170242 | USP47 | | 7.3139436 | | 4.32E-49 | | 0.96178669 | 0 | | USP47 | | 7.20746537 | | 2.02E-34 | | | | 97.2222222 | | ENSG00000205302 | SNX2 | | | 216.860265 | 4.38E-49 | 1.69E-48 | -0.843577 | 100 | | SNX2 | | 5.89652647 | | 3.91E-22 | | -0.6558142 | 100 | 0 | | ENSG00000182952 | HMGN4 | | 4.0439774 | | 8.97E-49 | | -0.9694841 | 100 | | HMGN4 | | | 78.5808929 | 7.68E-19 | | -0.6806919 | 100 | 0 | | ENSG00000014123 | UFL1 | 0.93094677 5. | | | 1.55E-48 | | 0.93365257 | 0 | 100 | | | | 91.8827258 | 9.20E-22 | | | | 88.8888889 | | ENSG000000172936 | MYD88 | -0.9150672 5. | | | 1.77E-48 | | -0.8237352 | 100 | | MYD88 | | | 86.7151846 | 1.25E-20 | | | | 2.7777778 | | ENSG000000172550 | NDUFAF7 | 1.18509569 3. | | | 2.05E-48 | | 1.26612019 | 0 | | NDUFAF7 | | | 88.9874355 | 3.97E-21 | | 0.77312576 | 0 | 100 | | ENSG00000130559 | CAMSAP1 | -0.9429127 5. | | | 2.27E-48 | | -0.8047964 | 100 | | CAMSAP1 | | | 183.200716 | 9.70E-42 | | -0.8520876 | 100 | 0 | | ENSG00000189077 | TMEM120A | -1.3498645 2. | | | 2.56E-48 | | | | 2.85714286 | | | | 255.917038 | 1.33E-57 | | | 97.2222222 | 2.77777778 | | ENSG00000185946 | RNPC3 | 1.00945908 4. | | | 3.14E-48 | | 1.03019281 | 0 | | RNPC3 | | 4.06179226 | | 3.02E-20 | | | | 91.6666667 | | ENSG00000163041 | H3F3A | -0.8867021 8. | | | 5.91E-48 | | -0.8631726 | 100 | | H3F3A | | | 65.7574211 | 5.10E-16 | | -0.6008785 | 100 | 0 | | | | | | | | | | | - | | | | | | | | 300 | -1 | | ENSG00000130024 | PHF10 | 0.8916886 6.91821733 211.645131 | 6.01E-48 | 2.27E-47 0.95366787 | 0 | 100 PHF10 | 0.58089913 6.64102478 73.7604712 | 8.82E-18 | 2.26E-17 0.57499 | 102 11 1111111 | 00 0000000 | |--------------------------------------|---------------------------|--|----------------------|--|------------|--------------------------------|---|----------------------|--------------------------------------|---------------------------|------------| | ENSG00000130024 | ZDHHC2 | -1.0223064 4.11110716 211.385502 | 6.85E-48 | 2.59E-47 -0.9086521 | 100 | 0 ZDHHC2 | -0.8428251 4.16622606 121.748133 | 2.62E-28 | 8.90E-28 -0.7977 | | | | ENSG00000104219 | TBL1XR1 | 0.91022344 5.78115607 211.188774 | 7.56E-48 | 2.85E-47 0.94374118 | 0 | 100 TBL1XR1 | 1.02404583 5.83047679 221.677301 | 3.90E-50 | 2.01E-49 0.90328 | | | | ENSG00000177303 | ZNF281 | -0.9142969 5.52092245 210.842877 | 8.99E-48 | 3.39E-47 -0.8746829 | 100 | 0 ZNF281 | -0.8114419 5.49216433 140.029092 | 2.62E-32 | 9.80E-32 -0.8191 | | | | ENSG00000102702 | LONP2 | 0.90624333 5.73005579 210.833282 | 9.04E-48 | 3.41E-47 0.92152252 | 0 | 100 LONP2 | 0.57661205 5.45818013 71.0196813 | 3.54E-17 | 8.94E-17 0.52989 | | | | ENSG00000102910 | CCDC6 | -0.8982172 6.21245986 210.741702 | 9.46E-48 | 3.56E-47 -0.8681963 | 100 | 0 CCDC6 | -0.7578143 6.19107651 125.748822 | 3.49E-29 | 1.21E-28 -0.8344 | | | | ENSG00000108091 | NCKAP5L | -1.0411357 4.04546855 210.630596 | 1.00E-47 | 3.77E-47 -1.014265 | 100 | 0 NCKAP5L | -0.9322909 4.07431742 143.617531 | 4.31E-33 | | 712 97.2222222 | | | ENSG00000197500 | CASP4 | -0.9077864 5.62207045 210.622028 | 1.00E-47 | 3.78E-47 -0.7945656 | 100 | 0 CASP4 | -0.4661429 5.75740506 47.2667392 | 6.20E-12 | 1.32E-11 -0.5193 | | | | ENSG00000196934 | CDC23 | 0.99386888 4.32085329 210.384896 | 1.13E-47 | 4.26E-47 1.01867851 | 0 | 100 CDC23 | 0.88702529 4.21344385 137.06521 | 1.17E-31 | 4.28E-31 0.83623 | | | | ENSG00000094880 | C9orf89 | -0.9164756 5.51258885 210.337257 | 1.15E-47
1.16E-47 | 4.36E-47 -0.7940537 | _ | | -0.805851 5.55351814 136.502144 | 1.17E-31
1.55E-31 | | | | | | TMED7 | | 1.16E-47
1.64E-47 | | 100 | 0 TMED7 | | 7.24E-30 | 2.55E-29 -0.711 | 407 97.2222222 | | | ENSG00000134970 | CTDSP1 | -0.9029143 5.78211868 209.648809 | 1.94E-47 | 6.15E-47 -0.8381183 | | | -0.7777974 5.79125774 128.869986 | 3.10E-48 | | | | | ENSG 00000144579
ENSG 00000069399 | BCL3 | -0.9250452 5.14319077 209.31664
-0.8894937 6.58132755 208.862726 | 2.43E-47 | 7.26E-47 -0.8642611
9.10E-47 -0.8384494 | 100
100 | 0 CTDSP1
0 BCL3 | -1.0314236 5.07002006 212.96444
-0.8992312 6.54063386 175.133722 | 5.60E-40 | 1.55E-47 -1.1289
2.44E-39 -0.8933 | | | | | | | | | | | | | | | | | ENSG00000118454 | ANKR D13C
RP11-73E17.2 | 0.90911494 5.40037591 208.77356 | 2.54E-47 | 9.52E-47 0.98287297 | 0
100 | 100 ANKRD13C
0 RP11-73E17.2 | 0.83909553 5.30801312 148.17817 | 4.34E-34 | 1.68E-33 0.71750 | | | | ENSG00000258738 | | -1.1843995 3.05433175 208.437461 | 3.01E-47 | 1.13E-46 -1.0693017 | | | -1.0319678 3.02909782 131.367292 | 2.06E-30 | 7.34E-30 -0.9805 | | | | ENSG00000164430 | MB21D1 | -1.1556693 3.20575903 207.71853 | 4.32E-47 | 1.61E-46 -1.0626838 | 100 | 0 MB21D1 | -1.1998088 3.18259037 181.825239 | 1.94E-41 | 8.68E-41 -1.2654 | | | | ENSG00000154102 | C16orf74 | -1.4874949 1.60829625 207.641642 | 4.49E-47 | 1.68E-46 -1.3631419 | 100 | 0 C16orf74 | -1.5508847 1.47660854 166.459229 | 4.39E-38 | 1.84E-37 -1.6799 | | | | ENSG00000231025 | RP11-175019.4
TTC14 | -1.0956004 3.55287043 207.373962 | 5.14E-47 | 1.91E-46 -1.0065737 | 100 | 0 RP11-175019. | -0.5374273 3.70791092 44.6303752 | 2.38E-11
2.59E-37 | 4.96E-11 -0.5417 | | | | ENSG00000163728 | | 0.97479289 4.46099864 207.286765 | 5.37E-47 | 2.00E-46 1.10932209 | 0 | 100 TTC14 | 0.95564813 4.37623148 162.933184 | | 1.06E-36 0.93128 | | | | ENSG00000083937 | CHMP2B | -0.900197 5.65957146 207.122595 | 5.83E-47 | 2.17E-46 -0.8532367 | 100 | 0 CHMP2B | -0.7108134 5.67007758 108.088201 | 2.57E-25
1.03E-87 | 8.17E-25 -0.7402 | | | | ENSG00000105810 | CDK6 | -0.9293338 4.97654364 206.776732 | 6.94E-47 | 2.58E-46 -0.8342928 | 100 | 0 CDK6 | -1.45723 4.72883973 394.153135 | | 8.56E-87 -1.4542 | | | | ENSG00000112303 | VNN2 | -1.1604566 3.30327442 206.215848 | 9.19E-47 | 3.41E-46 -0.9042949 | | | -1.1145509 3.28761604 155.947809 | 8.69E-36 | 3.48E-35 -1.2517 | | | | ENSG00000109861 | CTSC | -0.9255242 5.06241352 205.281192 | 1.47E-46 | 5.45E-46 -0.715499 | 100 | 0 CTSC | -1.0763381 5.00916323 229.791356 | 6.62E-52 | 3.52E-51 -1.0234 | | | | ENSG00000184014 | DENND5A | -0.886682 6.59904661 204.956146 | 1.73E-46 | 6.41E-46 -0.7842062 | 100 | 0 DENND5A | -1.4884402 6.37282842 464.962085 | 4.00E-103 | 3.83E-102 -1.4438 | | | | ENSG00000268218 | AC137932.4 | 1.19596006 2.99964832 204.692235 | 1.98E-46 | 7.31E-46 1.21522537 | 0 | 100 AC137932.4 | 1.66607438 3.27111168 348.586099 | 8.61E-78 | 6.35E-77 1.74156 | | | | ENSG00000167460 | TPM4 | -0.8830889 6.6297016 204.645096 | 2.02E-46 | 7.48E-46 -0.8331723 | 100 | 0 TPM4 | -1.1968874 6.47941742 302.984112 | 7.37E-68 | 4.90E-67 -1.2052 | | | | ENSG00000169914 | OTUD3 | 0.93903594 4.7281425 204.086972 | 2.68E-46 | 9.89E-46 0.95473621 | 0 | 100 OTUD3 | 1.03514428 4.69490283 204.800698 | 1.87E-46 | 9.10E-46 0.87819 | | | | ENSG00000164048 | ZNF589 | 1.04900729 3.80826524 204.041855 | 2.74E-46 | 1.01E-45 1.03037183 | 0 | 100 ZNF589 | 0.76876241 3.55788345 87.1772877 | 9.92E-21 | 2.79E-20 0.69071 | | | | ENSG00000170471 | RALGAPB | 0.88573889 5.9807294 203.129518 | 4.33E-46 | 1.59E-45 0.95299702 | | 100 RALGAPB | 1.00017189 6.01885861 215.721119 | 7.76E-49 | 3.93E-48 0.97913 | | | | ENSG 00000161920
ENSG 00000161981 | MED11
SNRNP25 | -1.4797049 1.54523539 202.716138
-1.3263764 2.23416796 201.383591 | 5.33E-46 | 1.96E-45 -1.3840595 | 100
100 | 0 MED11
0 SNRNP25 | -1.2628381 1.58553111 118.788757
-0.6165898 2.3767459 37.9093378 | 1.16E-27
7.41E-10 | 3.91E-27 -1.3396 | 573 100
964 88.8888889 | | | | | | 1.04E-45 | 3.81E-45 -1.1712432 | | | | | | | | | ENSG00000204397 | CARD16 | -1.2717008 2.55275598 201.241616 | 1.12E-45
1.15E-45 | 4.09E-45 -1.2034557 | 100
0 | 0 CARD16 | -1.6357414 2.45540115 258.633784 | 3.41E-58
2.23E-25 | 1.97E-57 -1.5865 | | | | ENSG 00000131876
ENSG 00000154589 | SNRPA1
LY96 | 0.87392034 6.47061953 201.180722
-1.4241843 1.78369276 200.949536 | 1.15E-45
1.30E-45 | 4.21E-45 0.88840822
4.73E-45 -1.3799172 | 100 | 100 SNRPA1
0 LY96 | 0.70228735 6.27582775 108.369057
-2.470539 1.55807195 402.559766 | 1.53E-25 | 7.10E-25 0.59471
1.29E-88 -2.4321 | | | | ENSG00000134389 | ZNF844 | -0.986909 4.21324689 200.878429 | 1.34E-45 | 4.89E-45 -0.94613 | 100 | 0 ZNF844 | -1.1633583 4.0889136 224.908992 | 7.69E-51 | 4.01E-50 -1.0772 | | | | ENSG00000223347 | PDPK1 | -0.891506 5.4209578 200.481412 | 1.64E-45 | 5.97E-45 -0.8134658 | 100 | 0 PDPK1 | -0.7899368 5.40227028 132.118403 | 1.41E-30 | 5.05E-30 -0.7932 | | | | ENSG00000140992 | NME1-NME2 | -0.9608317 4.42302404 200.460192 | 1.66E-45 | 6.03E-45 -0.8299269 | 100 | 0 NME1-NME2 | -1.070853 4.35529477 204.08448 | 2.68E-46 | 1.30E-45 -1.077 | | | | ENSG00000243078 | PIK3R4 | 0.95986131 4.39386103 199.977975 | 2.11E-45 | 7.68E-45 0.99377417 | 0 | 100 PIK3R4 | 1.04014157 4.39559851 196.688517 | 1.10E-44 | 5.15E-44 0.91043 | | | | ENSG00000130433 | GANAB | 0.87175847 6.7245598 199.754841 | 2.36E-45 | | _ | 97.1428571 GANAB | 0.78957949 6.61373157 135.154614 | 3.05E-31 | 1.11E-30 0.74727 | | | | ENSG000000112297 | AIM1 | 0.87965694 6.08179225 199.27775 | 3.00E-45 | 1.09E-44 0.88756022 | 2.03/14200 | 100 AIM1 | 0.70678197 5.87273533 108.078203 | 2.58E-25 | 8.21E-25 0.67372 | | | | ENSG00000112237 | C10orf32 | -0.9972655 4.07570295 199.182472 | 3.15E-45 | 1.14E-44 -0.8736583 | 100 | 0 C10orf32 | -0.7637677 4.11299462 99.4992611 | 1.96E-23 | 5.93E-23 -0.7878 | | | | ENSG00000166273 | FBXW2 | 0.88962457 5.39355399 199.001361 | 3.45E-45 | 1.25E-44 0.9523057 | 0 | 100 FBXW2 | 0.59242325 5.18521536 73.2787635 | 1.30E-23
1.13E-17 | 2.88E-17 0.54233 | | | | ENSG00000115402 | PPIB | -0.8730355 6.26867398 198.945601 | 3.55E-45 | 1.29E-44
-0.7815997 | 100 | O PPIB | -0.6780716 6.29856778 100.360578 | 1.27E-23 | 3.86E-23 -0.7719 | | | | ENSG00000133895 | MEN1 | 1.00077667 4.03867699 198.634696 | 4.15E-45 | 1.50E-44 1.10979084 | 0 | 100 MEN1 | 0.9985719 3.97027266 161.453431 | 5.45E-37 | 2.23E-36 0.92578 | | | | ENSG00000133835 | RIF1 | 0.86991016 6.47991704 198.324061 | 4.85E-45 | 1.75E-44 0.92903906 | 0 | 100 RIF1 | 0.81334343 6.34048981 142.838057 | 6.38E-33 | 2.41E-32 0.79651 | | | | ENSG00000198843 | SELT | -0.8593399 6.90161562 197.062226 | 9.14E-45 | 3.30E-44 -0.778109 | 100 | 0 SELT | -0.6470125 6.89886625 91.7838833 | 9.67E-22 | 2.79E-21 -0.6668 | | | | ENSG00000130043 | ARFIP2 | 0.89716128 5.08108406 197.012557 | 9.37E-45 | 3.38E-44 0.98026495 | 0 | 100 ARFIP2 | 0.81618684 4.98167197 135.452999 | 2.63E-31 | 9.57E-31 0.73169 | | | | ENSG00000132234
ENSG00000083099 | LYRM2 | -0.9821238 4.13707698 196.780508 | 1.05E-44 | 3.79E-44 -0.8298174 | 100 | 0 LYRM2 | -0.6315702 4.21048403 70.2382959 | 5.26E-17 | 1.32E-16 -0.6678 | | | | ENSG000000110074 | FOXRED1 | 1.15847812 3.03166573 196.732697 | 1.08E-44 | 3.88E-44 1.25334982 | 0 | 100 FOXRED1 | 1.17228258 2.9974832 166.880849 | 3.55E-38 | 1.49E-37 1.10324 | | | | ENSG00000110074 | ARFGEF1 | 0.87311064 5.74378908 196.295077 | 1.34E-44 | 4.83E-44 0.93363985 | 0 | 100 POXICEDI
100 ARFGEF1 | 0.86292417 5.68632279 159.913119 | 1.18E-36 | 4.81E-36 0.84471 | | | | ENSG000000072501 | SMC1A | 0.8777599 5.63692383 195.898418 | 1.64E-44 | 5.89E-44 0.91482526 | 0 | 100 SMC1A | 0.84518386 5.5840359 151.802228 | 7.00E-35 | 2.76E-34 0.7772 | | | | ENSG00000072301 | CLDN15 | 1.17656156 2.91219375 195.696708 | 1.82E-44 | 6.51E-44 1.22703078 | 0 | 100 CLDN15 | 0.98795807 2.66866005 106.70316 | 5.17E-25 | 1.63E-24 0.84100 | | | | ENSG00000145349 | CAMK2D | -0.8952863 5.12749459 195.470388 | 2.03E-44 | 7.29E-44 -0.7624031 | 100 | 0 CAMK2D | -1.0839673 4.95465041 233.742028 | 9.11E-53 | 4.88E-52 -1.0872 | | | | 5000001.5545 | | 3.3.470300 | 1.002 77 | 0.7024031 | 200 | o d iiiii.Eb | 2.55557 1.55105012 255.742020 | 3.112 33 | | | • | | I | 55,400 | | | | | | | | | | | | | | | | | | |------------------------------------|--------------|------------|--------------------------|------------|----------------------|----------|------------|-------------------|--------------|-------------|------------|--------------------------|------------|----------------------|----------|------------|-------------------------|------------| | ENSG00000112146 | FBXO9 | | 4.77110167 | | 2.19E-44 | | 1.01291885 | 0 | | FBXO9 | | 4.55249551 | | 2.16E-17 | | | 8.33333333 | 91.6666667 | | ENSG 00000060762 | MPC1 | | 3.99769501 | | 2.38E-44 | 8.51E-44 | -0.903878 | 100 | | MPC1 | | 4.03694499 | | 1.51E-23 | | -0.8356968 | 100 | 0 | | ENSG 00000139679 | LPAR6 | | 3.41962941 | | 2.40E-44 | | | | 2.85714286 l | | | 3.05677259 | | 1.75E-195 | | -2.9388513 | 100 | 0 | | ENSG00000159388 | BTG2 | | 8.50347168 | | 3.91E-44 | | | | 2.85714286 | | | 8.47664914 | | 3.28E-29 | | -0.7685296 | 100 | 0 | | ENSG00000213903 | LTB4R | | 4.08388581 | | 3.97E-44 | | 0.99368983 | 0 | 100 (| | | 4.04480335 | | 9.82E-36 | | | | 97.222222 | | ENSG00000142192 | APP | | 6.20055703 | | 4.60E-44 | | | | 2.85714286 | | | 5.82407349 | | 6.43E-195 | | -2.1151144 | 100 | 0 | | ENSG00000136003 | ISCU | | 7.08783562 | | 1.04E-43 | | 0.84509104 | 0 | | SCU | | 7.13903819 | | 7.72E-47 | | 0.89925027 | 0 | 100 | | ENSG00000161203 | AP2M1 | | 6.07639606 | | 1.10E-43 | | -0.7708662 | 100 | | AP2M1 | | 6.14799242 | | 3.87E-17 | | -0.6137578 | 100 | 0 | | ENSG00000102317 | RBM3 | | 9.06109549 | | 1.29E-43 | | -0.7732121 | 100 | | RBM3 | | 9.09879732 | | 1.38E-15 | | -0.5972867 | 100 | 0 | | ENSG00000122971 | ACADS | | 2.24752707 | | 1.32E-43 | | 1.32769669 | 0 | | ACADS | | 2.1244509 | | 8.09E-27 | | | 2.77777778 | 97.222222 | | ENSG00000142230 | SAE1 | | 4.00254461 | | 1.39E-43 | | -0.8912745 | 100 | | SAE1 | | 4.12212352 | | 2.57E-11 | | -0.5042273 | 100 | 0 | | ENSG00000119760 | SUPT7L | | 5.50920571 | | 1.49E-43 | | 0.93864819 | 0 | | SUPT7L | | 5.43835355 | | 1.52E-37 | | 0.81959031 | 0 | 100 | | ENSG00000120725 | SIL1 | | 3.06050202 | | 1.86E-43 | | -1.0810708 | 100 | | SIL1 | | 3.01018512 | | 7.16E-39 | | -1.3168302 | 100 | 0 | | ENSG00000141644 | MBD1 | | 6.01813681 | | 1.91E-43 | | 0.90943993 | 0 | 100 | | | 5.89486571 | | 1.38E-23 | | | 2.77777778 | - | | ENSG00000126088 | UROD | | 4.25675284 | | 1.92E-43 | | 0.95752264 | 0 | | UROD | | 4.03297426 | | 6.63E-19 | | | 5.5555556 | 94.444444 | | ENSG00000243646 | IL10RB | | 3.77279645 | | 2.16E-43 | | -0.9365946 | 100 | | L10RB | | 3.69440362 | | 1.54E-62 | | -1.452891 | 100 | 0 | | ENSG00000131368 | MRPS25 | | 4.46689607 | | 2.25E-43 | | 0.93900757 | 0 | | MRPS25 | | 4.33489838 | | 1.32E-30 | | 0.74010905 | 0 | 100 | | ENSG00000101856 | PGRMC1 | | 4.42471211 | | 2.35E-43 | | -0.8723269 | 100 | | PGRMC1 | | 4.36492307 | | 1.17E-37 | | -1.0112447 | 100 | 0 | | ENSG00000128739 | SNRPN | | 2.18466385 | | 2.40E-43 | | 1.33870151 | 0 | | SNRPN | | 2.23149214 | | 3.91E-43 | | 1.41513917 | 0 | 100 | | ENSG00000148399 | DPH7 | | 4.64184088 | | 3.37E-43 | | 0.97389533 | 0 | 100 | | | 4.55735065 | | 7.22E-32 | | 0.70246683 | 0 | 100 | | ENSG00000167394 | ZNF668 | | 2.92659488 | | 3.44E-43 | | -1.2711322 | 100 | | ZNF668 | | 3.02351763 | | 3.54E-16 | | | 94.444444 | | | ENSG00000104969 | SGTA | | 5.53134345 | | 3.78E-43 | | -0.864006 | 100 | | SGTA | | 5.64342156 | | 2.18E-12 | | | 97.2222222 | | | ENSG00000176953 | NFATC2IP | | 5.29571627 | | 4.57E-43 | | 0.85999733 | 0 | | NFATC2IP | | 5.16631767 | | 5.07E-29 | | | 2.77777778 | | | ENSG00000101040 | ZMYND8 | | 4.19255969 | | 5.37E-43 | | 1.01972202 | 0 | | ZMYND8 | | 3.85684659 | | 6.67E-14 | | | 5.5555556 | | | ENSG00000031698 | SARS | | 5.60801956 | | 5.51E-43 | | 0.96186539 | | 100 5 | | | 5.63496258 | | 1.58E-44 | | 0.92325022 | 0 | 100 | | ENSG00000130313
ENSG00000172354 | PGLS
GNB2 | | 4.41691106
6.27476403 | | 5.74E-43
7.24E-43 | | -0.9071576 | 100
97.1428571 | | PGLS | | 4.39009402
6.34904804 | | 9.19E-35
3.14E-19 | | | 97.222222
91.6666667 | | | ENSG00000172334
ENSG00000100564 | PIGH | | 4.19436905 | | 7.24E-43
7.27E-43 | | 1.04152315 | 97.1428571 | 100 | | | 4.14098513 | | 5.14E-19
5.13E-37 | | 0.89490217 | 91.0000007 | | | ENSG00000100364
ENSG00000120662 | MTRF1 | | 2.82855827 | | 7.27E-43
7.72E-43 | | 1.19765301 | 0 | | MTRF1 | | 2.47023625 | | 4.25E-17 | | | 2.77777778 | 100 | | ENSG00000120662
ENSG00000121691 | CAT | | 4.14351422 | | 7.72E-43
7.76E-43 | | | - | 2.85714286 | | | 4.12661871 | | 2.70E-28 | | -0.8782642 | 100 | 91.222222 | | ENSG00000121691 | TET3 | | 6.97989149 | | 7.76E-43
7.88E-43 | | -0.9157421 | 100 | | TET3 | | 6.99469732 | | 4.15E-20 | | | 94.4444444 | 5 5555556 | | ENSG00000187003 | COG4 | | 3.30254008 | | 9.49E-43 | | 1.16006161 | 0 | 100 | | | 3.11141772 | | 9.06E-21 | | | 5.55555556 | | | ENSG00000103031 | RARS2 | | 4.11645033 | | 9.49E-43
9.66E-43 | | 1.0248067 | 0 | | RARS2 | | 3.89787052 | | 1.68E-18 | | 0.63777643 | 0.55555556 | 100 | | ENSG00000140282 | KIAA2013 | | 4.31082869 | | 1.03E-42 | | | 97.1428571 | | KIAA2013 | | 4.35461536 | | 3.11E-22 | | | 97.2222222 | | | ENSG00000110003 | KDM1B | | 3.72353701 | | 1.23E-42 | | -0.8656984 | 100 | | KDM1B | | 3.68036598 | | 2.12E-37 | | -1.1058953 | 100 | 0 | | ENSG00000105097 | S100PBP | | 3.72968928 | | 1.34E-42 | | 1.09591569 | 0 | | S100PBP | | 3.48671853 | | 3.94E-18 | | 0.55348493 | 100 | 100 | | ENSG00000110437 | CTB-31O20.4 | | 4.04057424 | | 1.80E-42 | | 0.91340094 | 0 | | CTB-31O20.4 | | | | 3.14E-48 | | | 2.77777778 | | | ENSG00000272501 | XXbac-BPG299 | | 3.11942232 | | 2.49E-42 | | 1.13960004 | 0 | | | | 2.8188319 | | 7.20E-16 | | | 5.55555556 | | | ENSG00000152127 | MGAT5 | | 6.45802229 | | 3.81E-42 | | -0.7865191 | 100 | | MGAT5 | | 6.40383066 | | 1.17E-29 | | -0.8292408 | 100 | 0 | | ENSG00000132127 | TRIM28 | | 7.69403402 | | 4.19E-42 | | 0.86623864 | 0 | | TRIM28 | | 7.7370206 | | 4.84E-51 | | 0.93510714 | 0 | 100 | | ENSG00000048471 | SNX29 | | 6.4684337 | | 4.41E-42 | | | - | 2.85714286 | | | 6.21915656 | | 1.65E-75 | | -1.3133469 | 100 | 0 | | ENSG00000042445 | RETSAT | | 2.96268344 | | 4.53E-42 | | 1.13793824 | 0 | | RETSAT | | 2.97259196 | | 2.50E-45 | | 1.26354709 | 0 | 100 | | ENSG00000160588 | MPZL3 | | 4.40178828 | | 4.95E-42 | | | - | 97.1428571 | | | 4.47562158 | | 5.97E-49 | | | 2.77777778 | | | ENSG00000092010 | PSME1 | | 6.84513984 | | 5.03E-42 | | -0.7789526 | 100 | | PSME1 | | 6.9340204 | | 2.29E-15 | | | | 2.7777778 | | ENSG00000170266 | GLB1 | | 3.15370634 | | 5.10E-42 | | -1.0001908 | 100 | | GLB1 | | 2.99366825 | | 1.71E-94 | | -2.0953747 | 100 | 0 | | ENSG00000007923 | DNAJC11 | | 3.9433131 | | 5.38E-42 | | 1.03108176 | 0 | | DNAJC11 | | 3.85476398 | | 3.14E-27 | | 0.78217495 | 0 | 100 | | ENSG00000184900 | SUMO3 | | 6.92576228 | | 5.93E-42 | | -0.8298961 | 100 | | SUMO3 | | 6.93794241 | | 3.30E-22 | | -0.6911452 | 100 | 0 | | ENSG00000100528 | CNIH1 | | 5.24208903 | | 8.24E-42 | | -0.8597432 | 100 | | CNIH1 | | 5.15292152 | | 2.14E-41 | | -0.9330935 | 100 | o | | ENSG00000129933 | MAU2 | | 6.84783747 | | 8.93E-42 | | 0.89706961 | 0 | | MAU2 | | 6.81899151 | | 6.54E-35 | | 0.75091064 | 0 | 100 | | ENSG00000156804 | FBXO32 | | 4.94636734 | | 9.07E-42 | | 0.85301994 | 0 | | FBXO32 | | 4.97693774 | | 6.93E-43 | | | 2.77777778 | | | ENSG00000163510 | CWC22 | | 4.94088323 | | 9.75E-42 | | 0.95139288 | 0 | | CWC22 | | 4.80600234 | | 1.97E-27 | | 0.67175799 | 0 | 100 | | ENSG00000143761 | ARF1 | | 8.52710798 | | 1.16E-41 | | -0.8309242 | 100 | | ARF1 | | 8.58960672 | | 3.00E-12 | | -0.5328546 | 100 | 0 | | ENSG00000170260 | ZNF212 | 0.94171414 | 4.2234206 | 182.741367 | 1.22E-41 | 4.17E-41 | 0.89081906 | 2.85714286 | 97.1428571 | ZNF212 | 1.17425795 | 4.35195678 | 243.139563 | 8.13E-55 | 4.48E-54 | 1.07845121 | 0 | 100 | | • | | | | | _ | - | | | | | | | | | | | | - | | ENSG00000178188 | SH2B1 | 0.85378007
5.2953401 181.866071 | 1.90E-41 | 6.46E-41 0.93844805 | . 0 | 100 SH2B1 | 0.69278486 5.14474814 98.9061501 | 2.65E-23 | 7.97E-23 0.59124946 2.77777778 97.2222222 | |--------------------------------------|-----------------|----------------------------------|----------------------|--|------------|--------------------------|---|----------------------|--| | ENSG00000178188 | NDUFV1 | 0.84592227 5.78338134 181.62524 | 2.14E-41 | 7.29E-41 0.82348423 | | 100 SH2B1 | 0.83650847 5.72843329 147.488121 | 6.14E-34 | 2.36E-33 0.78144444 2.77777778 97.2222222 | | ENSG00000107732 | MT-ATP8 | -0.8235457 8.93973567 181.539202 | 2.14E-41
2.24E-41 | | | 2.85714286 MT-ATP8 | -0.756632 8.94666172 108.822773 | 1.77E-25 | 5.67E-25 -0.7772962 94.4444444 5.55555556 | | ENSG00000198520 | C1orf228 | 0.88638618 4.79954987 181.236474 | 2.60E-41 | 8.85E-41 0.80985093 | | 100 C1orf228 | 0.92210799 4.75750645 163.396876 | 2.05E-37 | 8.45E-37 0.72860979 0 100 | | ENSG00000138320 | RBM26 | 0.82788944 6.48502949 180.880948 | 3.11E-41 | 1.06E-40 0.92400139 | | 100 C10/1228 | 0.58429709 6.28511645 74.9827663 | 4.75E-18 | 1.23E-17 0.51550012 8.33333333 91.6666667 | | ENSG00000139746 | ANKR D52 | 0.83829309 5.79985207 180.606725 | 3.57E-41 | 1.21E-40 0.93680498 | | 100 KBM26
100 ANKRD52 | 0.93793329 5.79870118 187.968259 | 8.83E-43 | 4.03E-42 0.85046829 5.5555556 94.4444444 | | ENSG00000139643 | CDK2 | 1.14096591 2.8725816 179.508788 | 6.20E-41 | 2.10E-40 0.93680498 | | 100 AN KND52
100 CDK2 | 1.00321156 2.68911975 110.161911 | 9.03E-26 | 2.90E-25 0.84364664 0 100 | | | | | | | | | | | | | ENSG00000146066 | HIGD2A
HAUS6 | -0.8550355 5.08544242 178.783011 | 8.94E-41 | 3.02E-40 -0.7755568 | | 0 HIGD2A
100 HAUS6 | -0.4840229 5.18604987 48.738472 | 2.92E-12
1.92E-24 | 6.32E-12 -0.5764251 91.6666667 8.33333333
5.94E-24 0.68046608 2.77777778 97.2222222 | | ENSG00000147874 | | 0.8408796 5.42310163 178.765608 | 9.01E-41 | 3.05E-40 0.87603977 | | | 0.70606191 5.28447126 104.103009 | | | | ENSG 00000105677
ENSG 00000134686 | TMEM147
PHC2 | -1.0123885 3.57849952 178.754595 | 9.06E-41
1.04E-40 | 3.06E-40 -0.95345
3.51E-40 -0.7066528 | | 0 TMEM147
0 PHC2 | -0.5391567 3.69528996 44.4278338
-0.6892343 6.32133466 103.77109 | 2.64E-11
2.27E-24 | 5.49E-11 -0.614103 91.6666667 8.33333333
7.01E-24 -0.7040086 100 0 | | | | -0.8264782 6.2982076 178.479963 | | | | | | | | | ENSG00000154889 | MPPE1 | 0.90237036 4.42811873 178.459439 | 1.05E-40 | 3.55E-40 0.95838523 | | 100 MPPE1 | 0.85535018 4.33812508 132.344553 | 1.26E-30 | 4.52E-30 0.81400063 0 100 | | ENSG00000176973 | FAM89B | -1.3351388 1.78051458 178.152027 | 1.23E-40 | 4.13E-40 -1.3724921 | | 0 FAM89B | -1.2880734 1.74497057 128.302106 | 9.64E-30 | 3.39E-29 -1.2686294 100 0 | | ENSG00000078369 | GNB1 | -0.8137306 7.52226723 178.148221 | 1.23E-40 | 4.14E-40 -0.6548685 | | 0 GNB1 | -0.7400086 7.52025805 117.741187 | 1.98E-27 | 6.59E-27 -0.8018465 100 0 | | ENSG00000167699 | GLOD4 | 0.83992204 5.38746364 177.89063 | 1.40E-40 | 4.70E-40 0.89296203 | | 100 GLOD4 | 0.66693357 5.23351404 93.0273119 | 5.16E-22 | 1.50E-21 0.56303293 0 100 | | ENSG00000135968 | GCC2 | 0.813253 7.23325018 177.833568 | 1.44E-40 | 4.84E-40 0.88418237 | | 100 GCC2 | 0.52145249 7.00279318 59.3540996 | 1.32E-14 | 3.09E-14 0.5390016 8.33333333 91.6666667 | | ENSG00000047932 | GOPC | 0.87150841 4.75654853 177.541901 | 1.67E-40 | 5.59E-40 0.90022004 | | 100 GOPC | 0.58567773 4.55262734 64.9022133 | 7.87E-16 | 1.91E-15 0.55955356 11.1111111 88.8888889 | | ENSG00000133606 | MKRN1 | -0.8121492 7.26682432 177.193931 | 1.99E-40 | 6.66E-40 -0.778824 | | 0 MKRN1 | -0.5860149 7.29556187 75.0309985 | 4.63E-18 | 1.20E-17 -0.6394143 100 0 | | ENSG00000121022 | COPS5 | 0.84490202 5.20263734 177.187679 | 1.99E-40 | 6.67E-40 0.94934696 | | 100 COPS5 | 0.74936084 5.08694611 115.954964 | 4.86E-27 | 1.60E-26 0.66402847 0 100 | | ENSG00000182979 | MTA1 | 0.84506492 5.31903929 177.117985 | 2.06E-40 | 6.91E-40 0.95921608 | | 100 MTA1 | 0.6824417 5.1505723 94.8311692 | 2.07E-22 | 6.09E-22 0.50813103 5.5555556 94.4444444 | | ENSG00000103197 | TSC2 | 0.85772788 5.00886107 176.541277 | 2.76E-40 | 9.22E-40 0.94655931 | | 100 TSC2 | 0.77569088 4.86775908 117.713613 | 2.00E-27 | 6.68E-27 0.68321635 5.5555556 94.4444444 | | ENSG00000149554 | CHEK1 | 1.0236714 3.45962151 176.363207 | 3.02E-40 | 1.01E-39 1.0591546 | | 100 CHEK1 | 1.08507778 3.42575205 163.292363 | 2.16E-37 | 8.90E-37 1.01902183 0 100 | | ENSG00000065911 | MTHFD2 | -0.9119826 4.32079742 175.998489 | 3.62E-40 | 1.21E-39 -0.9087596 | | | -0.8708546 4.2483781 132.283446 | 1.30E-30 | 4.66E-30 -0.9000678 97.2222222 2.77777778 | | ENSG 00000166188 | ZNF319 | -0.973282 3.7844872 175.764412 | 4.08E-40 | 1.36E-39 -0.8686533 | | 0 ZNF319 | -0.7659997 3.83168404 93.4177406 | 4.23E-22 | 1.23E-21 -0.8996261 100 0 | | ENSG00000138801 | PAPSS1 | -1.1113778 2.91553486 175.438324 | 4.80E-40 | 1.60E-39 -1.0863807 | | 0 PAPSS1 | -1.359853 2.8324201 208.665049 | 2.69E-47 | 1.33E-46 -1.3870773 100 0 | | ENSG 00000169100 | SLC25A6 | -0.8081571 9.33432306 175.031519 | 5.89E-40 | 1.96E-39 -0.7315602 | | 0 SLC25A6 | -0.5137415 9.40310015 50.0337721 | 1.51E-12 | 3.30E-12 -0.5464046 91.6666667 8.33333333 | | ENSG00000134046 | MBD2 | -0.818379 6.07090864 174.251153 | 8.72E-40 | 2.89E-39 -0.7832251 | | 0 MBD2 | -0.9377712 6.02214148 190.026171 | 3.14E-43 | 1.44E-42 -0.9250012 100 0 | | ENSG 00000031823 | RANBP3 | 0.81052435 6.51552061 173.95343 | 1.01E-39 | 3.36E-39 0.85386536 | | 100 RANBP3 | 1.07688866 6.64797183 251.372928 | 1.30E-56 | 7.37E-56 0.98826032 0 100 | | ENSG 00000113732 | ATP6V0E1 | -0.886003 4.50946273 173.823284 | 1.08E-39 | 3.58E-39 -0.6978166 | | 0 ATP6V0E1 | -0.5468427 4.61943077 56.9602218 | 4.45E-14 | 1.03E-13 -0.6156739 94.4444444 5.55555556 | | ENSG 00000125834 | STK35 | 0.83580306 5.26171755 173.600165 | 1.21E-39 | 4.00E-39 0.84006433 | | 100 STK35 | 0.81096668 5.16557506 135.116252 | 3.11E-31 | 1.13E-30 0.67182377 5.5555556 94.4444444 | | ENSG 00000122674 | CCZ1 | 1.04948132 3.23169324 173.099671 | 1.56E-39 | 5.14E-39 1.05714429 | | 100 CCZ1 | 1.09707855 3.1910834 155.879232 | 9.00E-36 | 3.60E-35 1.0046615 0 100 | | ENSG00000102158 | MAGT1 | -0.8267254 5.47339289 172.928919 | 1.70E-39 | 5.60E-39 -0.7436155 | | 0 MAGT1 | -0.6419325 5.49249646 88.052956 | 6.37E-21 | 1.81E-20 -0.6591264 100 0 | | ENSG 00000254909 | RP11-110I1.5 | 2.17860958 -1.1543375 172.865913 | 1.75E-39 | 5.78E-39 2.29967065 | | | 2.19634746 -1.2348556 129.322365 | 5.77E-30 | 2.04E-29 2.34135689 2.77777778 97.2222222 | | ENSG 00000100580 | TMED8 | -0.8669578 4.6705192 172.789397 | 1.82E-39 | 6.00E-39 -0.7013707 | | 0 TMED8 | -0.8261997 4.67103174 131.127046 | 2.32E-30 | 8.26E-30 -0.7355268 100 0 | | ENSG00000100596 | SPTLC2 | -0.8921552 4.37945555 172.337159 | 2.28E-39 | 7.53E-39 -0.7803011 | | 0 SPTLC2 | -0.7866543 4.37032211 113.182592 | 1.97E-26 | 6.40E-26 -0.8420154 100 0 | | ENSG00000143373 | ZNF687 | -0.8134714 6.03059011 172.161579 | 2.50E-39 | 8.22E-39 -0.6791163 | | 0 ZNF687 | -0.7643784 5.99014613 127.402836 | 1.52E-29 | 5.31E-29 -0.8692494 100 0 | | ENSG 00000040633 | PHF23 | -1.2132719 2.33900982 172.045541 | 2.64E-39 | 8.71E-39 -1.1278035 | | | -1.2060123 2.33299913 136.464902 | 1.58E-31 | 5.78E-31 -1.1698689 97.2222222 2.77777778 | | ENSG00000174652 | ZNF266 | 0.81505266 5.78710418 171.300435 | 3.85E-39 | 1.26E-38 0.88810578 | | 100 ZNF266 | 0.8985501 5.77159081 173.156778 | 1.51E-39 | 6.54E-39 0.81895038 2.77777778 97.2222222 | | ENSG 00000142082 | SIRT3 | 1.14184647 2.66390308 170.725821 | 5.14E-39 | 1.69E-38 1.12269884 | | 100 SIRT3 | 1.17922666 2.65495841 148.844764 | 3.10E-34 | 1.20E-33 1.01531596 2.77777778 97.2222222 | | ENSG 00000083535 | PIBF1 | 1.00718977 3.45455498 170.575448 | 5.54E-39 | 1.82E-38 1.04199338 | | 100 PIBF1 | 0.59523962 3.17888926 46.011515 | 1.18E-11 | 2.48E-11 0.56404261 8.33333333 91.6666667 | | ENSG 00000181915 | ADO | -0.8956077 4.29422365 170.440212 | 5.93E-39 | 1.94E-38 -0.8077583 | | | -1.0893931 4.15702166 204.010195 | 2.78E-46 | 1.35E-45 -1.1447307 100 0 | | ENSG00000124466 | LYPD3 | 0.84123036 5.13018682 170.209814 | 6.66E-39 | 2.18E-38 0.89542988 | | | 0.91890821 5.1773428 170.472493 | 5.83E-39 | 2.49E-38 0.99471589 2.77777778 97.2222222 | | ENSG 00000076513 | ANKR D13A | -0.8090886 5.88382887 170.029465 | 7.29E-39 | 2.39E-38 -0.7116433 | | 0 ANKRD13A | -0.7905111 5.8609024 135.763662 | 2.25E-31 | 8.19E-31 -0.8410741 100 0 | | ENSG 00000226479 | TMEM185B | -0.9361878 3.93489308 169.965101 | 7.53E-39 | 2.46E-38 -0.8618959 | | 0 TMEM185B | -0.8030086 3.91882339 105.447872 | 9.74E-25 | 3.04E-24 -0.8559278 100 0 | | ENSG00000149091 | DGKZ | 0.79470538 7.14783947 169.570634 | 9.18E-39 | 3.00E-38 0.89187662 | | 100 DG KZ | 0.59728744 6.98193165 78.2237775 | 9.20E-19 | 2.44E-18 0.56651187 2.77777778 97.2222222 | | ENSG00000099968 | BCL2L13 | -0.9325022 3.9702713 169.565757 | 9.20E-39 | 3.01E-38 -0.8007445 | | 0 BCL2L13 | -1.0813324 3.89584848 187.071752 | 1.39E-42 | 6.30E-42 -1.1155952 100 0 | | ENSG00000137478 | FCHSD2 | -0.8353956 5.12173701 169.386957 | 1.01E-38 | 3.29E-38 -0.7643791 | | 0 FCHSD2 | -1.0526883 4.92395069 217.352192 | 3.42E-49 | 1.74E-48 -1.1231971 100 0 | | ENSG00000172500 | FIBP | -0.9679472 3.69940811 169.017459 | 1.21E-38 | 3.96E-38 -0.9230196 | | 0 FIBP | -0.6620596 3.75706346 67.9304022 | 1.69E-16 | 4.21E-16 -0.7692966 94.4444444 5.55555556 | | ENSG00000131015 | ULBP2 | 1.34093805 1.87231428 169.005008 | 1.22E-38 | 3.98E-38 1.2270599 | | 100 ULBP2 | 1.56545509 1.78894625 179.637462 | 5.82E-41 | 2.59E-40 1.56897542 8.33333333 91.6666667 | | ENSG00000185262 | UBALD2 | -0.7898954 7.81160399 167.779879 | 2.26E-38 | 7.34E-38 -0.8390092 | | | -0.7722078 7.71229973 127.087808 | 1.78E-29 | 6.22E-29 -0.838055 100 0 | | ENSG00000132646 | PCNA | 0.83420063
5.39010856 167.75919 | 2.28E-38 | 7.41E-38 0.90659668 | | | 1.35026056 5.60915093 371.97927 | 6.94E-83 | 5.43E-82 1.27835322 5.5555556 94.4444444 | | ENSG00000111203 | ITFG2 | 0.8766386 4.44896238 167.757277 | 2.29E-38 | 7.41E-38 0.89577203 | | 100 ITFG2 | 0.77475887 4.33101595 107.694788 | 3.14E-25 | 9.92E-25 0.69824807 2.77777778 97.2222222 | | ENSG 00000270589 | RP11-348N5.7 | 1.28296569 1.86079259 166.737987 | 3.82E-38 | 1.24E-37 1.24295689 | 2.85714286 | 97.1428571 RP11-348N5.7 | 1.43788293 1.89465184 168.072068 | 1.95E-38 | 8.22E-38 1.36287857 0 100 | | ENSG00000005022 | SLC25A5 | -0.7867459 7.37467872 166.701707 | 3.89E-38 | 1.26E-37 -0.762934 | 100 | 0 SLC25A5 | -0.4582877 7.43396468 45.5434585 | 1.49E-11 | 3.14E-11 -0.517993 | 5 94 444444 | 5 5555556 | |------------------|----------|----------------------------------|----------|---------------------|------------|--------------------|----------------------------------|-----------|---------------------|--------------|------------| | ENSG0000003322 | PLA2G6 | 0.93347502 3.88011863 165.951925 | 5.67E-38 | 1.83E-37 0.97758492 | 0 | 100 PLA2G6 | 0.99552926 3.83225844 156.035914 | 8.31E-36 | 3.33E-35 0.9363506 | | | | ENSG00000172366 | FAM195A | -1.1670317 2.44142377 165.910713 | 5.79E-38 | 1.87E-37 -1.058609 | 100 | 0 FAM195A | -1.0516592 2.44924804 111.160247 | 5.46E-26 | 1.76E-25 -1.111267 | | 0 | | ENSG000001725898 | FAM110A | -1.0567792 3.05958111 165.890758 | 5.84E-38 | 1.88E-37 -0.929965 | 100 | 0 FAM110A | -0.763274 3.15528904 74.7199071 | 5.42E-18 | 1.40E-17 -0.8842054 | | 2 7777778 | | ENSG00000123856 | IDH3B | 0.79735093 6.09162097 165.515742 | 7.06E-38 | 2.27E-37 0.79612175 | 0 | 100 IDH3B | 0.72619005 6.01461361 114.744789 | 8.95E-27 | 2.94E-26 0.647786 | | 100 | | ENSG00000178104 | PDE4DIP | 0.80142318 5.70407367 165.348651 | 7.68E-38 | 2.47E-37 0.87980106 | 0 | 100 PDE4DIP | 0.94776638 5.81200656 191.319748 | 1.64E-43 | 7.56E-43 0.89324568 | | | | ENSG00000170104 | MGRN1 | -0.7980902 5.8375453 165.242972 | 8.10E-38 | 2.60E-37 -0.779972 | 100 | 0 MGRN1 | -0.6785479 5.85347571 99.8342786 | 1.66E-23 | 5.01E-23 -0.7138249 | | | | ENSG00000104946 | TBC1D17 | 0.85387087 4.5782158 165.118206 | 8.62E-38 | 2.77E-37 0.97583658 | 0 | 100 TBC1D17 | 0.95074427 4.55836347 170.391755 | 6.08E-39 | 2.59E-38 0.8732690 | | 100 | | ENSG00000175567 | UCP2 | -0.8053779 5.75069924 164.69561 | 1.07E-37 | 3.42E-37 -0.6757477 | 100 | 0 UCP2 | -0.786921 5.67144382 131.16026 | 2.28E-30 | 8.13E-30 -0.781996 | | | | ENSG00000090905 | TNRC6A | 0.79372597 6.23520654 164.572036 | 1.13E-37 | 3.64E-37 0.86256826 | 0 | 100 TNR C6A | 0.74572484 6.18289088 121.008067 | 3.81E-28 | | 7 2.77777778 | | | ENSG00000196371 | FUT4 | -0.9198797 3.99234048 164.539876 | 1.15E-37 | 3.69E-37 -0.8171832 | 100 | 0 FUT4 | -1.0305111 3.92282116 169.754269 | 8.37E-39 | 3.55E-38 -1.064167 | | 0 | | ENSG00000115548 | KDM3A | 0.77941226 7.98424509 164.485169 | 1.19E-37 | 3.80E-37 0.8030933 | 0 | 100 KDM3A | 0.944481 8.00759155 186.329162 | 2.01E-42 | 9.12E-42 0.8573934 | | 100 | | ENSG00000113546 | LRPPRC | 0.79193388 6.25770434 164.457075 | 1.20E-37 | 3.85E-37 0.85026344 | 0 | 100 LRPPRC | 0.68910374 6.13156797 103.768045 | 2.27E-24 | 7.02E-24 0.6306827 | | | | ENSG00000239305 | RNF103 | 0.79563195 6.01159445 164.432611 | 1.22E-37 | 3.89E-37 0.86294732 | 0 | 100 RNF103 | 0.61080546 5.83290462 80.8145845 | 2.48E-19 | 6.70E-19 0.5428624 | | | | ENSG00000089053 | ANAPC5 | 0.79621169 6.11917304 164.38229 | 1.25E-37 | 3.99E-37 0.83405148 | 0 | 100 ANAPC5 | 0.80159607 6.05304377 138.213155 | 6.55E-32 | | 9 5.5555556 | | | ENSG00000137337 | MDC1 | 0.80034565 5.67050912 164.357139 | 1.26E-37 | 4.04E-37 0.9093474 | 0 | 100 MDC1 | 0.70112532 5.5636539 105.314887 | 1.04E-24 | 3.25E-24 0.6586142 | | | | ENSG00000213064 | SFT2D2 | -0.7827575 6.96348744 164.327685 | 1.28E-37 | 4.10E-37 -0.7332713 | 100 | 0 SFT2D2 | -0.4690347 7.01281811 48.4785549 | 3.34E-12 | 7.20E-12 -0.5359214 | | | | ENSG00000118640 | VAMP8 | -0.8533286 4.59025919 164.077664 | 1.45E-37 | 4.64E-37 -0.764644 | 100 | 0 VAMP8 | -0.6644458 4.63326685 83.8420804 | 5.36E-20 | 1.47E-19 -0.7552586 | | | | ENSG00000066422 | ZBTB11 | 0.78976458 6.34619156 163.928423 | 1.57E-37 | 5.00E-37 0.84053191 | 0 | 100 ZBTB11 | 0.72370493 6.20648981 113.440551 | 1.73E-26 | 5.62E-26 0.6809561 | | | | ENSG00000066557 | LRRC40 | 0.92411823 3.90092388 163.868291 | 1.62E-37 | 5.15E-37 0.97466753 | 0 | 100 LRRC40 | 0.90316585 3.8069009 127.895373 | 1.18E-29 | 4.16E-29 0.85296668 | | | | ENSG00000135506 | OS9 | -0.7973349 6.09754671 163.846657 | 1.63E-37 | | 97.1428571 | 2.85714286 OS9 | -0.8881362 6.04786392 166.671949 | 3.95E-38 | 1.65E-37 -1.034109: | | | | ENSG00000100219 | XBP1 | -0.7904553 6.24603269 163.505896 | 1.94E-37 | 6.18E-37 -0.6819743 | 100 | 0 XBP1 | -0.5205383 6.28984835 59.6067064 | 1.16E-14 | 2.73E-14 -0.5345004 | | 0 | | ENSG00000159216 | RUNX1 | -0.7924737 6.07617312 162.889316 | 2.64E-37 | 8.41E-37 -0.6940828 | 100 | 0 RUNX1 | -1.5559917 5.81204691 494.525151 | 1.48E-109 | 1.50E-108 -1.490530 | | 0 | | ENSG00000028277 | POU2F2 | -0.8532134 4.67749284 162.878788 | 2.66E-37 | 8.45E-37 -0.6219416 | 94.2857143 | 5.71428571 POU2F2 | -1.2993034 4.48876724 301.56996 | 1.50E-67 | 9.87E-67 -1.340440 | 7 100 | 0 | | ENSG00000167670 | CHAF1A | 0.91340192 3.94489094 162.484536 | 3.24E-37 | 1.03E-36 1.0306034 | 0 | 100 CHAF1A | 0.83158711 3.83408703 110.079021 | 9.42E-26 | 3.02E-25 0.7812011 | | 100 | | ENSG00000123329 | ARHG AP9 | 0.78877104 6.22727969 162.055229 | 4.02E-37 | 1.28E-36 0.86266595 | 0 | 100 ARHGAP9 | 1.16639664 6.37841854 289.419822 | 6.65E-65 | 4.22E-64 1.07515568 | | 100 | | ENSG00000152558 | TMEM123 | -0.7758838 9.4479303 161.262325 | 6.00E-37 | 1.90E-36 -0.6556678 | 100 | 0 TMEM123 | -0.9581345 9.29825666 173.862206 | 1.06E-39 | 4.60E-39 -0.9081956 | 5 100 | 0 | | ENSG00000095002 | MSH2 | 0.97773865 3.46387241 160.948316 | 7.02E-37 | 2.22E-36 0.998158 | 0 | 100 MSH2 | 0.85020746 3.30297298 98.049799 | 4.08E-23 | 1.22E-22 0.8234552 | 3 0 | 100 | | ENSG00000118564 | FBXL5 | -0.7822717 6.32018266 160.779785 | 7.64E-37 | 2.41E-36 -0.7217038 | 100 | 0 FBXL5 | -0.7904012 6.27962989 136.632974 | 1.45E-31 | 5.31E-31 -0.8135062 | 2 100 | 0 | | ENSG00000169180 | XPO6 | 0.76877792 7.7844766 160.670342 | 8.08E-37 | 2.55E-36 0.84979581 | 0 | 100 XPO6 | 0.65826969 7.6868152 93.1746179 | 4.79E-22 | 1.39E-21 0.5899556 | 3 0 | 100 | | ENSG00000136653 | NA | -0.7708759 8.68864253 160.448927 | 9.03E-37 | 2.85E-36 -0.6306942 | 100 | 0 NA | -0.5467444 8.70581695 60.6300143 | 6.89E-15 | 1.63E-14 -0.6278569 | 100 | 0 | | ENSG00000105220 | GPI | -0.785388 5.96844131 160.33389 | 9.57E-37 | 3.01E-36 -0.760406 | 100 | 0 GPI | -0.5525279 6.0275016 66.4477351 | 3.59E-16 | 8.82E-16 -0.5995126 | 97.222222 | 2.7777778 | | ENSG00000180182 | MED14 | 0.79184669 5.65857109 160.158805 | 1.04E-36 | 3.29E-36 0.8355435 | 0 | 100 MED14 | 0.8614815 5.62967489 158.072658 | 2.98E-36 | 1.21E-35 0.75981596 | 5 2.77777778 | 97.222222 | | ENSG00000146676 | PURB | -0.7853648 5.94223591 159.598091 | 1.39E-36 | 4.35E-36 -0.7195242 | 100 | 0 PURB | -1.0454991 5.79153665 233.89104 | 8.45E-53 | 4.54E-52 -1.070163 | 100 | 0 | | ENSG00000213699 | SLC35F6 | -0.8930876 4.03608563 159.365535 | 1.56E-36 | 4.88E-36 -0.7480205 | 100 | 0 SLC35F6 | -0.73945 4.05846422 92.4823184 | 6.79E-22 | 1.97E-21 -0.7518434 | 1 100 | 0 | | ENSG00000171103 | TRMT61B | 0.96612714 3.48440267 159.236267 | 1.66E-36 | 5.21E-36 1.02406289 | 0 | 100 TRMT61B | 0.76030596 3.27310441 78.1900119 | 9.36E-19 | 2.48E-18 0.6573912 | 5 0 | 100 | | ENSG00000082014 | SMARCD3 | -1.0446106 3.09876399 159.179229 | 1.71E-36 | 5.35E-36 -1.1168141 | 88.5714286 | 11.4285714 SMARCD3 | -0.352845 3.36345075 16.219618 | 5.64E-05 | 8.65E-05 -0.6251739 | 9 66.6666667 | 33.333333 | | ENSG00000102898 | NUTF2 | -0.8856081 4.08416857 158.714662 | 2.16E-36 | 6.75E-36 -0.8014246 | 100 | 0 NUTF2 | -0.5770481 4.12916075 57.7317251 | 3.00E-14 | 6.98E-14 -0.617588 | 2 100 | 0 | | ENSG00000108666 | C17orf75 | 1.15404339 2.33651857 158.592338 | 2.30E-36 | 7.17E-36 1.14221156 | 0 | 100 C17orf75 | 0.75112013 2.05314852 50.3082093 | 1.31E-12 | 2.88E-12 0.6929262 | 5 13.8888889 | 86.1111111 | | ENSG00000147535 | PPAPDC1B | -0.9822105 3.45565106 158.56776 | 2.33E-36 | 7.26E-36 -0.9820307 | 100 | 0 PPAPDC1B | -0.6280566 3.45732461 55.4509703 | 9.58E-14 | 2.18E-13 -0.689859 | | | | ENSG00000136518 | ACTL6A | 1.07644115 2.79025479 158.501699 | 2.40E-36 | 7.50E-36 1.15977705 | 0 | 100 ACTL6A | 0.61768868 2.43107784 39.1677994 | 3.89E-10 | 7.74E-10 0.52674178 | | 91.6666667 | | ENSG00000101193 | GID8 | -0.7818698 5.82736497 158.489137 | 2.42E-36 | 7.54E-36 -0.7066412 | 100 | 0 GID8 | -0.4990322 5.85462642 54.6866015 | 1.41E-13 | 3.20E-13 -0.5888178 | | 0 | | ENSG00000175826 | CTDNEP1 | -0.7801237 5.96156719 158.356166 | 2.59E-36 | 8.06E-36 -0.7255404 | 100 | 0 CTDNEP1 | -0.5390206 6.00699821 63.5392943 | 1.57E-15 | 3.79E-15 -0.6137118 | | | | ENSG00000196911 | KPNA5 | 0.81714424 4.83625404 157.96374 | 3.15E-36 | 9.81E-36 0.8704702 | 0 | 100 KPNA5 | 0.59255983 4.68356146 67.7960682 | 1.81E-16 | 4.50E-16 0.5458020 | | | | ENSG00000071127 | WDR1 | -0.7678619 7.22348097 157.749912 | 3.51E-36 | 1.09E-35 -0.6575368 | 100 | 0 WDR1 | -0.5852941 7.26120607 73.5927733 | 9.60E-18 | 2.46E-17 -0.6196193 | | | | ENSG00000130305 | NSUN5 | 0.86094979 4.28177445 157.690449 | 3.62E-36 | 1.12E-35 0.9476047 | 0 | 100 NSUN5 | 0.80030395 4.18428636 111.902817 | 3.75E-26 | 1.21E-25 0.74046438 | | 100 | | ENSG00000184596 | NA | 1.34824301 1.34228984 157.563831 | 3.85E-36 | 1.20E-35 1.33290344 | | | 1.65912995 1.53208722 192.024038 | 1.15E-43 | 5.32E-43 1.6444373 | | | | ENSG00000071894 | CPSF1 | 0.79190408 5.60104381 157.539875 | 3.90E-36 | 1.21E-35 0.87815268 | | 94.2857143 CPSF1 | 1.00161138 5.65862412 204.469042 | 2.21E-46 | 1.07E-45 0.8107436 | | | | ENSG00000103152 | MPG | -1.105876 2.58376037 157.295776 | 4.41E-36 | 1.37E-35 -0.9542293 | 100 | 0 MPG | -1.0100704 2.57560487 106.873519 |
4.75E-25 | | 5 97.2222222 | | | ENSG00000165733 | BMS1 | 0.77825171 5.87155824 157.1289 | 4.80E-36 | 1.49E-35 0.78758148 | 0 | 100 BMS1 | 0.79679414 5.78341015 137.198837 | 1.09E-31 | 4.01E-31 0.64661799 | | 100 | | ENSG00000136908 | DPM2 | 0.92947079 3.7402392 157.104445 | 4.86E-36 | 1.50E-35 1.00131449 | 0 | 100 DPM2 | 0.75891783 3.60489346 84.8362037 | 3.24E-20 | 8.97E-20 0.66305030 | | | | ENSG00000129245 | FXR2 | 0.85719491 4.3078221 156.750891 | 5.80E-36 | 1.80E-35 0.8834974 | 0 | 100 FXR2 | 0.94478642 4.29846792 159.541336 | 1.43E-36 | 5.78E-36 0.86274714 | | 100 | | ENSG00000130939 | UBE4B | 0.79965953 5.05114041 156.425498 | 6.83E-36 | 2.11E-35 0.89433703 | 0 | 100 UB E4B | 0.83451112 5.00875252 141.815388 | 1.07E-32 | 4.01E-32 0.8268048 | 5 0 | 100 | | ENSG00000118705 | RPN2 | -0.7728034 6.14352422 156.301768 | 7.27E-36 | 2.25E-35 -0.7188761 | . 100 | 0 RPN2 | -0.5995578 6.16551935 78.8650079 | 6.65E-19 | 1.78E-18 -0.68 | 4372 100 0 | |-------------------|--------------|----------------------------------|----------|---------------------|------------|------------------|----------------------------------|-----------|------------------|----------------------------| | ENSG00000115703 | SDHAF1 | -1.2368095 1.79324928 155.754349 | 9.58E-36 | 2.96E-35 -1.162927 | | 0 SDHAF1 | -0.7661973 1.89054076 50.0664983 | 1.49E-12 | | 3626 97.2222222 2.77777778 | | ENSG00000203136 | SURF6 | 0.82785561 4.5894729 155.739393 | 9.65E-36 | 2.98E-35 0.82131408 | | 100 SURF6 | 0.89223224 4.58730579 151.053975 | 1.02E-34 | 4.00E-34 0.7490 | | | ENSG00000111679 | PTPN6 | -0.7793808 5.80413474 155.497852 | 1.09E-35 | 3.36E-35 -0.6557265 | | | -1.5243002 5.58281274 469.267445 | 4.63E-104 | 4.48E-103 -1.489 | | | ENSG00000111075 | FYTTD1 | -0.7613341 7.07501088 155.361303 | 1.17E-35 | 3.60E-35 -0.6969881 | 100 | 0 FYTTD1 | -0.7594968 6.99736932 125.787201 | 3.42E-29 | 1.19E-28 -0.772 | | | ENSG00000122008 | TMEM205 | -1.1087439 2.53537838 154.502532 | 1.80E-35 | 5.55E-35 -0.9471848 | | 0 TMEM205 | -1.3158031 2.42705356 169.816971 | 8.11E-39 | 3.44E-38 -1.392 | | | ENSG00000103318 | C4orf48 | -1.3323059 1.2763562 154.371152 | 1.92E-35 | 5.92E-35 -1.34101 | | 0 C4orf48 | -0.8149332 1.42406913 47.3687267 | 5.88E-12 | | 9666 88.8888889 11.1111111 | | ENSG00000243449 | OSBPL11 | -0.8355548 4.45274414 153.705526 | 2.69E-35 | 8.25E-35 -0.7013073 | 100 | 0 OSBPL11 | -0.8362496 4.41772467 127.638125 | 1.35E-29 | | 1473 97.2222222 2.77777778 | | ENSG00000144303 | NDUFB7 | -0.9417245 3.59378928 153.385472 | 3.16E-35 | 9.66E-35 -0.8739294 | | | -0.6984656 3.63234841 73.1945287 | 1.17E-17 | | 8744 91.6666667 8.33333333 | | ENSG00000033733 | CPEB4 | -0.7775961 5.69665422 153.358112 | 3.20E-35 | 9.79E-35 -0.6909706 | | | -0.7170555 5.69773001 108.91159 | 1.70E-25 | | 2999 94.4444444 5.55555556 | | ENSG00000113742 | BLOC1S1 | -1.0297786 2.97673351 153.186016 | 3.49E-35 | 1.07E-34 -1.0013327 | | 0 BLOC1S1 | -0.7971694 3.03630146 78.1281607 | 9.66E-19 | | 7382 94.4444444 5.55555556 | | ENSG00000171522 | PTGER4 | 0.76386517 8.728633 153.168666 | 3.52E-35 | 1.08E-34 0.93242876 | | | 0.64326196 8.59681005 81.6773799 | 1.60E-19 | | 2098 16.6666667 83.3333333 | | ENSG00000171322 | RNF20 | 0.84550309 4.31068558 153.0498 | 3.74E-35 | 1.14E-34 0.871798 | | 100 RNF20 | 0.6168375 4.10819916 65.752716 | 5.11E-16 | 1.25E-15 0.5609 | | | ENSG00000119392 | GLE1 | 0.81834548 4.59198419 152.676523 | 4.51E-35 | 1.38E-34 0.8649259 | | 100 GLE1 | 0.64370979 4.45652834 77.342788 | 1.44E-18 | 3.79E-18 0.5806 | | | ENSG00000115352 | PSENEN | -1.2244567 1.82772974 152.365186 | 5.27E-35 | 1.61E-34 -1.2580722 | | 0 PSENEN | -0.7789226 1.94587874 51.8514788 | 5.99E-13 | | 8514 94.4444444 5.55555556 | | ENSG00000203133 | ARHGEF1 | 0.753145 8.69494799 152.273663 | 5.52E-35 | 1.68E-34 0.79019501 | | 100 ARHGEF1 | 0.72274911 8.58696946 103.574252 | 2.51E-24 | | 5509 5.55555556 94.4444444 | | ENSG00000070328 | MGME1 | -1.1060945 2.45956112 152.174104 | 5.80E-35 | 1.77E-34 -1.0581481 | . 100 | 0 MGME1 | -0.9947716 2.44302764 100.230056 | 1.36E-23 | 4.11E-23 -1.009 | | | ENSG00000125071 | ZNF76 | 0.85089623 4.25776864 151.502103 | 8.14E-35 | 2.47E-34 0.93599673 | | | 0.76896528 4.12286721 100.903281 | 9.66E-24 | | 6652 2.77777778 97.2222222 | | ENSG 000000167685 | ZNF444 | 0.87388768 4.01889339 151.306951 | 8.98E-35 | 2.73E-34 0.9985201 | | 100 ZNF444 | 0.68853423 3.8675776 76.4443961 | 2.27E-18 | | 2011 5.55555556 94.4444444 | | ENSG00000186480 | INSIG1 | -0.7570254 6.48206408 151.17603 | 9.59E-35 | 2.91E-34 -0.6289153 | | 0 INSIG1 | -0.8425325 6.39327498 153.102348 | 3.64E-35 | 1.44E-34 -0.812 | | | ENSG00000180480 | RFC1 | 0.75718522 6.29409836 151.119233 | 9.87E-35 | 2.99E-34 0.80759179 | | 100 RFC1 | 0.6136345 6.11616154 82.4176733 | 1.10E-19 | | 7181 5.55555556 94.4444444 | | ENSG00000117448 | AKR1A1 | -0.8864142 3.92036852 150.969475 | 1.06E-34 | 3.23E-34 -0.7495648 | | 0 AKR1A1 | -0.669937 3.93523253 72.7981787 | 1.44E-17 | | 0262 94.4444444 5.55555556 | | ENSG0000017448 | PHPT1 | -1.0947736 2.51870686 150.480889 | 1.36E-34 | 4.12E-34 -1.1254135 | | 0 PHPT1 | -0.6951291 2.62874694 51.4650647 | 7.29E-13 | | 0475 91.6666667 8.33333333 | | ENSG00000054148 | SLK | -0.7581262 6.08977204 150.395493 | 1.42E-34 | 4.30E-34 -0.6422777 | | O SLK | -0.5551639 6.11181369 67.4852159 | 2.12E-16 | | 0667 94.4444444 5.55555556 | | ENSG00000157800 | SLC37A3 | 0.90086026 3.77785519 150.326582 | 1.47E-34 | 4.45E-34 0.95687839 | | 100 SLC37A3 | 0.74565561 3.61181319 83.5971024 | 6.07E-20 | 1.67E-19 0.6714 | | | ENSG00000141985 | SH3GL1 | -0.7788726 5.21112941 150.294468 | 1.49E-34 | 4.52E-34 -0.7385813 | | 0 SH3GL1 | -0.5013077 5.26534578 52.5942679 | 4.10E-13 | | 5511 97.2222222 2.7777778 | | ENSG00000141303 | TBC1D10A | 0.80067463 4.73554412 150.100401 | 1.65E-34 | 4.98E-34 0.82623418 | | 100 TBC1D10A | 0.95302194 4.78911477 178.252511 | 1.17E-40 | 5.16E-40 0.8588 | | | ENSG00000196182 | STK40 | -0.7724187 5.44118965 149.98472 | 1.75E-34 | 5.28E-34 -0.587416 | _ | 0 STK40 | -1.0184779 5.37198055 215.387765 | 9.17E-49 | 4.64E-48 -1.017 | | | ENSG00000104388 | RAB2A | -0.758261 6.02589405 149.854026 | 1.87E-34 | 5.63E-34 -0.6998655 | | 2.85714286 RAB2A | -0.4830437 6.05958247 51.2866401 | 7.98E-13 | | 2728 94.4444444 5.55555556 | | ENSG00000085511 | MAP3K4 | 0.83553469 4.30129398 149.687459 | 2.03E-34 | 6.12E-34 0.87982536 | | 100 MAP3K4 | 0.74510557 4.18183564 97.3318065 | 5.86E-23 | 1.75E-22 0.6847 | | | ENSG00000170348 | TMED10 | -0.7515132 6.44698126 149.420148 | 2.32E-34 | 7.00E-34 -0.7477305 | | 0 TMED10 | -0.5301356 6.49142696 61.7035713 | 3.99E-15 | 9.52E-15 -0.569 | | | ENSG00000156471 | PTDSS1 | -0.7538728 6.04969864 148.963297 | 2.92E-34 | 8.79E-34 -0.6719498 | | 0 PTDSS1 | -0.5659484 6.06068517 70.4529055 | 4.71E-17 | 1.19E-16 -0.639 | 3982 100 0 | | ENSG00000162869 | PPP1R21 | 0.94136386 3.44128819 148.539288 | 3.62E-34 | 1.09E-33 1.01971468 | 0 | 100 PPP1R21 | 0.62031116 3.19380889 50.7614569 | 1.04E-12 | 2.29E-12 0.6454 | 5043 5.55555556 94.4444444 | | ENSG00000138600 | SPPL2A | -0.7854131 4.93284104 147.766003 | 5.34E-34 | 1.60E-33 -0.6806405 | 100 | O SPPL2A | -0.549031 4.99325866 61.1822554 | 5.20E-15 | 1.23E-14 -0.59 | 3174 97.2222222 2.77777778 | | ENSG00000198862 | LTN1 | 0.76332739 5.45862138 147.748693 | 5.38E-34 | 1.61E-33 0.77609069 | 0 | 100 LTN1 | 0.74581227 5.36805572 116.350195 | 3.98E-27 | 1.32E-26 0.709 | 3801 5.55555556 94.4444444 | | ENSG00000177963 | RIC8A | 0.75323602 6.03836257 147.542385 | 5.97E-34 | 1.79E-33 0.81155921 | . 0 | 100 RIC8A | 1.18960296 6.30062553 304.639879 | 3.21E-68 | 2.15E-67 1.2035 | 8612 0 100 | | ENSG00000134255 | CEPT1 | 0.90506666 3.70867417 147.528662 | 6.01E-34 | 1.80E-33 0.86092406 | 2.85714286 | 97.1428571 CEPT1 | 0.82282673 3.64434389 100.508856 | 1.18E-23 | 3.58E-23 0.8582 | 9915 2.77777778 97.2222222 | | ENSG00000142867 | BCL10 | -0.7923487 4.75553036 147.429818 | 6.32E-34 | 1.89E-33 -0.7563349 | 100 | 0 BCL10 | -0.5328525 4.80139634 56.6852387 | 5.11E-14 | 1.18E-13 -0.553 | 3813 100 0 | | ENSG00000143811 | PYCR2 | 0.82328912 4.3671928 147.326614 | 6.66E-34 | 1.99E-33 0.95459205 | 0 | 100 PYCR2 | 0.6553139 4.23191096 76.3485617 | 2.38E-18 | 6.21E-18 0.5812 | 0415 2.77777778 97.2222222 | | ENSG00000149809 | TM7SF2 | 1.13265859 2.1987957 147.13483 | 7.33E-34 | 2.19E-33 1.18643044 | 0 | 100 TM7SF2 | 1.28271644 2.23452638 153.060988 | 3.71E-35 | 1.47E-34 1.2858 | 2512 0 100 | | ENSG00000272782 | RP4-607J23.2 | -1.2811055 1.35794313 146.859594 | 8.42E-34 | 2.51E-33 -1.2277366 | 100 | 0 RP4-607J23.2 | -1.1366489 1.38305792 91.5069721 | 1.11E-21 | 3.21E-21 -1.165 | 5293 100 0 | | ENSG00000054983 | GALC | -0.8802405 3.84518405 146.698451 | 9.13E-34 | 2.72E-33 -0.8156253 | 100 | 0 GALC | -0.8619459 3.8365306 117.956182 | 1.77E-27 | 5.92E-27 -0.861 | 9012 100 0 | | ENSG00000126561 | STAT5A | 0.74024186 6.98692277 146.466113 | 1.03E-33 | 3.06E-33 0.7972415 | 0 | 100 STAT5A | 1.19285132 7.25167221 302.588698 | 8.99E-68 | 5.97E-67 1.0684 | 5173 0 100 | | ENSG00000101940 | WDR13 | -0.8482367 4.11395049 146.294157 | 1.12E-33 | 3.33E-33 -0.8087458 | 100 | 0 WDR13 | -0.655672 4.11822105 73.1208611 | 1.22E-17 | 3.11E-17 -0.773 | 5128 97.2222222 2.77777778 | | ENSG00000131148 | EMC8 | 0.77904189 4.94723777 145.847926 | 1.40E-33 | 4.17E-33 0.81020748 | 0 | 100 EMC8 | 0.91962101 4.94259942 169.858113 | 7.95E-39 | 3.37E-38 0.8997 | 1075 0 100 | | ENSG00000110717 | NDUFS8 | 0.80486003 4.5421463 145.785975 | 1.45E-33 | 4.30E-33 0.85357838 | 0 | 100 NDUFS8 | 0.73135501 4.47717388 99.53361 | 1.93E-23 | 5.83E-23 0.6387 | 5056 0 100 | | ENSG00000118246 | FASTKD2 | 0.79204686 4.70139925 145.730683 | 1.49E-33 | 4.42E-33 0.87619946 | 0 | 100 FASTKD2 | 0.80663793 4.64332443 123.66647 | 9.97E-29 | | 8232 2.77777778 97.2222222 | | ENSG00000105618 | PRPF31 | 0.78409545 4.85803993 145.637861 | 1.56E-33 | 4.63E-33 0.78643864 | 0 | 100 PRPF31 | 0.83230635 4.85538392 137.084742 | 1.16E-31 | 4.25E-31 0.7765 | 9283 2.77777778 97.2222222 | | ENSG00000256223 | ZNF10 |
0.87683442 3.87296916 145.622672 | 1.57E-33 | 4.66E-33 0.88398935 | 0 | 100 ZNF10 | 0.81609242 3.72341591 101.350337 | 7.71E-24 | 2.36E-23 0.728 | 4172 2.77777778 97.2222222 | | ENSG00000100263 | RHBDD3 | 1.07506753 2.47056139 145.112173 | 2.03E-33 | 6.02E-33 1.08096392 | | 100 RHB DD3 | 0.94449476 2.33685 88.0570218 | 6.36E-21 | 1.80E-20 0.7786 | | | ENSG00000179094 | PER1 | 0.73501915 9.32483892 144.879631 | 2.28E-33 | 6.76E-33 0.70202391 | . 0 | 100 PER1 | 1.16225831 9.50695116 250.430463 | 2.09E-56 | 1.18E-55 1.0870 | | | ENSG00000188186 | LAMTOR4 | -0.7767087 4.92712835 144.701128 | 2.50E-33 | 7.39E-33 -0.6882303 | | 0 LAMTOR4 | -0.9616798 4.83700984 180.310901 | 4.15E-41 | | 3647 97.2222222 2.77777778 | | ENSG00000035141 | FAM136A | 0.76576646 5.07051654 143.707741 | 4.12E-33 | 1.21E-32 0.81803818 | 0 | 100 FAM136A | 0.68830108 4.95773487 95.9952053 | 1.15E-22 | 3.41E-22 0.6212 | 8138 0 100 | | ENSG00000092140 | G2E3 | 0.70272010 | 4.77239273 | 142 274627 | 5.12E-33 | 1 E1E 22 | 0.80497605 | 0 | 100 | G2E3 | 0.57111400 | A 612A1616 | 62.0689333 | 3.32E-15 | 7 01E 1E | 0.57419042 | 11.1111111 | 00 0000000 | |--------------------------------------|------------------|------------|--------------------------|------------|----------------------|----------|--------------------------|-------------------|------------|------------------|------------|------------|--------------------------|----------------------|----------------------|--------------------------|------------|------------| | ENSG00000092140
ENSG00000137312 | FLOT1 | | 5.09220524 | | 5.12E-33
5.42E-33 | | | 94.2857143 | | | | | 443.804909 | 1.61E-98 | | -1.4989757 | 100 | 00.0000009 | | ENSG00000137312
ENSG00000120875 | DUSP4 | | 6.67389989 | | 5.44E-33 | | | 91.4285714 | | DUSP4 | | | 96.7305357 | 7.94E-23 | | | 88.8888889 | 11 1111111 | | ENSG00000120875 | WASH2P | | 3.49584935 | | 6.69E-33 | | 0.92406521 | 0 | | WASH2P | | | 107.967744 | 2.73E-25 | | 0.74136305 | 00.0000000 | 100 | | ENSG00000146556
ENSG00000126001 | CEP250 | | 4.79022314 | | 7.96E-33 | | 0.84126475 | 0 | | CEP250 | | | 177.504346 | 1.70E-40 | | 0.74136303 | 0 | 100 | | ENSG00000126001 | VHL | | 6.33441902 | | 7.98E-33 | | -0.6303682 | 100 | 100 | VHL | | | 107.268883 | 3.89E-25 | 1.23E-24 | -0.728792 | 100 | 100 | | ENSG00000134086
ENSG00000131467 | PSME3 | | 6.22789745 | | 9.28E-33 | | -0.6522798 | 100 | 0 | PSME3 | | | 39.549992 | 3.20E-25 | 6.40E-10 | | 97.2222222 | 2 7777779 | | ENSG00000131467
ENSG00000125734 | GPR108 | | 3.82143853 | | 1.03E-32 | | -0.0522798 | | | GPR 108 | | | 76.4183485 | 2.30E-10 | 6.40E-10
6.00E-18 | -0.7903553 | 100 | 2.7777770 | | ENSG00000125734
ENSG00000148730 | EIF4EBP2 | | 6.23713208 | | 1.03E-32
1.59E-32 | | -0.7581355 | 100
100 | | EIF4EBP2 | | | 61.6091615 | 4.19E-15 | 9.96E-15 | -0.7903553 | 100 | 0 | | ENSG00000148730 | HPRT1 | | 3.4922976 | | 1.64E-32 | | -0.832319 | 100 | 0 | HPRT1 | | | 83.5984491 | 6.06E-20 | 1.66E-19 | -0.7635849 | 100 | 0 | | ENSG00000163704
ENSG00000152240 | HAUS1 | | 1.79205436 | | 2.30E-32 | | -1.1128401 | 100 | 0 | HAUS1 | | | 38.2321559 | 6.28E-10 | | | 94.4444444 | C EEEEEEE | | ENSG00000132240 | MED13L | | 8.34339577 | | 2.55E-32 | | -0.6104874 | | 0 | MED13L | | | 94.9354585 | 1.97E-22 | | | 97.2222222 | | | ENSG00000123066
ENSG00000100599 | RIN3 | | 7.18745986 | | 2.55E-32
2.59E-32 | | | 100
94.2857143 | | RIN3 | | | 191.50504 | 1.97E-22
1.49E-43 | | -1.0059398 | 100 | 2.7777778 | | | DVL1 | | 4.44042971 | | 2.83E-32 | | | 94.2857145 | - | DVL1 | | | 90.4453014 | 1.49E-43
1.90E-21 | | 0.61802019 | 0 | 100 | | ENSG 00000107404
ENSG 00000168256 | NKIRAS2 | | 4.94996764 | | 3.03E-32 | | 0.78919573
-0.699063 | 100 | | NKIRAS2 | | | 130.386786 | 3.37E-30 | | -0.9078901 | 100 | 100 | | ENSG00000188258 | PJA2 | | 7.23236906 | | 3.51E-32 | | -0.677483 | 100 | | PJA2 | | | 80.8518273 | 2.43E-19 | | | 97.2222222 | 2 7777770 | | ENSG00000198961
ENSG00000196498 | NCOR2 | | 7.29483187 | | 3.84E-32 | | -0.5943004 | 100 | | NCOR2 | | | 185.829889 | 2.43E-19
2.59E-42 | | | 97.2222222 | | | ENSG00000196438 | KDELR1 | | 3.99611717 | | 3.87E-32 | | -0.7319541 | 100 | | KDELR1 | | | 99.0656328 | 2.44E-23 | 7.36E-23 | -0.8648579 | 100 | 2.7777770 | | ENSG00000103438
ENSG00000173273 | TNKS | | 5.31507635 | | 4.33E-32 | | 0.76271247 | 0 | | TNKS | | | 109.426442 | 1.31E-25 | 4.19E-25 | | 2.77777778 | 07 222222 | | | | | | | | | | | | _ | | | | 1.31E-23
1.27E-12 | | | 91.6666667 | | | ENSG 00000108061
ENSG 00000213246 | SHOC2
SUPT4H1 | | 6.40133137
5.58762375 | | 4.91E-32
5.58E-32 | | -0.6418086
-0.6531396 | 100
100 | | SHOC2
SUPT4H1 | | | 50.3723316
137.87879 | 7.75E-32 | 2.79E-12
2.86E-31 | -0.5022458
-0.8851218 | 100 | 8.3333333 | | | | | 3.74376159 | | 5.76E-32 | | | 100 | 100 | ESF1 | | | | 3.29E-15 | | | 2.7777778 | 07 222222 | | ENSG 00000089048
ENSG 00000131844 | ESF1
MCCC2 | | 4.08277344 | | 5.76E-32
5.99E-32 | | 0.97585475
0.91748616 | 0 | | MCCC2 | | | 62.0820999
57.6286852 | 3.29E-15
3.17E-14 | 7.86E-15 | | 5.5555556 | | | | SERPINB1 | | | | 7.75E-32 | | | _ | | SERPINB1 | 0.59295114 | | 174.567714 | 7.44E-40 | | -0.9404664 | | 94.4444444 | | ENSG00000021355
ENSG00000137996 | RTCA | | 5.94117965
4.35260643 | | 8.13E-32 | | 0.87025182 | 97.1428571 | | RTCA | | | 165.220902 | 8.19E-38 | | 0.91272955 | 100
0 | 100 | | ENSG00000137936
ENSG00000198874 | TYW1 | | 4.15039833 | | 1.09E-31 | | 0.88208964 | 0 | 100 | TYW1 | | | 120.811566 | 4.20E-28 | | 0.75567501 | 0 | 100 | | ENSG00000198874
ENSG00000147324 | MFHAS1 | | 4.71856663 | | 1.19E-31 | | | 91.4285714 | | MFHAS1 | | | 890.595039 | 1.09E-195 | | -2.4331916 | 100 | 100 | | ENSG00000147524
ENSG00000063587 | ZNF275 | | 4.65879764 | | 1.74E-31 | | 0.75266555 | 0 | | ZNF275 | | | 80.3666625 | 3.11E-19 | | | 5.5555556 | 04 4444444 | | ENSG00000005387 | DNASE2 | | 3.31574959 | | 1.84E-31 | | | 94.2857143 | | DNASE2 | | | 139.226633 | 3.93E-32 | | -1.1144524 | 100 | 0 | | ENSG00000103012 | TMEM167B | | 6.68709053 | | 1.97E-31 | | -0.6434381 | 100 | 0.71428371 | TMEM167B | | | 96.146544 | 1.07E-22 | | -0.6962564 | 100 | 0 | | ENSG00000215717
ENSG00000185947 | ZNF267 | | 5.49190683 | | 2.31E-31 | | -0.6320972 | 100 | 0 | ZNF267 | | | 114.406653 | 1.06E-26 | | -0.7482646 | 100 | 0 | | ENSG00000141873 | SLC39A3 | | 3.89005601 | | 2.59E-31 | | -0.7858231 | 100 | | SLC39A3 | | | 50.5311456 | 1.17E-12 | | -0.5048642 | 100 | 0 | | ENSG00000141875 | UNKL | | 3.83224842 | | 2.70E-31 | | 0.91651704 | 0 | _ | UNKL | | | 112.787253 | 2.40E-26 | | | 2.77777778 | 97 222222 | | ENSG00000099917 | MED15 | | 7.08993816 | | 3.28E-31 | | 0.7859679 | 0 | | MED15 | | | 257.605922 | 5.71E-58 | | 1.0881729 | 0 | 100 | | ENSG00000108829 | LRRC59 | | 6.04427005 | | 4.13E-31 | | -0.6818201 | 100 | 0 | LRRC59 | | | 52.8683667 | 3.57E-13 | | -0.5291203 | 100 | 0 | | ENSG00000167315 | ACAA2 | | 3.52516979 | | 4.56E-31 | | -0.8518627 | 100 | 0 | ACAA2 | | | 32.3014522 | 1.32E-08 | 2.46E-08 | | 86.1111111 | 13.8888889 | | ENSG00000182247 | UBE2E2 | | 2.87178595 | | 5.52E-31 | | -0.8308801 | 100 | | UBE2E2 | | | 83.2857281 | 7.10E-20 | | -0.8778762 | 100 | 0 | | ENSG00000172869 | DMXL1 | | 5.34337782 | | 6.52E-31 | | -0.6159143 | 100 | | DMXL1 | | | 70.8498891 | 3.85E-17 | | -0.5826794 | 100 | 0 | | ENSG00000270184 | RP11-568J23.5 | | 0.80982233 | | 7.48E-31 | | 1.42643732 | 0 | | RP11-568J23.5 | | | | 1.53E-34 | | | 2.7777778 | 97.222222 | | ENSG00000147130 | ZMYM3 | | 3.81476644 | | 9.13E-31 | | 0.88465561 | 0 | | ZMYM3 | | | 147.992069 | 4.76E-34 | | | 2.77777778 | | | ENSG00000172493 | AFF1 | | 6.12090642 | | 1.46E-30 | | | 88.5714286 | 11.4285714 | AFF1 | | | 148.791616 | 3.18E-34 | | -0.8388788 | 100 | 0 | | ENSG00000148688 | RPP30 | | 4.29936856 | | 1.51E-30 | | 0.81241032 | 0 | | RPP30 | | | 77.8476996 | 1.11E-18 | | | 2.7777778 | 97.222222 | | ENSG00000197858 | GPAA1 | | 4.37496845 | | 2.29E-30 | | -0.7298905 | 100 | | GPAA1 | | | 52.0358536 | 5.45E-13 | | | 91.6666667 | | | ENSG00000078043 | PIAS2 | 0.81358315 | 3.98255407 | 131.001696 | 2.47E-30 | 6.92E-30 | 0.88684069 | 0 | 100 | PIAS2 | 0.86315288 | 3.9668771 | 123.287659 | 1.21E-28 | 4.13E-28 | 0.79673157 | 2.77777778 | 97.222222 | | ENSG00000174885 | NLRP6 | 0.97796956 | 2.78435448 | 130.708084 | 2.87E-30 | 8.02E-30 | 1.03479953 | 0 | 100 | NLRP6 | 1.18163128 | 2.90247262 | 162,497349 | 3.22E-37 | 1.32E-36 | 1.16629786 | 0 | 100 | | ENSG0000021776 | AQR | | 5.88275013 | | 2.97E-30 | | 0.75669004 | 0 | | AQR | | | 147.968534 | 4.82E-34 | | | 5.5555556 | | | ENSG00000138071 | ACTR2 | | 7.95745124 | | 3.17E-30 | | -0.6368756 | 100 | 0 | ACTR2 | | | 84.3915111 | 4.06E-20 | | | 97.2222222 | | | ENSG00000136146 | MED4 | | 5.28265943 | | 3.31E-30 | | 0.78044703 | 0 | 100 | MED4 | | | 94.6027238 | 2.33E-22 | | | 5.5555556 | | | ENSG00000130749 | ZC3H4 | | 4.87808219 | | 4.92E-30 | | | 2.85714286 | | ZC3H4 | | | 71.118088 | 3.36E-17 | | | 8.33333333 | | | ENSG00000108654 | DDX5 | | 10.389261 | | 6.45E-30 | | 0.72270037 | 0 | | DDX5 | | | 44.0137886 | 3.26E-11 | | | 13.8888889 | | | ENSG00000163798 | SLC4A1AP | 0.75874692 | 4.49570427 | 128.781231 | 7.57E-30 | 2.10E-29 | 0.84434425 | 0 | 100 | SLC4A1AP | 0.84382803 | 4.48872369 | 133.185912 | 8.23E-31 | 2.96E-30 | 0.79664993 | 0 | 100 | | ENSG00000196456 | ZNF775 | -0.7317235 | 4.99831051 | 128.530942 | 8.59E-30 | 2.39E-29 | -0.5832742 | 94.2857143 | 5.71428571 | ZNF775 | -1.1153363 | 4.78534184 | 239.400358 | 5.31E-54 | 2.90E-53 | -1.096399 | 100 | 0 | | ENSG00000175104 | TRAF6 | -0.7235118 | 5.08332472 | 128.500688 | 8.72E-30 | | -0.6550636 | 100 | 0 | TRAF6 | | | 70.3100465 | 5.07E-17 | 1.28E-16 | -0.531544 | 100 | 0 | | • | | | | | | | | | | | | | | | | | | - | | • | | | | | | | | | | | | |------------------|------------|-----------------------------|------------------|---------------------|--------------|------------------------|----------------------------------
----------|------------------|----------------|------------| | ENSG 00000166913 | YWHAB | -0.6903634 7.02392539 128.0 | | 3.04E-29 -0.6569578 | | 0 YWHAB | -0.647448 6.9741095 92.0600394 | 8.41E-22 | 2.43E-21 -0.6628 | | | | ENSG00000146083 | RNF44 | 0.68932013 7.00932735 127.8 | | 3.39E-29 0.77807567 | | 100 RNF44 | 0.61928251 6.89891705 83.9662525 | 5.03E-20 | 1.39E-19 0.59118 | | | | ENSG 00000254635 | WAC-AS1 | -0.8757338 3.40809837 127.6 | | 3.69E-29 -0.7296575 | | | -0.8697174 3.37033869 104.331285 | 1.71E-24 | 5.30E-24 -0.9960 | | | | ENSG00000150961 | SEC24D | -0.833101 3.73316775 127 | | 4.43E-29 -0.8123508 | | 0 SEC24D | -0.5822409 3.80594358 53.3737373 | 2.76E-13 | 6.18E-13 -0.5954 | | | | ENSG00000102531 | FNDC3A | 0.72771566 4.89696459 127.1 | | 4.79E-29 0.76328271 | | 100 FNDC3A | 0.88080952 4.95802788 155.683154 | 9.93E-36 | 3.96E-35 0.87619 | | | | ENSG00000003056 | M6PR | -0.800641 4.02113359 126.7 | | 5.82E-29 -0.6997759 | | | -0.7363273 4.03400421 90.5694485 | 1.79E-21 | 5.13E-21 -0.8035 | | | | ENSG00000198382 | UVRAG | -0.7244231 4.95648568 126.5 | | 6.27E-29 -0.6148359 | | 0 UVRAG | -0.6956651 4.87459662 96.6660868 | 8.21E-23 | 2.44E-22 -0.7135 | | | | ENSG00000015285 | WAS | -0.7114087 5.30738177 126.1 | | 7.70E-29 -0.6140249 | | | -0.7159075 5.28719533 105.941753 | 7.59E-25 | 2.38E-24 -0.8299 | | | | ENSG00000116906 | GNPAT | 0.85809895 3.51511395 126.0 | | 8.36E-29 0.94289905 | | | 0.54680764 3.29850842 40.4584214 | 2.01E-10 | 4.05E-10 0.65801 | | | | ENSG00000100911 | PSME2 | -0.7052182 5.42664578 125.5 | | 1.07E-28 -0.534308 | | 0 PSME2 | -0.6265546 5.43711497 82.7284182 | 9.41E-20 | 2.57E-19 -0.6498 | | | | ENSG00000095261 | PSMD5 | 0.73266971 4.73291204 125.1 | | 1.27E-28 0.78210205 | | 100 PSMD5 | 0.63089914 4.63038024 76.6666232 | 2.02E-18 | 5.30E-18 0.60107 | | | | ENSG00000170445 | HARS | 0.72120505 4.90950472 125.1 | | 1.27E-28 0.80596081 | | 100 HARS | 1.01863774 5.02952212 210.294023 | 1.19E-47 | 5.89E-47 0.96586 | | 200 | | ENSG00000163348 | PYGO2 | 0.74372972 4.53975022 125 | | 1.34E-28 0.77954511 | | 100 PYGO2 | 0.76079387 4.53213978 109.562737 | 1.22E-25 | 3.91E-25 0.6911 | | | | ENSG00000180917 | CMTR2 | -0.797791 3.95533454 124.8 | | 1.49E-28 -0.8103517 | | 0 CMTR2 | -0.7832904 3.87995063 99.3622712 | 2.10E-23 | 6.34E-23 -0.8411 | | | | ENSG00000079739 | PGM1 | -0.9221763 2.97016679 124.8 | 802695 5.62E-29 | 1.53E-28 -0.8357123 | 100 | 0 PGM1 | -0.5845041 3.08307303 43.881003 | 3.49E-11 | 7.22E-11 -0.5990 | 773 100 | 0 | | ENSG00000122965 | RBM19 | 0.72802003 4.77834844 124.5 | | 1.76E-28 0.79155567 | 0 | 100 RBM19 | 0.80151033 4.75899277 125.513549 | 3.93E-29 | 1.36E-28 0.74508 | | | | ENSG00000124151 | NCOA3 | -0.6781541 7.40403996 124.2 | 259345 7.39E-29 | 2.01E-28 -0.5270338 | 100 | 0 NCOA3 | -0.6619324 7.35029337 94.874092 | 2.03E-22 | 5.97E-22 -0.6586 | 736 97.2222222 | 2.7777778 | | ENSG0000001497 | LAS1L | 0.71418933 4.99789956 124.2 | 245243 7.44E-29 | 2.03E-28 0.80389425 | 0 | 100 LAS1L | 0.62451818 4.87142687 78.5550353 | 7.78E-19 | 2.07E-18 0.53177 | 202 0 | 100 | | ENSG00000164983 | TMEM65 | -0.9199509 2.9774233 124.1 | 138106 7.86E-29 | 2.14E-28 -0.7217627 | 100 | 0 TMEM65 | -1.2764608 2.85080777 187.168876 | 1.32E-42 | 6.01E-42 -1.2266 | 474 100 | 0 | | ENSG00000067248 | DHX29 | 0.70399041 5.22267831 124.1 | 114005 7.95E-29 | 2.17E-28 0.78169554 | 0 | 100 DHX29 | 0.63919442 5.10831922 84.6494849 | 3.56E-20 | 9.85E-20 0.63176 | 913 0 | 100 | | ENSG00000144357 | UBR3 | 0.71748262 4.9222066 124.1 | 101325 8.00E-29 | 2.18E-28 0.77266544 | 0 | 100 UBR3 | 0.50302997 4.74751952 49.9228941 | 1.60E-12 | 3.48E-12 0.50584 | 607 11.1111111 | 88.888889 | | ENSG00000172831 | CES2 | 0.74770937 4.4786056 124.0 | 099603 8.01E-29 | 2.18E-28 0.83408141 | 2.85714286 | 97.1428571 CES2 | 0.76111573 4.45718223 107.836198 | 2.92E-25 | 9.26E-25 0.71594 | 598 2.77777778 | 97.222222 | | ENSG00000103174 | NAGPA | 0.75642974 4.34407535 124.0 | 025336 8.32E-29 | 2.26E-28 0.8590549 | 0 | 100 NAGPA | 0.66271291 4.21787351 77.7853796 | 1.15E-18 | 3.04E-18 0.60721 | 196 0 | 100 | | ENSG00000135040 | NAA35 | 0.855344 3.44747237 123 | 3.56083 1.05E-28 | 2.86E-28 0.87778916 | 0 | 100 NAA35 | 0.77345218 3.36805325 83.1664235 | 7.54E-20 | 2.07E-19 0.67670 | 396 5.5555556 | 94.444444 | | ENSG00000105708 | ZNF14 | 0.74476974 4.57997338 123.3 | 398285 1.14E-28 | 3.10E-28 0.78385999 | 8.57142857 | 91.4285714 ZNF14 | 0.89755809 4.59756429 145.942002 | 1.34E-33 | 5.12E-33 0.91948 | 357 13.8888889 | 86.1111111 | | ENSG00000131871 | VIMP | -0.7678172 4.1886738 122.8 | 828369 1.52E-28 | 4.12E-28 -0.7305773 | 97.1428571 | 2.85714286 VIMP | -0.5086786 4.22400092 45.974925 | 1.20E-11 | 2.53E-11 -0.5697 | 468 97.222222 | 2.7777778 | | ENSG00000204282 | TNRC6C-AS1 | 0.81436605 3.79261421 122.6 | 587729 1.63E-28 | 4.42E-28 0.88911442 | 2.85714286 | 97.1428571 TNR C6C-AS1 | 0.72646455 3.64106836 78.3839149 | 8.48E-19 | 2.26E-18 0.5928 | 691 2.7777778 | 97.222222 | | ENSG00000160888 | IER2 | -0.680922 7.84852024 122.6 | 570287 1.65E-28 | 4.46E-28 -0.6115687 | 85.7142857 | 14.2857143 IER2 | -0.5002469 7.8756922 51.8755838 | 5.91E-13 | 1.31E-12 -0.5647 | 715 86.1111111 | 13.8888889 | | ENSG00000196642 | RABL6 | 0.69158547 5.65846563 12 | 2.3321 1.95E-28 | 5.28E-28 0.74493541 | . 0 | 100 RABL6 | 0.77726246 5.6852963 127.73929 | 1.28E-29 | 4.49E-29 0.69560 | 337 5.5555556 | 94.444444 | | ENSG00000092439 | TRPM7 | 0.67737219 6.64504044 122.2 | 286678 2.00E-28 | 5.40E-28 0.71502303 | 0 | 100 TRPM7 | 0.64347686 6.56580462 90.4316667 | 1.91E-21 | 5.49E-21 0.56883 | 024 5.5555556 | 94.444444 | | ENSG00000113300 | CNOT6 | 0.72423799 4.70508523 122.2 | 273496 2.01E-28 | 5.43E-28 0.83429046 | 0 | 100 CNOT6 | 0.82064477 4.74573842 131.920907 | 1.56E-30 | 5.58E-30 0.76640 | 744 0 | 100 | | ENSG00000110851 | PRDM4 | -0.6778111 6.48857447 121.4 | 410849 3.11E-28 | 8.38E-28 -0.5672979 | 97.1428571 | 2.85714286 PRDM4 | -0.710793 6.41293568 110.31328 | 8.37E-26 | 2.69E-25 -0.6985 | 357 100 | 0 | | ENSG00000122224 | LY9 | -0.6932685 5.86352314 120.9 | 956321 3.91E-28 | 1.05E-27 -0.6133798 | 8 85.7142857 | 14.2857143 LY9 | -0.9817042 5.66975194 199.398783 | 2.83E-45 | 1.34E-44 -0.9966 | 397 97.222222 | 2.7777778 | | ENSG00000075785 | RAB7A | -0.6719847 6.92610958 120.7 | 792077 4.24E-28 | 1.14E-27 -0.6454385 | 100 | O RAB7A | -0.7581622 6.84467784 125.651589 | 3.66E-29 | 1.27E-28 -0.812 | 288 100 | 0 | | ENSG00000130703 | OSBPL2 | 0.69368456 5.23199208 120.5 | 598951 4.68E-28 | 1.26E-27 0.75357718 | 0 | 100 OSBPL2 | 0.68017465 5.16945026 96.3281558 | 9.73E-23 | 2.89E-22 0.63013 | 917 2.7777778 | 97.222222 | | ENSG00000112893 | MAN2A1 | 0.67395767 6.35282132 120.2 | 220501 5.66E-28 | 1.52E-27 0.74405753 | 0 | 100 MAN2A1 | 0.67845422 6.2929971 100.559459 | 1.15E-23 | 3.49E-23 0.59486 | 524 5.5555556 | 94.444444 | | ENSG00000121892 | PDS5A | 0.67445979 6.33935772 120.1 | 125241 5.94E-28 | 1.59E-27 0.75899699 | 0 | 100 PDS5A | 0.60792496 6.21858523 81.1381866 | 2.10E-19 | 5.70E-19 0.62160 | 275 8.33333333 | 91.6666667 | | ENSG00000187514 | PTMA | -0.6738378 10.5897394 120.0 | 074312 6.09E-28 | 1.63E-27 -0.5901153 | 100 | O PTMA | -0.5222025 10.560058 47.3104824 | 6.06E-12 | 1.30E-11 -0.5552 | 592 100 | 0 | | ENSG00000224078 | SNHG14 | 0.74310785 4.38766554 119.9 | 998493 6.33E-28 | 1.70E-27 0.85950025 | 2.85714286 | 97.1428571 SNHG14 | 0.40822757 4.29023864 27.2742427 | 1.77E-07 | 3.48E-07 0.72284 | 319 2.7777778 | 97.222222 | | ENSG00000132549 | VPS13B | 0.68113314 5.86312479 119.6 | 594894 7.38E-28 | 1.98E-27 0.61829612 | 2 0 | 100 VPS13B | 0.59286552 5.73536618 75.3979641 | 3.85E-18 | 9.98E-18 0.55475 | 478 5.5555556 | 94.444444 | | ENSG00000205413 | SAMD9 | -0.7172004 4.73994501 119.6 | 582738 7.42E-28 | 1.99E-27 -0.563122 | 100 | 0 SAMD9 | -0.5186084 4.79699707 52.4625394 | 4.39E-13 | 9.76E-13 -0.5220 | 553 86.1111111 | 13.8888889 | | ENSG00000103363 | TCEB2 | -0.6830024 5.65714169 118.8 | 863735 1.12E-27 | 3.00E-27 -0.6604128 | 91.4285714 | 8.57142857 TCEB2 | -0.5161563 5.67356325 57.290466 | 3.76E-14 | 8.70E-14 -0.6171 | 937 94.444444 | 5.5555556 | | ENSG00000105953 | OGDH | -0.8342464 3.50234509 118.7 | 758874 1.18E-27 | 3.15E-27 -0.7203855 | 100 | 0 OG DH | -0.4591821 3.53925774 30.7922107 | 2.87E-08 | 5.26E-08 -0.506 | 447 88.8888889 | 11.1111111 | | ENSG00000127463 | EMC1 | 0.7007889 4.93162205 118 | 3.57655 1.30E-27 | 3.46E-27 0.77687832 | 2 0 | 100 EMC1 | 0.84797414 4.97574492 145.634932 | 1.56E-33 | 5.97E-33 0.72632 | 538 0 | 100 | | ENSG00000155115 | GTF3C6 | -0.7849393 3.87840338 118.2 | 261193 1.52E-27 | 4.05E-27 -0.7311024 | 100 | 0 GTF3C6 | -0.4940542 3.93463957 40.2875702 | 2.19E-10 | 4.41E-10 -0.5476 | 234 97.2222222 | 2.7777778 | | ENSG00000213024 | NUP62 | -0.6852373 5.33257579 118.2 | 254569 1.53E-27 | 4.06E-27 -0.5890684 | 100 | 0 NUP62 | -0.5995753 5.29151172 75.8713412 | 3.03E-18 | 7.88E-18 -0.6313 | 023 97.2222222 | 2.7777778 | | ENSG00000164105 | SAP30 | -1.1427463 1.37985345 118.0 | 001141 1.73E-27 | 4.61E-27 -1.131193 | 97.1428571 | 2.85714286 SAP30 | -0.625499 1.527337 29.0833334 | 6.93E-08 | 1.25E-07 -0.5144 | 808 94.444444 | 5.5555556 | | ENSG00000163349 | HIPK1 | 0.66126101 8.49417125 117.8 | 865942 1.86E-27 | 4.93E-27 0.70796512 | 0 | 100 HIPK1 | 1.02894216 8.63971688 210.078603 | 1.32E-47 | 6.56E-47 1.02872 | 219 2.77777778 | 97.222222 | | ENSG00000108854 | SMURF2 | 0.68599083 5.22361417 117.6 | | 5.38E-27 0.68363867 | | 100 SMURF2 | 0.75012414 5.22406878 117.683976 | 2.03E-27 | 6.78E-27 0.62078 | | | | ENSG00000089737 | DDX24 | 0.65721742 8.45336667 117.5 | | 5.86E-27 0.65653861 | | 100 DDX24 | 0.85129343 8.48763953 147.862588 | 5.08E-34 | 1.96E-33 0.80044 | | | | ENSG00000159110 | IFNAR2 | -0.7604386 4.08613703 117.3 | | 6.25E-27 -0.7051442 | | 0 IFNAR2 | -1.3551996 3.88943174 288.699404 | 9.55E-65 | 6.02E-64 -1.3631 | | | | ENSG00000182117 | NOP10 | -0.7294102 4.46397106 116.9 | | | | 11.4285714 NOP10 | -0.7308837 4.42678143 97.0825273 | 6.65E-23 | 1.98E-22 -0.8482 | | _ | | ENSG00000204946 |
ZNF783 | 0.72552896 4.45690719 116.6 | | 8.97E-27 0.80265616 | | | 0.68278485 4.35699268 84.7513209 | 3.38E-20 | 9.36E-20 0.58498 | | | | | | | | | | | | | | | | | ENSG00000105607 | GCDH | 0.94728304 | | | 3.74E-27 | | 1.04563707 | 0 | 100 | GCDH | | 2.44925923 68.47 | | 29E-16 | | | 2.77777778 | 97.222222 | |------------------|--------------|------------|------------|------------|----------|----------|------------|------------|------------|--------------|------------|------------------|-----------|--------|----------|------------|------------|------------| | ENSG00000239672 | NME1 | -1.0174349 | | | 3.89E-27 | | -0.9550745 | 100 | (| NME1 | | 2.06380454 65.98 | | 4E-16 | | -0.9472766 | 100 | 0 | | ENSG00000174231 | PRPF8 | 0.65494234 | | | 4.14E-27 | | 0.65792592 | 0 | 100 | PRPF8 | | 8.77720182 152.3 | | 20E-35 | | | 2.77777778 | 97.222222 | | ENSG00000141627 | DYM | -0.7228324 | | | 4.52E-27 | | -0.6230177 | 100 | (| DYM | | 4.38333968 99.45 | | 00E-23 | | -0.7118239 | 100 | 0 | | ENSG 00000117523 | PRRC2C | 0.65561911 | | | 5.37E-27 | | 0.63349342 | 0 | 100 | | | 9.36850537 126.5 | | 38E-29 | | | 2.77777778 | | | ENSG00000113649 | TCERG1 | 0.65778794 | | | 5.90E-27 | | 0.68462332 | 0 | 100 | | | | | 51E-21 | | | 2.77777778 | 97.222222 | | ENSG 00000236104 | ZBTB22 | | 3.67038838 | | 6.02E-27 | | | 94.2857143 | 5.71428571 | | | 3.59789384 125.0 | | 04E-29 | | -1.0764988 | 100 | 0 | | ENSG 00000026508 | CD44 | -0.6541368 | | | 6.36E-27 | | -0.5898623 | 100 | (| CD44 | | 9.34331229 56.6 | | L8E-14 | | -0.5542006 | 100 | 0 | | ENSG 00000246451 | RP11-894P9.1 | 1.0784023 | | | 6.72E-27 | 1.77E-26 | 1.17162588 | 5.71428571 | | RP11-894P9.1 | | 1.82232682 117.2 | | 57E-27 | | | 2.77777778 | | | ENSG00000168228 | ZCCHC4 | 0.89473169 | | | 7.39E-27 | | 1.01970286 | 0 | 100 | ZCCHC4 | | 2.8138964 77.58 | | 27E-18 | | | 2.77777778 | 97.222222 | | ENSG00000068323 | TFE3 | -0.6615995 | 6.05448579 | 114.820281 | 8.62E-27 | | -0.5526744 | 100 | (| TFE3 | -0.6942871 | 5.99768261 105.2 | 21297 1.0 | 09E-24 | 3.40E-24 | -0.7564063 | 100 | 0 | | ENSG00000151806 | GUF1 | 0.72787508 | | | 9.13E-27 | | 0.84729515 | 0 | 100 | GUF1 | | 4.21975517 67.3 | | 25E-16 | | | 5.5555556 | | | ENSG 00000126005 | MMP24-AS1 | -0.7173338 | 4.47939383 | 114.668516 | 9.30E-27 | 2.44E-26 | -0.6680912 | 100 | (| MMP24-AS1 | -0.5522329 | 4.52048591 57.19 | 69175 3.9 | 94E-14 | 9.12E-14 | -0.6755692 | 91.6666667 | 8.3333333 | | ENSG00000099940 | SNAP29 | -0.6769867 | 5.22367369 | 114.652033 | 9.38E-27 | 2.46E-26 | -0.5680165 | 100 | (| SNAP29 | -0.4740079 | 5.26216465 47.43 | | 57E-12 | 1.21E-11 | -0.5217291 | 100 | 0 | | ENSG00000158769 | F11R | -0.7551953 | 4.0232713 | 114.430809 | 1.05E-26 | 2.75E-26 | -0.6874034 | 100 | (| F11R | -0.6241502 | 4.02958347 65.98 | 44915 4.5 | 54E-16 | 1.11E-15 | -0.6522442 | 100 | 0 | | ENSG 00000074695 | LMAN1 | 0.68185448 | 5.07184077 | 114.240115 | 1.15E-26 | 3.02E-26 | 0.68879208 | 0 | 100 | LMAN1 | 0.79278576 | 5.10509762 128.7 | 28503 7.7 | 78E-30 | 2.74E-29 | 0.75747328 | 2.77777778 | 97.222222 | | ENSG 00000175602 | CCDC85B | -0.7198475 | 4.49972384 | 114.174634 | 1.19E-26 | 3.12E-26 | -0.6522824 | 85.7142857 | 14.2857143 | CCDC85B | -0.5121924 | 4.49771345 48.58 | 47607 3.1 | L6E-12 | 6.82E-12 | -0.5595095 | 88.888889 | 11.1111111 | | ENSG 00000100888 | CHD8 | 0.64872496 | 7.63271175 | 114.106274 | 1.24E-26 | 3.23E-26 | 0.71496389 | 0 | 100 | CHD8 | 0.74699002 | 7.6316707 119.1 | 84928 9.5 | 4E-28 | 3.21E-27 | 0.63322284 | 2.77777778 | 97.222222 | | ENSG 00000099910 | KLHL22 | 0.82949398 | 3.36750277 | 114.091115 | 1.24E-26 | 3.26E-26 | 0.91413268 | 0 | 100 | KLHL22 | 0.7926697 | 3.3270722 86.51 | 41195 1.3 | 39E-20 | 3.89E-20 | 0.78480344 | 2.77777778 | 97.222222 | | ENSG00000128534 | LSM8 | 0.67486526 | 5.21060494 | 113.898136 | 1.37E-26 | 3.58E-26 | 0.70945732 | 0 | 100 | LSM8 | 0.74617161 | 5.20370381 116.0 | 56834 4.6 | 52E-27 | 1.53E-26 | 0.69317714 | 0 | 100 | | ENSG 00000176108 | CHMP6 | -0.9934439 | 2.2139851 | 113.866557 | 1.39E-26 | 3.64E-26 | -0.8934878 | 100 | (| CHMP6 | -0.9085634 | 2.21944265 76.45 | 65765 2.2 | 25E-18 | 5.89E-18 | -0.9023378 | 100 | 0 | | ENSG00000225892 | RP11-384K6.2 | 0.85162289 | 3.23975487 | 113.846277 | 1.41E-26 | 3.67E-26 | 0.94892688 | 2.85714286 | 97.1428571 | RP11-384K6.2 | 1.18452916 | 3.46643553 195.5 | 96151 1.9 | 91E-44 | 8.89E-44 | 1.10855077 | 0 | 100 | | ENSG00000132467 | UTP3 | -0.7179163 | 4.43408226 | 113.796119 | 1.44E-26 | 3.77E-26 | -0.5942978 | 100 | (| UTP3 | -0.5134228 | 4.44637216 49.21 | 07977 2.3 | 30E-12 | 4.97E-12 | -0.5243114 | 97.222222 | 2.7777778 | | ENSG00000101558 | VAPA | -0.6485123 | 7.17241319 | 113.682828 | 1.53E-26 | 3.99E-26 | -0.5404285 | 100 | (| VAPA | -0.6587851 | 7.08764071 94.74 | 01182 2.1 | L7E-22 | 6.38E-22 | -0.6891347 | 100 | 0 | | ENSG00000148843 | PDCD11 | 0.68872757 | 4.82836874 | 113.143243 | 2.01E-26 | 5.23E-26 | 0.71645531 | 0 | 100 | PDCD11 | 0.76950575 | 4.83327286 117.9 | 75579 1.7 | 76E-27 | 5.87E-27 | 0.68591276 | 2.77777778 | 97.222222 | | ENSG00000110852 | CLEC2B | -0.6554599 | 5.95780223 | 111.786063 | 3.98E-26 | 1.03E-25 | -0.5943453 | 91.4285714 | 8.57142857 | CLEC2B | -0.7218695 | 5.87280203 112. | 46515 2.8 | 33E-26 | 9.16E-26 | -0.7426598 | 100 | 0 | | ENSG00000106617 | PRKAG2 | -0.6837785 | 4.89294176 | 111.769239 | 4.01E-26 | 1.04E-25 | -0.6197478 | 94.2857143 | 5.71428571 | PRKAG2 | -0.9373603 | 4.73408833 170.0 | 99062 7.0 | 04E-39 | 3.00E-38 | -0.953555 | 100 | 0 | | ENSG00000114127 | XRN1 | 0.64642283 | 6.8351077 | 111.579927 | 4.42E-26 | 1.14E-25 | 0.67499553 | 0 | 100 | XRN1 | 0.67346264 | 6.81849228 98.53 | 11429 3.2 | 20E-23 | 9.60E-23 | 0.58767099 | 5.5555556 | 94.444444 | | ENSG00000156170 | NDUFAF6 | 0.80594676 | 3.48398362 | 111.280405 | 5.14E-26 | 1.33E-25 | 0.85867141 | 0 | 100 | NDUFAF6 | 0.6458723 | 3.29149728 57.17 | 07303 4.0 | 00E-14 | 9.23E-14 | 0.63206628 | 0 | 100 | | ENSG00000105254 | TBCB | -0.7066696 | 4.48549902 | 111.261976 | 5.18E-26 | 1.34E-25 | -0.6168132 | 100 | (| TBCB | -0.4562138 | 4.50330569 38.94 | 71358 4.3 | 35E-10 | 8.65E-10 | -0.5357498 | 91.6666667 | 8.3333333 | | ENSG00000104671 | DCTN6 | 0.7050292 | 4.54502612 | 111.251686 | 5.21E-26 | 1.35E-25 | 0.68241342 | 0 | 100 | DCTN6 | 0.80219858 | 4.54868628 120.3 | 84172 5.2 | 21E-28 | 1.76E-27 | 0.77584483 | 5.5555556 | 94.444444 | | ENSG 00000188647 | PTAR1 | 0.64900424 | 6.36579368 | 110.896034 | 6.24E-26 | 1.61E-25 | 0.66051981 | 0 | 100 | PTAR1 | 0.54299913 | 6.24716844 64.11 | 94607 1.1 | L7E-15 | 2.83E-15 | 0.55950539 | 16.6666667 | 83.3333333 | | ENSG00000101189 | MRGBP | -0.8188654 | 3.36656465 | 110.888442 | 6.26E-26 | 1.62E-25 | -0.7227901 | 100 | (| MRGBP | -0.7751558 | 3.32502125 82.46 | 17726 1.0 | 08E-19 | 2.94E-19 | -0.838822 | 100 | 0 | | ENSG00000100865 | CINP | -0.886013 | 2.8427236 | 110.78856 | 6.58E-26 | 1.70E-25 | -0.8238653 | 100 | (| CINP | -0.5269296 | 2.94270761 34.07 | 13473 5.3 | 31E-09 | 1.01E-08 | -0.5309153 | 100 | 0 | | ENSG00000126945 | HNR NPH2 | -0.6496032 | 6.24715209 | 110.71946 | 6.82E-26 | 1.76E-25 | -0.5714828 | 97.1428571 | 2.85714286 | HNRNPH2 | -0.8010623 | 6.13520843 139.8 | 69003 2.8 | 34E-32 | 1.06E-31 | -0.8270417 | 100 | 0 | | ENSG00000175931 | UBE2O | 0.66589159 | 5.22402701 | 110.593154 | 7.27E-26 | 1.87E-25 | 0.66955082 | 0 | 100 | UBE2O | 0.63976601 | 5.14643227 84.46 | 06007 3.9 | 92E-20 | 1.08E-19 | 0.53208207 | 2.77777778 | 97.222222 | | ENSG00000157045 | NTAN1 | -0.7227987 | 4.26014163 | 110.28934 | 8.47E-26 | 2.18E-25 | -0.6749458 | 94.2857143 | 5.71428571 | NTAN1 | -0.7747134 | 4.13855067 103.2 | 54922 2.9 | 95E-24 | 9.06E-24 | -0.902413 | 97.222222 | 2.77777778 | | ENSG00000184990 | SIVA1 | 0.64709239 | 6.07877313 | 110.242116 | 8.67E-26 | 2.24E-25 | 0.72198279 | 0 | 100 | SIVA1 | 0.75368447 | 6.08852025 124.7 | 06166 5.9 | 90E-29 | 2.03E-28 | 0.66071721 | 0 | 100 | | ENSG00000251474 | RPL32P3 | 0.86481715 | 3.0052921 | 110.115739 | 9.24E-26 | 2.38E-25 | 0.96445315 | 2.85714286 | 97.1428571 | RPL32P3 | 0.80420552 | 2.89827425 76.97 | 54719 1.7 | 73E-18 | 4.55E-18 | 0.69267878 | 0 | 100 | | ENSG00000108312 | UBTF | 0.63456739 | 7.56896449 | 109.634624 | 1.18E-25 | 3.03E-25 | 0.69217894 | 0 | 100 | UBTF | 0.73671282 | 7.57541467 116.9 | 52878 2.9 | 94E-27 | 9.75E-27 | 0.67541504 | 0 | 100 | | ENSG00000187954 | CYHR1 | 0.67890139 | 4.82581236 | 109.533567 | 1.24E-25 | 3.19E-25 | 0.72396466 | 0 | 100 | CYHR1 | 0.73786928 | 4.81881001 107.9 | 45601 2.7 | 76E-25 | 8.76E-25 | 0.64574508 | 0 | 100 | | ENSG00000106290 | TAF6 | 0.797854 | 3.50972749 | 109.336315 | 1.37E-25 | 3.52E-25 | 0.92206408 | 2.85714286 | 97.1428571 | TAF6 | 0.82439055 | 3.47623311 97.08 | 21169 6.6 | 55E-23 | 1.98E-22 | 0.79081861 | 2.77777778 | 97.222222 | | ENSG00000272153 | RP1-286D6.5 | 1.3059425 | 0.25225899 | 109.103715 | 1.54E-25 | 3.95E-25 | 1.50634729 | 0 | 100 | RP1-286D6.5 | 1.54236675 | 0.29781057 115.3 | 33889 6.6 | 55E-27 | 2.19E-26 | 1.4567082 | 0 | 100 | | ENSG00000164815 | ORC5 | 0.85825627 | 3.00157193 | 108.846634 | 1.75E-25 | 4.49E-25 | 0.89547338 | 0 | 100 | ORC5 | 0.75381857 | 2.88916983 67.23 | 49646 2.4 | 11E-16 | 5.96E-16 | 0.64621778 | 5.5555556 | 94.444444 | | ENSG 00000168172 | ноокз | -0.6512502 | 5.49590078 | 108.567448 | 2.02E-25 | 5.16E-25 | -0.6465868 | 100 | (| НООК3 | -0.6683567 | 5.42527227 95.20 | 81384 1.7 | 71E-22 | 5.05E-22 | -0.6846382 | 97.222222 | 2.7777778 | | ENSG00000173511 | VEGFB | -0.7698274 | 3.69985768 | 108.556453 | 2.03E-25 | 5.19E-25 | -0.6840635 | 100 | 0 | VEGFB | | 3.6346148 83.80 | | 16E-20 | | | 97.222222 | | | ENSG00000131653 | TRAF7 | -0.6839172 | 4.67037215 | 108.552478 | 2.03E-25 | 5.19E-25 | -0.6325913 | 100 | (| TRAF7 | -0.4839095 | 4.70676465 45.6 | 56608 1.4 | 11E-11 | 2.97E-11 | -0.53922 | 88.888889 | 11.1111111 | | ENSG 00000068366 | ACSL4 | -0.6572967 | 5.32571471 | 108.458282 | 2.13E-25 | 5.44E-25 | -0.6202548 | 97.1428571 | 2.85714286 | ACSL4 | -0.6939412 | 5.30883922 101.1 | 10858 8.7 | 70E-24 |
2.66E-23 | -0.7129626 | 100 | 0 | | ENSG00000174373 | RALGAPA1 | 0.65200394 | | | 2.25E-25 | 5.73E-25 | 0.72103294 | 0 | 100 | RALGAPA1 | | 5.40786992 97.90 | | 38E-23 | 1.31E-22 | 0.71891079 | 5.5555556 | 94.444444 | | ENSG 00000017260 | ATP2C1 | 0.65894229 | 5.17561879 | 108.31365 | 2.29E-25 | 5.85E-25 | 0.64131721 | 0 | 100 | ATP2C1 | 0.64747211 | 5.10187328 86.53 | 72318 1.3 | 37E-20 | 3.85E-20 | 0.68081958 | 5.5555556 | 94.444444 | | ENSG00000181026 | AEN | -0.6708557 | 4.95409935 | 107.86362 | 2.88E-25 | 7.33E-25 | -0.5602927 | 94.2857143 | 5.71428571 | | | 4.8590187 92.02 | | 55E-22 | 2.47E-21 | -0.7613857 | 100 | o | | ENSG00000115524 | SF3B1 | 0.63243297 | 9.33304591 | 107.577276 | 3.33E-25 | 8.45E-25 | 0.66452245 | 0 | 100 | SF3B1 | 0.62829516 | 9.24589582 75.79 | 96399 3.1 | L4E-18 | 8.16E-18 | 0.62438299 | 8.33333333 | 91.6666667 | | ENSG00000101639 | CEP192 | 0.66913183 | 4.89354859 | 107.536407 | 3.40E-25 | 8.63E-25 | 0.71479599 | 0 | 100 | CEP192 | 0.66547794 | 4.85468232 88.29 | 26737 5.6 | 55E-21 | 1.60E-20 | 0.61644089 | 8.3333333 | 91.6666667 | | | | | | | | | | _ | | | | | | | | | | | | FNCC00000073434 | 7510 (506 | 0.00703053 4.57300057 407.533547 | 2 425 25 | 0.000.00.00.000.00 | | 400 7510 /525 | 0.75244455 4.52055445 444 522455 | 4 5 4 5 9 5 | 4 475 25 2 6 65705475 | |------------------------------------|---------------|--|----------------------|--|---------------|-------------------------|---|----------------------|--| | ENSG00000072121 | ZFYVE26 | 0.68723052 4.57388957 107.523547 | 3.42E-25 | 8.68E-25 0.71048819 | 0 | 100 ZFYVE26 | 0.76244155 4.62056415 111.523455 | 4.54E-26 | 1.47E-25 0.65785475 0 100 | | ENSG00000147180 | ZNF711 | 0.69638344 4.46862342 107.438185 | 3.57E-25 | 9.06E-25 0.68907536 | 0 | 100 ZNF711 | 0.7436541 4.34479991 98.9660557 | 2.57E-23 | 7.73E-23 0.69009726 5.55555556 94.4444444 | | ENSG00000135597 | REPS1 | 0.64828195 5.4342847 107.404304 | 3.63E-25 | 9.21E-25 0.70917647 | 0 | 100 REPS1 | 0.73230385 5.42372018 114.476296 | 1.02E-26 | 3.36E-26 0.69463017 0 100 | | ENSG00000047346 | FAM214A | 0.63317501 6.67994395 107.077626 | 4.28E-25 | 1.09E-24 0.66296202 | 0 | 100 FAM214A | 0.55129818 6.60416309 66.4607204 | 3.57E-16 | 8.76E-16 0.53222191 5.55555556 94.4444444 | | ENSG00000239900 | ADSL | 0.65801454 5.11951039 107.052139 | 4.34E-25 | 1.10E-24 0.67462821 | 0 | 100 ADSL | 0.75096367 5.14296173 116.253509 | 4.18E-27 | 1.38E-26 0.66232346 0 100 | | ENSG00000070010 | UFD1L | 0.63647731 6.2044322 106.891257 | 4.70E-25 | 1.19E-24 0.67631627 | 0 | 100 UFD1L | 0.69316468 6.18688877 104.996201 | 1.22E-24 | 3.80E-24 0.69942356 2.77777778 97.2222222 | | ENSG00000121741 | ZMYM2 | 0.63102741 6.67874746 106.655412 | 5.30E-25 | 1.34E-24 0.65887197 | 0 | 100 ZMYM2 | 0.70164685 6.67354602 108.340803 | 2.26E-25 | 7.20E-25 0.66111066 2.77777778 97.2222222 | | ENSG00000119669 | IRF2BPL | -0.6399407 6.24171349 106.237488 | 6.54E-25 | 1.65E-24 -0.5164037 | | | -0.7950618 6.09230376 135.475694 | 2.60E-31 | 9.46E-31 -0.7913471 100 0 | | ENSG00000170035 | UBE2E3 | -0.7020465 4.34236937 106.232172 | 6.56E-25 | 1.66E-24 -0.6046484 | | | -0.5304538 4.34899868 51.4586784 | 7.31E-13 | 1.62E-12 -0.5987611 100 0 | | ENSG00000087152 | ATXN7L3 | -0.6287315 6.98862573 105.898204 | 7.76E-25 | | | 2.85714286 ATXN7L3 | -0.5025851 6.97527575 55.5994373 | 8.88E-14 | 2.03E-13 -0.6125719 100 0 | | ENSG00000197006 | METTL9 | -0.6309672 6.64024662 105.886984 | 7.81E-25 | 1.97E-24 -0.5975342 | 100 | 0 METTL9 | -0.5914033 6.61025205 76.8257584 | 1.87E-18 | 4.90E-18 -0.6187254 100 0 | | ENSG00000146859 | TMEM140 | -0.7861598 3.48580531 105.461476 | 9.68E-25 | 2.43E-24 -0.6882834 | 100 | 0 TMEM140 | -0.8458799 3.41735467 100.330749 | 1.29E-23 | 3.91E-23 -0.8793619 100 0 | | ENSG00000011638 | TMEM159 | -0.8774521 2.73898734 104.787366 | 1.36E-24 | 3.41E-24 -0.74167 | 100 | 0 TMEM159 | -1.2033892 2.5758355 152.344166 | 5.33E-35 | 2.10E-34 -1.2484493 100 0 | | ENSG00000116560 | SFPQ | 0.6246449 9.41605437 104.748515 | 1.39E-24 | 3.48E-24 0.69312608 | 0 | 100 SFPQ | 0.74138446 9.39538067 104.379343 | 1.67E-24 | 5.18E-24 0.72403321 2.77777778 97.2222222 | | ENSG00000121644 | DESI2 | -0.6543177 4.99360588 104.552183 | 1.53E-24 | 3.83E-24 -0.5709806 | 100 | 0 DES12 | -0.5517068 4.98090162 62.2010935 | 3.10E-15 | 7.41E-15 -0.6181714 97.2222222 2.77777778 | | ENSG00000144231 | POLR2D | -0.6639076 4.7822488 104.379102 | 1.67E-24 | 4.18E-24 -0.5861134 | | 2.85714286 POLR2D | -0.5430836 4.75381995 58.3791153 | 2.16E-14 | 5.03E-14 -0.5652493 97.2222222 2.77777778 | | ENSG00000112651 | MRPL2 | 0.7668009 3.57613064 103.918232 | 2.11E-24 | 5.26E-24 0.84142871 | 0 | 100 MRPL2 | 0.76304479 3.52383282 85.1986992 | 2.70E-20 | 7.49E-20 0.64098416 0 100 | | ENSG00000139921 | TMX1 | -0.6910454 4.338598 103.535801 | 2.56E-24 | 6.37E-24 -0.634386 | 100 | 0 TMX1 | -0.6077065 4.31054329 66.9371137 | 2.80E-16 | 6.91E-16 -0.6233794 97.2222222 2.77777778 | | ENSG00000181817 | LSM10 | -0.7771141 3.47791561 103.20408 | 3.02E-24 | 7.52E-24 -0.7254 | 100 | 0 LSM10 | -0.5315964 3.54445417 41.3807082 | 1.25E-10 | 2.54E-10 -0.6393878 91.6666667 8.33333333 | | ENSG00000117450 | PRDX1 | -0.6882823 4.3839787 103.13456 | 3.13E-24 | 7.78E-24 -0.5907508 | 100 | 0 PRDX1 | -0.577149 4.35964849 60.616275 | 6.94E-15 | 1.64E-14 -0.5398315 97.2222222 2.77777778 | | ENSG00000156171 | DRAM2 | -0.6491551 5.09172941 103.132083 | 3.14E-24 | 7.79E-24 -0.6389841 | | 8.57142857 DRAM2 | -0.9578564 4.92859856 181.550223 | 2.22E-41 | 9.95E-41 -0.9906894 100 0 | | ENSG00000179262 | RAD23A | 0.62361132 6.00337153 102.186427 | 5.05E-24 | 1.25E-23 0.67054907 | 0 | 100 RAD23A | 0.58382164 5.93081017 74.4935205 | 6.08E-18 | 1.57E-17 0.50349274 5.55555556 94.4444444 | | ENSG00000149636 | DSN1 | 0.81526738 3.12133231 102.152704 | 5.14E-24 | 1.27E-23 0.90420193 | 0 | 100 DSN1 | 0.85952748 3.07531887 93.4325389 | 4.20E-22 | 1.22E-21 0.79992143 0 100 | | ENSG00000107938 | EDRF1 | 0.63323548 5.42173434 102.112608 | 5.25E-24 | 1.30E-23 0.64975225 | 0 | 100 EDRF1 | 0.62475572 5.33377706 82.3576802 | 1.14E-19 | 3.09E-19 0.54657303 5.5555556 94.4444444 | | ENSG00000012061 | ERCC1 | -0.7732926 3.49615603 102.080227 | 5.33E-24 | 1.32E-23 -0.7450262 | 100 | 0 ERCC1 | -0.6750069 3.46321951 64.6132405 | 9.11E-16 | 2.21E-15 -0.8056402 94.4444444 5.55555556 | | ENSG00000159873 | CCDC117 | -0.6427917 5.08489936 102.040704 | 5.44E-24 | 1.35E-23 -0.5567118 | | | -0.4710673 5.08213544 45.8112364 | 1.30E-11 | 2.74E-11 -0.5287656 97.2222222 2.77777778 | | ENSG00000131779 | PEX11B | 0.82195941 3.06689732 101.710798 | 6.42E-24 | 1.59E-23 0.90819964 | 0 | 100 PEX11B | 0.54745892 2.84430259 35.2390557 | 2.92E-09 | 5.59E-09 0.51535755 19.4444444 80.5555556 | | ENSG00000111481 | COPZ1 | -0.6451431 5.01751799 101.578816 | 6.87E-24 | 1.70E-23 -0.5197116 | 100 | 0 COPZ1 | -0.6249553 4.9810749 79.5533565 | 4.69E-19 | 1.26E-18 -0.6921319 100 0 | | ENSG00000250251 | PKD1P6 | 0.69489524 4.20973369 101.362054 | 7.66E-24 | 1.89E-23 0.71605838 | 0 | 100 PKD1P6 | 0.63113833 4.1029214 67.616424 | 1.99E-16 | 4.92E-16 0.68449532 8.33333333 91.6666667 | | ENSG00000111860 | CEP85L | 0.62182081 5.97033761 101.0106 | 9.15E-24 | 2.25E-23 0.64282038 | 01.4205714 | 100 CEP85L | 0.57779317 5.85949368 72.2427715 | 1.90E-17 | 4.84E-17 0.5017139 5.5555556 94.4444444 | | ENSG00000004399 | PLXND1 | -0.645265 5.17955412 100.92606 | 9.55E-24 | 2.35E-23 -0.5177073 | | | -0.7760118 5.18882946 115.68249 | 5.58E-27 | 1.84E-26 -0.8624324 77.7777778 22.2222222 | | ENSG00000106268 | NUDT1
TAB1 | -0.9098009 2.36235906 100.789554
0.73744888 3.73398662 100.35623 | 1.02E-23
1.27E-23 | 2.52E-23 -0.7593509
3.13E-23 0.82156825 | 100
0 | 0 NUDT1
100 TAB1 | -0.6472465 2.41189897 42.4438264
0.7529812 3.69511396 86.84539 | 7.27E-11
1.17E-20 | 1.49E-10 -0.7555663 94.4444444 5.55555556 | | ENSG00000100324
ENSG00000225973 | PIGBOS1 | | 1.27E-23
1.33E-23 | | 100 | 0 PIGBOS1 | 0.7529812 3.69511396 86.84539
-0.794026 1.61397171 48.9403488 | 2.64E-12 | 3.30E-20 0.66246963 2.77777778 97.2222222
5.70E-12 -0.8311908 97.2222222 2.77777778 | | ENSG00000223973 | CRY1 | -1.0173646 1.57716651 100.270674
0.62280688 5.73232749 100.239228 | 1.35E-23 | 3.27E-23 -0.884798
3.32E-23 0.65896208 | 100 | 100 CRY1 | 0.92656338 5.83008218 184.281818 | 5.63E-42 | 2.54E-41 0.84670774 0 100 | | ENSG00000008405 | CK41
CKAP2 | 0.63281808 5.2457255 100.122699 | 1.43E-23 | 3.52E-23 0.65896208
3.52E-23 0.73752085 | • | | 0.717319 5.21911121 106.414533 | 5.98E-25 | 1.88E-24 0.69414739 5.55555556 94.4444444 | | ENSG00000130108 | HCFC2 | 0.68805477 4.210046 99.4464467 | 2.02E-23 | 4.94E-23 0.78150489 | | | 0.70543104 4.119757 85.7066489 | 2.09E-20 | 5.82E-20 0.64305458 2.77777778 97.2222222 | | ENSG00000111727
ENSG00000198898 | CAPZA2 | -0.6136631 6.33822849 99.410229 | 2.02E-23
2.05E-23 | 5.03E-23 -0.6047125 | | | -0.5883952 6.28085815 75.2664949 | 4.11E-18 | 1.07E-17 -0.6096928 97.2222222 2.7777778 | | ENSG00000138838 | GEMIN7 | -0.9317946 2.13475765 99.1394184 | 2.35E-23 | 5.76E-23 -0.9595128 | | | -0.6992225 2.15171133 45.625005 | 1.43E-11 | 3.01E-11 -0.7650789 94.4444444 5.55555556 | | ENSG00000142252 | CHCHD2 | -0.6069498 7.18227975 99.1244835 | 2.33E-23
2.37E-23 | 5.80E-23 -0.5443005 | | | -0.4750606 7.17279324 49.3367058 | 2.16E-12 | 4.67E-12 -0.7630769 94.4444444 5.55555556 | | ENSG00000106133 | EPHA4 | 0.63095323 5.22114211 99.0138417 | 2.51E-23 | 6.13E-23 0.66469014 | 0 | 100 EPHA4 | 0.89358608 5.4196009 163.993281 | 1.52E-37 | 6.28E-37 0.81358439 11.1111111 88.8888889 | | ENSG00000116108 | ATP5F1 | -0.6150989 5.99252233 98.9401027 | 2.60E-23 | 6.36E-23 -0.5142816 | 100 | 0 ATP5F1 | -0.4994639 5.99851284 54.5456454 | 1.52E-37 | 3.44E-13 -0.5951274 97.2222222
2.77777778 | | ENSG00000110433 | HAUS3 | 0.60706204 6.66983336 98.4585369 | 3.32E-23 | 8.08E-23 0.67602968 | 0 | 100 HAUS3 | 0.63304537 6.60193798 88.2014697 | 5.91E-21 | 1.68E-20 0.54466979 5.55555556 94.4444444 | | ENSG00000214307 | POFUT2 | 0.65010681 4.69389982 98.3331841 | 3.54E-23 | 8.60E-23 0.66708266 | 0 | 100 POFUT2 | 0.92575226 4.8120412 169.041764 | 1.20E-38 | 5.07E-38 0.88270875 0 100 | | ENSG00000135002 | RFK | -0.7107228 3.93351905 98.3156967 | 3.57E-23 | 8.67E-23 -0.6363526 | _ | | -0.5367279 3.94294135 47.4199321 | 5.73E-12 | 1.23E-11 -0.5206056 94.4444444 5.55555556 | | ENSG00000133002 | SDF4 | -0.6205844 5.55516376 98.2137241 | 3.76E-23 | 9.13E-23 -0.6325995 | | | -0.4976861 5.57619398 52.705068 | 3.88E-13 | 8.65E-13 -0.6195318 86.1111111 13.8888889 | | ENSG00000078829 | EIF2AK4 | -0.6400451 4.88134534 97.998223 | 4.19E-23 | 1.02E-22 -0.6394716 | | | -0.8803586 4.76452786 151.306283 | 8.98E-35 | 3.53E-34 -0.9433341 97.2222222 2.77777778 | | ENSG00000128829 | ABCD3 | 0.69264383 4.08972365 97.9559698 | 4.19E-23
4.28E-23 | 1.04E-22 0.70102404 | 94.203/143 | 100 ABCD3 | 0.7232346 4.07365949 89.0027401 | 3.94E-21 | 1.12E-20 | | ENSG00000117528 | CAND1 | 0.6045986 6.841015 97.9546247 | 4.28E-23 | 1.04E-22 0.70102404
1.04E-22 0.65183027 | 0 | 100 ABCD3 | 0.621773 6.7557852 84.6273921 | 3.60E-20 | 9.95E-20 0.5753434 5.55555556 94.4444444 | | ENSG00000111330 | PTRHD1 | -0.7797387 3.28992758 97.9447832 | 4.20E-23 | 1.04E-22 -0.7211778 | - | | -0.4178291 3.38529754 24.3087851 | 8.21E-07 | 1.40E-06 -0.5044262 86.1111111 13.8888889 | | ENSG00000184924 | DDX28 | -0.7168298 3.86425331 97.8753319 | 4.46E-23 | 1.08E-22 -0.6343187 | | | -0.6704894 3.81757543 71.0508479 | 3.48E-17 | 8.80E-17 -0.7301963 94.4444444 5.55555556 | | ENSG00000155957 | TMBIM4 | -0.8133292 3.00680627 97.7920393 | 4.40E-23 | 1.13E-22 -0.6997744 | 100 | 0 TMBIM4 | -1.110596 2.87106642 143.894018 | 3.75E-33 | 1.42E-32 -1.1946858 100 0 | | ENSG00000153337 | SHKBP1 | -0.6180519 5.61551949 97.2510565 | 6.11E-23 | 1.48E-22 -0.6341787 | | | -0.6056707 5.61121297 76.6421036 | 2.05E-18 | 5.37E-18 -0.8556567 80.5555556 19.4444444 | | 55555555555 | Jimor I | 1.1100313 3.01331343 37.2310303 | J.11L 23 | U.UJ-1707 | 23.7.2.42.037 | 1.1.2037 2 13 31 IKBI 1 | 5.555707 5.01121257 70.0421050 | 2.052 10 | 5.5.2.20 0.055050, 00.5555550 15.444444 | | I | | | | | |------------------------------------|---------------|---|----------------------|--| | ENSG00000132475 | H3F3B | -0.6067704 10.3737186 97.1717934 | 6.36E-23 | 1.54E-22 -0.5442664 91.4285714 8.57142857 H3F3B -0.5119495 10.3407806 45.8123657 1.30E-11 2.74E-11 -0.5857724 91.6666667 8.3333333 | | ENSG00000055483 | USP36 | 0.60102716 7.74978028 96.9604797 | 7.07E-23 | 1.71E-22 0.56825678 2.85714286 97.1428571 USP36 0.88216278 7.81812635 163.734848 1.73E-37 7.15E-37 0.75581062 0 10 | | ENSG00000234518 | PTGES3P1 | 1.05148422 1.27163906 96.7478185 | 7.87E-23 | 1.90E-22 1.23866379 2.85714286 97.1428571 PTGES3P1 0.57878959 0.97287945 21.0026914 4.59E-06 7.47E-06 0.65475642 19.4444444 80.555555 | | ENSG00000198406 | BZW1P2 | -1.0231587 1.45759031 96.6972651 | 8.08E-23 | 1.95F-22 -1.0790133 97.1428571 2.85714286 BZW1P2 -0.5799397 1.54573066 25.2761537 4.97E-07 8.57E-07 -0.6328252 88.8888889 11.1111111 | | ENSG00000171148 | TADA3 | -0.6908439 4.08642839 96.4842195 | 9.00E-23 | 2.17E-22 -0.5482035 94.2857143 5.71428571 TADA3 -0.5919765 4.07746268 59.3017084 1.35E-14 3.17E-14 -0.6017032 94.444444 5.5555555 | | ENSG00000136997 | MYC | -0.6097442 6.35687848 96.4613995 | 9.10E-23 | 2.19E-22 -0.5346372 88.5714286 11.4285714 MYC -0.5992807 6.26933138 75.7723202 3.18E-18 8.27E-18 -0.7925754 80.5555556 19.444444 | | ENSG00000129355 | CDKN2D | -0.6091456 6.04708219 96.426938 | 9.26E-23 | 2.23E-22 -0.5418183 91.4285714 8.57142857 COKN2D -0.7920375 5.93247849 134.769764 3.71E-31 1.34E-30 -0.7871722 100 | | ENSG00000114125 | RNF7 | -0.6101817 5.65005022 96.2532502 | 1.01E-22 | 2.43E-22 -0.5203751 100 0 RNF7 -0.5116976 5.63588131 56.6408283 5.23E-14 1.20E-13 -0.5432859 97.2222222 2.7777777 | | ENSG00000124177 | CHD6 | 0.59667763 7.18748741 96.2328935 | 1.02E-22 | 2.46E-22 0.63549571 0 100 CHD6 0.65189694 7.18556918 92.2501535 7.64E-22 2.21E-21 0.5738491 2.77777778 97.222222 | | ENSG00000004961 | HCCS | -0.7945176 3.07317339 95.9846907 | 1.16E-22 | 2.79E-22 -0.6700957 100 0 HCCS -0.9438609 2.96466802 108.845095 1.75E-25 5.60E-25 -0.9456617 100 | | ENSG00000127084 | FGD3 | 0.5996013 6.46334908 95.7782868 | 1.28E-22 | 3.09E-22 0.66699336 0 100 FGD3 0.60219225 6.39734238 79.9802113 3.78E-19 1.02E-18 0.5865038 2.777777778 97.222222 | | ENSG00000006530 | AGK | 0.72125071 3.72861134 95.6439318 | 1.38E-22 | 3.30E-22 0.83280723 | | ENSG00000168374 | ARF4 | -0.6080512 5.74732619 95.6110561 | 1.40E-22 | 3.36E-22 -0.5610036 97.1428571 2.85714286 ARF4 -0.6392976 5.70540621 88.0444674 6.40E-21 1.81E-20 -0.6697315 100 | | ENSG00000151327 | FAM177A1 | 0.60920209 5.73720192 95.6023472 | 1.40E-22 | 3.37E-22 0.64413799 0 100 FAM177A1 1.11174635 5.98586079 265.913295 8.82E-60 5.18E-59 1.02303791 0 10 | | ENSG00000115421 | PAPOLG | 0.6225538 5.07778959 95.5602587 | 1.43E-22 | 3.44E-22 0.66306433 0 100 PAPOLG 0.64336505 5.04038151 84.3078183 4.23E-20 1.17E-19 0.59615137 8.3333333 91.666666 | | ENSG00000085788 | DDHD2 | 0.60936303 5.50315124 95.3805496 | 1.57E-22 | 3.77E-22 0.67237208 0 100 DDHD2 0.61019162 5.42059695 79.5427034 4.72E-19 1.27E-18 0.5859241 8.3333333 91.666666 | | ENSG00000134644 | PUM1 | 0.59441231 6.95944442 95.1735725 | 1.74E-22 | 4.18E-22 0.61916559 0 100 PUM1 0.62322312 6.90326983 85.1910209 2.71E-20 7.52E-20 0.55670921 2.77777778 97.222222 | | ENSG00000137364 | TPMT | -0.7662255 3.29656522 94.5888713 | 2.34E-22 | 5.61E-22 -0.6847788 100 0TPMT -0.4850867 3.37038733 32.9717006 9.35E-09 1.75E-08 -0.5281579 97.2222222 2.7777777 | | ENSG00000165669 | FAM204A | -0.6200102 5.02392343 94.4639175 | 2.50E-22 | 5.97E-22 -0.5776155 100 0 FAM204A -0.5379434 5.0039492 59.4582924 1.25E-14 2.94E-14 -0.5135717 100 | | ENSG00000126214 | KLC1 | 0.65436944 4.42392529 94.1790642 | 2.88E-22 | 6.88E-22 0.71291506 2.85714286 97.1428571 KLC1 0.67110983 4.37262018 82.1537434 1.26E-19 3.42E-19 0.67431191 2.777777778 97.222222 | | ENSG00000124574 | ABCC10 | 0.69882295 3.866491 93.6437422 | 3.78E-22 | 9.00E-22 0.74328583 0 100 ABCC10 0.93971598 3.96090217 144.318673 3.03E-33 1.15E-32 0.93441913 2.77777778 97.222222 | | ENSG 00000138495 | COX17 | -0.7430091 3.42659889 93.2391534 | 4.63E-22 | 1.10E-21 -0.7266419 100 0 COX17 -0.4822041 3.48582264 33.8277964 6.02E-09 1.14E-08 -0.5193182 97.2222222 2.7777777 | | ENSG00000181789 | COPG1 | 0.59693542 5.76839253 92.8079509 | 5.76E-22 | 1.37E-21 0.65394219 0 100 COPG1 0.67769848 5.77206953 99.9482152 1.56E-23 4.74E-23 0.62596931 0 10 | | ENSG00000088179 | PTPN4 | 0.6114272 5.14173128 92.745244 | 5.95E-22 | 1.41E-21 0.63941702 0 100 PTPN4 0.77994124 5.18025828 126.014694 3.05E-29 1.06E-28 0.78297322 2.77777778 97.222222 | | ENSG00000158716 | DUSP23 | -1.0890084 0.90029934 92.5853768 | 6.45E-22 | 1.53E-21 -1.0991792 97.1428571 2.85714286 DUSP23 -1.0721571 0.89647227 68.5645077 1.23E-16 3.06E-16 -1.0837712 100 | | ENSG00000163428 | LRRC58 | 0.59922939 5.75191701 92.5373061 | 6.61E-22 | 1.57E-21 0.65764986 2.85714286 97.1428571 LRRC58 0.58785168 5.63742428 72.9115375 1.36E-17 3.46E-17 0.62011153 13.8888889 86.111111 | | ENSG00000204138 | PHACTR4 | 0.63115867 4.6721795 92.3603793 | 7.22E-22 | 1.71E-21 0.68721975 2.85714286 97.1428571 PHACTR4 0.85614135 4.78946756 144.096027 3.39E-33 1.29E-32 0.83193365 0 10 | | ENSG 00000049245 | VAMP3 | -0.5966942 5.77949151 92.2493941 | 7.64E-22 | 1.81E-21 -0.5846164 97.1428571 2.85714286 VAMP3 -0.6187354 5.71966358 82.8082225 9.04E-20 2.47E-19 -0.6455712 97.2222222 2.7777777 | | ENSG00000100523 | DDHD1 | 0.62275859 4.83986354 92.187245 | 7.89E-22 | 1.87E-21 0.67523595 0 100 DDHD1 0.66168309 4.80049038
86.359152 1.50E-20 4.20E-20 0.56269795 2.77777778 97.222222 | | ENSG00000149480 | MTA2 | 0.5860383 6.66107699 91.8961312 | 9.13E-22 | 2.16E-21 0.6147646 0 100 MTA2 0.58391976 6.61868837 75.3039927 4.04E-18 1.05E-17 0.53123215 0 10 | | ENSG00000130349 | C6orf203 | 0.81644485 2.71610844 91.2636258 | 1.26E-21 | 2.97E-21 0.86647923 0 100 C6orf203 0.63771748 2.54320448 43.554345 4.12E-11 8.51E-11 0.60013219 0 10 | | ENSG 00000099385 | BCL7C | -0.658167 4.2267444 91.1591544 | 1.33E-21 | 3.13E-21 -0.5648274 97.1428571 2.85714286 BCI7C -0.6618348 4.17146244 76.2131225 2.55E-18 6.64E-18 -0.7259067 97.2222222 2.7777777 | | ENSG00000133997 | MED6 | 0.61156546 4.9807577 91.144124 | 1.34E-21 | 3.15E-21 0.70802127 0 100 MED6 0.72564505 4.97884174 106.798992 4.93E-25 1.55E-24 0.65996541 2.77777778 97.222222 | | ENSG00000126267 | COX6B1 | -0.5957004 5.61853397 91.113016 | 1.36E-21 | 3.20E-21 -0.553757 97.1428571 2.85714286 COX6B1 -0.4228584 5.65123562 38.3982262 5.77E-10 1.14E-09 -0.5029226 86.1111111 13.888888 | | ENSG 00000070831 | CDC42 | -0.5772473 8.53644822 90.9205886 | 1.50E-21 | 3.52E-21 -0.5497684 97.1428571 2.85714286 CDC42 -0.5347743 8.4850743 58.8431463 1.71E-14 3.99E-14 -0.5706906 100 3.60E-21 -0.5640404 97.1428571 2.85714286 DTX3L -0.8794555 4.64274426 148.213015 4.26E-34 1.65E-33 -0.8449201 100 | | ENSG00000163840 | DTX3L | -0.6213936 4.75557224 90.8800037 | 1.53E-21 | | | ENSG00000172578
ENSG00000101882 | KLHL6
NKAP | 0.60481754 5.13898828 90.8737182 | 1.53E-21
1.60E-21 | 3.012 22 0.003 200 3.200 | | | HIST3H2A | 0.67880312 3.96313163 90.7873572 | | | | ENSG00000181218
ENSG00000023191 | RNH1 | -1.0715154 0.96445442 90.7557771
-0.5862194 6.32326503 90.558124 | 1.63E-21
1.80E-21 | 3.82E-21 -0.9599714 97.1428571 2.85714286 HIST3H2A -0.4003382 1.16863017 10.5604772 0.00115531 0.00162067 -0.5023457 69.4444444 30.555555 4.22E-21 -0.5055481 91.4285714 8.57142857 RNH1 -0.4370146 6.33810592 41.7589699 1.03E-10 -0.5603032 88.8888889 11.1111111 | | ENSG00000023191 | PPP1R37 | 0.6425005 4.37837249 89.9267539 | 2.47E-21 | 5.79E-21 0.73943945 2.85714286 97.1428571 PPP1R37 0.79020351 4.4121835 114.742637 8.96E-27 2.94E-26 0.75360703 0 10 | | ENSG00000104888 | GRAMD3 | 0.73125378 3.4124716 89.8323423 | 2.47E-21
2.59E-21 | 6.07E-21 0.75556028 0 100 GRAMD3 0.53596246 3.2112698 38.3727658 5.84E-10 1.15E-09 0.50299919 8.33333333 91.666666 | | ENSG00000135324 | SRI | -0.6609073 4.11394745 89.7217336 | 2.74E-21 | 6.41E-21 -0.5521656 100 0 SRI -0.4700622 4.14991476 38.6929162 4.96E-10 9.83E-10 -0.516303 97.2222222 2.7777777 | | ENSG00000075142 | ERCC6L2 | 0.64542134 4.2921861 89.4474005 | 3.15E-21 | 7.36E-21 0.68174419 0 100 ERCC6L2 0.7864306 4.35938282 112.508905 2.76E-26 8.96E-26 0.81497052 2.77777778 97.222222 | | ENSG00000182130 | NXT2 | -0.7447453 3.259473 89.2622119 | 3.46E-21 | 8.08E-21 -0.7535335 100 0 NXT2 -0.5283732 3.31766321 38.0851472 6.77E-10 1.33E-09 -0.5811148 94.444444 5.5555555 | | ENSG00000101888 | BBIP1 | 0.63977293 4.3974146 88.883834 | 4.19E-21 | 9.76E-21 0.68359392 5.71428571 94.2857143 BBIP1 0.79033885 4.42944547 113.931973 1.35E-26 4.40E-26 0.79938721 8.3333333 91.666666 | | ENSG00000214415 | VRK2 | -0.814158 2.66103034 88.2961774 | 5.64E-21 | 1.31E-20 -0.6787429 97.1428571 2.85714286 VRK2 -1.0042416 2.57674552 106.618581 5.40E-25 1.70E-24 -0.9690217 100 | | ENSG00000028116 | CISD2 | -0.814138 2.86103034 88.2961774 -0.6360137 4.3693791 88.2209793 | 5.85E-21 | 1.36E-20 -0.580487 97.1428571 2.85714286 CISD2 -0.4941599 4.34424635 44.6056648 2.41E-11 5.02E-11 -0.507813 100 | | ENSG00000143334
ENSG00000047621 | C12orf4 | 0.71352574 3.49499665 88.1151094 | 6.18E-21 | 1.36E-20 -0.360467 97.1426371 2.63714266 USD2 -0.4341599 4.34424033 44.6036048 2.41E-11 5.02E-11 -0.307613 100 1.43E-20 0.82665344 0 100 C12orf4 0.62214474 3.39558118 54.5194595 1.54E-13 3.48E-13 0.60455681 2.77777778 97.222222 | | ENSG00000047621 | PGGT1B | -0.6168072 4.64680143 87.9423225 | 6.74E-21 | 1.56E-20 -0.5418951 94.2857143 5.71428571 PGGT1B -0.466833 4.64655107 42.2106022 8.20E-11 1.67E-10 -0.5098908 88.8888889 11.1111111 | | ENSG00000164219 | TAF11 | 0.61085836 4.75084825 87.9023922 | 6.74E-21
6.88E-21 | 1.59E-20 0.66610424 0 100 TAF11 0.57740235 4.67037867 64.8752628 7.98E-16 1.94E-15 0.52440465 8.3333333 91.666666 | | ENSG00000064993 | REEP4 | -0.7254192 3.41671224 87.8346612 | 7.12E-21 | 1.59E-20 0.00010424 0 100 1AF11 0.57/40253 4.67057607 64.8752028 7.90E-16 1.94E-15 0.52440405 8.5555555 91.000000 1.65E-20 -0.7330903 94.2857143 5.71428571 REEP4 -0.6697753 3.43925267 62.919323 2.15E-15 5.17E-15 -0.6927907 97.2222222 2.7777777 | | ENSG00000100239 | PPP6R2 | 0.59919484 5.0310025 87.5116815 | 8.38E-21 | 1.05E-20 -0.7550905 94.2857145 5.71428571 PPP6R2 0.73704313 5.02584732 108.809324 1.79E-25 5.70E-25 0.60559389 5.55555556 94.444444 | | 211300000100239 | TTFUNZ | 0.55515404 5.0510025 67.5110015 | 0.30L-21 | 2.72 2.0 0.700273 2.722071 2.722071 3.722071 2.00020712 2.000000000 2.7220 2.70023 0.00000000 3.0000000 34.444444 | | SECONOMO-1998 SAMPOID 0.758188 SARSISSA \$7.078827 SARSISSA \$7.078827 SARSISSA \$7.078827 SARSISSA \$7.078827 SARSISSA \$7.078827 SARSISSA \$7.078828 \$7. | ENCC00000180008 | TONALIIAD | 0.74201022 2.17417252 07.1404522 | 1.015.20 | 2.235.20.0.76447772 | 100 TRNAU1AR | 0.50436406 3.0503543 43.3930403 | 4 FOF 11 | 0.375.11 0.5553917 0 100 | |--|------------------|-----------|----------------------------------|----------|--|--------------|----------------------------------|----------|---| | SEGEO-CORDISION-19 CAPPOLI CAP | ENSG00000180098 | TRNAU1AP | 0.74381033 3.17417253 87.1494622 | 1.01E-20 | 2.32E-20 0.76447772 0 | 100 TRNAU1AP | 0.58426496 3.0502542 43.3830403 | 4.50E-11 | 9.27E-11 0.5553817 0 100 | | Design D | | | | | | | | | |
| Description | | | | | | | | | | | SECONODIOSISS SECONODISS | | | | | | | | | | | PRISECONOMISHING CAPAGE | | | | | | | | | | | SECONO-1986 | | | | | | | | | | | DESCONOCIONISANA TOMINAR CONTROL TOMIN | | | | | | | | | | | PRISONOCIOSANS PRINCE CONTROLL PRISONOCIONADE P | | | | | | | | | | | PRINCE CONCOUNTS PRINCE CREATION CRE | | | | | | | | | | | PASCOCCION_135183 | | | | | | | | | | | EMSCO0000154761 NECTOO 0.6575668 S.0575668 S.0 | | | | | | | | | | | RASCOCCOUNTAGE NUCLIZE 0.6875268 3957795 88,855617 3.245-20 7.385-20 7. | | | | | | | | | | | RKSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001549 URSCO00001559 URSCO00001559 URSCO00001559 URSCO00001559 URSCO00001569 URSCO000001569 URSCO00001569 URSCO000001569 URSCO00001569 URSCO000001569 URSCO00001569 U | | | | | | | | | | | ENS-00000154913 MAIS 0.58869019 6.2006807 8.1959308 3.667.0 8.11-20 0.60706893 7.1428571 8.181 0.75908022 6.24959139 122.281742 2.06.28 6.887.28 0.7751709 8.3333333 3.66666667 ENS-0000015955 PMAIS 0.5595867 7.1020581 8.1438502 3.987.2 0.987.2 0.5595867 7.1020581 8.1438502 3.987.2 0.987 | | | 0.79632448 2.67621782 84.769518 | 3.35E-20 | 7.63E-20 0.89010646 0 | 100 NUDT22 | | 4.26E-10 | | | ENSCO000016355 Mail 0.5595586 1.0595586 1.0595586 2.059588 3.059588 3.059588 3.059588 3.059588 3.059588 3.059588 3.059588 3.059588 3.05958 | ENSG 00000154473 | BUB3 | 0.56869019 6.20068607 84.5983068 | 3.66E-20 | 8.31E-20 0.60706893 5.71428571 94.2857 | 143 BUB3 | | 2.00E-28 | 6.83E-28 0.77517059 8.33333333 91.6666667 | | ENGOODOOISIAS ENCOODOOISIAS ENCOODOOISIA | ENSG 00000103043 | VAC14 | 0.60321845 4.67090514 84.5754435 | 3.70E-20 | 8.41E-20 0.66359465 0 | 100 VAC14 | 0.69407127 4.7107041 94.1874626 | 2.87E-22 | 8.40E-22 0.61779736 2.77777778 97.2222222 | | ENGCOOD0012838 ENCCOOD0012839 ENCCOOD0012839 ENCCOOD0012839 ENGCOOD0012839 ENGC | ENSG 00000198355 | PIM3 | -0.5599357 8.28716649 84.4308502 | 3.98E-20 | 9.04E-20 -0.5513871 85.7142857 14.2857 | 143 PIM3 | -0.6554278 8.15001073 89.1723243 | 3.62E-21 | 1.03E-20 -0.6134087 97.2222222 2.77777778 | | ENSCORDOOULS CONTINUE CONT | ENSG 00000160741 | CRTC2 | 0.55955866 7.12065837 84.3879852 | 4.07E-20 | 9.23E-20 0.6692472 2.85714286 97.1428 | 571 CRTC2 | | 2.15E-24 | 6.63E-24 0.61758651 0 100 | | ENSCO000027539 KAALIAF 0.5588024 6.652-9415 83.734128 5.662-00 1.05674057 0.100 KNANLTY 0.5598024 6.015555 6.66440868 83.44264 5.5555555 9.444444 ENSCO00001579 KAALIAF 0.5588024 6.01555 3.5590705 8.4279842 6.612-00 1.05674057 0.100 KNANLTY 0.597808 6.011457 0.5588024 6.011555 3.656408 8.6484011 4.725-1 1.345-20 0.6166763 2.7777778 97.222222 ENSCO000015867 END 0.5602375 6.4166248 8.15861718 83.171693 7.527-20 1.585-10 0.5283864 0.100 FNMM 0.5787269 6.35115649 4.728440 1.315-12 2.885171.05112 7.288517 1.355-20 0.5585555 9.4444444 ENSCO00015748 SVNE3 0.4656599 1.617560 8.0151714 7.9657719 1.000 0 | ENSG 00000093183 | SEC22C | 0.57130711 5.67251448 83.9862893 | 4.98E-20 | 1.13E-19 0.59663503 0 | 100 SEC22C | 0.79464755 5.73459342 135.774815 | 2.23E-31 | 8.15E-31 0.67269882 5.5555556 94.4444444 | | ENSG00000257093 KNALIAF7 0.55580224 6.94840888 83.4422664 6.5652-00 1.865-19 0.70408676 0.100 ZNRS 0.5040768 6.9014269 6.4111555 3.666-15 8.986-16 0.55050705 83.2777777777777777777777777777777777777 | ENSG 00000013563 | DNASE1L1 | -0.7654566 2.98458286 83.9159691 | 5.16E-20 | 1.17E-19 -0.7764323 80 | 20 DNASE1L1 | -0.9952285 2.89240938 113.898251 | 1.37E-26 | 4.47E-26 -1.1672095 91.6666667 8.33333333 | | ENSCO000015291 ENSCO0000152921 ENSCO0000152930 ENSCO00000152930 ENSCO000001529 | ENSG00000124535 | WRNIP1 | 0.60116268 4.65294315 83.7334128 | 5.66E-20 | 1.28E-19 0.63470216 0 | 100 WRNIP1 | 0.76418707 4.68230629 113.834387 | 1.42E-26 | 4.62E-26 0.69530621 0 100 | | ENSGO000015478 ENSGO000017648 ENSGO000017648 ENSGO000017648 ENSGO000017649 ENSGO000017648 ENSGO000017654 ENSGO000017656 ENSGO000017676 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776 ENSGO0000176776
ENSGO0000176777777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO000017677777778 ENSGO00001767787777778 ENSGO0000176787 ENSGO00 | ENSG00000257093 | KIAA1147 | 0.55680224 6.94840868 83.4422664 | 6.56E-20 | 1.48E-19 0.56743057 0 | 100 KIAA1147 | 0.54970848 6.90144269 66.4111555 | 3.66E-16 | 8.98E-16 0.53041464 5.5555556 94.4444444 | | ENSG0000015291 ENSG00000154548 SPHAP | ENSG00000204514 | ZNF814 | 0.69332365 3.55090705 83.4279842 | 6.61E-20 | 1.49E-19 0.70408676 0 | 100 ZNF814 | 0.78377878 3.51664669 88.6484011 | 4.72E-21 | 1.34E-20 0.61606763 2.77777778 97.2222222 | | ENSG00000127848 ENSG00000127848 ENSG00000127848 ENSG00000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG000000127849 ENSG0000000127849 ENSG0000000127849 ENSG000000000000000000000000000000000000 | ENSG 00000163636 | PSMD6 | 0.56023755 6.41706624 83.3777278 | 6.78E-20 | 1.53E-19 0.58238504 0 | 100 PSMD6 | 0.57629604 6.35119634 73.2684345 | 1.13E-17 | 2.89E-17 0.53005508 5.5555556 94.4444444 | | ENSG00000127884 ECHS1 | ENSG00000152291 | TGOLN2 | -0.5512683 8.15861718 83.1716093 | 7.52E-20 | 1.69E-19 -0.517455 100 | 0 TGOLN2 | -0.5833786 8.08143778 71.7652794 | 2.42E-17 | 6.14E-17 -0.6077159 100 0 | | RYSGO000015948 RYSGO000015947 RYSGO0000015947 RYSGO0000015940 RYSGO0000015947 RYSGO00000015947 RYSGO00000015940 RYSGO00000015940 RYSGO00000015940 RYSGO000000000000000000000000000000000000 | ENSG 00000176438 | SYNE3 | -0.6365959 4.11676562 83.0751724 | 7.90E-20 | 1.78E-19 -0.5684601 97.1428571 2.85714 | 286 SYNE3 | -1.4300149 3.82656132 314.014033 | 2.92E-70 | 2.00E-69 -1.4359406 100 0 | | ROSGO0000115947 CRC4 | ENSG 00000127884 | ECHS1 | -0.7678977 2.84450162 82.6567045 | 9.76E-20 | 2.19E-19 -0.7561492 97.1428571 2.85714 | 286 ECHS1 | -0.6580213 2.87719501 50.9315074 | 9.56E-13 | 2.11E-12 -0.7195019 94.4444444 5.55555556 | | ENGGOU00115947 CRC4 0.61651353 4.27935271 81.6545593 1.62E-19 3.62E-19 3.6 | ENSG 00000168488 | ATXN2L | 0.54821165 7.54871603 81.8304187 | 1.48E-19 | 3.32E-19 0.63614026 0 | 100 ATXN2L | 0.66235326 7.55388242 94.3775017 | 2.61E-22 | 7.64E-22 0.56631909 2.77777778 97.2222222 | | ENSGO0000112796 ELK1 | ENSG 00000204186 | ZDBF2 | 0.5547028 6.74040955 81.7760154 | 1.52E-19 | 3.41E-19 0.59341622 2.85714286 97.1428 | 571 ZDBF2 | 0.67748653 6.70154656 98.6873749 | 2.96E-23 | 8.89E-23 0.76086613 8.33333333 91.6666667 | | ENSGO000012994 (PAPE 2) | ENSG 00000115947 | ORC4 | 0.61651353 4.27935271 81.6545593 | 1.62E-19 | 3.62E-19 0.68136189 0 | 100 OR C4 | 0.6512107 4.23810807 75.4429149 | 3.76E-18 | 9.76E-18 0.64283311 2.77777778 97.2222222 | | FGR10P2 0.5587669 5.6772381 81.0258675 2.3E-19 4.95E-19 0.5234024 100 0 FGR10P2 0.4713993 5.65355119 48.2952279 3.67E-12 7.89E-12 0.5027321 100 0 0 0 0 0 0 0 0 | | | | | | | | | | | ENSGO000015263 SP140 | | | | | | | | | | | ENSG00000116120 FARSB 0.69989228 3.3879478 80.7906274 2.51E-19 5.57E-19 0.81021732 0 100 FARSB 0.59146352 3.23136836 47.0728669 6.84E-12 1.46E-11 0.54223442 2.77777778 97.2222222 ENSG0000014514 NAF1 0.58775542 4.67200602 80.287593 3.24E-19 7.59E-19 0.82656721 0 100 NAF1 0.66909866 4.629159 8.50E-15 0.7396939 2.77777778 97.2222222 ENSG00000149541 ThAP3 0.7250669 3.07482399 80.2487408 3.30E-19 7.29E-19 0.676612 0 100 NAF1 0.65909866 4.629159 8.50E-19 0.64290514 0 100 ENSG00000119787 ATL2 0.56134922 5.36472784 79.8547158 4.03E-19 8.88E-19 0.62309137 0 100 ATL2 0.59523244 5.29660056 74.282411 6.77E-18 1.74E-17 0.5921317 2.77777778 97.2222222 ENSG0000012434 AKAP8L 0.54596386 6.26687312 79.0392839 6.09E-19 1.34E-18 0.6102752 0 100 AKAP8L 0.63359953 6.280281 88.673094 4.66E-11 1.33E-20 0.5503996 0 100 ENSG00000165526 RPUSD4 0.65375941 3.74467605 78.9249504 6.9E-19 1.42E-18 0.6102752 0 100 AKAP8L 0.68627823 3.69343241 72.5145419 1.66E-17 4.22E-17 0.59914187 0 100 ENSG00000123799 ENSG000001249 FART2 0.6175382 4.14903086 78.2578081 9.04E-19 1.9E-18 0.5532798 97.1428571 2.85714286 CERS4 0.7105209 4.10657078 86.4620251 1.42E-20 3.99E-20 0.8070107 100 ENSG00000181274 FART2 0.6385684 3.87744062 77.3569323 1.33E-18 0.5053836 100 0 ENSG00000181274 FART2 0.6385684 3.87744062 77.3569323 1.33E-18 0.651387 97.1428571 2.85714286 ERS4 0.7015209 4.10657078 86.4620251 1.42E-20 3.99E-20 0.8070107 100 ENSG00000167525 FART2 0.6385684 3.87744062 77.3569323 1.33E-18 0.6513877 0.7128571 0 100 ENSG0000018407 VMAP 0.5970431 4.30790636 78.2863255 1.81E-18 3.93E-18 0.65287771 0 100 ENSG0000016407 VMAP 0.59704034 9.05970431 4.30790636 76.8866635 1.81E-18 3.93E-18 0.6647384 2.85714286 97.1428571 74.044444444444444444444444444444444444 | | | | | | | | | | | ENSGO000015445 VIPAS39 0.72996978 3.05304357 80.6543493 2.69E-19 5.96E-19 0.82656721 0 100 VIPAS39 0.71244071 3.0009848 63.1153416 1.95E-15 4.69E-15 0.73969839 2.77777778 97.222222 ENSGO0000145414 NAF1 0.58775542 4.67200602 80.2887593 3.24E-19 7.15E-19 0.676612 0 100 NAF1 0.66909866 4.62921859 86.5060149 1.39E-20 3.91E-20 0.62490514 2.77777778 97.2222222 ENSGO0000119787 ATL2 0.556134922 5.36472784 79.8547158 4.03E-19 0.62309137 0 100 ATL2 0.59523244 5.0960056 74.282411 6.77E-18 1.74E-17 0.59521317 2.77777778 97.2222222 ENSGO0000129484 PARP2 0.7322067 2.97583448 79.2943792 5.35E-19 1.18E-18 0.81084311 0 100 PARP2 0.7319861 2.88475116 64.0848039 1.19E-15 2.88E-15 0.66513377 2.77777778 97.2222222 ENSGO000014640 PARP2 0.63575941 3.74467605 78.9249504 6.45E-19 1.97E-18 0.5532798 97.1428571 2.85714286 TBC1022A 0.6175382 4.14903086 78.2649625 9.01E-19 1.97E-18 0.5532798 97.1428571 2.85714286 TBC1022A 0.6193812 7.5449003 1.03E-17 0.6632623 94.4444444 5.555555556 PASGO000018274 FARP2 0.633645 4.03959937 76.119719 2.67E-18 0.5058871 0.100 PARP2 0.731961 7.0356463 97.2943702 2.77777778 97.2222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.77777778 97.222222 2.777 | | | | | | | | | | | ENSGO0000145414 NAF1 0.58775542 4.6720602 80.287593 3.24E-19 7.15E-19 0.676612 0 100 NAF1 0.66909866 4.62921859 86.5060149 1.39E-20 3.91E-20 0.64290514 2.77777778 97.222222 ENSGO0000119787 ATL2 0.56134922 5.36472784 79.8547158 4.03E-19 8.88E-19 0.62309137 0 100 ATL2 0.5952344 5.29660056 74.282411 6.03E-15 0.66513377 2.77777778 97.222222 ENSGO0000129484 PARP2 0.7322067 2.97583448 79.2943792 5.35E-19 1.18E-18 0.81084311 0 100 PARP2 0.7319861 2.88475116 64.0848039 1.19E-15 2.88E-15 0.66513377 2.77777778 97.222222 ENSGO000011434 AKAP8L 0.54596386 6.26687312 79.0392839 6.09E-19 1.34E-18 0.61027522 0 100 AKAP8L 0.63359953 6.890811 88.673094 4.66E-21 1.33E-20 0.55083996 0 100 ENSGO00000165526 RUSGO000000661 TBC1D22A 0.6617582 4.14903086 78.264965 5.01E-19 1.97E-18 -0.5532789 97.1428571 2.85714286 TBC1D22A 0.66537594 3.74467605 78.294504 5.901E-19 1.97E-18 -0.5532789 97.1428571 2.85714286 TBC1D22A 0.66357894 5.0610049 4.2094076 78.187591 9.37E-19 2.05E-18 -0.5308386 100 0.78F845 0.7015209 4.0657078 86.662051 1.42E-20 3.99E-20 0.8070107 100 0.80163000013274 FRATZ 0.6385684 3.87744062 77.6444198 1.32E-18 2.69E-18 0.6308418 8.5714286 100 0.548611274 FRATZ 0.6385684 3.87744062 77.5444198 1.32E-18 3.33E-18 0.5007831 97.1428571 2.85714286 TBC1D22A 0.6535789 5.45E-19 1.32E-18 3.33E-18 0.5007831 97.1428571 2.85714286 TBC1D22A 0.6535789 5.45E-19 1.32E-18 0.5302789 97.1428571 2.85714286 TBC1D22A 0.655708 86.662051 1.42E-20 3.99E-20 0.8070107 100 0.801630000013879 5.45E-19 0.630818 97.1428571 5.05E-19 0.0553034 5.24522509 77.2180319 1.53E-18 3.33E-18 0.5007818 97.1428571 2.85714286 TBC1D22A 0.685684 3.87744062 77.0866251 3.87E-19 0.65303039 5.5555556 94.444444 5.555555556 94.4444444 5.85E-18 0.6600000138614 VWA9 0.5970043 4.3059036 78.866635 1.81E-18 3.93E-18 0.66847384 2.85714286 97.1428571 TAPPC2 0.70754074 3.9543622 82.4619073 1.08E-19 2.94E-19 0.60303039 5.55555556 94.4444444 5.855555555555555 94.4444444 | | | | | | | | | | | ENSGO000014988 THAP3 | | | | | | | | | | | ENSGO0000119787 ATL2 0.56134922 5.36472784 79.8547158 4.03E-19 8.88E-19 0.62309137 0 100 ATL2 0.59523244 5.29660056 74.282411 6.77E-18 1.74E-17 0.5921317 2.77777778 97.222222 ENSGO0000124944 PARP2 0.7322067 2.97583448 79.2943792 5.35E-19 1.18E-18 0.81084311 0 100 PARP2 0.7319861 2.88475116 64.0848039 1.19E-15 2.88E-15 0.66513377 2.77777778 97.222222 ENSGO000012434 AKAP8L 0.54596386 6.26687312 79.0392839 6.09E-19 1.34E-18 0.6102752 0 100 AKAP8L 0.63359953 6.280281 88.673094 4.66E-21 1.33E-20 0.55083996 0 100 ENSGO0000054611 TBC1D22A -0.6175382 4.14903086 78.2649625 9.01E-19 1.97E-18 -0.5532798 97.1428571 2.85714286 TBC1D22A -0.6635545 4.03393703 73.4489003 1.03E-17 2.65E-17 -0.7189137 97.222222 2.7777778 ENSGO0000181274 FRAT2 -0.6308564 3.87744062 77.6444198 1.23E-18 2.69E-18 -0.6308414 88.5714286 11.428571 ENSGO000018617 FRAT2 -0.553374 5.45E-13 -0.6526023 94.4444444 5.55555556 ENSGO0000188174 FRAT2 -0.553345 5.45E-13 -0.5532798 97.1428571 2.85714286 TBC1D22A -0.6308564 3.87744062 77.6444198 1.23E-18 2.69E-18 -0.6308814 88.5714286 11.4285714 FRAT2 -0.580903 3.84194949 53.6241246 2.43E-13 5.45E-13 -0.6526023 94.4444444 5.55555556 ENSGO00001881274 FRAT2
-0.553345 5.45E-13 -0.5532798 77.3569323 1.43E-18 3.13E-18 0.90476308 0 100 SMGILP3 1.01357107 1.56908216 77.0866251 1.64E-18 4.31E-18 0.78808177 0 100 ENSGO0000188107 VWA9 0.59700431 4.30790636 76.8866325 1.81E-18 3.93E-18 0.65287771 0 100 VWA9 0.82346362 4.0595151 2.06E-32 7.73E-32 0.81874054 2.77777778 97.222222 ENSGO0000196459 TRAPPC2 0.62147476 3.9595973 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.7754074 3.9543262 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.4444444 | | | | | | | | | | | ENSGO0000129484 PARP2 0.7322067 2.97583448 79.2943792 5.35E-19 1.18E-18 0.81084311 0 100 PARP2 0.7319861 2.88475116 64.0848039 1.19E-15 2.88E-15 0.66513377 2.77777778 97.222222 ENSGO000011243 AKAP8L 0.54596386 6.26687312 79.0392839 6.09E-19 1.34E-18 0.61027522 0 100 AKAP8L 0.63359953 6.280281 88.673094 4.66E-21 1.33E-20 0.55083996 0 100 ENSGO000054611 TBC1D22A -0.65375941 3.74467605 78.9249504 6.45E-19 1.42E-18 0.6617944 0 100 RPUSD4 0.686627823 3.69343241 72.5145419 1.66E-17 4.22E-17 0.56914187 0 100 ENSGO000090661 CERS4 -0.7172989 3.07836965 78.2578081 9.04E-19 1.97E-18 -0.5532798 97.1428571 2.85714286 CERS4 -0.715209 4.06653545 4.03393703 73.4489003 1.03E-17 2.65E-17 -0.7189137 97.222222 2.777778 | | | | | | | | | | | ENSG0000011243 AKAP8L 0.54596386 6.26687312 79.0392839 6.09E-19 1.34E-18 0.61027522 0 100 AKAP8L 0.63359953 6.280281 88.673094 4.66E-21 1.33E-20 0.55083996 0 100 ENSG00000165526 RPUSD4 0.65375941 3.74467605 78.9249504 6.45E-19 1.42E-18 0.6617944 0 100 RPUSD4 0.68627823 3.69343241 72.5145419 1.66E-17 4.22E-17 0.56914187 0 100 ENSG00000054611 TBC1D22A -0.6175382 4.14903086 78.2649625 9.01E-19 1.97E-18 -0.5532798 97.1428571 2.85714286 ERS4 -0.7321427 2.99629781 66.1989692 4.08E-16 9.99E-16 -0.8159555 100 0 ENSG00000181274 ENSG00000213799 ENSG00000181274 ENSG00000267352 SH3GLIP3 0.90118192 1.51793708 77.3569323 1.43E-18 3.11E-18 0.90476308 0 100 ENSG00000146007 ZMAT2 -0.553934 5.24522509 77.2180319 1.53E-18 3.33E-18 0.50528771 0 100 ENSG00000128191 ENSG00000128191 DGCR8 0.6126345 4.0595973 76.1197179 2.67E-18 5.77E-18 0.6847384 2.85714286 97.1428571 ENSG0000128191 ENSG00000164509 TRAPPC2 0.6214746 3.9595973 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 ENSG00000164509 TRAPPC2 0.6214746 3.9595973 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.9543262 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.4444444 | | | | | | | | | | | ENSG00000165526 RPUSD4 0.65375941 3.74467605 78.9249504 6.45E-19 1.42E-18 0.6617944 0 100 RPUSD4 0.68627823 3.69343241 72.5145419 1.66E-17 4.22E-17 0.56914187 0 100 RPUSD4 0.66857854 1.4903086 78.2649625 9.01E-19 1.97E-18 -0.5532798 97.1428571 2.85714286 TBC1D22A -0.6635545 4.03393703 73.4489003 1.03E-17 2.65E-17 -0.7189137 97.2222222 2.77777778 ENSG00000213799 CERS4 -0.6100049 4.2094076 78.1875991 9.37E-19 2.05E-18 -0.5305836 100 0 2NF845 -0.7105209 4.10657078 86.4620251 1.42E-20 3.99E-20 -0.8070107 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | ENSG0000054611 TBC1D22A | | | | | | | | | | | ENSG0000090661 CERS4 -0.7172989 3.07836965 78.2578081 9.04E-19 1.98E-18 -0.6193818 97.1428571 2.85714286 CERS4 -0.7321427 2.99629781 66.1989692 4.08E-16 9.99E-16 -0.8159555 100 0 0 ENSG00000213799 ZNF845 -0.6100049 4.2094076 78.1875991 9.37E-19 2.05E-18 -0.5305836 100 0 ZNF845 -0.7105209 4.10657078 86.4620251 1.42E-20 3.99E-20 -0.8070107 100 0 0 ENSG00000181274 ERATZ -0.6385684 3.87744062 77.6444198 1.23E-18 2.69E-18 -0.6304814 88.5714286 ENSG00000267352 SH3GLIP3 0.90118192 1.51793708 77.3569323 1.43E-18 3.11E-18 0.90476308 0 100 ENSG00000146007 ZMATZ -0.553934 5.24522509 77.2180319 1.53E-18 3.33E-18 -0.5075817 97.1428571 2.85714286 ZMATZ -0.4876589 5.22859385 50.0438701 1.50E-12 3.28E-12 0.56603685 0 100 ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8866325 1.81E-18 3.93E-18 0.68937866 0 100 DGCR8 0.6979276 4.21646639 140.505151 2.06E-32 7.73E-32 0.81874054 2.77777778 97.222222 ENSG00000196459 TRAPPC2 0.6214746 3.9595973 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.95432622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.5555556 94.4444444 | | | | | | | | | | | ENSG00000213799 ZNF845 -0.6100049 4.2094076 78.1875991 9.37E-19 2.05E-18 -0.5305836 100 0 ZNF845 -0.7105209 4.10657078 86.4620251 1.42E-20 3.99E-20 -0.8070107 100 0 ENSG00000181274 FRAT2 -0.6385684 3.87744062 77.6444198 1.23E-18 2.69E-18 -0.6304814 88.5714286 11.4285714 FRAT2 -0.580903 3.84194949 53.6241246 2.43E-13 5.45E-13 -0.6526023 94.4444444 5.55555556 ENSG0000146007 ZMAT2 -0.553934 5.24522509 77.2180319 1.53E-18 3.33E-18 -0.5075817 97.1428571 2.85714286 ZMAT2 -0.4876589 5.22885128 50.0438701 1.50E-12 3.28E-12 -0.526978 97.222222 ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8866385 1.81E-18 3.93E-18 0.58937866 0 100 DGCR8 0.6126345 4.10593654 76.8866385 1.81E-18 3.93E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.9543622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.5555556 94.4444444 | | | | | | | | | | | ENSG0000181274 FRAT2 -0.6385684 3.87744062 77.6444198 1.23E-18 2.69E-18 -0.6304814 88.5714286 11.4285714 FRAT2 -0.580903 3.8419499 53.6241246 2.43E-13 5.45E-13 -0.6526023 94.444444 5.55555556 ENSG0000267352 SH3GLIP3 0.90118192 1.51793708 77.3569323 1.43E-18 3.11E-18 0.90476308 0 100 SH3GLIP3 1.01357107 1.56908216 77.0866251 1.64E-18 4.31E-18 0.78808177 0 100 ENSG00000138614 VWA9 0.59700431 4.30790636 76.8866325 1.81E-18 3.93E-18 0.65287771 0 100 ENSG00000128191 ENSG00000196459 TRAPPC2 0.6214746 3.95959737 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.95432622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.5555556 94.4444444 | | | | | | | | | | | ENSG0000267352 SH3GL1P3 0.90118192 1.51793708 77.3569323 1.43E-18 3.11E-18 0.90476308 0 100 SH3GL1P3 1.01357107 1.56908216 77.0866251 1.64E-18 4.31E-18 0.78808177 0 100 SH3G00000146007 2MAT2 -0.553934 5.24522509 77.2180319 1.53E-18 3.33E-18 -0.5075817 97.1428571 2.85714286 2MAT2 -0.4876589 5.22895368 50.0438701 1.50E-12 3.28E-12 -0.5269785 97.222222 2.77777778 ENSG0000138614 VWA9 0.59700431 4.30790636 76.8866325 1.81E-18 3.93E-18 0.65287771 0 100 VWA9 0.82343629 4.40894353 124.753216 5.76E-29 1.98E-28 0.76603685 0 100 ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8860686 1.81E-18 3.93E-18 0.6894784 2.85714286 97.1428571 TRAPPC2 0.70754074 3.9543622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.44444444 | | | | | | | | | | | ENSG0000146007 ZMAT2 -0.553934 5.24522509 77.2180319 1.53E-18 3.33E-18 -0.5075817 97.1428571 2.85714286 ZMAT2 -0.4876589 5.22895368 50.0438701 1.50E-12 3.28E-12 -0.5269785 97.222222 2.77777778 ENSG0000138614 VWA9 0.59700431 4.30790636 76.8866325 1.81E-18 3.93E-18 0.65287771 0 100 VWA9 0.82343629 4.40894353 124.753216 5.76E-29 1.98E-28 0.76603685 0 100 ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8860686 1.81E-18 3.93E-18 0.68947884 2.85714286 97.1428571 TRAPPC2 0.70754074 3.9543622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.44444444 | | | | | | | | | | | ENSG0000138614 VWA9 0.59700431 4.30790636 76.8866325 1.81E-18 3.93E-18 0.65287771 0 100 VWA9 0.82343629 4.40894353 124.753216 5.76E-29 1.98E-28 0.76603685 0 100 ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8860686 1.81E-18 3.93E-18 0.68937866 0 100 DGCR8 0.89792767 4.21646639 140.505151 2.06E-32 7.73E-32 0.81874054 2.77777778 97.2222222 ENSG00000196459 TRAPPC2 0.62147476 3.95959737 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.95432622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.44444444 | | | | | | | | | | | ENSG00000128191 DGCR8 0.6126345 4.10593654 76.8860686 1.81E-18 3.93E-18 0.68937866 0 100 DGCR8 0.89792767 4.21646639 140.505151 2.06E-32 7.73E-32 0.81874054 2.77777778 97.2222222 ENSG00000196459 TRAPPC2 0.62147476 3.95959737 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.95432622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.4444444 | | | | | | | | | | | ENSG00000196459 TRAPPC2 0.62147476 3.95959737 76.1197179 2.67E-18 5.77E-18 0.68647384 2.85714286 97.1428571 TRAPPC2 0.70754074 3.95432622 82.4619073 1.08E-19 2.94E-19 0.63033039 5.55555556 94.4444444 | ENSG00000214026 | MRPL23 | -0.6247098 3.93346209 75.9739498 | 2.87E-18 | 6.21E-18 -0.6171124 | 01 4205714 | 0 E71420E7 MDDI 22 | -0.6442908 3.89884958 66.9669664 | 2.76E-16 | 6.81E-16 -0.7613122 94.4444444 5.55555556 | |--------------------------------------|------------------|----------------------------------|----------------------|--|------------|--------------------|--|----------------------|---| | ENSG00000214026
ENSG00000133884 | DPF2 | 0.54323513 5.4990645 75.8452396 | 3.07E-18 | 6.63E-18 0.57752524 | 91.4285/14 | 100 DPF2 | 0.78353147 5.58879496 132.007803 | 1.49E-30 | | | ENSG00000133884
ENSG00000158019 | BRE | -0.6652395 3.48547503 75.8139429 | 3.12E-18 | 6.73E-18 -0.5658455 | | | | 2.02E-10 | 5.34E-30 0.67008318 0 100
4.06E-10 -0.5290766 100 0 | | ENSG00000138019 | RP11-47I22.3 | 0.7570251 2.53094331 74.4336242 | 6.27E-18 | 1.35E-17 0.80933544 | 0 0 | 100 RP11-47I22.3 | -0.5291696 3.48655047 40.45063
0.71334845 2.44870575 52.63011 | 4.03E-13 | 8.98E-13 0.70200926 2.77777778 97.2222222 | | ENSG00000232774
ENSG00000127540 | UQCR11 | -0.5977651 4.18276252 74.4240489 | 6.27E-18
6.30E-18 | 1.36E-17 -0.5196691 | • | | -0.5813178 4.15700166 58.567335 | 1.96E-14 | 4.58E-14 -0.7053501 94.444444 5.55555556 | | ENSG00000127340 | OXCT1 | 0.60523288 4.0689948 74.0986459 | 7.43E-18 | 1.60E-17 0.67859174 | | | 0.63407221 4.00445642 67.4233319 | 2.19E-16 | 5.42E-16 | | ENSG00000083720 | ZNF776 | -0.5443649 5.16372645 74.0286397 | 7.43E-18
7.70E-18 | 1.65E-17 -0.5016946 | 100 | 0 ZNF776 | -0.720508 5.04280803 106.023424 |
7.29E-25 | 2.28E-24 -0.7010485 100 0 | | | | | | | | | | | | | ENSG 00000168014
ENSG 00000164080 | C2CD3
RAD54L2 | 0.569792 4.57642702 73.8863186 | 8.27E-18
1.06E-17 | 1.77E-17 0.66154412
2.27E-17 0.56448216 | 2.85/14286 | 100 RAD54L2 | 0.69151911 4.58202243 91.178325 | 1.31E-21
5.54E-22 | 3.78E-21 0.68854397 8.33333333 91.6666667 1.61E-21 0.61818336 5.55555556 94.4444444 | | | | 0.5322697 5.70238786 73.3960076 | | | • | | 0.65696792 5.74298591 92.8862199 | | | | ENSG00000101413 | RPRD1B | 0.54563381 5.17662076 73.3817714 | 1.07E-17 | 2.28E-17 0.5233996 | | | 0.76741031 5.24891438 121.985233 | 2.33E-28 | 7.92E-28 0.72264709 2.77777778 97.2222222 | | ENSG00000105053 | VRK3 | 0.595053 4.09934817 72.6462432 | 1.55E-17 | 3.30E-17 0.58292893 | 0 | 100 VRK3 | 0.88768977 4.21226884 138.681158 | 5.17E-32 | 1.92E-31 0.86408279 0 100 | | ENSG00000102606 | ARHGEF7 | 0.52399808 6.54615716 72.5878822 | 1.60E-17 | 3.40E-17 0.54482931 | | | 1.29931304 7.02321365 357.29328 | 1.09E-79 | 8.19E-79 1.25863281 0 100 | | ENSG00000180329 | CCDC43 | 0.56493548 4.53516526 72.3709434 | 1.78E-17 | 3.79E-17 0.58255127 | 0 | 100 CCDC43 | 0.76047348 4.57174939 110.078072 | 9.42E-26 | 3.02E-25 0.74431742 0 100 | | ENSG00000111331 | OAS3 | -0.6140471 4.05192139 72.3376215 | 1.81E-17 | 3.85E-17 -0.5619035 | 80 | 20 OAS3 | -1.1361241 3.98811037 197.350402 | 7.91E-45 | 3.71E-44 -1.2583937 91.6666667 8.33333333 | | ENSG00000100395 | L3MBTL2 | 0.60730285 3.91543073 72.0797319 | 2.07E-17 | 4.39E-17 0.7338539 | 0 | 100 L3MBTL2 | 0.88977697 4.03944736 133.143476 | 8.41E-31 | 3.03E-30 0.81682079 2.77777778 97.2222222 | | ENSG00000160785 | SLC25A44 | 0.54467583 4.94581325 71.9429638 | 2.22E-17 | | 2.85714286 | | 0.79944978 5.05794981 131.186925 | 2.25E-30 | 8.02E-30 0.75607775 0 100 | | ENSG00000175550 | DRAP1 | -0.531754 5.42360862 71.6136905 | 2.62E-17 | | | 8.57142857 DRAP1 | -0.445059 5.44254368 41.7294544 | 1.05E-10 | 2.13E-10 -0.5362972 91.6666667 8.33333333 | | ENSG00000127993 | RBM48 | 0.54663117 4.83003542 71.5612883 | 2.69E-17 | 5.68E-17 0.57910905 | 0 | 100 RBM48 | 0.58282495 4.78595102 67.3869944 | 2.23E-16 | 5.52E-16 0.57139418 5.5555556 94.4444444 | | ENSG00000167969 | ECI1 | -0.7866177 2.15551749 71.3444344 | 3.00E-17 | 6.34E-17 -0.7440806 | | | -1.0994095 1.99938148 105.109588 | 1.16E-24 | 3.60E-24 -1.1081633 100 0 | | ENSG00000175166 | PSMD2 | 0.51951312 6.33015077 71.1815878 | 3.26E-17 | | | | 0.61699989 6.36060107 83.3799058 | 6.77E-20 | 1.86E-19 0.52115767 5.5555556 94.4444444 | | ENSG00000089022 | MAPKAPK5 | 0.52590909 5.48128488 71.0741672 | 3.44E-17 | 7.27E-17 0.58541525 | 0 | 100 MAPKAPK5 | 0.60194774 5.47627883 77.7858753 | 1.15E-18 | 3.04E-18 0.51101384 0 100 | | ENSG00000110344 | UBE4A | 0.51578203 5.89221814 69.673028 | 7.00E-17 | 1.47E-16 0.54727163 | 0 | 100 UBE4A | 0.68131555 5.93650257 100.848577 | 9.93E-24 | 3.03E-23 0.60713102 2.77777778 97.2222222 | | ENSG00000162194 | C11orf48 | 0.59051882 3.97220676 69.4842549 | 7.70E-17 | 1.61E-16 0.69427045 | 0 | 100 C11orf48 | 0.79332267 4.03722138 106.478075 | 5.79E-25 | 1.82E-24 0.72583549 0 100 | | ENSG00000152359 | POC5 | 0.67429399 3.04120985 68.8080835 | 1.09E-16 | 2.26E-16 0.71355542 | 0 | 100 POC5 | 0.72779104 3.02623996 66.312341 | 3.85E-16 | 9.44E-16 0.60929817 2.77777778 97.2222222 | | ENSG00000156709 | AIFM1 | 0.68273412 2.98711581 68.6350533 | 1.18E-16 | 2.47E-16 0.7723282 | | | 0.84954389 3.06860146 91.012281 | 1.43E-21 | 4.10E-21 0.77384526 0 100 | | ENSG00000134987 | WDR36 | 0.52620197 5.10054449 67.8572146 | 1.76E-16 | 3.65E-16 0.50305636 | | | 0.61699833 5.04283222 77.2136693 | 1.53E-18 | 4.04E-18 0.61251383 2.77777778 97.2222222 | | ENSG00000159579 | RSPRY1 | 0.5575079 4.33903605 67.6675622 | 1.94E-16 | 4.01E-16 0.61167447 | 0 | 100 RSPRY1 | 0.73288562 4.44061197 99.5179296 | 1.94E-23 | 5.87E-23 0.69904621 2.77777778 97.2222222 | | ENSG00000112983 | BRD8 | 0.60352853 3.73621889 67.6185905 | 1.98E-16 | 4.11E-16 0.66525666 | | | 0.80632613 3.79394113 102.722508 | 3.86E-24 | 1.18E-23 0.72348035 0 100 | | ENSG00000083814 | ZNF671 | 0.6110474 3.62054713 66.971129 | 2.76E-16 | 5.68E-16 0.68841525 | 0 | 100 ZNF671 | 0.54195147 3.54928447 43.326246 | 4.63E-11 | 9.53E-11 0.53103768 5.5555556 94.4444444 | | ENSG00000130723 | PRRC2B | 0.49447052 8.255064 66.7803653 | 3.04E-16 | 6.25E-16 0.58289962 | 0 | 100 PRRC2B | 0.6299516 8.28146789 82.1189221 | 1.28E-19 | 3.48E-19 0.53103694 5.5555556 94.4444444 | | ENSG00000147050 | KDM6A | 0.49875425 6.61430022 66.6295266 | 3.28E-16 | 6.74E-16 0.51982292 | 0 | 100 KDM6A | 0.62616364 6.63234509 86.021621 | 1.78E-20 | 4.98E-20 0.5558631 5.5555556 94.4444444 | | ENSG00000112118 | MCM3 | 0.61839247 3.60087085 66.5554759 | 3.40E-16 | 7.00E-16 0.83289306 | 20 | 80 MCM3 | 0.71440974 3.62889981 76.2808927 | 2.46E-18 | 6.42E-18 0.62360039 5.5555556 94.4444444 | | ENSG00000069493 | CLEC2D | 0.54995402 4.42354559 66.3254599 | 3.82E-16 | 7.86E-16 0.6185501 | | | 0.5868389 4.34137907 62.3206849 | 2.92E-15 | 6.98E-15 0.59051948 11.1111111 88.8888889 | | ENSG00000145817 | YIPF5 | 0.50329672 5.73434229 65.2804869 | 6.50E-16 | 1.33E-15 0.53698337 | | | 0.54664459 5.68762676 64.0074265 | 1.24E-15 | 3.00E-15 0.53524324 11.1111111 88.8888889 | | ENSG00000177732 | SOX12 | 0.56925846 4.01389536 64.9484857 | 7.69E-16 | 1.57E-15 0.69759533 | | | 0.71595069 4.02717343 85.809793 | 1.98E-20 | 5.54E-20 0.61185805 0 100 | | ENSG00000110536 | PTPMT1 | -0.635822 3.23023125 64.7266495 | 8.60E-16 | 1.75E-15 -0.6564483 | 100 | 0 PTPMT1 | -0.4970287 3.21939998 33.2265903 | 8.20E-09 | 1.54E-08 -0.5836471 97.2222222 2.77777778 | | ENSG00000167552 | TUBA1A | 0.49244966 8.30171902 64.6958285 | 8.74E-16 | 1.78E-15 0.58927627 | | | 0.95264749 8.57162529 175.273799 | 5.22E-40 | 2.28E-39 0.82627623 8.33333333 91.6666667 | | ENSG00000116717 | GADD45A | 0.50332047 5.54034425 64.4186691 | 1.01E-15 | 2.04E-15 0.59987244 | | | 0.90067126 5.68407919 172.407863 | 2.20E-39 | 9.51E-39 0.81728787 0 100 | | ENSG00000232119 | MCTS1 | -0.7246696 2.3499434 64.2111498 | 1.12E-15 | 2.27E-15 -0.5991851 | 100 | 0 MCTS1 | -0.5925248 2.35375836 34.7874325 | 3.68E-09 | 7.02E-09 -0.6132119 97.2222222 2.77777778 | | ENSG00000147140 | NONO | 0.48476245 7.85354557 64.0880893 | 1.19E-15 | 2.41E-15 0.53587777 | 0 | 100 NONO | 0.69703736 7.91496466 102.561156 | 4.18E-24 | 1.28E-23 0.66353094 0 100 | | ENSG00000111667 | USP5 | 0.56909077 3.97679191 63.9922499 | 1.25E-15 | 2.53E-15 0.63300177 | 0 | 100 USP5 | 0.64637632 3.95946487 68.5560537 | 1.23E-16 | 3.07E-16 0.56527029 5.5555556 94.4444444 | | ENSG00000235677 | NPM1P26 | 0.8449057 1.29734785 63.7005812 | 1.45E-15 | 2.93E-15 0.86117827 | | | 1.01954153 1.23005188 69.8976239 | 6.25E-17 | 1.57E-16 1.05195566 5.5555556 94.4444444 | | ENSG00000091732 | ZC3HC1 | 0.64536647 3.06407519 63.5809113 | 1.54E-15 | 3.11E-15 0.74095575 | 0 | 100 ZC3HC1 | 0.7125891 3.08191817 64.6823596 | 8.80E-16 | 2.14E-15 0.66991399 0 100 | | ENSG00000137547 | MRPL15 | -0.6769394 2.76052186 63.4421517 | 1.65E-15 | | | 2.85714286 MRPL15 | -0.5963333 2.72325883 40.2441055 | 2.24E-10 | 4.50E-10 -0.6141858 91.6666667 8.33333333 | | ENSG00000117222 | RBBP5 | 0.502359 5.23027965 63.3358267 | 1.74E-15 | 3.51E-15 0.54823422 | | | 0.75353614 5.29196082 118.524749 | 1.33E-27 | 4.47E-27 0.71105309 5.5555556 94.4444444 | | ENSG00000139131 | YARS2 | 0.6177454 3.33128907 63.2107006 | 1.86E-15 | 3.74E-15 0.67724035 | 0 | 100 YARS2 | 0.56766719 3.23026047 43.3330502 | 4.62E-11 | 9.50E-11 0.54034738 5.5555556 94.4444444 | | ENSG00000154305 | MIA3 | 0.48637201 6.37380125 63.1361601 | 1.93E-15 | 3.88E-15 0.53750618 | 0 | 100 MIA3 | 0.65867679 6.40990886 95.7407159 | 1.31E-22 | 3.87E-22 0.63411945 2.77777778 97.2222222 | | ENSG00000106144 | CASP2 | 0.50437205 5.08039694 62.7013351 | 2.41E-15 | 4.82E-15 0.53698134 | | | 0.61455311 5.08557471 77.5360615 | 1.30E-18 | 3.44E-18 0.53907074 8.33333333 91.6666667 | | ENSG00000066027 | PPP2R5A | 0.48253615 6.58216096 62.3587247 | 2.86E-15 | 5.72E-15 0.54463394 | 0 | 100 PPP2R5A | 0.62843696 6.59256464 86.4437862 | 1.44E-20 | 4.03E-20 0.58967031 2.77777778 97.2222222 | | ENSG00000145912 | NHP2 | -0.5484665 4.09999665 61.6147586 | 4.18E-15 | 8.31E-15 -0.5119683 | | | -0.386622 4.11478764 25.8072035 | 3.77E-07 | 6.55E-07 -0.5115293 88.8888889 11.1111111 | | ENSG00000177042 | TMEM80 | 0.63167362 3.09095158 60.7773421 | 6.39E-15 | 1.27E-14 0.67809917 | 0 | 100 TMEM80 | 0.63557614 3.0046964 49.7559523 | 1.74E-12 | 3.79E-12 0.57248725 5.5555556 94.4444444 | | ENSG00000101343 | CRNKL1 | 0.4837066 5.65198226 60.7459038 | 6.49E-15 | 1.29E-14 0.5428889 | 0 | 100 CRNKL1 | 0.65888328 5.68799512 93.9998168 | 3.16E-22 | 9.22E-22 0.57446355 2.77777778 97.2222222 | | ENSG00000167645 | YIF1B | -0.6411851 3.00960164 59.8920306 | 1.00E-14 | 1.97E-14 -0.7390197 | 77.1428571 | 22.8571429 YIF1B | -0.9645444 2.86017836 104.709116 | 1.41E-24 | 4.39E-24 -1.2246252 88.8888889 11.1111111 | | ENGG 000004 53543 | 04 (50 | 0.54005050 | 4.530.43000 | F0 F7050F0 | 4.475.44 | 2 245 44 | 0.55220454 | | 400 | C4 (F2) | 0.53000453 | 4.55404007 | 75 2724047 | 2 005 40 | 4 045 47 | 0.5303055 | | 400 | |------------------------------------|--------------------------|------------|--------------------------|------------|----------------------|----------|--------------------------|-------------------|--------------------------|-------------------------|------------|--------------------------|--------------------------|----------------------|----------|------------|--------------------------|-----| | ENSG00000162642 | C1orf52 | | 4.57047083 | | 1.17E-14 | | 0.56329451 | 0 | | C1orf52 | | 4.56134227 | | 3.88E-18 | | 0.5392855 | 0 | 100 | | ENSG00000092929
ENSG00000151612 | UNC13D
ZNF827 | | 5.44208617
5.13468455 | | 1.34E-14
1.90E-14 | | 0.52199311 | 11.4285/14 | 88.5714286 | ZNF827 | | 5.52432736 | | 3.91E-26
5.85E-57 | | 1.01453982 | 8.33333333 | 100 | | | SBDS | | | | | | | • | | | | 5.47503877 | | 1.73E-14 | | | • | | | ENSG00000126524
ENSG00000261416 |
RP11-455F5.5 | | 7.67980024
1.30115943 | | 2.09E-14
2.18E-14 | | | | 97.1428571 | RP11-455F5.5 | | 7.62927929 | 53.7972054 | 1.73E-14
2.22E-13 | | | 5.5555556
2.7777778 | | | ENSG00000261416
ENSG00000068971 | PPP2R5B | | 3.07958203 | | 2.16E-14
2.43E-14 | | | 2.65/14260 | | PPP2R5B | | 2.92329402 | | 2.22E-13
2.91E-10 | | | 8.33333333 | | | | PSMC5 | | 5.47545431 | | 2.43E-14
2.59E-14 | | 0.66276014
0.51385398 | 0 | 100 | PSMC5 | | | 106.791068 | 4.95E-25 | | 0.63322097 | 0.33333333 | 100 | | ENSG00000087191 | SNRNP40 | | 4.90550368 | | 3.59E-14 | | | 2.85714286 | | SNR NP40 | | | 117.469768 | 4.95E-25
2.27E-27 | | 0.68124834 | 0 | 100 | | ENSG00000060688 | NUDC | | | | 3.63E-14 | | | | | | | | | 3.58E-20 | | | • | | | ENSG00000090273 | CCDC101 | | 5.39736319
4.00407406 | | 4.35E-14 | | | | 97.1428571
97.1428571 | | | 5.44026129
4.03950401 | | 5.57E-19 | | | 2.77777778 | | | ENSG00000176476 | RNF25 | | | | 4.35E-14
4.45E-14 | | | 2.85/14286 | | RNF25 | | | | 8.19E-18 | | 0.58381413 | 2.77777778 | 100 | | ENSG00000163481
ENSG00000273271 | AP000254.8 | | 3.83022181
1.45383817 | | 4.45E-14
5.16E-14 | | 0.60256842 | 0 | | AP000254.8 | | 1.35151796 | 73.905459 | 2.13E-08 | | | 5.55555556 | | | | NELFA | | | | 5.16E-14
5.32E-14 | | 0.80985708 | 0 | | NELFA | | | | 1.98E-18 | | 0.50000346 | 5.55555556 | | | ENSG00000185049 | EP400 | | 5.1871779 | | | | 0.51533723 | 0 | | EP400 | | | 76.7056516 | 3.29E-25 | | | 0 | 100 | | ENSG00000183495
ENSG00000092931 | | | 6.07561465 | | 5.35E-14
5.86E-14 | | 0.55276326 | 0 | | MFSD11 | | 6.17208863 | | 3.29E-25
2.01E-15 | | 0.55286943 | 5.55555556 | 100 | | | MFSD11 | | 3.95314298 | | 6.09E-14 | | 0.61585351 | 0 | | SUCLA2 | | 3.98791953 | | 4.92E-11 | | | | | | ENSG00000136143 | SUCLA2
TCEAL4 | | 2.86187623
2.29451867 | | 7.21E-14 | | 0.71355049 | _ | | | | 2.32698912 | 43.2075134 | 4.92E-11
8.99E-08 | | | 2.77777778
94.4444444 | | | ENSG00000133142 | | | | | | | | 97.1426571 | 2.85714286 | | | | | | | | | | | ENSG00000110925
ENSG00000008710 | CSRNP2
PKD1 | | 3.49040006
5.82540672 | | 9.35E-14
2.48E-13 | | 0.65503512 | 5.71428571 | | CSRNP2
PKD1 | | | 77.3527789
77.2410086 | 1.43E-18
1.51E-18 | | | 2.77777778
8.33333333 | ENSG00000169738 | DCXR
AKTIP | | 3.75282526
3.21800433 | | 4.48E-13
7.07E-13 | | | | 97.1428571
97.1428571 | | | 3.94823019
3.34798742 | | 8.67E-33
4.76E-27 | | | 2.77777778
2.77777778 | | | ENSG00000166971 | ENSG00000163541 | SUCLG1 | | 4.26662238
4.67731146 | | 7.29E-13
1.01E-12 | | | | 97.1428571 | SLC35A3 | | | 43.5334548 | 4.17E-11
1.47E-14 | | | 5.5555556 | | | ENSG00000117620 | SLC35A3 | | | | | | 0.51116004 | 0 | | | | 4.66978568 | | | | | 8.33333333 | | | ENSG00000131351 | HAUS8 | | 3.36979695 | | 1.67E-12
2.55E-12 | | | 2.85/14286 | 97.1428571 | | | 3.30343422 | | 1.90E-10
9.83E-36 | | | 2.77777778 | | | ENSG00000204564 | C6orf136 | | 3.53620537 | | | | 0.55640212 | • | | C6orf136 | | 3.77134985 | | | | 0.88314163 | • | 100 | | ENSG00000139546 | TARBP2 | | 3.21556095
2.4918599 | | 2.87E-12
3.38E-12 | | 0.5907589 | 0
5.71428571 | 100 | TARBP2 | | 3.20283994 | | 7.85E-15
2.74E-17 | | | 2.77777778
5.55555556 | | | ENSG00000172613 | RAD9A | | | | | | | | | RAD9A | | 2.5592357 | | | | | | | | ENSG00000250539
ENSG00000154451 | KRT8P33
GBP5 | | 1.91936569
5.29850157 | | 4.41E-12
9.15E-12 | | 0.50500171 | 2.85/14286 | 97.1428571 | GBP5 | | 1.89041811
5.63540713 | | 1.58E-09
1.46E-40 | | | 5.5555556
2.7777778 | ENSG00000103145
ENSG00000272779 | HCFC1R1
LL22NC03-80A: | | 2.3833633
1.81996408 | | 9.33E-12
1.03E-11 | | -0.5988343 | 94.2857143
100 | | HCFC1R1
LL22NC03-80A | | 2.3303536 | | 7.92E-10
2.23E-07 | | | 91.6666667
91.6666667 | | | ENSG00000272779 | NA | | 1.05581607 | | 1.03E-11
1.08E-11 | | 0.77863773 | 0 | 100 | | | 1.12180995 | | 3.34E-13 | | | 8.33333333 | | | ENSG00000236883 | UNK | | 4.99081657 | | 1.06E-11
1.15E-11 | | 0.77863773 | 0 | | UNK | | 4.99303209 | | 1.64E-14 | | 0.5038688 | 0.33333333 | 100 | | ENSG00000132478 | ZNF384 | | 5.96891185 | | 1.23E-11 | | 0.50182555 | 0 | | ZNF384 | | 6.02527609 | | 1.04E-14
1.01E-19 | | 0.52483039 | 0 | 100 | | ENSG00000120740 | NPDC1 | | 2.66862594 | | 1.25E-11 | | 0.5965989 | 20 | | NPDC1 | | 3.03222842 | | 2.09E-49 | | | 2.7777778 | | | ENSG00000107281 | TIMM13 | | 3.02755048 | | 1.32E-11 | | | | 5.71428571 | | -0.5764539 | | 40.5182657 | 1.95E-10 | 3.93E-10 | | 91.6666667 | | | ENSG00000150779 | TIMM8B | | 2.16287346 | | 1.99E-11 | | | | 11.4285714 | | | | 26.755116 | 2.31E-07 | | | 91.6666667 | | | ENSG00000150775 | NA | | 0.07683486 | | 2.06E-11 | | | 14.2857143 | | NA | | -0.0309657 | | 8.27E-08 | | | 16.6666667 | | | ENSG00000266156 | ATRIP | | 3.23750551 | | 3.27E-11 | | | | 97.1428571 | | | 3.15748534 | | 7.10E-09 | 1.34E-08 | | 11.1111111 | | | ENSG00000104033 | C1orf174 | | 4.44911278 | | 3.35E-11 | | 0.56395775 | 0 | | C1orf174 | | 4.44788909 | | 1.53E-14 | | 0.50132984 | 0 | 100 | | ENSG00000156512 | SYTL3 | | 4.46473539 | | 1.25E-10 | | 0.5960556 | 20 | | SYTL3 | | 4.69124879 | | 2.17E-31 | | | 5.5555556 | | | ENSG00000134674 | CCDC53 | | 2.50209294 | | 1.60E-10 | | | | 97.1428571 | | | 2.44815762 | | 7.00E-08 | | | 13.8888889 | | | ENSG00000167775 | CD320 | | 3.28211076 | | 1.64E-10 | | | | 97.1428571 | | | 3.29785408 | | 2.67E-14 | | | 5.5555556 | | | ENSG00000197536 | C5orf56 | | 2.82849932 | | 3.75E-10 | | | | 94.2857143 | | | 2.81300933 | | 2.40E-09 | | | 11.1111111 | | | ENSG00000100601 | ALKBH1 | | 3.12587728 | | 1.31E-09 | | 0.58188452 | 0.77.2037.2 | | ALKBH1 | | 3.16104337 | | 2.12E-12 | | | 2.77777778 | | | ENSG00000138303 | ASCC1 | | 2.77738547 | | 1.51E-09 | | | 2.85714286 | | ASCC1 | | 2.82342932 | | 1.04E-12 | | | 2.77777778 | | | ENSG00000182973 | CNOT10 | | 3.81136539 | | 1.57E-09 | | | | 97.1428571 | | | | 46.2528748 | 1.04E-11 | | | 5.55555556 | | | ENSG00000166477 | LEO1 | | 2.67413221 | | 1.93E-09 | | 0.53840821 | 0 | | LEO1 | | 2.73440873 | | 5.98E-15 | | 0.66606193 | 0 | 100 | | ENSG00000213443 | CLEC2D | | 2.5129769 | | 2.32E-09 | | | _ | 94.2857143 | | | | 37.554718 | 8.89E-10 | | | 8.33333333 | | | ENSG000000213443 | METTL22 | | 3.27602678 | | 3.27E-09 | | 0.53211002 | 0.71420371 | | METTL22 | | 3.31342632 | | 1.69E-10 | | | 2.77777778 | | | ENSG00000007503 | TRPV2 | | 3.69723667 | | 1.20E-08 | | | _ | 88.5714286 | | | 3.69509157 | | 3.97E-11 | | | 11.1111111 | | | ENSG00000267906 | NA V2 | | 0.18695682 | | 1.94E-08 | | | | 94.2857143 | | | 0.22091824 | | 2.82E-08 | | | 11.1111111 | | | | RP11-326C3.7 | | | | 2.19E-08 | | | | | RP11-326C3.7 | | | | 2.23E-06 | | | 5.5555556 | | | | 22 020007 | | | 32.02.2070 | 3.202 00 | | | | | 12 020 30.7 | | | | 3.202.00 | | | | | | I |------------------|---------------|------------|------------|------------|-----------|-----------|------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------| | ENSG00000065559 | MAP2K4 | | 3.41950364 | | 2.87E-08 | | | 5.71428571 | | | | 3.53826665 | | 8.69E-16 | | | 2.77777778 | | | ENSG00000264577 | SNORD4A | | 1.86964161 | | 1.06E-07 | | | 8.57142857 | | SNORD4A | | 1.85717202 | | 6.09E-09 | | | 11.1111111 | | | ENSG00000156500 | FAM122C | | 2.74250784 | | 7.68E-07 | | | 8.57142857 | | | | 2.75471679 | | 7.59E-09 | | | 8.33333333 | | | ENSG00000251578 | TRBV21-1 | | 0.24888698 | | 1.11E-05 | | | 5.71428571 | 94.285/143 | TRBV21-1 | | | | 0.00033306 | | | | 83.333333 | | ENSG00000224137 | AC079767.4 | | 0.42707887 | | 0 | | -7.1098029 | 100 | 0 | AC079767.4 | | 0.38651391 | | | | -4.9561328 | 100 | 0 | | ENSG00000224397 | LINC01272 | | 1.60834762 | | 0 | 0 | -4.1032442 | 100 | 0 | LINC01272 | | 1.54756902 | | 0 | | -6.5586175 | 100 | 0 | | ENSG00000253701 | AL928768.3 | | -0.1549888 | | 0 | 0 | -10000 | 100 | 0 | AL928768.3 | | -0.1260765 | | | 5.04E-275 | -10000 | 100 | 0 | | ENSG00000269728 | RP11-145M9.4 | | 1.92315933 | | 0 | 0 | 0.00200.0 | 100 | 0 | RP11-145M9.4 | | 1.87419804 | | | 1.92E-291 | -3.901069 | 100 | 0 | | ENSG00000234184 | RP5-887A10.1 | | -0.2443392 | | 6.42E-302 | 2.96E-300 | -10000 | 100 | 0 | RP5-887A10.1 | | -0.2655509 | | | 1.60E-210 | -5.2494327 | 100 | 0 | | ENSG00000211459 | MT-RNR1 | | | 1231.26838 | 9.77E-270 | | | 100 | 0 | MT-RNR1 | | 10.4699443 | | | | -1.1449902 | 100 | 0 | | ENSG00000267174 | CTC-510F12.4 | | -0.1435735 | | 4.48E-221 | | | 97.1428571 | 0 | CTC-510F12.4 | | -0.1509149 | | | | -6.1929431 | 100 | 0 | | ENSG00000272523 | LINC01023 | -3.3236581 | | 763.125318 | 5.62E-168 | | -3.3245239 | 100 | 0 | LINC01023 | | 0.02224949 | | | | -2.0701364 | 100 | 0 | | ENSG00000253364 | RP11-731F5.2 | -6.1493045 | | 665.448564 | 9.76E-147 | 1.95E-145 | -10000 | 100 | 0 | RP11-731F5.2 | | | | | 6.62E-127 | | | | | ENSG00000260359 | NA | | 1.16163457 | | 1.10E-144 | | -2.2024773 | 100 | 0 | NA | | 1.32657088 | | 6.81E-51 | 7.73E-50 | | | | | ENSG00000180422 | LIN C00304 | | 1.04129814 | | 6.31E-137 | | 2.97747543 | 0 | 100 | LIN C00304 | 1.8506121 | | 266.518781 | 6.51E-60 | | 2.08639522 | 0 | 100 | | ENSG00000272077 | RP11-348P10.2 | | | | 9.94E-125 | | -2.3589464 | 100 | 0 | RP11-348P10. | | | | 1.68E-45 | | | 94.444444 | 5.5555556 | | ENSG00000172965 | MIR4435-1HG | | 1.80458339 | | 4.62E-121 | | | 100 | 0 | MIR4435-1HG | | 1.86064093 | | 2.64E-92 | | -1.7061829 | 100 | 0 | | ENSG00000233901 | RP11-65J3.1 | | | 520.447266 | 3.38E-115 | 5.48E-114 | | 100 | 0 | RP11-65J3.1 | | -1.0716429 | | | | -4.2950207 | 100 | 0 | | ENSG00000175898 | CTD-2369P2.2 | | 2.19404545 | | 4.57E-109 | | -1.6215094 | 100 | 0 | CTD-2369P2.2 | | 2.04226277 | | | | -2.0339457 | 100 | 0 | | ENSG00000268913 | AC026806.2 | |
-0.6658963 | | 1.78E-107 | | -2.5875749 | 100 | 0 | AC026806.2 | | -0.6145388 | | 8.25E-95 | | -2.6641038 | 100 | 0 | | ENSG00000259004 | RP11-8L8.2 | | | 453.037486 | 1.57E-100 | | -3.7183709 | 100 | 0 | RP11-8L8.2 | | -1.4831157 | | 1.29E-96 | 3.00E-95 | -3.987525 | 100 | 0 | | ENSG00000272053 | RP11-367G6.3 | | 1.23959025 | | 1.54E-87 | 1.85E-86 | -1.6808566 | 100 | 0 | RP11-367G6.3 | -1.3003513 | 1.37339221 | 163.648367 | 1.81E-37 | 1.39E-36 | -1.1280003 | 97.222222 | 2.7777778 | | ENSG00000188070 | C11orf95 | | 3.02141062 | | 7.93E-87 | | -1.6765277 | 100 | 0 | C11orf95 | | 3.21393278 | | 5.54E-35 | | | 91.6666667 | 8.33333333 | | ENSG00000270055 | CTD-3092A11.2 | | | | 1.86E-86 | | 1.70314396 | 0 | 100 | CTD-3092A11. | | | | 8.33E-41 | 7.42E-40 | 1.29918104 | 0 | 100 | | ENSG 00000261455 | LINC01003 | -1.7132568 | 1.68651382 | 376.242402 | 8.19E-84 | 9.25E-83 | -1.4213782 | 100 | 0 | LINC01003 | -1.6530353 | 1.65789071 | 265.550497 | 1.06E-59 | 1.49E-58 | -1.3671332 | 100 | 0 | | ENSG00000225331 | AP001055.6 | | 0.11917588 | | 7.79E-78 | 7.91E-77 | -1.5449377 | 100 | 0 | AP001055.6 | | 0.00906469 | | | | -2.2604225 | 100 | 0 | | ENSG00000251301 | RP11-81H14.2 | -3.2356497 | -1.3579215 | 348.468159 | 9.14E-78 | 9.12E-77 | -3.0976942 | 97.1428571 | 2.85714286 | RP11-81H14.2 | -1.567292 | -1.0214541 | 102.409005 | 4.52E-24 | 2.14E-23 | -1.3375568 | 83.3333333 | 16.6666667 | | ENSG00000222041 | LIN C00152 | | 2.17978088 | | 1.30E-73 | | | 97.1428571 | | LIN C00152 | | 2.28894992 | | 1.26E-61 | | | 94.444444 | | | ENSG00000269290 | RP11-869B15.1 | 1.93885444 | 0.0544986 | 306.32777 | 1.38E-68 | 1.25E-67 | 2.12322316 | 2.85714286 | 97.1428571 | RP11-869B15. | 1.0346688 | -0.6382633 | 61.8248972 | 3.75E-15 | 1.14E-14 | 1.32186282 | 11.1111111 | 88.888889 | | ENSG 00000260006 | RP11-469M7.1 | | 4.23900225 | | 5.84E-67 | | -1.4665234 | 100 | 0 | RP11-469M7.1 | | 4.39113748 | | 2.77E-44 | 2.59E-43 | -0.7401092 | 100 | 0 | | ENSG00000270127 | PRKXP1 | 1.84641768 | 0.53869689 | 298.843034 | 5.89E-67 | 5.19E-66 | 1.98587306 | 0 | 100 | PRKXP1 | 1.13191183 | -0.0701806 | 90.8825138 | 1.52E-21 | 6.49E-21 | 1.24989614 | 0 | 100 | | ENSG00000260910 | LIN C00565 | 1.49034348 | 2.1117465 | 297.549968 | 1.13E-66 | 9.78E-66 | 1.65872027 | 0 | 100 | LIN C00565 | 1.11193648 | 1.8487804 | 125.89559 | 3.24E-29 | 1.86E-28 | 1.30469186 | 0 | 100 | | ENSG00000272316 | XXbac-BPGBPG | 1.46303484 | 2.06281601 | 288.963228 | 8.36E-65 | 7.06E-64 | 1.61714674 | 0 | 100 | XXbac-BPGBP | 0.83196722 | 1.63044646 | 69.6051466 | 7.24E-17 | 2.45E-16 | 1.03487282 | 5.5555556 | 94.444444 | | ENSG00000226137 | BAIAP2-AS1 | -1.6947454 | 0.79242735 | 283.245289 | 1.47E-63 | 1.23E-62 | -1.3778186 | 97.1428571 | 2.85714286 | BAIAP2-AS1 | -2.656546 | 0.64983385 | 533.994614 | | 1.00E-116 | -2.4509473 | 100 | 0 | | ENSG00000237438 | CECR7 | | 0.28353166 | | 1.16E-59 | | -1.3658024 | 100 | 0 | CECR7 | | 0.41856942 | | 4.98E-38 | 4.01E-37 | | 97.222222 | | | ENSG00000266896 | RP1-266L20.9 | 2.01457209 | -0.6665399 | 262.409915 | 5.12E-59 | 3.93E-58 | 2.35721757 | 2.85714286 | 97.1428571 | RP1-266L20.9 | 1.8189148 | -0.7791017 | 165.229103 | 8.15E-38 | 6.47E-37 | 2.09254907 | 2.77777778 | 97.222222 | | ENSG00000235499 | AC073046.25 | -1.4215799 | 1.53015978 | 253.606321 | 4.25E-57 | 3.18E-56 | -1.0932193 | 100 | 0 | AC073046.25 | -1.0789521 | 1.60910882 | 116.246708 | | 2.23E-26 | -0.7053929 | 97.222222 | 2.7777778 | | ENSG 00000261560 | RP11-166B2.3 | 1.45190073 | 1.51405008 | 249.523343 | 3.30E-56 | 2.44E-55 | 1.63239529 | 0 | 100 | RP11-166B2.3 | 1.7698792 | 1.69826514 | 289.53597 | 6.28E-65 | 1.01E-63 | 1.81993621 | 0 | 100 | | ENSG00000272086 | CTD-2186M15. | -1.6295453 | 0.15543834 | 242.858131 | 9.37E-55 | 6.76E-54 | -1.3726398 | 100 | 0 | CTD-2186M15 | | | | 1.06E-32 | | -0.9620747 | 100 | 0 | | ENSG00000260306 | RP11-645C24.5 | 1.69477236 | 0.07873055 | 242.439378 | 1.16E-54 | 8.24E-54 | 2.16589842 | 0 | 100 | RP11-645C24. | 0.96942327 | -0.4976889 | 58.7875385 | 1.76E-14 | 5.11E-14 | 1.4028926 | 8.33333333 | 91.6666667 | | ENSG00000228223 | HCG11 | -1.3517389 | 1.7462207 | 240.203058 | 3.55E-54 | 2.50E-53 | -0.996203 | 100 | 0 | HCG11 | -2.0201823 | 1.49797182 | 381.447179 | 6.02E-85 | 1.09E-83 | -1.7151964 | 100 | 0 | | ENSG00000228106 | RP11-452F19.3 | -1.3437444 | 1.72521736 | 238.515824 | 8.29E-54 | 5.77E-53 | -1.0616488 | 97.1428571 | 2.85714286 | RP11-452F19. | -1.0363361 | 1.84277972 | 110.1237 | 9.21E-26 | 4.72E-25 | -0.8437107 | 91.6666667 | 8.3333333 | | ENSG 00000272849 | RP11-347I19.8 | 1.55851293 | 0.60526796 | 225.883012 | 4.71E-51 | 3.21E-50 | 1.80634141 | 2.85714286 | 97.1428571 | RP11-347I19.8 | 1.34903944 | 0.37653884 | 147.661069 | 5.63E-34 | 3.92E-33 | 1.8042685 | 2.77777778 | 97.222222 | | ENSG00000240350 | AC017002.1 | -1.5887787 | 0.40406113 | 220.440216 | 7.25E-50 | 4.67E-49 | -1.316065 | 88.5714286 | 11.4285714 | AC017002.1 | -1.8068161 | 0.40111298 | 234.89193 | 5.11E-53 | 6.04E-52 | -1.2301005 | 86.1111111 | 13.8888889 | | ENSG00000238142 | RP11-108M9.4 | -1.7385638 | -0.7104535 | 211.211023 | 7.48E-48 | 4.62E-47 | -1.3658024 | 100 | 0 | RP11-108M9.4 | -1.4315255 | -0.6691416 | 121.183741 | 3.48E-28 | 1.94E-27 | -1.1510664 | 94.444444 | 5.5555556 | | ENSG00000261355 | NA | 1.19901834 | 2.2225395 | 194.636665 | 3.09E-44 | 1.82E-43 | 1.49180322 | 2.85714286 | 97.1428571 | NA | 0.37695372 | 1.69613079 | 14.680652 | | 0.00019821 | 0.55968221 | 5.5555556 | 94.444444 | | ENSG00000272341 | RP1-151F17.2 | 1.49557612 | -0.0051418 | 191.191752 | 1.75E-43 | 1.02E-42 | 1.88353759 | 0 | 100 | RP1-151F17.2 | 1.23827361 | | | 1.88E-25 | 9.48E-25 | 1.5321372 | 5.5555556 | 94.444444 | | ENSG00000240905 | RN7SL798P | -4.6450788 | -2.9100695 | 182.680652 | 1.26E-41 | 7.18E-41 | -10000 | 97.1428571 | 0 | RN7SL798P | -3.0574696 | -2.794208 | 130.776241 | 2.77E-30 | 1.67E-29 | -3.9068797 | 94.444444 | 5.5555556 | | ENSG00000260077 | RP11-254F7.2 | -1.3712845 | 0.26407657 | 178.396578 | 1.09E-40 | 6.08E-40 | -1.0701652 | 94.2857143 | 5.71428571 | RP11-254F7.2 | -1.5073003 | 0.20560795 | 182.105656 | 1.68E-41 | 1.52E-40 | -1.3903808 | 100 | 0 | | ENSG00000228434 | AC004951.6 | 1.06394704 | 1.68168864 | 148.446366 | 3.79E-34 | 1.97E-33 | 1.46278815 | 2.85714286 | 97.1428571 | AC004951.6 | 0.76239093 | 1.48467424 | 57.0475538 | 4.25E-14 | 1.22E-13 | 1.1695934 | 5.5555556 | 94.444444 | | ENSG00000251867 | RP11-48B3.5 | -1.0881525 | 1.29769664 | 142.545996 | 7.39E-33 | 3.81E-32 | -0.929875 | 94.2857143 | 5.71428571 | RP11-48B3.5 | -1.1935543 | 1.20661775 | 137.687244 | 8.53E-32 | 5.31E-31 | -0.8357588 | 100 | 0 | | ENSG00000236194 | AC003104.1 | 1.37733619 | -0.561717 | 141.269414 | 1.40E-32 | 7.13E-32 | 1.678878 | 0 | 100 | AC003104.1 | 1.1956613 | -0.6776805 | 81.3760313 | 1.87E-19 | 7.16E-19 | 1.6305173 | 11.1111111 | 88.888889 | | ENSG00000254615 | RP11-395G23. | 1.222503 | 0.43795812 | 141.045489 | 1.57E-32 | 7.92E-32 | 1.51887991 | 0 | 100 | RP11-395G23. | 1.16911734 | 0.24996101 | 111.200358 | 5.35E-26 | 2.76E-25 | 1.42506639 | 0 | 100 | | - | | | | | | | | | | | | | | | | | | • | | ENSG00000233261 | LIN C00264 | 1 25240135 | 0.06219516 | 140 11679 | 2.51E-32 | 1 25F-31 | 1 67914567 | 2.85714286 | 97 1428571 | LINC00264 | 1.01658055 | -0.1063059 | 75 4173231 | 3.81E-18 | 1 35F-17 | 1.32745927 | 0 | 100 | |-----------------|---------------|------------|------------|------------|----------|----------|------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------| | ENSG00000233201 | DLEU2 | | 0.97112681 | | 1.71E-31 | | -0.7678532 | 100 | | DLEU2 | | 0.82666073 | | 8.79E-50 | | -1.2414152 | 100 | 0 | | ENSG00000269996 | NA | | 1.50434968 | | 1.77E-30 | | | 91.4285714 | | | | 1.34766848 | | 4.47E-61 | | -1.2474216 | 100 | 0 | | ENSG00000267701 | RP11-28F1.2 | | -1.8306119 | | 8.71E-30 | | -1.7786211 | 100 | (| RP11-28F1.2 | | -1.8523306 | | 3.26E-24 | | | 91.6666667 | 8.33333333 | | ENSG00000261824 | LIN C00662 | | 0.3149384 | | 4.67E-29 | | -0.7635914 | 100 | Č | LINC00662 | | 0.23116184 | | 1.48E-30 | | -0.9952785 | 100 | 0 | | ENSG00000273352 | RP11-61L19.3 | | -1.0431036 | | 1.71E-28 | | | | 8.57142857 | RP11-61L19.3 | | -0.9234789 | | 2.60E-16 | | | 83.3333333 | 16.6666667 | | ENSG00000215908 | CROCCP2 | | 4.50095522 | | 2.33E-28 | | 1.35838431 | 0 | | CROCCP2 | | 4.52746087 | | 1.49E-85 | | 1.39444905 | 0 | 100 | | ENSG00000215908 | CROCCP2 | | 4.50095522 | | 2.33E-28 | | 1.35838431 | 0 | 100 | | | 4.45627587 | | 2.92E-46 | | 1.39444905 | 0 | 100 | | ENSG00000232470 | RP11-313D6.3 | | | | 2.50E-26 | | 2.2543504 | 0 | 100 | | | | | 1.73E-17 | | 1.97710821 | 0 | 100 | | ENSG00000259715 | CTD-3110H11.1 | | | | 4.88E-26 | | | 2.85714286 | | | | | 53.9019648 | 2.11E-13 | | | 11.1111111 | | | ENSG00000271938 | RP11-589C21.6 | | | | 6.39E-26 | | | | | RP11-589C21. | | | | 1.96E-33 | | 1.7636302 | 0 | 100 | | ENSG00000255989 | NA | | -0.1638419 | | 3.06E-25 | | | 91.4285714 | | | -0.9709911 | | | 9.93E-17 | | | 88.8888889 | 11.1111111 | | ENSG00000270972 | RP11-326C3.15 | | | | 2.87E-24 | | | | | RP11-326C3.1 | | | | 2.74E-09 | | | 11.1111111 | | | ENSG00000271843 | RP11-245J9.5 | | | | 1.39E-23 | | | | | RP11-245J9.5 | | | | 1.19E-13 | | | 8.33333333 | | | ENSG00000227486 | RP13-188A5.1 | | -1.1106149 | | 6.10E-23 | | | | | RP13-188A5.1 | | | 99.2121972 | 2.27E-23 | | | 91.6666667 | | | ENSG00000271975 | RP11-383J24.6 | | 1.35552564 | | 5.27E-22 | | | | | RP11-383J24.6 | | | | 1.71E-46 | | -1.1431123 | 100 | 0 | | ENSG00000264112 | RP11-159D12.2 | | 4.66520381 | | 8.91E-22 | | | | | RP11-159D12. | | | | 7.12E-34 | | | 2.7777778 | 97.222222 | | ENSG00000260539 | GLG1 | | 0.93214257 | | 1.15E-21 | | 1.26600723 | 0 | 100 | | | 0.64479745 | | 5.18E-06 | | | 16.6666667 | | | ENSG00000222375 | RN7SKP127 | | -2.5941428 | | 1.73E-21 | | 2.88156798 | 0 | 100 | RN7SKP127 | | -2.8490724 | | 3.99E-16 | | | 2.77777778 | | | ENSG00000152487 | ARL5B-AS1 | |
-1.5854301 | | 4.14E-21 | | | 2.85714286 | 97.1428571 | | 1.40494802 | | | 2.54E-16 | | | 2.77777778 | | | ENSG00000269086 | CTC-523E23.5 | | 1.08862501 | | 9.99E-21 | | 1.23867548 | 0 | 100 | | | 1.12338928 | | 1.45E-18 | | 1.20220481 | 0 | 100 | | ENSG00000270066 | SCARNA2 | | -1.2787625 | | 1.30E-20 | | | 2.85714286 | 97.1428571 | | | -1.8573902 | | 2.86E-07 | | | 13.8888889 | | | ENSG00000273033 | RP11-67L2.2 | | 3.82525915 | | 9.62E-20 | | | | | RP11-67L2.2 | | 3.68528862 | | 2.34E-57 | 3.00E-56 | | 100 | 0 | | ENSG00000204261 | PSMB8-AS1 | | 3.09354211 | | 4.01E-19 | | | 94.2857143 | | PSMB8-AS1 | | 3.05898101 | | 1.21E-23 | | -0.5163391 | 100 | 0 | | ENSG00000261526 | CTB-31O20.2 | | 4.30779858 | | 9.18E-18 | | 1.22381845 | 0 | 100 | | | 4.18284686 | | 2.24E-22 | | | 2.77777778 | 97.2222222 | | ENSG00000230002 | ALMS1-IT1 | | 1.03970337 | | 1.36E-17 | | 1.09138517 | 0 | 100 | | | 1.01609807 | | 1.41E-16 | | | 2.77777778 | | | ENSG00000237491 | RP11-206L10.9 | | | | 4.33E-16 | | | 5.71428571 | | | | | | 4.03E-18 | | | 2.77777778 | | | ENSG00000270704 | SNORD64 | | -1.5442355 | | 1.06E-14 | | | 8.57142857 | | | | -1.5119706 | | 1.40E-14 | | | 5.5555556 | | | ENSG00000269942 | NA | | -1.8507047 | | 1.41E-14 | | | 5.71428571 | | | 1.24034205 | | | 2.47E-11 | | | 11.1111111 | | | ENSG00000271869 | RP11-51J9.5 | | 3.05414844 | | 6.10E-14 | | 1.00245913 | 0 | | RP11-51J9.5 | | 3.04630366 | | 9.75E-19 | | 1.00429901 | 0 | 100 | | ENSG00000271725 | RP11-761I4.4 | | -0.6740512 | | 1.51E-13 | | | _ | | RP11-761I4.4 | -0.9547284 | | | 3.42E-13 | | | 80.555556 | | | ENSG00000267481 | CTC-559E9.5 | | 0.64223774 | | 3.57E-13 | | 0.96563225 | 0 | 100 | CTC-559E9.5 | | 0.43550431 | | | | | 8.33333333 | | | ENSG00000239884 | RN7SL608P | | -1.2478128 | | 4.02E-13 | | | 11.4285714 | | | | -1.1336359 | | 7.18E-17 | | | 5.5555556 | | | ENSG00000260336 | RP11-395B7.7 | | 2.72544557 | | 9.45E-13 | | | | | RP11-395B7.7 | | | | | | | 19.444444 | | | ENSG00000270419 | CAHM | | -1.1951761 | | 3.28E-12 | 8.55E-12 | | 88.5714286 | | CAHM | -1.635266 | | | 7.13E-25 | | | 94.444444 | | | ENSG00000268205 | CTC-444N24.11 | 0.61476736 | 2.58058261 | 48.0001372 | 4.26E-12 | 1.11E-11 | 0.86390751 | 5.71428571 | 94.2857143 | CTC-444N24.1 | 0.29749538 | 2.35117259 | 10.0345967 | 0.00153627 | 0.00218551 | 0.56299821 | 19.444444 | 80.555556 | | ENSG00000222414 | RNU2-59P | | -2.3062229 | | 6.70E-12 | 1.72E-11 | | 80 | 20 | | -0.9679482 | | | 1.79E-06 | 3.27E-06 | | 72.222222 | | | ENSG00000232412 | RP1-315G1.3 | -1.2560636 | -1.9720018 | 46.3273209 | 1.00E-11 | 2.55E-11 | -0.9265094 | 77.1428571 | 22.8571429 | RP1-315G1.3 | -0.9842486 | -2.0018776 | 29.087641 | 6.92E-08 | 1.39E-07 | | 77.777778 | | | ENSG00000271347 | RP11-701H24.7 | 1.38476273 | -2.1739881 | 44.2898912 | 2.83E-11 | 7.13E-11 | 1.67842837 | 11.4285714 | 88.5714286 | RP11-701H24. | 1.06798429 | -2.3625332 | 26.5281037 | 2.60E-07 | 5.08E-07 | 1.52687283 | 8.33333333 | 91.6666667 | | ENSG00000269900 | RMRP | | 0.46842308 | | 2.92E-11 | | | 22.8571429 | | | 0.68527739 | | 24.2629906 | 8.40E-07 | | | 22.222222 | | | ENSG00000228485 | GRK5-IT1 | | -1.3931038 | | 5.53E-11 | | -0.6154948 | 80 | 20 | | -1.075295 | | | 3.46E-11 | | | 77.777778 | | | ENSG00000243339 | RN7SL738P | -1.0225245 | -1.5782762 | 42.7862915 | 6.11E-11 | 1.46E-10 | -0.5686021 | 88.5714286 | 11.4285714 | RN7SL738P | -1.0354754 | -1.5907265 | 40.2079177 | 2.28E-10 | 5.29E-10 | -0.8028758 | 80.555556 | 19.444444 | | ENSG00000196559 | LIN C00610 | 0.62939357 | 0.83485601 | 42.3687265 | 7.56E-11 | 1.80E-10 | 0.89169779 | 2.85714286 | 97.1428571 | LINC00610 | 0.48203527 | 0.71806606 | 21.50396 | 3.53E-06 | 6.29E-06 | 0.78186148 | 5.5555556 | 94.444444 | | ENSG00000263990 | CTC-542B22.2 | 1.24200556 | -2.042102 | 41.0050087 | 1.52E-10 | 3.54E-10 | 1.47276984 | 5.71428571 | 94.2857143 | CTC-542B22.2 | 1.23356905 | -2.1091639 | 40.9722849 | 1.54E-10 | 3.65E-10 | 1.48861851 | 8.33333333 | 91.6666667 | | ENSG00000272994 | RP11-332H14.2 | 0.53546419 | 2.44216582 | 38.6122438 | 5.17E-10 | 1.17E-09 | 0.83743382 | 2.85714286 | 97.1428571 | RP11-332H14. | 0.52464535 | 2.41415963 | 31.9748665 | 1.56E-08 | 3.25E-08 | 0.83180728 | 0 | 100 | | ENSG00000260534 | RP11-1006G14 | | | | 8.61E-10 | | | | | RP11-1006G14 | | | | 1.98E-09 | | 0.93282444 | 0 | 100 | | ENSG00000272432 | RP3-465N24.6 | -0.9533292 | -1.7007015 | 34.4933957 | 4.28E-09 | 9.18E-09 | -0.6841318 | 77.1428571 | 22.8571429 | RP3-465N24.6 | -0.8444762 | -1.7006637 | 25.7551601 | 3.88E-07 | 7.46E-07 | -0.6683622 | 69.444444 | 30.555556 | | ENSG00000269044 | CTC-429P9.3 | 0.49093723 | 1.86124614 | 34.2271816 | 4.90E-09 | 1.04E-08 | 0.69236069 | 0 | 100 | CTC-429P9.3 | 0.71852084 | 1.97502367 | 54.9515677 | 1.24E-13 | 3.44E-13 | 0.85200382 | 0 | 100 | | ENSG00000260404 | RP11-384K6.6 | 0.59819703 | 4.42558631 | 33.8885981 | 5.84E-09 | 1.22E-08 | 0.81244772 | 2.85714286 | 97.1428571 | RP11-384K6.6 | 0.74852366 | 4.53999911 | 88.2713696 | 5.71E-21 | 2.36E-20 | 0.92706353 | 2.77777778 | 97.222222 | | ENSG00000269958 | RP11-73M18.8 | 0.48864053 | 1.83090548 | 33.6848716 | 6.48E-09 | 1.35E-08 | 0.76065349 | 2.85714286 | 97.1428571 | RP11-73M18.8 | 0.47306515 | 1.78145605 | 23.6279858 | 1.17E-06 | 2.16E-06 | 0.65971792 | 2.77777778 | 97.222222 | | ENSG00000228107 | AP000692.9 | 0.86062583 | -1.4879536 | 32.3004854 | 1.32E-08 | 2.73E-08 | 0.90145348 | 0 | 100 | AP000692.9 | 0.68310364 | -1.5680979 | 17.9299859 | 2.29E-05 | 3.84E-05 | 0.87275468 | 11.1111111 | 88.888889 | | ENSG00000273142 | RP11-458F8.4 | 0.4649805 | 2.01865512 | 31.0021838 | 2.58E-08 | 5.15E-08 | 0.851752 | 8.57142857 | 91.4285714 | RP11-458F8.4 | 0.64614523 | 2.10261104 | 45.5208253 | 1.51E-11 | 3.74E-11 | 0.71802768 | 2.77777778 | 97.222222 | | ENSG00000236337 | FMR1-IT1 | 1.21688041 | -2.4917902 | 28.540659 | 9.18E-08 | 1.77E-07 | 1.70379266 | 8.57142857 | 91.4285714 | FMR1-IT1 | 1.06579254 | -2.537506 | 23.9103436 | 1.01E-06 | 1.87E-06 | 1.13536582 | 13.8888889 | 86.1111111 | | - | | | | | | | | | | | | | | | | | | • | | • |-----------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------| | ENSG00000231560 | AC091814.3 | 0.52163777 | 0.70604539 | 28.3544168 | 1.01E-07 | 1.93E-07 | 0.85675442 | 5.71428571 | 94.2857143 | AC091814.3 | 0.88892145 | 1.03388281 | 73.1574467 | 1.20E-17 | 4.20E-17 | 1.1436547 | 5.5555556 | 94.444444 | | ENSG00000225975 | AC074138.3 | 0.59218485 | -0.7525362 | 25.9941895 | 3.42E-07 | | | 5.71428571 | | | 0.81529481 | -0.6881691 | 40.0919824 | 2.42E-10 | 5.57E-10 | 1.03400343 | 2.77777778 | 97.222222 | | ENSG00000270108 | RP11-73M18.6 | 0.54260167 | -0.3090027 | 25.4906956 | 4.45E-07 | 8.17E-07 | 0.87950444 | 14.2857143 | 85.7142857 | RP11-73M18.6 | 0.48458829 | -0.3620723 | 16.0128096 | 6.29E-05 | 0.00010147 | 0.70075436 | 19.444444 | 80.555556 | | ENSG00000242853 | RN7SL749P | -0.8410255 | -1.7352397 | 25.457735 | 4.52E-07 | 8.23E-07 | -0.5704067 | 74.2857143 | 25.7142857 | RN7SL749P | -0.8834276 | -1.8336675 | 25.3109249 | 4.88E-07 | 9.25E-07 | -0.6640104 | 77.777778 | 22.222222 | | ENSG00000252464 | RN7SKP70 | 1.04318787 | -2.2491663 | 24.964869 | 5.84E-07 | 1.06E-06 | 1.38579965 | 14.2857143 | 85.7142857 | RN7SKP70 | 0.88766392 | -2.2329989 | 19.169088 | 1.20E-05 | 2.04E-05 | 1.31126497 | 19.444444 | 80.555556 | | ENSG00000207445 | SNORD15B | 1.39408708 | -2.6566155 | 24.846839 | 6.21E-07 | 1.12E-06 | 2.18396107 | 11.4285714 | 88.5714286 | SNORD15B | 0.93628582 | -3.1853523 | 11.3129788 | 0.00076967 | 0.0011141 | 1.04973488 | 22.222222 | 75 | | ENSG00000268087 | CTC-429P9.2 | 0.61418051 | -0.9844489 | 24.3389216 | 8.08E-07 | 1.45E-06 | 0.97114614 | 2.85714286 | 97.1428571 | CTC-429P9.2 | 0.65007236 | -0.9422609 | 22.8199105 | 1.78E-06 | 3.26E-06 | 0.99526609 | 8.33333333 | 91.6666667 | | ENSG00000224078 | SNHG14 | 0.49931382 | 4.35172604 | 23.6282673 | 1.17E-06 | 2.06E-06 | 0.85950025 | 2.85714286 | 97.1428571 | SNHG14 | 0.40822757 | 4.29023864 | 27.2742427 | 1.77E-07 | 3.48E-07 | 0.72284319 | 2.77777778 | 97.222222 | | ENSG00000252010 | SCARNA5 | 1.04443443 | -1.8904968 | 23.354162 | 1.35E-06 | 2.35E-06 | 0.98110366 | 25.7142857 | 74.2857143 | SCARNA5 | 0.93049636 | -2.7411429 | 15.4727168 | 8.37E-05 | 0.00013388 | 1.13994692 | 19.444444 | 80.555556 | | ENSG00000265802 | RN7SL49P | 1.09043186 | -2.4949185 | 23.1040503 | 1.53E-06 | 2.66E-06 | 1.73656217 | 8.57142857 | 91.4285714 | RN7SL49P | 0.54878701 | -2.7176231 | 5.92110263 | 0.01496059 | 0.01899602 | 1.02356421 | 22.222222 | 77.777778 | | ENSG00000260257 | RP5-1085F17.3 | 0.41612858 | 1.58823951 | 23.0134388 | 1.61E-06 | 2.78E-06 | 0.66533987 | 8.57142857 | 91.4285714 | RP5-1085F17. | 0.45701763 | 1.57885091 | 21.2051085 | 4.13E-06 | 7.31E-06 | 0.6465356 | 11.1111111 | 88.888889 | | ENSG00000264608 | RP11-192H23.8 | 0.64526077 | -1.2617306 | 22.1123513 | 2.57E-06 | 4.39E-06 | 1.10451625 | 8.57142857 | 91.4285714 | RP11-192H23. | 0.37506101 | -1.4348948 | 6.01106569 | 0.01421644 | 0.01813066 | 0.66460018 | 25 | 75 | | ENSG00000271862 | RP11-343L5.2 | 0.47784906 | 0.15250568 | 22.0375505 | 2.67E-06 | 4.54E-06 | 0.8287758 | 2.85714286 | 97.1428571 | RP11-343L5.2 | 0.32604502 | 0.0617318 | 8.56010182 | 0.0034361 | 0.00472566 | 0.74917608 | 19.444444 | 80.555556 | | ENSG00000259321 | RP11-468E2.5 | 0.68201907 | -1.5033034 | 20.34269 | 6.47E-06 | 1.07E-05 | 1.02633138 | 8.57142857 | 91.4285714 | RP11-468E2.5 | 0.59281829 | -1.5934106 | 13.5030098 | 0.00023818 | 0.00036196 | 0.8882744 | 19.444444 | 80.555556 | | ENSG00000232300 | FAM215B | 0.37342377 | 2.06893564 | 19.6278426 | 9.41E-06 | 1.54E-05 | 0.68876129 | 14.2857143 | 85.7142857 | FAM215B | 0.33239926 | 2.03861463 | 11.6323664 | 0.00064814 | 0.0009429 | 0.66045942 | 16.6666667 | 83.3333333 | | ENSG00000263621 | NA | 0.44141438 | 0.12704282 |
18.5161448 | 1.68E-05 | 2.73E-05 | 0.7758935 | 14.2857143 | 85.7142857 | NA | 0.50264228 | 0.13651189 | 20.1378144 | 7.21E-06 | 1.26E-05 | 0.80117049 | 11.1111111 | 88.888889 | | ENSG00000259380 | RP11-346D14.1 | 0.33613606 | 2.07488942 | 15.9928574 | 6.36E-05 | 9.89E-05 | 0.53577888 | 14.2857143 | 85.7142857 | RP11-346D14. | 0.42768851 | 2.18096322 | 19.3117185 | 1.11E-05 | 1.90E-05 | 0.61703887 | 8.33333333 | 91.6666667 | | ENSG00000202538 | RNU4-2 | 0.7623301 | -1.4485325 | 15.4042162 | 8.68E-05 | 0.00013365 | 1.40359811 | 31.4285714 | 68.5714286 | RNU4-2 | 0.68887211 | -2.1061803 | 9.76845299 | 0.00177532 | 0.0025071 | 1.13089771 | 30.555556 | 69.444444 | | ENSG00000267904 | CTC-429P9.5 | 0.40991547 | -0.5664241 | 13.5399147 | 0.00023354 | 0.00034973 | 0.54029393 | 5.71428571 | 94.2857143 | CTC-429P9.5 | 0.46071651 | -0.5624797 | 13.5096613 | 0.00023734 | 0.00036163 | 0.70323852 | 19.444444 | 80.555556 | | ENSG00000232164 | AC092669.3 | 0.29931369 | 2.18103058 | 12.659424 | 0.00037368 | 0.00055267 | 0.58043915 | 8.57142857 | 91.4285714 | AC092669.3 | 0.35792209 | 2.28083867 | 13.8590502 | 0.00019705 | 0.00030262 | 0.54441425 | 22.222222 | 77.777778 | | ENSG00000225528 | RP3-370M22.8 | 0.35764184 | -0.2569858 | 11.3854856 | 0.0007402 | 0.00107617 | 0.80627553 | 20 | 80 | RP3-370M22.8 | 1.07916933 | 0.16263766 | 92.4028977 | 7.07E-22 | 3.15E-21 | 1.30394372 | 0 | 100 | | ENSG00000269952 | RP11-324I22.3 | 0.43328927 | -1.0923612 | 10.594637 | 0.00113416 | 0.00161753 | 1.06313283 | 22.8571429 | 77.1428571 | RP11-324I22.3 | 0.89455004 | -0.9412935 | 40.6034373 | 1.86E-10 | 4.37E-10 | 1.47110755 | 13.8888889 | 86.1111111 | | ENSG00000232686 | NA | 0.43269249 | -1.1591816 | 10.4717041 | 0.00121217 | 0.00172059 | 0.69942621 | 20 | 80 | NA | 0.60467798 | -1.1230866 | 17.9105051 | 2.32E-05 | 3.86E-05 | 0.89136975 | 13.8888889 | 86.1111111 | | ENSG00000267074 | RP11-1094M14 | 0.44252575 | -1.1899688 | 10.3418629 | 0.00130047 | 0.00184156 | 0.72786095 | 25.7142857 | 74.2857143 | RP11-1094M1 | 0.82386388 | -0.9785091 | 33.485993 | 7.18E-09 | 1.53E-08 | 0.94718893 | 11.1111111 | 88.888889 | | ENSG00000166770 | ZNF667-AS1 | 0.29520388 | 0.66321166 | 9.12094183 | 0.002527 | 0.0035449 | 0.63913536 | 0 | 100 | ZNF667-AS1 | 1.15717269 | 1.20558015 | 127.38626 | 1.53E-29 | 8.94E-29 | 1.39817971 | 2.77777778 | 97.222222 | | ENSG00000263607 | NA | 0.60066496 | -2.3226957 | 8.23702219 | 0.00410444 | 0.0056389 | 0.77682262 | 14.2857143 | 85.7142857 | NA | 0.89774601 | -2.1913692 | 20.9243111 | 4.78E-06 | 8.43E-06 | 1.30740433 | 13.8888889 | 86.1111111 | | ENSG00000260808 | CTD-2007L18.5 | 0.39955916 | -1.464078 | 7.32325382 | 0.00680681 | 0.00918306 | 0.62087568 | 11.4285714 | 88.5714286 | CTD-2007L18.5 | 0.67640773 | -1.3607226 | 19.6506774 | 9.30E-06 | 1.60E-05 | 1.0525078 | 13.8888889 | 86.1111111 | | ENSG00000269867 | CTD-2583A14.8 | 0.4049728 | -1.5427047 | 7.03891254 | 0.00797574 | 0.01071182 | 0.73622683 | 11.4285714 | 88.5714286 | CTD-2583A14. | 0.41950142 | -1.5881276 | 6.82467563 | 0.00899069 | 0.01183093 | 0.74043534 | 19.444444 | 80.555556 | | ENSG00000269940 | RP11-73M18.7 | 0.28382722 | -0.6105158 | 6.38870776 | 0.01148486 | 0.01515293 | 0.63198088 | 22.8571429 | 77.1428571 | RP11-73M18.7 | 0.37945226 | -0.5795718 | 9.21650072 | 0.00239844 | 0.00334625 | 0.73874413 | 16.6666667 | 83.3333333 | | ENSG00000256582 | RP11-75L1.1 | 0.2547249 | 0.09211461 | 6.1803188 | 0.0129179 | 0.01693178 | 0.58598212 | 5.71428571 | 94.2857143 | RP11-75L1.1 | 0.26498844 | 0.1126828 | 5.68862667 | 0.01707521 | 0.0214925 | 0.50190004 | 8.33333333 | 91.6666667 | | ENSG00000214293 | APTR | 0.24411223 | 0.0843766 | 5.75358942 | 0.016455 | 0.02152084 | 0.58565292 | 8.57142857 | 91.4285714 | APTR | 0.27225162 | 0.09309656 | 6.11666532 | 0.01339132 | 0.01715392 | 0.51241133 | 2.77777778 | 97.222222 | | ENSG00000212443 | SNORA53 | 0.51609212 | -2.4922035 | 5.07061348 | 0.02433477 | 0.03108002 | 0.9820688 | 28.5714286 | 71.4285714 | SNORA53 | 0.79712251 | -2.4006553 | 14.4079809 | 0.00014718 | 0.00022846 | 1.09443259 | 33.3333333 | 66.6666667 | | ENSG00000178440 | LIN C00843 | 0.26290097 | -0.8387798 | 4.93349849 | 0.02634094 | 0.03342844 | 0.53561429 | 17.1428571 | 82.8571429 | LIN C00843 | 0.37224284 | -0.8308246 | 7.95574067 | 0.00479351 | 0.00653045 | 0.73115464 | 22.222222 | 77.777778 | | ENSG00000272054 | RP11-423P10.2 | 0.21131912 | | | | | 0.51355966 | 20 | | RP11-423P10. | 0.64070314 | 1.03674223 | 38.5204182 | 5.42E-10 | 1.23E-09 | 0.85223286 | 13.8888889 | 86.1111111 | | ENSG00000257499 | NA | 0.21367619 | 0.17127374 | 4.44061825 | 0.03509354 | 0.04370276 | 0.62528379 | 14.2857143 | 85.7142857 | NA | 0.57891494 | 0.29069235 | 28.4206573 | 9.76E-08 | 1.95E-07 | 0.84164508 | 5.5555556 | 94.444444 | Supplementary Table 4A: Number of DE genes in Case-Control comparisons accross different fractions. Total Number of Genes = 63677 Coding Genes = 45618 Non-coding Genes = 18247 Genes belonging to both groups = 188 | Number of Genes: | Œ | 04+ | CI | 08+ | CD4 | CD8- | PE | вмс | |---|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------| | Analysis Type: | Over All Timepoints | 12 months before SC | Over All Timepoints | 12 months before SC | Over All Timepoints | 12 months before SC | Over All Timepoints | 12 months before SC | | FILTERING STEP 1 | | | | | | | | | | RPKM > 0 | 38380 | 31939 | 41014 | 31392 | 40970 | 39018 | 36593 | 32941 | | Coding genes with RPKM > 0 | 32046 | 27343 | 33937 | 26937 | 33880 | 32630 | 30743 | 28120 | | Non-coding genes with RPKM > 0 | 6498 | 4738 | 7246 | 4588 | 7263 | 6557 | 6006 | 4966 | | FILTERING STEP 2 | | | | | | | | | | Coding genes with RPKM > 3 | 7129 | 6992 | 7009 | 6903 | 7424 | 7348 | 7341 | 7255 | | Non-coding genes with RPKM > 0.5 | 580 | 550 | 573 | 565 | 570 | 565 | 503 | 497 | | FILTERING STEP 3 | erential expression analysis t | akes place before filtering ste | ferential expression analysis t | akes place before filtering ste | ferential expression analysis t | akes place before filtering ste | erential expression analysis | takes place before filtering st | | Coding Genes | | | | | | | | | | *(medianLogFC > 0.5) + Percent Up/Down-regulation > 65% | 40 | 16 | 58 | 77 | 114 | 22 | 68 | 27 | | (medianLogFC > 0.5) + Percent Up/Down-regulation > 75% | 12 | 11 | 25 | 45 | 46 | 6 | 13 | 6 | | Non-coding Genes | | | | | | | | | | *(medianLogFC > 0.5) + Percent Up/Down-regulation > 65% | 11 | 1 | 12 | 3 | 29 | 1 | 17 | 0 | | (medianLogFC > 0.5) + Percent Up/Down-regulation > 75% | 2 | 1 | 4 | 2 | 16 | 0 | 2 | 0 | ^{*}NOTE: Genes with |medianLogFC| > 0.5 and Percent Up/Down-regulation > 65% were considered differentially expressed Supplementary Table 48. Protein coding DE genes between Cases and Controls samh i Gan e iDs CDS+ CD4-CDS- PRA CDS+ CD4-CDS- PRM THE COSE COACOS PRAY CD4+ CD8+ CD4-CD8- PR TOLL CORE COLUCIE, PRIM m4+ m8+ m4-m8- P8 NA+ COS+ COA-COS+ PS N CDS+ CD4-CDS- PS NSGMOM245543 -1.95 ENGCODOM TOTAL 000 400 0 000 ... 0.00 29 18 33 173 .098 .090 ENSG0000181404 XXIac. VRM 2039 MANCE WASH complex subunit 1 Cytonlasm 207 -165 -133 14 11 10 25 0.00 0.00 18 25 ENSG00000129925 TMEMSA MEM 8A transmembrane protein 84 Plasma Membrane other 0.90 0.52 0.30 0.65 0.77 0.40 0.51 19 21 ENSG00000008517 L 32 Extracellular Space cytokin 1.26 1.09 0.00 0.00 0.00 17 ribosomal protein SA pseuc Other ENSG00000237506 RPSAP15 NSG00000186470 butyrophilin subfamily 3 m Plasma M-FN9500000188820 FAM26F family with sequence simil Other allionpää et al. 2014 0.20 0.05 -0.19 0.09 0.15 100 1.00 58 0.62 0.70 0.47 0.40 ENSG00000137801 THRS thrombospondin 1 Extracellular Space 0.71 0.37 0.28 0.63 0.00 0.00 0.00 0.07 0.13 0.00 69 54 61 58 42 ENCOMOMOGGG 17752 17153 leurine zimer tumor sunor Cytonlasm 0.62 0.42 0.27 0.20 .0.16 .0.10 .0.05 010 0.06 0.01 1.00 0.95 1.00 1.00 25 ENSG00000138706 LARS louryl, IRNA cynthetase Cytonlasm oravmo 0.50 0.82 00.00 ENSG00000160598 junction adhesion molecule Plasma Membrane 00 0.00 0.00 0.01 0.08 0.00 1.00 11 AMICA1 0.45 0.52 0.48 0.60 0.36 0.72 0.41 0.00 0.06 0.00 0.00 0.00 0.00 0.03 0.22 ENSG00000090857 POPR pyrtuvate dehydrogenase piCytoplasm allionpää et al. 2014 ergyme ENSG00000130222 6400456 growth arrest and DNA dar Nucleus .0.23 .0.14 0.09 0.12 0.00 0.10 100 0.68 1.00 100 22 19 40 36 ATP binding cassette subfar Plasma Membrane -0.23 -036 1.00 0.40 33 ENSG00000226210 WASH7P 0010028877 WAS protein family homolcOther 0.45 0.64 0.88 10.0 0.00 100 0.17 0.57 0.31 22 18 17 diacylglycerol kinase theta Cytoplasm ENSG00000145214 nsko 0.54 047 031 0.84 000 0.47 0.00 0.00 0.24 0.07 ENSCMOM149220 DICC14 0.0014 regulator of G-protein sign Cytoplasm other 0.85 0.39 0.60 0.68 1.06 0.27 0.63 00 0.01 0.00 0.00 100 0.00 1.00 0.32 67 65 60 82 75 33 35 18 0.17 0.16 0.00 0.47 0.55 0.27 ENSGMOM1@440 CD52 CDS2 CDS2 melacula Phoma Membrane other ounier et al. 2010 0.49 -011 0.25 060 049 068 011 100 100 75 68 58 73 42 50 5.0 0.20 1.00 1.00 22 30 ENSG00000160179 ABCG1 A BCG1 ATP binding cassette subfai Plasma Membrane - transporter -035 0.13 -0.14 -0.22 -0.23 0.00 0.00 100 0.97 60 36 0.21 0.43 -0.29 0.07 00 0.31 0.08 1.00 69 59 ENSG00000110090 CPT1A camitine palmitoyltransfer Cytoplasm 0.29 erzyme sorting nexin 25 Cytoplasm ENSG00000178927 C17orf62 17ar162 chromosome 17 open read Other 0.47 0.49 0.89 0.30 0.53 0.68 030 58 1.00 ENSG00000189060 H1 histone family member Nucleus -011 -001 0.01 -0.18 0.85 0.91 1.00 50 -0.72 -0.65 ENSG00000254912 RPI1.632K20.2 -0.88 -0.52 0.07 100 0.01 20 ENSCMONTATE 12 NAGO TI nicetinate aberateriberate Oderland .052 -047 -021 -0.85 0.54 0.02 0.49 0.14 1.00 30 ENSGM000100092 SHRRP1 HRRPI SH3 domain binding proteir Other other 0.51 0.32 -001 0.32 0.25 0.29 -0.32 0.11
0.00 0.66 0.97 0.21 100 0.15 1.00 1.00 69 57 63 60 33 31 43 50 36 67 ENSG00000211710 TRRV4.1 RRV4.1 Ticell recentor heta variabi@ther other 1.11 1.23 1.18 0.01 0.08 030 72 59 64 41 20 ENSG00000164056 SPRY1 PRY1 scrouty RTK signaling antai Cytoplasm other -050 -0.24 -012 -041 -0.42 -0.12 -0.13 -0.15 00 0.44 0.45 0.03 100 0.92 1.00 1.00 17 35 33 65 0.68 0.87 1.00 1.00 31 49 30 36 42 -0.05 0.75 -0.07 -0.06 0.06 00 0.80 0.98 ENSG00000215302 CTD-3092A11.1 -0.56 -0.02 ee 51 53 58 0.55 0.37 ENSG00000188290 -0.65 0.69 100 1.00 HPS4 has family bHLH transcript Other glycerophosphodiester pho Plasma Membrane ENSG00000158555 GDP05 Biompää et al. 2014 -064 -071 -008 00 0.00 0.08 1.00 ENSG00000128383 APORECRA BUBEC31 apolipogrotein B mRNA edi Cvt colorm Bornas et al. 2014 Forreira et al. Nahetec 2014 0.59 0.28 1.24 0.00 0.11 0.23 1.00 1.00 1.00 58 55 SO. 42 ENSG0000111848 TMEMIAC MEM 140 transmembrane motein 14 Plasma Membrane other 051 0.44 0.55 0.58 0.56 Q45 Q41 0.58 0.00 0.37 0.02 100 026 100 100 27 24 25 0.00 0.01 1.00 0.15 1.00 1.00 ENSG00000188690 UROS uroparphyrinagen III syntha Cytaplasm erevme 0.46 0.51 0.49 060 053 0.48 0.45 0.29 33 -0.86 -0.59 -0.41 -0.50 ENSG00000095370 SH2D3C 4203C SH2 domain containing 3C Cytoplasm other -050 -032 -0.14 -031 0.00 0.31 0.38 0.15 0.50 038 28 32 42 32 10 18 17 58 0.37 0.57 1.00 0.59 25 30 CTA-29F11.1 -058 -031 -0.42 -0.73 -0.26 -0.43 -0.43 0.18 0.02 0.00 20 27 42 63 ENSG00000260708 58 0.48 0.21 0.60 0.28 0.86 0.00 0.00 1.00 0.67 0.35 0.39 ENSG00000145649 lionpää et al. 2014 0.66 0.19 0.40 0.45 43 33 GZ MA granzyme A Cytoplasm growth factor -0.02 0.23 0.18 1.00 ENSG00000025708 thymidine phosphorylase Extracellular Space -127 -0.08 0.69 0.00 0.58 0.34 1.00 0.00 50 ENSG00000115523 Cytoplasm -0.28 0.17 1.00 granulysin -0.57 0.00 0.07 ENSG00000100302 RASD family member 2 Cytoplasm .0.92 ENSG00000115414 FN1 Shoner tin 1 Extracellular Sna envene 0.80 0.55 0.00 0.07 1.00 45 ENSG00000073861 TBX21 T-box 21 Nucleus transcription regulator alliompää et al. 2014. Heninger et al. 2017 -0.74 0.13 -0.78 0.27 0.19 0.00 0.33 0.95 0.00 1.00 1.00 16 58 42 032 -0.31 -0.08 -0.10 0.83 0.00 0.16 0.09 1.00 0.00 1.00 1.00 42 19 ENSG00000176845 METRNL METRNL meteorin like, glial cell diff Cytoplasm other -019 -0.78 -0.19 -0.30 50 55 50 -0.48 -0.65 -1.19 -0.36 -0.54 16 30 17 ENSG00000152492 CCDC 50 CCDC50 coiled-coil domain containi Cytoplasm other -045 -110 -0.26 0.00 0.00 0.00 0.00 0.11 0.00 0.91 020 25 22 18 0.01 0.02 100 0.00 1.00 100 ENSG00000135114 Z-S-oligoadenylate synthe Cytoplasm -0.26 0.53 -0.54 -0.35 -0.14 25 63 OASL erzyme lionpăă et al. 2014, Reynier et al. 2010, Ferreira et al. 20 -0.03 ENSG00000107317 prostaglandin D2 synthase Cytoplasm erzyme -013 0.00 0.83 0.18 1.00 1.00 ENSG00000211689 TCR gamma alternate reacCytoplasm ENSG00000075234 tetratric opeptide repeat de Cytoplasm -0.73 0.86 ENSGMOM135047 0.29 -0.25 -0.05 0.38 0.89 0.17 0.80 1.00 0.52 50 CISI cathepsin L Cytoplasm peptidas ENSG00000158747 NRI1 BL1 neuroblastoma 1 DAN fam Nucleus -036 -0.37 0.27 ENSG00000065989 POE4A phosphodiesterase 4A Cytoplasm -072 -013 -033 0.06 0.07 -033 0.07 0.05 0.56 1.00 1.00 019 100 0.00 1.00 1.00 ENSG00000188404 SELL selectin L Plasma Mombrane transmembrane receptor Floet al. 2010 0.38 0.59 0.80 0.81 0.48 0.24 0.00 0.00 32 42 0.00 0.00 1.00 1.00 -0.73 -0.29 -011 -1.02 -0.42 -0.43 0.74 0.99 33 55 ENSG00000111537 FNG Extracellular Space cytokine erreira et al. Diabetes 2014. Reinert-Hartwall et al. 2015 32 interferon gamma ENSG00000158869 FCER1G Fc fragment of igE recepto Plasma Membrane transmembrane recepto 0.97 0.11 111 096 -0.29 0.10 0.10 1.00 0.07 1.00 FCER 1G ENSG00000073605 GSDMB gasdermin B Cytoplasm zinc finger protein 683 Other ENSG00000105374 natural killer cell granule p Plasma Memb -086 0.08 0.13 -1.15 0.39 0.14 0.36 0.00 0.00 0.41 1.00 0.00 0.79 1.00 53 60 58 NKG7 AAEDI 0.00 ENSG00000158122 A AED 4 AhpC/TSA antioxidant enzy Other -0.08 0.27 -0.28 0.02 0.09 0.82 0.20 0.11 1.00 1.00 50 50 101 0.00 ENGGM000177211 un e DNA believes B Mudaue erzyme referent at Disherter 2014 022 0.49 012 027 0.42 100 0.28 072 64 18 SO. 60 ENSGM000148878 RHOR RHOR rac homolog family memb Odoolacm omumo -0.29 -059 0.21 0.00 012 -0.09 0.03 014 011 000 037 013 100 0.62 1.00 1.00 44 30 ENSG0000131149 GSE1 GSE1 God collected notein. Extracellular Space other -077 -032 -035 -1.03 -O 32 -038 0.00 0.00 0.00 0.00 1.00 090 16 -0.21 -0.86 -0.23 0.00 0.00 100 0.02 0.60 030 39 40 -042 -033 011 0.00 33 ENSG00000196126 HLA-DRB1 HLA-DRB1 major histocomestibility c cPlasma Membrane - transmembrane receptor loet at 2010 -040 32 immediate early response Other NSG00000188483 -0.01 -0.58 -0.11 -0.03 039 0.00 0.60 0.78 1.00 0.08 1.00 1.00 50 ENSG00000147448 Plasma Membrane -0.04 58 ENSG00000117318 inhibitor of DNA binding 3, Nucleus -022 -115 -019 -037 0.30 -0.20 0.23 0.28 0.42 0.00 0.42 0.08 1.00 0.74 1.00 1.00 47 27 ENSG00000223745 RP4-717123.3 COCLO ACI CCDC18 artisense RNA 1 Other 0.09 0.59 0.45 -0.52 0.17 0.81 0.08 0.00 0.05 100 0.00 0.42 40 64 32 29 36 17 ENSCM000134530 KIRD4 RD4 killer cell lectin like recept Plasma Membrane - transmembrane receptor Borns Set at 2014 -059 0.41 0.38 0.30 0.47 0.00 0.00 0.01 0.42 0.76 24 0.30 ENSG0000211694 TRGV10 TRGVIO Total recentor gamma var Other other -061 -0.05 0.20 0.01 0.77 100 24 -0.07 0.19 0.17 1.00 1.00 33 ENSG00000169554 ZFR 2 zinc finger F. box binding h-Nucleus transcription regulator .053 -016 -015 -0.92 -0.05 0.01 0.00 27 0.13 -0.55 ENSG00000134107 BHLHE40 BHLHE40 basic helix-loco-helix famil Nucleus transcription regulator -021 -0.63 -014 -023 -0.07 0.10 0.74 0.01 0.69 0.19 100 0.01 1.00 1.00 39 24 37 42 63 58 XCL2 -0.66 0.27 0.46 0.01 0.97 0.90 1.00 1.00 30 55 45 33 ENSG00000148185 XCL2 X-C motif chemokine ligan/Extracellular Space cytokine 0.14 0.63 ENSG00000145882 PCYOXL 013 0.00 037 0.41 PCYOX1L prenylcysteine oxidase 1 iii Other Elo et al. 2010. Kalliongia et al. 2014 | | | _ | | | | | |--|--|---|---|--|--|---| | NSG00000148484 | RSU1 | R SLIL | Ras suppressor protein 1 | | other | | | ENSG00000114812 | VIPR1 | VPR1 | | | G-protein coupled recept or | | | ENSG00000186810
ENSG00000189735 | CXCR3
TRK1 | CXCR3
TBK1 | C-X-C motif chemokine re
TANK binding kinese 1 | | G-protein coupled receptor | | | ENSG00000188736
ENSG00000077585 | GPR 137B | GPR137B | G protein-coupled recepts | | | | | ENSG00000110665 | C11orf21 | C11orf21 | chromosome 11 open rea | | other | | | ENSG00000179588 | ZFPM1 | ZFPM1 | zinc finger protein, FOG fi | | transcription regulator | | | ENSG00000185112 | FAM 43A | FAM43A | family with sequence simi | il Other | other | | | ENSG00000160223 | ICOSLG | ICOSLG/LOC 1027239 | Minducible T-cell costimula | t: Plasma Membrane | other | | | ENSG00000136213 | CHST12 | | | | | | | ENSG00000184939 | 2F P90 | ZFP90 | ZFP90 zinc finger protein | | transcription regulator | | | ENSG00000179344 | HLA-DQB1 | HLA-DQ81 | major histocompatibility of | | | Eloet al. 2010 | | ENSG00000101057 | MYB L2 | MYBL2 | MYB proto-oncogene like | 2 Nucleus | transcription regulator | | | ENSG00000211940
ENSG00000091409 | NA
ITGA6 | ITGA6 | | | transmembrane receptor | | | ENSG00000196735 | HLA-DOA1 | HIA-DOAL | | | transmembrane receptor | Kalliomää et al. 2014 | | ENSG00000168685 | L78 | IL78 | | | transmembrane receptor | Kanorpas et at 2014 | | ENSG00000113263 | ITK | ITK | IL2 inducible T-cell kinese | | kinase | | | ENSG00000138795 | LEF1 | LEF1 | lymphoid enhancer bindir | | transcription regulator | Kallionpää et al. 2014 | | ENSG00000182866 | LCK | LCK | LCK proto-oncogene, Src f | a Cytoplasm | kinase | 1 | | ENSG00000229164 | NA | | | | | 1 | | ENSG00000082074 | FYB | FYB | PYN binding protein | Nucleus | other | 1 | | ENSG00000117602 | RCANB | RCANB | RCAN family member 3 | Other | other | 1 | | ENSG00000211953 | NA | | | | | 1 | | ENSG00000111913 | FAM 658 | FAM65B | family with sequence simi | | other | 1 | | ENSG00000184613 | NELL2 | NELL2 | | Extracellular Space | | L | | ENSG00000167286
ENSG00000205268 | CD3D | CDSD
PDE7A | CD3d molecule | | transmembrane receptor | Reynier et al. 2010 | | ENSG00000205268
ENSG00000162894 | PDE7A
FAIM3 | PDE7A
FCMR | phosphodiesterase 7A
Fc fragment of igM recep | | erzyme | I | | ENSG00000162894
ENSG00000172005 | MAL. | MAL | mal, T-cell differentiation | | | Eloet al. 2010 | | ENSGODOOT7200B | APRA2 | APBA2 | amybid beta precursor p | | transporter | Kalliomää et al. 2014 | | ENSG00000186854 | TR ABDIA | - Tana | any broses pecusion p | · cpcpiani | a map da m | Antiopartiti 2014 | | ENSG00000189339 | SLC3SE28 | SLC3SE2B | solute carrier family 35 m | «Other | other | | | ENSG00000196329 | GIMAPS | GIMAP5 | GTPase, IMAP family mer | | other | | | ENSG0000015730B | SUSD3 | SUSD3 | sushi domain containing | | other | | | ENSG00000111817 | DSE | DSE | dermatan sulfate epimer | | erzyme | | | ENSG00000175352 | NRIP3 | NRIP3 | nuclear receptor interact | | other | | | ENSG00000148515 | ATP882 | ATP882 | ATPase phospholipid trans | sį Plasma Membrane | transporter | | | ENSG00000147408 | CSGALNACT1 | CSGALNACT1 | chondroitin sulfate Nace | | erzyme | Kallionpää et al. 2014 | | ENSG00000178562 | CD28 | C D28 | CD28 malecule | | transmembrane receptor | | | ENSG00000165929 | TC2N | TC2N | tandem C2 domains, nucl | | transporter | | | ENSG00000111801 | BTNBA3
FCGR2C | BTN3A3 | butyrophilin subfamily 3 r | | | | | ENSG00000244682
ENSG00000105483 | FCGR2C
CARDS | FCGR2C
CARD8 | Fc fragment of igG
recept
caspase recruitment dom | | transmembrane receptor
other | | | ENSG0000105488 | SYNGAP1 | CARUS | caspase recruitment dom | a Nucleus | other | | | ENSG00000197288
ENSG00000135426 | TESPA1 | TESPAL | thymocyte expressed, pos | it Cytonlasm | other | Kallionpää et al. 2014 | | ENSG00000135426 | TURRS | TUBB6 | tubulin beta 6 class V | | other | 2014 | | ENSG0000152056 | AP1S3 | APIS3 | adaptor related protein o | | transporter | 1 | | ENSG00000065675 | PRKCQ | PRKCQ | protein kinase C theta | | kinase | I | | ENSG00000127152 | BCL11B | BCL11B | B-cell CLL/lymphoma 118 | | transcription regulator | I | | ENSG00000116824 | CD2 | C 02 | CD2 molecule | Plasma Membrane | transmembrane receptor | I | | ENSG00000176749 | CDISR1 | CDKSR1 | cyclin dependent kinase 5 | rNucleus | kinase | Kalliorpää et al. 2014 | | ENSG00000160654 | CD3G | CDBG | | | transmembrane receptor | I | | ENSG00000179144 | GMAP7 | GIMAP7 | GTPase, IMAP family men | | erzyme | I | | ENSG00000157978 | LDL RAP1 | LDLRAPI | low density lipoprotein re | | transporter | I | | ENSG00000196187 | ТМЕМ63А | ТМЕМВА | transmembrane protein 6 | | other | I | | ENSG00000225217 | HSPA7 | HSPA7 | heat shock protein family | | other | I | | ENSG00000122877 | EGR2 | EGR2 | early growth response 2 | | transcription regulator | Heninger et al. 2017 | | ENSG00000184384 | MAML2 | MAML2 | mastermind like transcrip | | transcription regulator | L | | ENSG00000074966
ENSG00000110208 | TXX
FOLR3 | TXX
FOLR3 | | Cytoplasm
Extracellular Space | kinase | Kaliorpää et al. 2014
Kaliorpää et al. 2014 | | ENSG00000110208
ENSG00000177575 | FOLR3
CD163 | FOLR3
CD163 | folate receptor 3
CD 163 molecule | | other
transmembrane receptor | Kallionpää et al. 2014
Ferreira et al. Diabetes 2014 | | ENSG00000177575 | LRRC32 | LRRC32 | CD 163 morecuse
leucine rich repeat contai | | | draws at one property 2014 | | ENSG00000137507 | GEN1 | GEN1 | GEN1. Holliday junction S | | erzyme | I | | ENSG00000167664 | TMIGD2 | TMIGD2 | transmembrane and imm | | other | 1 | | ENSG00000159674 | SPON2 | SPON2 | spondin 2 | Extracellular Space | | Kalliorpää et al. 2014 | | ENSG00000081059 | TCF7 | TCF7 | transcription factor 7 (T-c | | transcription regulator | l . | | ENSG00000119487 | MARKAP1 | MAPKAP1 | mitogen-activated protein | | other | I | | | DIP2A | DIP2A | disco interacting protein | 2 Nucleus | transcription regulator | I | | ENSG00000160305 | DDX11 | DOXL1 | DEAD/H-box helicase 11 | | erzyme | I | | ENSG00000160305
ENSG00000013573 | DUXII | | Interded to Secure of | u Plasma Membrane | transmembrane receptor | I | | ENSG00000013573
ENSG00000100385 | IL2RB | IL2RB | interleuen 2 receptor sub | | | | | ENSG00000013573
ENSG00000100385
ENSG00000215788 | IL2RB
TNFRSF25 | TNFRSF25 | TNF receptor superfamily | | transmembrane receptor | | | ENSG0000013573
ENSG00000100385
ENSG00000215788
ENSG00000160185 | IL2RB
TNFRSF25
LIBASHBA | TNFRSF25
UBASH3A | TNF receptor superfamily
ubiquitin associated and S | S-Cytoplasm | enzyme | | | ENSG0000013573
ENSG00000100385
ENSG00000215788
ENSG00000160185
ENSG00000110448 | IL2RB
TNFRSF25
LIBASHBA
CD5 | TNFRSF25
UBASH3A
CD5 | TNF receptor superfamily
ubiquitin associated and S
CDS molecule | Plasma Membrane | enzyme
transmembrane receptor | | | ENSG00000013573
ENSG00000100385
ENSG00000215788
ENSG00000160185
ENSG00000110448
ENSG00000197540 | IL2RB
TNFRSF25
UBASHBA
CD6
GZMM | TNFRSF2S
UBASH3A
CDS
GZMM | TNF receptor superfamily
ubiquitin associated and S
CDS molecule
granzyme M | 9-Cytoplasm
Plasma Membrane
Cytoplasm | enzyme
transmembrane receptor
peptidase | | | ENGG0000013573
ENGG00000100385
ENGG00000215788
ENGG00000160185
ENGG00000110448
ENGG00000197540
ENGG00000145287 | IL2RB
TNFRSF2S
UBASHBA
CDS
GZMM
PLACB | TNFRSF2S
UBASH3A
CD5
GZMM
PLAC8 | TNF receptor superfamily
ubiquitin associated and S
CDS molecule
granzyme M
placenta specific 8 | PCytoplasm
Plasma Membrane
Cytoplasm
Nucleus | enzyme
transmembrane receptor
poptidase
other | | | ENSG0000013573
ENSG00000100385
ENSG00000215788
ENSG00000160185
ENSG00000110448
ENSG00000197540 | IL2RB
TNFRSF25
UBASHBA
CD6
GZMM | TNFRSF2S
UBASH3A
CDS
GZMM | TNF receptor superfamily
ubiquitin associated and S
CDS molecule
granzyme M | P Cytoplasm
Plasma Membrane
Cytoplasm
Nucleus
ny Nucleus | enzyme
transmembrane receptor
peptidase | | | | | | | | | | | | _ |--|-------------------------|---------------------|--|-----------------------------------|--|------------|---------------|--------------|----------------|-------------------------|----------------|---------------|------------------------|------|------|----------------------|--------------|--------------------|----------|----|-----------------------|----------|------------------------|------------|----------|----------------|--------------|----------|----------------|---| | ENSG00000148484 | RSU1
VIPR1 | RSU1
VPR1 | Ras suppressor protein 1 Cytoplasm
vaspactive intestinal peptid Plasma Membrane | other | | | 0.63 | | | 0.05 0.85
0.35 0.98 | 051 | 0.60 | 0.00 0.02 | | | LOO 0.00
LOO 0.00 | 0.93 | 0.45 58 | 68
73 | | 68 50
84 70 | | 75 6 | 7 42 | 32
27 | 24 3 | 2 50 | 27
9 | 25 33 | | | ENSG0000134812
ENSG00000186810 | CXCR3 | CXCR3 | C.X.C motif chemokine rec Plasma Membrane | | | | -0.73 | | -0.06 | -0.44 | | 0.43 | 0.00 0.00 | | 0.00 | 0.60 | 1.00 | 082 | | | 84 /U
50 | 36 | 58 6 | | 70 | 58 90 | - 1 - | | 42 33 | | | ENSG00000183735 | TBK1 | TBK1 | | kinase | | | -0.52 | | -033 | - | -0.23 | -0.35 | | 0.02 | | 0.00 | | 100 | 27 | | 34 | - | 33 4 | | 7.0 | 74 66 | 6 | | 67 58 | 1 | | ENSG00000077585 | GPR 1378 | GPR137B | | other | | | -054 | | -0.14 | | 0.08 | -0.07 | 0.08 | 0.25 | | | | 1.00 | 22 | | 42 | | 58 4 | | | 58 5 | 8 | | 42 58 | 1 | | ENSG00000110665 | C11arf21 | C 11 or f 21 | chromosome 11 open read Cytoplasm | other | | | 0.51 | | | 0.25 0.51 | 032 | 0.31 | 0.19 0.08 | | | L00 0.00 | 1.00 | 100 53 | 73 | 66 | 58 40 | 73 | 58 6 | 7 47 | 27 | 34 40 | 2 60 | 27 | 42 33 | 1 | | ENSG00000179588 | ZFPM1 | ZFPM1 | | transcription regulator | | | -055 | | 0.25 | -0.16 | | | 0.08 | | 0.79 | 0.81 | | | 30 | | 61 | 36 | | | 70 | 3 | 9 | 64 | | 1 | | ENSG00000185112 | FAM43A | FAM43A | | other | | | -0.70 | | -013 | -0.69 | | 0.33 | 0.04 | | 0.97 | 0.25 | | 1.00 | 30 | | 47 | 27 | 67 6 | 7 | 70 | 45 5 | | | 33 33 | 1 | | ENSG00000160223 | ICOSLG | ICOSLG/LOC 1027239 | Sinducible T-cell costimulats Plasma Membrane | other | | | -0.66 | | | 001 -0.11 | | -0.09 | 0.11 0.04 | | | L00 0.88 | | 1.00 28 | | | 29 50 | 36 | 58 4 | | 70 | 68 7 | 1 50 | | 42 58 | 1 | | ENSG00000136213
ENSG00000184939 | CHST12
ZFP90 | ZFP90 | ZFP90 zinc finger protein Nucleus | transcription regulator | | | -0.64
0.56 | | 0.09 | 037 010 | 0.02 | 0.03 | 0.04 | | 0.39 | 100 0.39 | | 1.00
0.97 58 | 73 | | 53
76 70 | - | 50 50 | | 76
27 | 42 40 | | 45 | 50 50
17 | 1 | | ENSG0000179344 | HLA-DQB1 | HLA-DQB1 | major histocompatibility ccPlasma Membrane | | Eloet al. 2010 | u32 | 0.56 | | -0.42 | 037 010 | -0.32 | 0.29 | 0.16 0.05 | | 0.00 | 100 0.39 | | 037 58 | /3 | | 76 70
37 | 20 | 33 5 | | 2/ | 68 6 | 3 30 | 45 | 67 50 | | | ENSG00000101057 | MYBL2 | MYB12 | | transcription regulator | | | | | -0.98 | | -0.50 | -051 | | | 0.00 | | | 0.02 | | | 21 | | 33 2 | | | 79 75 | 9 | | 67 75 | 4 | | ENSG00000211940 | NA | | , | | | | | 0.76 | 1.04 | | 1.27 | 1.08 | | | 0.00 | | 0.00 | 000 | | | 68 | | 75 6 | | | 21 3 | 2 | | 25 33 | 1 | | ENSG00000091409 | ITGA6 | ITGA6 | integrin subunit alpha 6 Plasma Membrane | transmembrane receptor | | 0.17 | 0.38 | 0.75 | 0.34 | 0.06 0.26 | 0.61 | 0.12 | 0.00 0.04 | 0.00 | 0.00 | 1.00 0.01 | 0.05 | 067 61 | 62 | 76 | 63 60 | 55 | 67 5 | 8 39 | 38 | 24 3 | 7 40 | 45 | 33 42 | | | ENSG00000196735 | HLA-DQA1 | HLA-DQA1 | major histocompatibility ccPlasma Membrane | | Kallionpää et al. 2014 | | | | -033 | | -0.43 | -0.06 | | | 0.00 | | | 1.00 | | | 39 | | 25 5 | | | 66 6 | | | 75 50 | I | | ENSG00000168685 | L7R | IL7R | interleukin 7 receptor Plasma Membrane | | | | | | | 0.04 0.14 | 0.45 | 0.12 | 0.29 0.71 | | | L00 0.91 | | 100 53 | | | 66 50
74 50 | | 58 5 | | | 26 3 | | | 42 42 | I | | ENSG00000113263
ENSG00000138795 | ITK
LEF1 | LEF1 | | kinase | Voltage III at al 2014 | | 0.25 | | | 0.06 0.06
0.12 0.10 | | 0.11 | 0.07 0.61
0.51 0.84 | | | L00 0.72
L00 0.91 | | 0.99 61
1.00 53 | | 79 | 74 50
76 30 | | 75 75
67 6 | | 30
38 | 21 2 | 6 50 | | 25 25
33 33 | I | | ENSG00000138795
ENSG00000182866 | LCK | LOX | , | transcription regulator
kinase | Kalliorpää et al. 2014 | | 0.12 | | | 0.12 0.10
0.19 -0.01 | | 0.18 | 0.51 0.84 | | | LOO 0.91
LOO 0.79 | | 068 44 | | 79 | 76 30
74 30 | | 67 7 | | 38
49 | 21 2 | 70 | | 33 25 | I | | ENSG00000229164 | NA. | | tex prote-one against, sie ra cyrepiasm | Minde | | | | | | 0.11 -0.09 | | 0.13 | 0.53 0.91 | | | 100 0.79 | | 100 53 | | 82 | 74 40 | _ | 67 5 | | 46 | 18 2 | 6 60 | | 33 42 | I | | ENSG00000082074 | FYB | FYB | PYN binding protein Nucleus | other | | | 0.33 | 0.62 | 0.39 | 0.07 0.33 | 0.18 | 0.38 | 0.29 0.32 | 0.00 | 0.00 | L00 0.19 | 1.00 | 100 47 | 76 | 76 | 74 40 | 82 | 67 7 | 5 53 | 24 | 24 26 | 6 60 | 18 | 33 25 | I | | ENSG00000117602 | RCANB | RCANB | | other | 1 | | 0.12 | | | 0.02 0.00 | 0.20 | -0.02 | 0.39 0.70 | | | L00 0.97 | | 1.00 56 | 62 | 84 | 66 30 | 55 | 67 4 | | 38 | 16 3 | 4 70 | | 33 58 | 1 |
| ENSG00000211953 | NA | I | | | 1 | l | | 0.82 | 0.48 | | 0.64 | 0.19 | | 0.00 | 0.00 | | 0.14 | 030 | | 68 | 68 | | 75 6 | 7 | | 32 3 | 2 | | 25 33 | 1 | | ENSG00000111913 | FAM 658 | FAM658 | | other | 1 | | 0.19 | | | 022 019 | | 0.39 | 0.00 0.07 | | | L00 0.08 | | 0.55 69 | 73 | 74 | 74 70 | 73 | 58 7 | | 27 | 26 26 | _ | | 42 25 | 1 | | ENSG00000184613 | NELL2 | NELL2 | neural EGFL like 2 Extracellular Space | | 1 | | | | | 0.11 0.20 | | 0.39 | 0.84 0.87 | | | L00 0.91 | | 097 44 | | 71 | 68 20 | | 67 6 | | | 29 3 | | | 33 33 | 1 | | ENSG00000167286
ENSG00000205268 | CD3D
PDF7A | C 080
PD F7 A | | transmembrane receptor
enzyme | Reynier et al. 2010 | | | | | 012 Q03
011 Q27 | 0.63
0.64 | 0.22 | 0.19 0.76 | | | L00 0.63 | | 1.00 56 | 57
68 | 79 | 79 60
68 60 | | 67 8:
83 5 | | 43 | 21 21 | 1 40 | | 33 17
17 42 | 1 | | ENSG00000205268
ENSG00000162894 | FAM3 | FCMR | phosphodiesterase /A Cytoplasm Fc fragment of kM recept Plasma Membrane | | | | 0.24 | | | 011 U2/
003 016 | | 0.30 | 0.06 0.29 | | | L00 0.08 | | 0.80 56 | | | 68 50 | | 58 6 | | 32 | 29 3 | | | 1/ 42
42 33 | I | | ENSG0000172005 | MAL | MAL | mal, T-cell differentiation; Plasma Membrane | | Floet al. 2010 | | 0.07 | | | 005 005 | 066 | 0.16 | 0.22 0.98 | | | L00 0.08
L00 0.94 | | 100 64 | 57 | | 74 60 | | 67 5 | | 43 | 29 3 | 6 40 | 36 | 33 42 | 1 | | ENSG00000034053 | APBA2 | APBA2 | | transporter | Kalionpää et al. 2014 | | 0.22 | | | 0.25 0.22 | | 0.21 | 0.80 0.67 | | | L00 0.30 | | 0.87 47 | | 76 | 74 30 | | 75 6 | _ | 41 | 24 26 | 6 70 | 36 | 25 33 | | | ENSG00000186854 | TRABD2A | | | | · . | | 0.21 | | | 0.04 0.31 | 0.54 | 0.34 | 0.03 0.45 | 0.00 | | L00 0.09 | 0.73 | 100 61 | 68 | 71 | 74 50 | 73 | 67 6 | | 32 | 29 26 | 6 50 | 27 | 33 33 | 1 | | ENSG00000189339 | SLC35E28 | SLC3SE2B | solute carrier family 35 mcOther | other | | 0.20 | 0.24 | 0.52 | 0.37 | 014 018 | 0.39 | 0.41 | 0.00 0.02 | 0.00 | 0.00 | L00 0.01 | 0.44 | 0.18 58 | 68 | 68 | 68 60 | 73 | 67 8 | 3 42 | 32 | 32 3 | 2 40 | 27 | 33 17 | 1 | | ENSG00000196329 | GIMAPS | GIMAPS | | other | | | | | | 0.08 0.35 | | 0.31 | 0.02 0.33 | | | L00 0.01 | | 100 61 | 68 | | 68 40 | | 58 5 | | 32 | 26 3 | 2 60 | | 42 42 | 1 | | ENSG0000015730B | SUSD3 | SUSD3 | | other | | 0.39 | 0.34 | | | 0.17 0.52 | | 0.62 | 0.00 0.08 | | | LOO 0.00 | | 019 69 | 84 | | 71 80 | 100 | 75 8 | _ | 16 | 18 2 | 9 20 | 0 | 25 17 | | | ENSG00000111817 | DSE | DSE
NRIP3 | | enzyme | | | | | -0.62
-0.41 | | -0.64
-0.51 | -0.52
0.00 | | 0.00 | 0.00 | | 0.42 | 0.75 | | | 29 | | 33 3:
42 5: | · | | 71 7 | 1 | | 67 67 | 4 | | ENSG00000175352
ENSG00000148515 | NRIP3
ATP882 | ATP882 | nuclear receptor interactinOther
ATPase phospholigid transpPlasma Membrane | | | 0.36 | 0.41 | | | 032 048 | | 0.00 | 0.00 0.06 | | 0.00 | 100 0.00 | 0.46 | 1.00
0.02 58 | 70 | | 37
61 60 | 91 | 75 6 | | 30 | 76 6
26 3 | | | 58 50
25 33 | | | ENSG00000147408 | CSGALNACT1 | CSGAL NACT1 | | erzyme | Kaliomää et al. 2014 | | 0.72 | | | 032 048 | | 0.24 | 0.00 0.14 | | | LOO 0.00 | | 0.82 69 | | | 74 70 | | 75 7 | _ | 35 | 18 2 | | | 25 25 | 1 | | ENSG00000178562 | CD28 | CD28 | | transmembrane receptor | and participation of the second | | | | | 0.09 0.04 | | 0.25 | 0.76 0.72 | | | L00 0.31 | | 100 58 | | | 71 50 | | 67 5 | | | 21 25 | | | 33 42 | | | ENSG00000165929 | TC2N | TC2N | tandem C2 domains, nucle: Nucleus | transporter | | -0.08 | 0.33 | 0.53 | 0.33 | 0.19 -0.13 | 0.44 | 0.02 | 0.82 0.30 | 0.00 | 0.00 | L00 0.84 | 0.91 | 1.00 39 | 62 | 82 | 68 20 | 45 | 75 50 | 0 61 | 38 | 18 3 | 2 80 | 55 | 25 50 | 1 | | ENSG00000111801 | BTNBA3 | BTN3A3 | | other | | 0.42 | 0.49 | | 0.79 | 0.40 0.50 | | 0.83 | 0.00 0.02 | | 0.00 | L00 0.00 | | 0.08 78 | 73 | 76 | 74 90 | 91 | 83 | 3 22 | 27 | 24 26 | 6 10 | 9 | 17 | 1 | | ENSG00000244682 | FCGR2C | FCGR2C | Fc fragment of igG receptoPlasma Membrane | | | | | -0.83 | _ | | -1.16 | | | 0.00 | | | 0.00 | | | 32 | | | 33 | | | 68 | 1 | | 67 | | | ENSG00000105483 | CARDS | C ARD8 | caspase recruitment doma Nucleus | other | | | 0.32 | | | 010 039 | | 0.58 | 10.0 00.0 | | | 0.00 | | 021 61 | | | 71 50 | | 7 | | | 26 25 | | 18 | 25 | I | | ENSG00000197283
ENSG00000135426 | SYNGAP1
TESPA1 | TESPAL | thymocyte expressed, posit Cytoplasm | other | Kallionpää et al. 2014 | | 0.34 | | | 0.27 0.48
0.18 0.12 | | 0.46 | 0.11 0.50
0.73 0.48 | | | L00 0.01
L00 0.62 | | 0.67 56
1.00 53 | | | 74 70
71 30 | 82
64 | 75 6:
67 5 8 | | 35
32 | 24 25
24 25 | _ | | 25 33
33 42 | | | ENSG00000176014 | TUBB6 | TUBB6 | | other | Kallonpaa et at. 2014 | 401 | 0.1/ | | -0.68 | 0.18 0.12 | -0.42 | 0.05 | 0.73 0.48 | | 0.03 | 100 0.62 | | 100 53 | 68 | | 71 30
29 | 64 | 33 5 | | 32 | 79 7 | 1 | | 67 50 | | | ENSG00000152056 | AP1S3 | APIS3 | | transporter | | | | -0.69 | | | -0.02 | 0.01 | | 0.00 | 0.00 | | 0.83 | | | 26 | | | 42 | Ĭ | | 74 | | | 58 | I | | ENSG00000065675 | PRKCQ | PRKCQ | protein kinase C theta Cytoplasm | kinase | | -0.07 | 0.00 | 0.64 | 0.36 | 0.11 -0.20 | 0.52 | 0.27 | 0.11 0.75 | 0.00 | 0.01 | L00 0.97 | 1.00 | 100 47 | 51 | 74 | 63 40 | 36 | 67 5 | 8 53 | 49 | 26 3 | 7 60 | 64 | 33 42 | I | | ENSG00000127152 | BCL11B | BCL11B | B-cell CLL/lymphoma 11B Nucleus | transcription regulator | | 0.04 | 0.01 | 0.60 | 0.25 | 0.09 0.00 | 031 | 0.02 | 0.99 0.98 | 0.00 | | 1.00 0.99 | 0.72 | 100 50 | 54 | | 68 30 | 45 | 58 50 | 0 50 | 46 | 29 3 | 2 70 | SS | 42 50 | I | | ENSG00000116824 | CD2 | CD2 | | transmembrane receptor | | | 0.06 | | | 0.06 0.23 | | 0.35 | 0.89 0.78 | | | L00 0.41 | | 1.00 53 | | 76 | 74 70 | 73 | 67 6 | | 41 | 24 2 | 6 30 | | 33 33 | I | | ENSG00000176749 | CDISR1 | CDKSR1 | - | kinase | Kalionpää et al. 2014 | | 0.42 | | | 0.57 0.45 | | 0.66 | 0.00 0.06 | | | 0.05 | | 031 83 | 84 | 82 | 71 80 | 82 | 83 8 | | 16 | 18 2 | 9 20 | | 17 17 | 1 | | ENSG00000160654
ENSG00000179144 | CD3G
GMA97 | CD8G
GIMAP7 | | transmembrane receptor | | | -0.12
0.37 | | | 0.09 -0.27
0.37 0.58 | | -001 | 0.30 0.90 | | | L00 0.86
L00 0.15 | | 1.00 50 | | | 61 30
66 60 | | 67 43
58 63 | | 54
35 | 24 3 | 9 70 | | 33 58
42 33 | 1 | | ENSG00000179144
ENSG00000157978 | GIMAP7
LDLRAP1 | GIMAP7 | | erzyme
transporter | 1 | | | | | 0.37 0.58
0.02 0.15 | | 0.17 | 0.09 0.76 | | | 100 0.15 | | 1.00 67 | | | 66 60
71 40 | | 58 6 | _ | | 29 34 | | 27
45 | 42 33
33 | 1 | | ENSG00000196187 | TMEM63A | TMEMERA | | other | 1 | | 0.35 | | | 0.14 0.35 | | 0.33 | 0.09 0.04 | | | 100 0.02 | | 0.96 58 | | | 68 40 | | 75 6 | | | 26 3 | | | 25 33 | 1 | | ENSG00000225217 | HSPA7 | HSPA7 | | other | | | | -091 | | | -1.50 | | | 0.00 | | | 0.02 | | | 34 | - | | 42 | 1 | | 66 | | - | 58 | | | ENSG00000122877 | EGR2 | EGR2 | | transcription regulator | Heninger et al. 2017 | I _ | | -0.57 | -031 | | -0.28 | -033 | | 0.00 | 0.00 | | 0.94 | 0.53 | | 24 | 29 | | 33 2 | 5 | | 76 75 | 1 | | 67 75 | 4 | | ENSG00000184384 | MAML2 | MAML2 | | transcription regulator | 1 | | | | | 016 0.79 | | 0.37 | 0.17 0.06 | | | LOO 0.00 | | 100 64 | | | 66 70 | | 75 5 | _ | | 24 3 | | | 25 42 | 1 | | ENSG00000074966 | TXX | TXX | | kinase | Kalionpää et al. 2014 | -010 | 0.30 | | | 0.31 0.41 | | 0.36 | 0.57 0.18 | | | L00 0.01 | | 0.41 42 | 62 | | 68 30 | 73 | 75 6 | 7 58 | 38 | 26 3 | | | 25 33 | 1 | | ENSG00000110208
ENSG00000177575 | FOLR3
CD163 | FOLR3
CD163 | folate receptor 3 Extracellular Space
CD 163 molecule Plasma Membrane | other
transmembrane receptor | Kallionpää et al. 2014
Formina et al. Diabetes 2014 | I | | | 0.89 | | 1.19
0.64 | 0.83 | | | 0.00 | | | 1.00
0.78 | | | 68 | | 67 6
67 6 | 7 | | 32 33 | | | 33 33
33 33 | 1 | | ENSG00000177575
ENSG00000137507 | CD163
LRRC32 | LRRC32 | CD 163 molecule Plasma Membrane
leucine rich repeat contain Plasma Membrane | | rerretra et al. Diabetes 2014 | l | | | -0.67 | | -0.36 | -0.41 | | | 0.00 | | | 0.78 | | | 71
24 | | 25 2 | | | 71 7 | 6 | | 33 33
75 75 | 1 | | ENSG0000137507
ENSG00000178295 | GEN1 | GENI. | | erzyme | 1 | l | | -051 | -433 | | -0.43 | -430 | | 0.00 | 0.00 | | 1.00 | | | 26 | | | 42 | 1 | | 74 | | | /5 /5
58 | 1 | | ENSG00000167664 | TMIGD2 | TMIGD2 | | other | 1 | 0.24 | 0.31 | | 0.44 | 0.05 0.62 | | 0.50 | 0.19 0.45 | | 0.00 | LOO 0.03 | | 021 56 | 65 | 71 | 68 50 | 91 | 67 7 | 5 44 | 35 | 29 3 | 2 50 | | 33 25 | 1 | | ENSG00000159674 | SPON2 | SPON2 | | other | Kallionpää et al. 2014 | | | 0.51 | 0.43 | -0.18 | | 0.31 | 0.38 | | 0.00 | 1.00 | | 0.03 | 41 | | 66 | 45 | 67 5 | | | 32 3 | 4 | | 33 42 | 1 | | ENSG00000081059 | TCF7 | TCF7 | | transcription regulator | | | 0.06 | | | 0.07 0.06 | 0.42 | 0.23 | 0.58 0.96 | 0.00 | | L00 0.89 | | 1.00 53 | | | 71 30 | - | 83 5 | | 38 | 18 2 | 9 70 | | 17 42 | 1 | | ENSG00000119487 | MARKAP1 | MAPKAP1 | | other | 1 | | 0.45 | | | 039 083 | 0.72 | 0.48 | 0.02 0.36 | | | 0.00 | | 0.44 58 | | | 61 60 | | 75 6 | 7 42 | 41 | 34 3 | 9 40 | | 25 33 | 1 | | ENSG00000160305 | DIP2A | DIP2A | | transcription regulator | 1 | | 0.40 | | | 000 044 | | 0.35 | 0.35 0.65 | | | L00 0.27 | | 0.15 50 | | | 74 50 | | 75 8 | | 35 | 34 2 | 6 50 | | 25 17 | 1 | | ENSG00000013573 | DDX11 | DDX11 | | erzyme | 1 | | -041 | -0.66 | | 1.15 -0.95 | | I | 10.0 00.01 | 0.00 | | 0.00 | 0.68 | 39 | | 34 | 20 | ~ | 42 | 61 | 62 | 66 | 80 | | 58 | 1 | | ENSG00000100385 | IL2RB
TNFRSF25 | IL2RB | | transmembrane receptor | 1 | | | | | 0.12 0.08
0.12 0.00 | | 0.33 | 0.75 0.44
0.85 0.75 | | | 100 0.91 | | 017 47
100 50 | | | 61 50
61 50 | | 67 7:
75 6: | 5 53 | 62
41 | 26 ¥ | 9 50 | | 33 25 | 1 | | ENSG00000215788 | TNFRSF25
UBASHBA | TNFRSF25
UBASH3A | TNF receptor superfamily rPlasma Membrane
ubiquitin associated and SrCytoplasm | transmembrane receptor
enzyme | | | | | | 0.12 0.00
0.06 0.06 | 0.76 | 0.29 | 0.85 0.75
0.87 0.99 | | | L00 0.75
L00 0.99 | | 100 50
100 42 | | | 61 50
63 30 | | 75 6 | | | 32 ¥
 | 45 | 25 33
42 | 1 | | ENSG00000160185 | COLUMN TO SERVE | CD5 | | transmembrane receptor | 1 | -400 | 0.00 | | | 0.06 0.04 | 0.53 | 0.18 | 0.36 0.85 | | | LOO 0.98 | | 100 31 | | | 50 30 | | 67 5 | | 59 | 24 50 | | | 33 42 | 1 | | ENSG00000160185
ENSG00000110448 | CD5 | | | | | | 0.10 | | | | 041 | 0.75 | | | | | | | | | co 00 | 73 | 58 7 | | 49 | 34 30 | 2 20 | | 42 25 | 1 | | | CDS
GZMM | GZMM | granzyme M Cytoplasm | peptidase | | 0.17 | 0.10 | 0.51 | 0.39 | 036 027 | 441 | 0.75 | 0.11 0.89 | 0.00 | 0.01 | L00 0.28 | 0.42 | 0.05 64 | 51 | 66 | 68 80 | /3 | 58 /: | 35 | 49 | 34 3 | 2 20 | 27 | 42 25 | | | ENSG00000110448 | | GZMM
PLAC8 | | peptidase
other | | | 0.10 | | | 036 027
001 019 | | 0.75 | 0.11 0.89 | | | L00 0.28
L00 0.62 | | 0.05 64
1.00 58 | | 76 | 68 50 | | 58 5 | | 35 | 24 3 | | | 42 42 | | | ENSG00000110448
ENSG00000197540
ENSG00000145287
ENSG00000163516 | GZMM
PLAC8
ANKZF1 | PLAC8
ANKZF1 | placenta specific 8 Nucleus
ankyrin repeat and zinc fin Nucleus | other
transcription regulator | | 011
012 | 0.29
0.30 | 0.55
0.51 | 0.29 | 0.01 0.19
0.30 0.25 | 010
040 | 0.14 | 0.11 0.65
0.05 0.28 | 0.00 | 0.01 | L00 0.62
L00 0.43 | 1.00
0.83 | 1.00 58
56 | 65
68 | 76 | 76 30 | 55
64 | 58 58
75 | 8 42
44 | 35
32 | 24 32
24 24 | 2 50
4 70 | 45
36 | 42 42
25 | | | ENSG00000110448
ENSG00000197540
ENSG00000145287 | GZMM
PLAC8
ANKZF1 | PLAC8 | placenta specific 8 Nucleus
ankyrin repeat and zinc fin Nucleus | other | | 011
012 | 0.29
0.30 | 0.55
0.51 | 0.29 | 0.01 0.19 | 010
040 | | 0.11 0.65
0.05 0.28 | 0.00 | 0.01 | L00 0.62 | 1.00
0.83 | 1.00 58 | 65
68 | 76 | | 55
64 | 58 5 | 8 42
44 | 35
32 | 24 32
24 24 | 2 50 | 45
36 | 42 42 | | | ENSG00000162729 | IGSF8 | IGSF8 | immunoglobulin superfami Plasma Membrane other | | | | 0.57 | | -0.11 0.25 | | 0.36 | 026 0.45 | | | .00 0.67 | | | 5 79 | - | 50 64 | | | 39 35 | 21 32 | - - | 36 | 25 | |--|---|---|--|---|-----------------------|----------------------|-------------------------------|-------------------------------|----------------------------------|-------------------|----------------------|-------------------------------------|------------------------------|--------------------------------------|----------------------|----------------------|-------------------------------------|------------------------------|----------------------|-----------------------|----------|----------------|----------------|----------------------------------|----------------------|----------------------|----------| | ENSG00000172340 | SUCLG2 | SUCL 62 | succinate-CoA ligase GDP-I Cytoplasm enzyme | | 0.14 | 0.50 | 0.61 | | 027 079 | | 0.62 | 0.08 0.35 | | | | | 0.99 56 5 | | 61 | 50 73 | | | 44 41 | 29 39 | | 27 25 | 33 | | ENSG00000183019 | MCEMP1 | MCEMP1 | mast cell expressed memb Cytoplasm other | | | | | -0.23 | 002 033 | | -0.27 | | | 0.09 | | | 100 47 | 32 | 42 | | 25 | 33 | SI 27 | 68 58 | | 75 | 67 | | ENSG00000162892 | L24
CDSS | IL24 | interleukin 24 Extracellular Space cytokine
CDSh molecule Plasma Membrane other | | -0.02 | | 0.63 | | | 0.37 | 0.18 | 0.23 0.04 | | | | | 120 | 3 76 | 71 | 50 73 | 67 | | | 24 29 | | 27 33 | 33 | | ENSG00000172116
ENSG00000163823 | CD88
CCR1 | CD88
CCR1 | CD8b malecule Plasma Membrane other C-C motif chemokine reces Plasma Membrane G-protein coupled: | | 1 | 0.08 | 0.53
-0.56 | 0.68
-0.40 | 0.13 | -0.78 | 0.73
-0.15 | 0.76 | | 0.00 | 0.45 | | 0.05 | 4 71 | 66
47 | 73 | 58 | 67
50 | 46 | 29 34
68 53 | 1 | 27 42
75 | 33
50 | | ENSG00000140398 | NBL1 | NEL1 | nei like DNA glycosylase 1 Nucleus enzyme | copt d | 010 | -011 | -055 | -034 | -0.38 | | -0.19 | 0.98 0.41 | | 0.00 | 0.51 | | 100 42 | | 26 | 27 | | | 58 62 | 66 74 | | 73 42 | 58 | | ENSG0000140398 | CD27 | CD27 | CD27 molecule Plasma Membrane transmembrane re | mine | 0.13 | | 0.70 | | 021 004 | 0.52 | 0.39 | 022 0.87 | | | | | 100 58 5 | | 66 | 70 55 | | | 40 43 | 29 34 | | 45 33 | 33 | | ENSG00000137070 | IL11RA | IL11RA | interleukin 11 receptor sub Plasma Membrane transmembrane re | | 0.20 | | 0.55 | | -0.21 020 | 0.55 | 0.39 | 011 0.27 | 0.00 | | | 0.60 | 56 | | 00 | 40 55 | | 67 | 42 43
44 41 | 29 34 | | 45 25 | 33 | | ENSG00000211734 | TRBV5-1 | TRBV5-1 | T cell receptor beta variabl Other other | apar . | 0.19 | 0.40 | 0.86 | | 019 002 | 0.38 | 0.04 | 0.15 0.76 | | | | | 1.00 53 | | 63 | 50 55 | | 67 | 47 43 | 26 37 | | 45 25 | 33 | | ENSG0000035115 | SH3YL1 | SHBYL1 | SH3 and SYLF domain conti Plasma Membrane other | Kalliorpää et al. 2014 | 021 | 0.26 | 0.55 | | 041 002 | 0.42 | 0.28 | 0.07 0.72 | | | | | 100 61 | | 63 | 60 64 | | | ay as | 24 37 | | 36 25 | 42 | | ENSG0000231475 | IGHV4.31 | IGHV4-31 | immunoglobulin heavy vari Other other | namosparat at 2004 | - | 0.10 | 0.62 | 0.36 | 041 401 | 0.20 | 0.46 | 0.72 | | 0.01 | | | 0.82 | 68 | 63 | | 58 | 75 | | 32 37 | | 42 | 25 | | ENSG00000226660 | TRBV2 | TRBV2 | T cell receptor beta variabl Other other | | 022 | 0.22 | 0.85 | | -0.14 0.22 | | 0.10 | 0.22 0.53 | 0.00 | | .00 0.51 | | 1.00 58 | 3 84 | 71 | 40 91 | | | 42 27 | 16 29 | 9 60 | 9 | 42 | | ENSG00000106560 | GIMAP2 | GIMAP2 | GTPase, IMAP family mem Cytoplasm other | | 0.18 | 0.33 | 0.78 | | 033 060 | 0.58 | 0.46 | 0.14 0.68 | | | | | | 9 71 | 61 | 60 64 | 83 | | 42 41 | 29 39 | | 36 17 | 33 | | ENSG00000166825 | ANPEP | ANPEP | alanyl aminopeptidase, me Plasma Membrane peptidase | Kaliomää et al. 2014 | 0.08 | | -0.55 | | 016 | -0.40 | -0.73 | 096 | | | .00 | | 100 56 | 34 | 37 | 60 | 33 | | 44 | 66 63 | | 67 | 58 | | ENSG00000181035 | 9.035442 | SLC25M2 | solute carrier family 25 ms Cytoplasm transporter | | 015 | 0.16 | 0.54 | | .0.32 0.16 | | | 022 0.66 | 0.00 | | 00 0.47 | | 56 | | | 40 64 | | | 44 43 | 29 | | 36 | | | ENSG00000013725 | CD6 | CD6 | CD6 molecule Plasma Membrane transmembrane re | aptor | -0.07 | -0.10 | 0.51 | 0.14 | -0.02 0.12 | 051 | 0.18 | 0.19 0.87 | 0.00 | 0.41 1 | .00 0.95 | 0.84 | 100 36 | 6 68 | 61 | 50 55 | 75 | 67 | 64 54 | 32 39 | 9 50 | 45 25 | 33 | | ENSG00000064886 | CH3L2 | CH3L2 | chitinese 3 like 2 Extracellular Space erzyme | | 0.05 | -0.10 | 0.59 | 0.13 | 0.10 -0.16 | 0.07 | -0.08 | 0.79 0.98 | 0.00 | 0.27 1 | .00 0.97 | 1.00 | 100 56 | 6 68 | 55 | 60 36 | 58 | 42 | 44 54 | 32 45 | 5 40 | 64 42 | 58 | | ENSG00000026950 | BTNBA1 | BTN3A1 | butyrophilin subfamily 3 m Extracellular Space other | | 0.38 | 0.35 | 0.61 | 0.50 | -0.29 0.09 | 0.65 | 0.70 | 0.02 0.42 | 0.00 | 0.00 1 | .00 0.49 | 0.69 | 0.02 61 5 | 9 68 | 76 | 40 55 | 75 | | 39 41 | 32 24 | 4 60 | 45 25 | 25 | | ENSG00000226752 | PSM D5-AS 1 | PSM D5-AS1 | PSMD5 antisense RNA 1 (h/Other other | | 0.33 | 0.36 | 0.52 | 0.59 | 016 011 | | 0.30 | 0.10 0.66 | 0.00 | 0.00 1 | .00 0.97 | | 1.00 58 5 | 9 68 | 74 | 60 55 | | 75 | 42 41 | 32 26 | 6 40 | 45 | 25 | | ENSG00000211747 | TRBV20-1 | TR8V20-1 | T cell receptor beta variabl Other other | | 0.02 | -0.03 | 0.53 | 0.28 | 002 029 | 0.16 | 0.38 | 0.76 0.98 | 0.00 | 0.07 1 | .00 0.98 | 1.00 | 100 53 | 9 68 | 66 | 60 55 | 58 | 67 | 47 51 | 32 34 | 4 40 | 45 42 | 33 | | ENSG00000232869 | TRBV29-1 | TRBV29-1 | T cell receptor beta variabl Other other | | -017 | -0.02 | 0.57 | 0.14 | -0.30 -0.10 | 036 | -0.07 | 0.73 0.84 | 0.01 | 0.67 1 | .00 0.96 | 1.00 | 100 47 | 6 71 | 61 | 40 45 | 58 | 50 5 | 53 54 | 29 39 | 9 60 | 55 42 | 50 | | ENSG00000130598 | TNN2 | TNN2 | troponin I2, fast skeletal by Cytoplasm enzyme | 1 | 1 | | -053 | -0.48 | | -0.48 | -037 | | 0.01 | 0.05 | | 0.69 | 1.00 | 29 | 32 | | 33 | 42 | | 71 68 | | 67 | 58 | | ENSG00000166681 |
NGFRAP1 | BEG | brain expressed X-linked 3 Cytoplasm other | 1 | 0.27 | 0.26 | 0.65 | 0.47 | -0.06 0.18 | 0.59 | 0.10 | 0.00 0.72 | 0.01 | 0.00 | .00 0.70 | 1.00 | 100 64 6 | 8 79 | 76 | 50 55 | 75 | 75 | 36 32 | 21 24 | 4 50 | 45 25 | 25 | | ENSG00000213930 | GALT | GALT | galactose-1-phosphate urid Cytoplasm enzyme | 1 | 0.33 | 0.24 | 0.53 | | 0.05 0.42 | 0.53 | | 0.08 0.24 | 0.01 | | | 1.00 | | 3 68 | | 60 91 | 58 | | 31 27 | 32 | 40 | 9 42 | - 1 | | ENSG00000176171 | BNP3 | B NIP3 | BCL2 interacting protein 3 Cytoplasm other | 1 | 0.07 | 0.13 | 0.60 | 0.32 | -0.08 0.10 | 0.19 | 0.32 | 0.76 0.84 | 0.01 | | | 1.00 | 100 64 6 | 2 71 | 66 | 50 64 | 58 | 58 | 36 38 | 29 34 | 4 50 | 36 42 | 42 | | ENSG00000090554 | RLT3LG | FLTBLG | fms related tyrosine kinase Extracellular Space cytokine | 1 | 0.15 | 0.26 | 0.50 | 0.30 | 031 057 | 0.68 | 0.40 | 0.31 0.85 | | 0.09 | | 0.99 | 058 64 6 | 8 71 | 71 | 90 82 | 75 | 100 | 36 32 | 29 29 | 9 10 | 18 25 | 0 | | ENSG00000198937 | CCDC167 | CCDC167 | coiled-coil domain containi Other other | 1 | 0.12 | 0.22 | 0.75 | 0.60 | 018 002 | 0.64 | 0.79 | 0.35 0.86 | | 0.04 | .00 0.94 | 1.00 | 100 56 5 | 9 68 | 66 | 60 55 | 67 | 75 | 44 41 | 32 34 | 4 40 | 45 33 | 25 | | ENSG00000136630 | HLX | HLX | H2.0 like homeobox Nucleus transcription regul | or | 1 | | -054 | | | -0.51 | -020 | | 0.02 | | | | 1.00 | 32 | 39 | | 33 | 42 | | 68 61 | 1 | 67 | 58 | | ENSG00000227191 | TRGC2 | TRGC2 | T cell receptor gamma con Other other | 1 | 1 | -021 | 0.61 | 0.39 | -0.06 | | 0.35 | 0.41 | 0.02 | | 0.84 | | | 1 74 | 66 | 45 | | 67 | 59 | 26 34 | | 55 | 33 | | ENSG00000170310 | STX8 | STX8 | syntaxin 8 Plasma Membrane other | | 0.35 | 0.38 | 0.53 | 0.28 | 035 056 | 0.52 | 0.10 | 0.27 0.75 | 0.02 | 0.09 1 | .00 0.62 | 1.00 | 100 64 6 | 2 68 | 61 | 60 64 | 67 | 67 | 36 38 | 32 39 | 9 40 | 36 33 | 33 | | ENSG00000123342 | MMP19 | MMP19 | matrix metallopeptidase 1/Extracellular Space poptidase | | | | -0.54 | | | 0.11 | | | 0.02 | | | 1.00 | | 34 | | | 50 | | | 66 | | 50 | | | ENSG00000211677 | IGLC2 | IGLC2 | immunoglobulin lambda c c Extrac ellular Space other | | | | -0.60 | -0.48 | | -0.34 | -051 | | 0.02 | 0.13 | | 1.00 | 1.00 | 34 | 37 | | 33 | 33 | | 66 63 | ž. | 67 | 67 | | ENSG00000104951 | L41 | IL4I1 | interleukin 4 induced 1 Cytoplasm enzyme | Ferreira et al. Diabetes 2014 | | | 0.54 | | | 0.69 | | | 0.08 | | | 1.00 | | 66 | | | 67 | | | 34 | | 33 | | | ENSG00000115263 | GCG | GCG | glucagon Plasma Membrane other | | | | | 0.57 | | | 0.39 | | | 0.00 | | | 000 | | 74 | | | 75 | | 26 | i | | 25 | | ENSG00000118785 | SPP1 | SPP1 | secreted phosphoprotein 1 Extracellular Space cytokine | | | | | 1.62 | | | | | | 0.00 | | | | | 76 | | | - 1 | | 20 | i. | | | | ENSG00000074706 | IPCEF1 | IPCEF1 | interaction protein for cyto Cytoplasm enzyme | | 0.41 | 0.30 | | | 022 009 | | 0.31 | 0.00 0.07 | | | .00 0.50 | | | 6 | 71 | 60 73 | | | 33 24 | 29 | | 27 | 42 | | ENSG00000254647 | INS | INS | insulin Extracellular Space other | | | | | 0.74 | | | 0.51 | | | 0.00 | | | 0.06 | | 74 | | | 67 | | 26 | | | 33 | | ENSG00000150867 | RP4K2A | PIP4K2A | phosphatidylinositol-5-phorCytoplasm kinase | | 0.35 | | 0.33 | | 0.45 0.78 | 0.28 | 0.72 | 0.00 0.04 | | | | | | 0 74 | 68 | 70 73 | 67 | | 36 30 | 26 32 | | 27 33 | 25 | | ENSG00000180357 | ZNF609 | ZNF609 | zinc finger protein 609 Nucleus other | | 0.39 | | | | 0.40 | | 0.74 | 0.00 0.00 | | | .00 | | | 8 | 68 | 70 | | | 36 32 | 32 | | | 25 | | ENSG00000151702 | RJ1 | FU1 | Ri-1 proto-oncogene, ETS t Nucleus transcription regul | or Kallionpää et al. 2014 | 0.49 | 0.43 | 0.38 | | 0.56 0.43 | 0.22 | 0.85 | 0.00 0.02 | | | 0.00 | | | 8 66 | 66 | 60 82 | 67 | | 36 32 | 34 34 | 4 40 | 18 33 | 25 | | ENSG00000115386 | REG1A | R EG 1A | regenerating family memb Extracellular Space growth factor | | | | | 0.52 | | | 0.38 | | | 0.00 | | | 036 | | 66 | | | 58 | | 34 | <i>i</i> | | 42 | | ENSG00000101017 | CD40 | CD40 | CD40 molecule Plasma Membrane transmembrane re | | | | -0.43 | -0.68 | | -0.31 | -047 | | | 0.00 | | | 0.07 | 13 | 18 | | 8 | 17 | | 87 82 | £ . | 92 | 83 | | ENSG00000198502 | HLA-DR85 | HLA-DRBS | major histocompatibility ccPlasma Membrane transmembrane re | aptor Elo et al. 2010 | | | -039 | -0.87 | | -0.10 | -0.93 | | | 0.00 | | | 0.90 | 29 | 32 | | 50 | 42 | | 71 68 | <u> </u> | 50 | 58 | | ENSG00000197043 | ANXA6 | A NKA6 | annexin A6 Plasma Membrane ion channel | | 0.25 | 0.35 | 0.49 | | 029 056 | 0.49 | 0.69 | 0.00 0.65 | | | .00 0.11 | 0.75 | 0.25 64 5 | 9 66 | 68 | 80 73 | 75 | 75 | 36 41 | 34 32 | 2 20 | 27 25 | 25 | | ENSG00000111331
ENSG00000204642 | OAS3
HLA.F | OAS3
HLA-F | Z-5'-oligoa danylate synthe Cytoplasm enzyme | Kallionpää et al. 2014, Reynier et al. 2010, Ferreira et al. 20 | 14 | 0.47 | | 0.53 | | | | | | 0.00 | | | | | 66 | | | | | 34 | 1 | | | | ENSG00000204642
ENSG00000214078 | CPNE1 | CPNF1 | major histocompatibility ccPlasma Membrane transmembrane re
codine 1 Nucleus transporter | aptor Elo et al. 2010 | 0.49 | 0.47 | 0.44 | | 0.43 0.60 | 0.27 | 0.34 | 0.00 0.18
0.00 0.25 | | | | | 021 75 7 | 3 74
5 76 | 74
68 | 80 82
70 73 | | | 25 27
31 35 | 26 26
24 32 | | 18 33
27 17 | 17
33 | | ENSG00000171130 | ATR6V0E2 | ATP6V0E2 | | | 037 | | 0.39 | | 036 077 | u39 | 0.67 | 0.00 0.27 | | | .00 0.01 | | | 5 | 68 | 80 82 | | | 31 35
28 35 | 24 32 | _ | 18 | | | ENSG00000171130 | CST7 | CST7 | ATPase H+transporting V0 Cytoplasm enzyme cvstatin F Extracellular Space other | Kalliomää et al. 2014 | | -0.51 | 0.46 | 0.52 | -0.36 | 0.69 | 0.72 | 0.14 0.08 | | 0.00 | | | 0.01 61 | | 66 | 80 82 | | 75 | 26 35
39 59 | 21 34 | | 64 42 | 25
25 | | ENSG0000017984 | TURM | CSI/ | cystatin F Extracellular space other | Kalionpaa et al. 2014 | 014 | | 0.46 | | 0.36 | | 0.70 | 0.14 0.08 | | | 0.15 | | | 5 82 | 82 | 70 64 | | 75 | 25 35 | 18 18 | | 64 42
36 17 | 25 | | ENSG00000105953 | OGDH | обри | oxoglutarate dahydrogena:Cytoplasm enzyme | | ula | 0.40 | 0.27 | 0.63 | 029 026 | 434 | 0.75 | 0.61 | | 0.00 | .00 0.33 | | | 9 66 | 68 | 70 04 | 8.3 | 75 | 41 | 34 32 | | 30 17 | 25 | | ENSG00000147955 | SIGMARI | SIGMAR1 | sigma non-opioid intracelli Plasma Membrane transmembrane re | mtor | 030 | | U.27 | | -0.01 | | 0.73 | 0.01 0.31 | | | .00 | | | 2 | 71 | 50 | | 75 | 39 38 | 34 32 | | | 25 | | ENSG0000147935 | FAMILIR | FAM111B | family with sequence simil Other other | | 4.50 | 0.40 | -050 | -0.58 | | -0.72 | -0.63 | 0.31 | | 0.00 | | | 012 | 34 | 26 | 30 | 33 | 25 | | 66 74 | <u> </u> | 67 | 75 | | ENSG00000010292 | NCAPD2 | NCAP02 | non-SMC condensin I come Nucleus other | 1 | 012 | 0.23 | | | 000 | | 0.59 | 0.18 0.48 | | | .00 | | 0.74 58 | | 68 | 50 | | | 42 32 | 32 | 2 50 | | 33 | | ENSG00000154229 | PRICA | PRKCA | protein kinase C alpha Cytoplasm kinase | 1 | 011 | | | | 004 004 | | 0.10 | 031 0.56 | | | .00 0.27 | | | 8 | 68 | 70 64 | | | 33 32 | 32 | _ | 36 | 42 | | ENSG00000136266 | FFAR1 | FFAR1 | free fatty acid receptor 1 Plasma Membrane G-grotein coupled: | ceator | 1 | | -034 | -0.53 | | -0.37 | -0.20 | | | 0.00 | | | 100 | 34 | 34 | | 42 | 50 | - | 66 H | <u> </u> | 58 | 50 | | ENSG00000153406 | NMRAL1 | NMR AL1 | NmrA like redox sensor 1 Nucleus other | | 0.17 | 0.31 | - | | -0.05 0.52 | | 0.61 | 0.17 0.25 | | | .00 0.19 | | 0.76 64 6 | | 74 | 40 64 | | | 36 35 | 26 | 6 60 | 36 | 25 | | ENSG00000131634 | TMEM 204 | TMEM 204 | transmembrane protein 20 Plasma Membrane other | 1 | | 0.62 | | | 025 071 | | 0.35 | 0.01 0.07 | | | .00 0.07 | | 100 69 | | 66 | 60 82 | | | 31 30 | 34 | | 18 | 42 | | ENSG00000083454 | P2R05 | P2RXS | purinergic receptor PZX 5 Plasma Membrane ion channel | 1 | 1 | | 0.50 | 0.55 | | 0.55 | 0.27 | | | 0.00 | | | 1.00 | 71 | 74 | | 67 | 58 | | 29 26 | | 33 | 42 | | ENSG00000188191 | PRKAR1B | PRKAR1B | protein kinase cAMP-deper Cytoplasm kinase | 1 | 011 | 0.39 | | | -0.07 0.41 | | 0.24 | 0.27 0.59 | | | .00 0.06 | | 0.98 69 6 | 8 | 82 | 50 82 | | | 31 32 | 18 | | 18 | 17 | | ENSG00000211746 | TRBV19 | TRBV19 | T cell receptor beta variabl Other other | Eloet al. 2010 | | 0.15 | | | 0.43 0.07 | | 0.47 | 0.10 0.61 | | | .00 0.94 | | | 5 | 74 | 70 55 | | | 33 35 | 26 | | 45 | 25 | | ENSG00000181754 | AMIG01 | AMIGO1 | adhesion molecule with Ig Plasma Membrane other | 1 | -0.04 | 0.16 | | 0.52 | -0.31 | | -0.05 | 0.30 0.55 | | 0.00 1 | .00 | | 100 47 5 | 9 | 71 | 10 | | 50 9 | 53 41 | 25 | 90 | | 50 | | ENSG00000122694 | GLIPR2 | GUPR2 | GLI pathogenesis related 2 Cytoplasm other | 1 | 1 | | 0.12 | 0.57 | | 0.06 | 0.38 | | 0.02 | 0.00 | | 1.00 | 1.00 | 58 | 68 | | 50 | 83 | | 42 32 | 2 | 50 | 17 | | ENSG00000167815 | PRDX2 | PRDX2 | peroxinedaxin 2 Cytoplasm enzyme | 1 | 0.43 | 0.44 | 0.61 | 0.55 | 0.47 0.71 | 0.62 | 1.00 | 0.03 0.81 | | 0.00 1 | .00 0.19 | 1.00 | 0.63 61 9 | 9 61 | 68 | 70 73 | 67 | 75 | 39 41 | 39 32 | 2 30 | 27 33 | 25 | | ENSG00000149531 | FRG1B | FRG1BP | FSHD region gene 1 family Other other | 1 | -0.66 | -0.69 | -030 | -0.61 | -0.70 -0.79 | -0.52 | -077 | 0.01 0.05 | 0.10 | 0.01 1 | .00 0.13 | 0.48 | 030 39 3 | 0 37 | 34 | 30 27 | 25 | 25 | 61 70 | 63 66 | 6 70 | 73 75 | 75 | | ENSG00000106397 | PLOOS | PLOD3 | procollagen-lysine, 2-oxogls Cytoplasm enzyme | 1 | | | 0.25 | 0.52 | | 021 | 0.35 | | 0.01 | 0.01 | | 1.00 | 1.00 | 68 | 74 | | 58 | 67 | | 32 26 | ă . | 42 | 33 | | ENSG00000137959 | IR44L | IR44L | interferon induced protein Nucleus other | Kalliorpää et al. 2014, Ferreira et al. 2014 | 0.06 | 0.80 | 0.29 | 0.55 | -0.24 -0.83 | -0.69 | -0.64 | 0.26 0.18 | 0.37 | 0.01 | 14 0.00 | 0.48 | 0.68 56 9 | 9 58 | 66 | 30 18 | 33 | 42 | 44 41 | 42 34 | 70 | 82 67 | 58 | | ENSG00000223350 | IGLV9-49 | IGLV9-49 | immunoglobulin lambda v: Other other | 1 | 1 | | | 0.67 | | 0.67 | 0.89 | | | 0.02 | | | 0.86 | 71 | 71 | | 75 | 75 | | 29 29 | a l | 25 | 25 | | | NAGA | NAGA | alpha-Nacetylgalactosami-Cytoplasm enzyme | 1 | 1 | | 0.42 | 0.57 | | 0.19 | 0.42 | | 0.00 | 0.02 | | 1.00 | 100 | 63 | 68 | | 67 | 75 | | 37 32 | ž. | 33 | 25 | |
ENSG00000198951 | | TMEM 106C | transmembrane protein 10 Other other | 1 | 0.18 | 0.27 | | 0.50 | -0.12 | | 0.48 | 0.23 0.49 | | 0.03 1 | .00 | | 100 67 6 | 2 | 68 | 40 | | 67 | 33 38 | 30 | 2 60 | | 33 | | ENSG00000198951
ENSG00000134291 | TMEM106C | | annex in AS Plasma Membrane transporter | I | 035 | -019 | 0.22 | 0.56 | 024 -0.19 | 0.25 | 0.34 | 0.09 0.78 | 0.55 | 0.04 1 | .00 0.64 | 1.00 | 100 61 | 1 58 | 66 | 60 27 | 58 | 67 | 39 59 | 42 34 | 4 40 | 73 42 | 33 | | ENSG00000134291
ENSG00000164111 | ANXAS | ANKAS | | | | | 0.17 | 0.61 | | | | | 0.14 | 0.04 | | | | 55 | 66 | | | | | | | | - 1 | | ENSG00000134291
ENSG00000164111
ENSG00000104974 | ANXAS
LILRA1 | LERA1 | leukocyte immunoglobulin Plasma Membrane - transmembrane re | aptor | 45 34 | ١. | | | | ENSG00000134291
ENSG00000164111
ENSG00000104974
ENSG00000225630 | ANXAS
LILRA1
MTND2P28 | LERA1
MTND2928 | leukocyte immunoglobulin Plasma Membrane transmembrane re
mitochondrially encoded N Other other | · | 0.37 | 0.10 | 0.19 | 0.06 | 0.99 0.36 | 0.15 | 0.03 | 0.00 0.00 | 0.00 | 0.00 | | | 0.00 61 9 | 7 63 | 53 | 80 64 | 67 | | 39 43 | 37 47 | | 36 33 | 50 | | ENSG0000134291
ENSG00000164111
ENSG00000104974
ENSG00000225630
ENSG00000124882 | ANXAS
UILRA1
MTND2P28
EREG | LLRA1
MTND2P28
EREG | leukocyte immunoglobulin Plasma Membrane transmembrane re
mitochondrially encoded N Other other
epiregulin Extracellular Space growth factor | Ferreira et al. Diabetes 2014 | 0.46 | 0.75 | 0.19
0.36 | 0.06
0.19 | 1.19 | 033 | 0.86 | 10.0 00.01 | 0.00 | 0.00 0 | .00 | 0.88 | 0.00 67 | 7 63
2 68 | 53
58 | 80 61
70 | 67
58 | 75 | 33 38 | 37 47
32 42 | 2 30 | 42 | 25 | | ENSG0000134291
ENSG00000164111
ENSG00000104974
ENSG00000225630
ENSG00000124882
ENSG00000134531 | ANXAS
LILRA1
MTND2P28
EREG
EMP1 | LLRA1
MTND2928
EREG
EMP1 | leukocyte immunoglobulin Plasma Membrane i transmembrane re mitochondrially encodel N Other other opting ulin. Et ac ellular Space growth factor optitudial membrane prote Plasma Membrane other | Ferreira et al. Diabetes 2034 | 0.46
-0.08 | 0.75 | 0.19
0.36
-0.25 | 0.06
0.19
-0.27 | 119
080 088 | 033
006 | 0.86 | 0.00 0.01
0.97 0.77 | 0.00
0.01
0.12 | 0.00 0
0.01 0
0.20 0 | 00 0.08 | 0.88
1.00 | 0.00 67 6
0.89 47 | 7 63
2 68
1 42 | 53
58
39 | 80 64 | 58 | 75
50 | 33 38
53 49 | 37 47
32 42
58 61 | 2 30 | 42
36 42 | 25
50 | | ENSG0000134291
ENSG0000164111
ENSG0000104974
ENSG0000225630
ENSG0000124882
ENSG0000134531
ENSG0000060138 | ANXAS
UILRA1
MTND2P28
EREG
EMP1
YBX3 | LLRA1
MTND2928
EREG
EMP1
YBX3 | Toutocyte immunoglobulin Plasma Membrane imitochondrially encoded N Other other other opingulin springulin sprindu springulin springulin springulin springulin springulin spring | Ferreira et al. Diabetes 2034 | 0.46
-0.08
0.20 | 0.75
0.00
0.35 | 0.19
0.36
-0.25
0.01 | 0.06
0.19
-0.27
0.00 | 119
080 088
077 044 | 033
006
017 | 0.86
0.41
0.26 | 0.00 0.01
0.97 0.77
0.02 0.55 | 0.00
0.01
0.12
0.72 | 0.00 0
0.01 0
0.20 0
0.67 0 | 000 0.08
000 0.00 | 0.88
1.00
1.00 | 0.00 67 6
0.89 47 5
1.00 56 6 | 7 63
2 68
3 42
8 50 | 53
58
39
50 | 80 64
80 82 | 58
58 | 75
50
67 | 33 38 | 37 47
32 42
58 61
50 50 | 2 30
1 20
0 20 | 42
36 42
18 42 | 25 | | ENSG0000134291
ENSG00000164111
ENSG00000104974
ENSG00000225630
ENSG00000124882
ENSG00000134531 | ANXAS
LILRA1
MTND2P28
EREG
EMP1 | LLRA1
MTND2928
EREG
EMP1 | leukocyte immunoglobulin Plasma Membrane i transmembrane re mitochondrially encodel N Other other opting ulin. Et ac ellular Space growth factor optitudial membrane prote Plasma Membrane other | Ferreira et al. Diabetes 2034 | 0.46
-0.08 | 0.75 | 0.19
0.36
-0.25 | 0.06
0.19
-0.27
0.00 | 119
080 088 | 033
006
017 | 0.86
0.41
0.26 | 0.00 0.01
0.97 0.77 | 0.00
0.01
0.12
0.72 | 0.00 0
0.01 0
0.20 0
0.67 0 | 000 0.08
000 0.00 | 0.88
1.00
1.00 | 0.00 67 6
0.89 47 5
1.00 56 6 | 7 63
2 68
1 42 | 53
58
39 | 80 64 | 58
58 | 75
50 | 33 38
53 49 | 37 47
32 42
58 61 | 2 30
1 20
0 20 | 42
36 42 | 25
50 | | ENSG00000186407 | CD300E | C 0300E | CD300e molecule Plasma Membrane other | | 0.49 | | 0.10 | | 1.28 | 0.43 | 0.92 | 000 | 0.76 | | 00 | | 100 6 | | | 70 | | 58 58 | 36 | 50 | _ | 30 | 42 42 | | |-----------------|---------------|---------------|---|--|-------|-------|---------------|-------|-------------|-------|-------|----------|--------|---------|---------|------|---------|----|------|-------|-----|----------------|----|-------|-------|--------|----------------|-----| | ENSG00000124942 | AHNAK | AHNAK | AHNAK nucleoprotein Nucleus other | | 0.24 | | -0.20 | | 0.67 0.61 | 0.07 | | 0.34 0.9 | | | 0.77 | | 100 5 | | | 3 70 | | 50 67 | 42 | 49 5 | | 30 36 | 50 33 | | | ENSG00000078804 | TP53INP2 | TPS3INP2 | tumor protein p53 inducibl Nucleus other | | 0.13 | | -0.10 | | 0.55 0.25 | -0.02 | | 0.56 0.7 | | | 0.77 | | 100 5 | | | 82 80 | | 42 58 | 42 | 49 63 | | 20 36 | 58 42 | _ | | ENSG00000154451 | GBP5 | GBP5 | guanylate binding protein !Plasma Membrane enzyme | Kallionpää et al. 2014, Reynier et al. 2010, Ferreira et al. 2 | | | 0.00 | | -0.39 -0.85 | -0.15 | -021 | 0.02 0.0 | 8 0.97 | | 76 0.00 | | 1.00 4 | | | 12 30 | | 42 33 | 58 | 70 50 | _ | 70 91 | 58 67 | 4 | | ENSG00000132386 | SERPINF1 | SERPINF1 | serpin family Fmember 1 Extracellular Space other | Kallionpää et al. 2014 | 0.31 | | -026 | 0.29 | 0.64 1.21 | -0.37 | | 0.0 00.0 | | | 0.00 | | 1.00 5 | | 37 | 6 60 | 73 | 33 67 | 42 | 46 63 | | 40 27 | 67 33 | 1 | | ENSG00000163013 | FBX041 | FBXD41 | F-box protein 41 Cytoplasm enzyme | | 0.40 | | 0.40 | 0.38 | 051 087 | | 0.79 | 0.00 | 0.00 | | 0.00 | | 0.10 7 | 78 | | 74 70 | 73 | 67 | 25 | 22 16 | 5 26 | 30 27 | 33 | 1 | | ENSG00000136997 | MYC | MYC | v-myc avian myelocytomat Nucleus transcript | regulator | 0.22 | 0.28 | -0.04 | 0.13 | 0.44 0.60 | -0.11 | 0.14 | 0.13 0.8 | 3 0.89 | 0.18 0. | 0.00 | 1.00 | 1.00 5 | 57 | 45 | 3 70 | 82 | 42 50 | 44 | 43 55 | 5 47 | 30 18 | 58 50 | 1 | | ENSG00000071073 | MGAT4A | MGAT4A | mannosyl (alpha-1,3-)-glyo Cytoplasm enzyme | | 0.39 | 0.35 | 0.43 | 0.48 | 0.43 0.68 | 0.43 | 0.51 | 0.00 0.2 | 9 0.00 | 0.00 | 0.00 | 0.28 | 0.30 7 | 70 | 84 1 | 84 90 | 91 | 83 100 | 28 | 30 16 | 5 16 | 10 9 | 17 0 | 1 | | ENSG00000026297 | RNASET2 | R NASET2 | ribonuclease T2 Cytoplasm enzyme | | 0.07 | 0.37 | 0.01 | 0.11 | 0.48 0.85 | 0.01 | 80.0 | 0.26 0.6 | 6 0.62 | 0.51 1 | 00.00 | 1.00 | 1.00 5 | 59 | 58 | 8 60 | 73 | 58 58 | 44 | 41 43 | 2 42 | 40 27 | 42 42 | 1 | | ENSG00000040938 | INPP4A | INPP4A | inositol polyphosphate-4pl Cytoplasm phosphate | | 0.10 | 0.20 | | 0.42 | 0.07 0.54 | | 0.50 | 0.21 0.1 | 8 | 0.00 1 | 0.00 | | 0.00 | 59 | | 6 50 | 73 | 75 | 47 | 41 | 34 | 50 27 | 25 | 1 | | ENSG00000153551 | CMTM7 | CMTM7 | CKLF like MARVEL transme Extracellular Space cytokine | | 0.50 | 0.53 | 0.48 | 0.41 | 0.52 0.54 | 0.23 | 0.52 | 0.0 00.0 | 5 0.00 | 0.00 | 0.00 | 1.00 | 0.29 8 | 70 | 68 | 82 80 | 100 | 58 92 | 17 | 30 33 | 2 18 | 20 0 | 42 8 | 1 | | ENSG00000178199 | 2C3H12D | ZC3H12D | zinc finger CCCH-type cont Cytoplasm other | | -0.04 | 0.04 | 0.17 | 0.20 | 010 086 | 0.37 | 0.34 | 0.49 0.9 | 8 0.43 | 0.56 1 | 0.00 | 1.00 | 1.00 4 | 51 | 63 | 1 60 | 73 | 67 75 | 56 | 49 37 | 7 39 | 40 27 | 33 25 | 1 | | ENSG00000127663 | KDM48 | KDM48 | lysine demethylase 48 Nucleus erzyme | | 0.16 | 0.25 | 0.07 | 0.15 | 030 056 | 0.50 | 0.64 | 0.48 0.8 | 3 0.82 | 0.42 0 | 0.00 | 0.84 | 0.22 5 | 62 | 55 | 3 70 | 82 |
83 83 | 44 | 38 49 | 5 37 | 30 18 | 17 17 | 1 | | ENSG00000130775 | THEM52 | THEMIS2 | thymocyte selection associ Other other | | 0.50 | 0.57 | 0.00 | -014 | 0.53 0.57 | -0.32 | -0.09 | 0.0 0.0 | 0.98 | 0.74 0 | 0.00 | 1.00 | 1.00 7 | 62 | 50 | 12 70 | 73 | 33 50 | 22 | 38 50 | 58 | 30 27 | 67 50 | . 1 | | ENSG00000117648 | MANIC1 | MANICI | mannosidase alphe class 1/Cytoplasm enzyme | | 0.11 | | | 0.48 | 0.22 0.52 | | 0.54 | 0.21 0.2 | 0 | 0.00 1 | 0.00 | | 0.08 5 | 68 | | 74 70 | 82 | 83 | 42 | 32 | 26 | 30 18 | 17 | 1 | | ENSG00000121281 | ADCY7 | ADCY7 | adenylate cyclase 7 Plasma Membrane enzyme | | 0.23 | | 0.44 | | -0.06 0.77 | 0.48 | 0.58 | 0.0 0.0 | | | 00.00 | | 016 6 | | 74 | 71 50 | 82 | 67 83 | 39 | 27 26 | 5 29 | 50 18 | 33 17 | 1 | | ENSG00000167261 | DPEP2 | DPEP2 | dpeptidase 2 Plasma Membrane peptidase | | 0.29 | | 0.26 | | 0.27 0.56 | 0.20 | 0.09 | 0.0 0.0 | | | 00.00 | | 1.00 6 | | | 55 60 | 91 | 75 58 | 33 | 24 3 | 2 45 | 40 9 | 25 42 | | | ENSG00000148466 | NA | | -, | | 0.21 | | | | 0.06 0.69 | | 0.44 | 0.02 0.0 | 2 | | 0.00 | | 0.82 6 | 70 | | 51 50 | 82 | 75 | 36 | 30 | 39 | 50 18 | 25 | | | ENSG00000172543 | CTSW | CTSW | cathepsin W Cytoplasm peptidase | | 0.46 | | 0.30 | | 012 -0.57 | 0.35 | | 0.49 0.2 | 0 0.12 | | 00.00 | 1.00 | 100 6 | | | 17 60 | 27 | 67 42 | 36 | 59 34 | . 9 | 40 73 | 33 58 | | | ENSG00000120875 | DUSP4 | DUSP4 | dual specificity phosphatas Nucleus phosphata | 1 | -030 | | -0.13 | | -0.10 -0.80 | -0.05 | | 0.08 0.0 | | | 0.00 | | 100 4 | | | 7 50 | | 50 50 | 58 | 73 5 | | 90 73 | 50 50 | . 1 | | ENSG00000162777 | DENND2D | DENND2D | DENN domain containing 2 Cytoplasm other | | 0.28 | | 0.48 | 0.49 | 0.59 0.64 | 0.45 | 0.85 | 0.00 0.0 | | | 0.00 | | 018 6 | | 79 | 4 70 | | 75 83 | 36 | 35 2 | - | 30 18 | 25 17 | | | ENSG00000113319 | RASGRF2 | R ASGR F2 | | | 0.44 | | 0.46 | | 0.45 0.66 | 445 | 0.85 | 0.00 0.4 | | | 1 0.01 | 0.55 | 6 | | /9 | 60 | | /5 83 | 31 | 33 2 | | 40 27 | 25 17 | 1 | | ENSG00000099326 | MZF1 | MZF1 | | | 0.27 | | | | 0.10 0.58 | | | 0.03 0.0 | | | 0.01 | | 7 | | | 80 | 100 | | 28 | 19 | | 20 0 | | 1 | | ENSG00000137478 | | FCH502 | | regulator | 022 | | | | 034 058 | | | | | | | | | | 61 | | | 58 58 | 42 | 38 39 | | | 42 42 | | | | FCHSD2 | | FCH and double SH3 domai Other other | | 0.22 | | 0.44 | | | 0.35 | 0.37 | 0.01 0.1 | | | | | | | | - | | | 42 | | - | 30 27 | | 1 | | ENSG00000169896 | ITGAM | ITGAM | | ne receptor | | -045 | -0.08 | -0.02 | -0.67 | -0.08 | -0.02 | 0.0 | 1 0.82 | 0.67 | 0.01 | | 100 | 30 | | 60 | | 42 50 | 1 | 70 5 | _ | 73 | 58 50 | | | ENSG00000055332 | EIF2AK2 | EIF2AK2 | eukaryotic translation initi: Cytoplasm kinase | | -0.22 | | -0.10 | | -0.28 -0.59 | -0.41 | | 0.19 0.7 | | | 0.01 | | 0.96 3 | | | 30 | | 25 33 | 61 | 57 6 | | 70 91 | 75 67 | 4 | | ENSG00000178035 | MPDH2 | IMPOH2 | inosine monophosphate de Cytoplasm enzyme | | 0.15 | | 0.23 | | 0.15 0.50 | 0.23 | | 0.31 0.8 | | | 0.01 | | 0.99 5 | | | 50 | | 67 75 | 42 | 38 3 | - | 50 18 | 33 25 | | | ENSG00000107819 | SEXNB | SFIN3 | sideroffexin 3 Cytoplasm transport | | 0.37 | | 0.08 | 0.19 | 0.66 0.61 | 0.48 | | 0.16 0.4 | | | 0.01 | | 100 6 | | | 3 70 | | 67 67 | 36 | 27 39 | 37 | 30 18 | 33 33 | 1 | | ENSG00000185504 | C17arf70 | FAAP100 | Fanconi anemia core comp Nucleus other | | 0.36 | | 0.36 | | 0.43 0.52 | 0.46 | 0.59 | 0.00 0.6 | | | 0.01 | | 031 6 | | 76 | 6 70 | | 83 75 | 31 | 35 24 | | 30 9 | 17 25 | 1 | | ENSG00000010295 | IFFO1 | IFF01 | intermediate filament famiOther other | | 0.38 | | 0.38 | | 0.22 0.58 | 0.51 | | 0.03 0.1 | | | 0.02 | 1.00 | 65 | 70 | 68 | 70 | | 67 | 31 | 30 33 | | 30 9 | 33 | _ | | ENSG00000181896 | ZNF101 | ZNF101 | zinc finger protein 101 Nucleus other | | -0.04 | | 0.13 | | -0.43 -0.59 | -0.05 | | 0.21 0.7 | | | 0.02 | | 0.69 | | | 0 10 | | 50 25 | 50 | 65 37 | _ | 90 100 | 50 75 | - | | ENSG00000130164 | LDLR | l | | | 0.23 | | -0.02 | | 0.56 0.68 | 0.08 | | 0.78 0.9 | | 0.14 0. | | | 0.07 5 | | | 8 70 | | 50 67 | 47 | 41 5 | | 30 27 | 50 33 | | | ENSG00000137312 | FLOT1 | FLOT1 | flotilin 1 Plasma Membrane other | | 0.17 | 0.37 | 0.06 | 0.20 | 0.09 0.51 | -0.12 | 0.20 | 0.00 0.1 | 6 0.90 | 0.15 1 | 0.02 | 1.00 | 1.00 6 | 62 | 53 | 60 | 73 | 50 67 | 33 | 38 47 | 7 39 | 40 27 | 50 33 | 1 | | ENSG00000225138 | CTD-2228K2.7 | l | | | | | | - 1 | 0.53 | | | | | | 0.02 | | | | | | 91 | | 1 | | | 9 | | 1 | | ENSG00000158062 | UBXN11 | UBXN11 | UBX domain protein 11 Cytoplasm other | | -0.06 | 0.22 | 0.00 | 0.01 | 0.09 0.52 | 0.10 | -0.03 | 0.38 0.3 | 6 0.58 | 0.96 1 | 0.02 | 1.00 | 1.00 5 | 62 | 50 | 55 50 | 73 | 58 50 | 50 | 38 50 | 45 | 50 27 | 42 50 | 1 | | ENSG00000161381 | PLXDC1 | PLXDC1 | plexin domain containing 1Plasma Membrane other | | -0.22 | 0.44 | | - 1 | 0.26 0.70 | | | 0.79 0.4 | 1 | 1 | 0.03 | | 4 | 59 | | 60 | 73 | | 58 | 41 | | 40 27 | | 1 | | ENSG00000198771 | RCSD1 | R CSD1 | RCSD domain containing 1 Other other | | 0.34 | 0.48 | 0.40 | 0.41 | 0.33 0.64 | 0.47 | 0.53 | 0.0 00.0 | 0.00 | 0.00 1 | 0.03 | 1.00 | 0.86 64 | 68 | 76 | 6 70 | 73 | 75 75 | 36 | 32 24 | 4 34 | 30 27 | 25 25 | 1 | | ENSG0000010600B | LFNG | LFNG | LFNG O- fuz osylpeptide 3-bi Cytoplasm enzyme | | 0.18 | 0.33 | 0.15 | 0.15 | -0.08 0.61 | 0.10 | 0.21 | 0.06 0.6 | 5 0.33 | 0.15 | 0.04 | 1.00 | 1.00 5 | 59 | 58 | 50 | 73 | 50 58 | 42 | 41 43 | 2 39 | 50 27 | 50 42 | _ | | ENSG00000068878 | PSME4 | PSM 64 | proteasome activator subu Cytoplasm other | | -0.34 | -0.54 | -0.24 | -0.29 | -0.38 -0.63 | -0.17 | -0.29 | 0.00 0.1 | 8 0.00 | 0.04 | 0.04 | 1.00 | 1.00 1 | 30 | 21 | 26 20 | 18 | 25 25 | 81 | 70 79 | 74 | 80 82 | 75 75 | 4 | | ENSG00000128185 | DGCR6L | DGCR6L | DiGeorge syndrome critica Nucleus other | | 0.32 | 0.28 | 0.34 | 0.26 | 030 066 | 0.22 | 0.54 | 0.13 0.7 | 8 0.08 | 0.04 1 | 0.04 | 1.00 | 0.99 64 | 59 | 71 | 60 | 73 | 58 75 | 36 | 41 29 | 34 | 40 27 | 42 25 | 1 | | ENSG00000160271 | RALGDS | RALGOS | ral guanine nucleotide diss Cytoplasm other | | -0.05 | 0.10 | -0.16 | -0.09 | 032 054 | 0.24 | 0.04 | 0.97 0.9 | 7 0.36 | 0.79 1 | 0.04 | 1.00 | 1.00 4 | 51 | 42 | 17 60 | 73 | 58 50 | 53 | 49 58 | 3 53 | 40 27 | 42 50 | 1 | | ENSG00000142089 | IRTM3 | IRTMB | interferon induced transmoPlasma Membrane other | Kalliorpää et al 2014 | 0.42 | -0.04 | -0.07 | 0.20 | -0.37 -0.32 | -0.51 | -061 | 0.23 0.8 | 7 0.74 | 0.44 1 | 0.98 | 0.00 | 0.00 | 49 | 42 | 5 40 | 45 | 17 33 | 42 | 51 58 | 8 45 | 60 55 | 83 67 | 4 | | ENSG00000126709 | IR6 | IR6 | interferon alpha inducible ¡Cytoplasm other | Kalliorpää et al 2014 | 031 | 0.38 | 0.12 | 0.38 | -0.31 0.15 | -1.16 | -095 | 0.42 0.8 | 5 0.99 | 0.86 1 | 0.94 | 0.00 | 0.05 6 | 62 | 55 | 5 50 | 55 | 25 33 | 33 | 38 49 | 5 45 | 50 45 | 75 67 | 4 | | ENSG00000131401 | NA PSB | NAPS8 | rapsin B aspartic peptidass Other other | | - 1 | | -034 | -037 | | -0.73 | -0.43 | | 0.00 | 0.00 | | 0.01 | 000 | | 37 | 32 | | 25 25 | 1 | 63 | 68 | | 75 75 | 4 | | ENSG00000085265 | FCN1 | FCNL | ficolin 1 Extracellular Space peptidase | 1 | -0.14 | -0.08 | -051 | | 101 -0.08 | -0.88 | | 0.69 0.9 | 5 0.00 | | 0 0.97 | | 0.01 4 | 49 | 39 | 19 60 | | 25 25 | 56 | 51 6 | 1 61 | 40 55 | 75 75 | 4 | | ENSG00000244734 | HBB | нвв | hemoglobin subunit beta Cytoplasm transport | | | -0.14 | -0.43 | -0.97 | 0.10 | -1.28 | -146 | 0.2 | 7 0.00 | 0.00 | 0.99 | 0.01 | 0.00 | 43 | 45 | 12 | | 33 42 | | 54 55 | 5 58 | 45 | 67 58 | 1 | | ENSG00000110077 | MS4A6A | MS4A6A | membrane spanning 4-don Other other | | | | -0.25 | 0.04 | | -0.72 | -0.13 | | 0.55 | 0.70 | | | 0.29 | - | | 10 | | 33 42 | 1 | 5 | 3 50 | | 67 58 | | | ENSG00000157933 | SIG | SM | SKI proto-oncogene Nucleus transcript | regulator | 0.18 | 0.29 | 0.31 | | 025 043 | 0.75 | | 0.17 0.9 | | | 3 0.00 | | 011 6 | 57 | | 8 80 | | 83 83 | * | 43 37 | _ | 20 9 | 17 17 | | | ENSG00000121316 | PLBD1 | PLBD1 | phospholipase B domain or Extracellular Space enzyme | THE COLUMN TO TH | | 0.23 | -0.42 | -0.16 | 023 043 | -0.51 | -061 | 0.27 | 0.01 | 0.00 | 0.00 | 0.03 | 0.01 | | | 19 | | 25 33 | 1 | 6/ | | | 75 67 | 4 | | ENSG00000173762 | C07 | C07 | CD7 molecule Plasma Membrane other | | 0.00 | -011 | 0.27 | | 014 -0.03 | 0.55 | | 090 0.7 | 0.00 | 0.00 | 0 0.72 | | 030 5 | 35 | | 71 60 | | 100 92 | 90 | 65 1 | | 40 55 | 0 8 | 1 | | ENSG00000188536 | HBA2 | HBA1/HBA2 | hemoglobin subunit alpha :Extracellular Space transport | | 400 | -127 | -0.62 | -152 | 0.03 | -0.76 | -1.64 | 0.0 | | 0.00 | 0.72 | 0.26 | 000 | 38 | | 12 | | 42 33 | | 59 5 | | -U 33 | 58 67 | 4 | | ENSG00000206172 | HBA1 | HBA1/HBA2 | hemoglobin subunit alpha : Extrac ellular Space transport | | - 1 | -22/ | 0.04 | -0.78 | | -0.55 | -159 | 0.0 | 0.21 | 0.00 | | 0.70 | 0.00 | 30 | | 12 | | 42 33
50 33 | 1 | 39 30 | _ | | 50 67 | 4 | | ENSG00000196565 | HBG2 | HBG2 | | Kalliomää et al. 2014 | - 1 | | -0.30 | -4176 | | -0.31 | -2.12 | | 0.22 | 0.00 | | 0.70 | 0.00 | | 45 | | | 33 33 | 1 | 51 | _ | | 67 67 | 4 | | | HBG2
HLA-H | HBG2
HLA-H | hemoglobin suburit gamm Cytoplasm other | nationpas et al. 2014 | 0.14 | 0.27 | -0.30
0.43 | | 0.07 0.98 | -0.31 | 0.81 | 0.00 0.4 | | 0.00 | | | 0.00 | 57 | | 8 50 | | 33 33
67 75 | 40 | 43 37 | | 50 45 | 07 07 | 4 | | ENSG00000206341 | | | major histocompatibility ccPlasma Membrane other | | 014 | 0.27 | 0.48 | 0.29 | u98 | | 0.81 | 0.00 0.4 | 0.00 | 0.00 1 | 0.01 | 0.33 | 0.01 5 | 57 | 63 | a 50 | | 67 75
58 75 | 42 | 45 37 | 42 | au 45 | 33 25
42 25 | | | ENSG00000221957 | KIR2DS4 | | fiskiller cell immunoglobulin Plasma Membrane - transmen | ine receptor | - 1 | | | | | 155 | 1.06 | | | | | 0.03 | 0.02 | | | | | | | | | | | | | ENSG00000167680 | SEMA 6B | SEM AGB | semaphorin 68 Plasma Membrane other | | | | 0.19 | 0.61 | | 0.61 | 0.95 | | 0.80 | 0.53 | | 0.91 | 0.02 | | | 5 | | 58 67 | | 4 | - | | 42 33 | | | ENSG00000188486 | H2AFX | H2AFX | H2A histone family membe Nucleus transcript | regulator | -016 | -0.25 | 0.15 | 0.03 | 0.25 0.03 | 0.45 | 0.57 | 034 0.4 | 9 0.27 | 0.85 1 | 00 0.88 | 0.83 | 0.05 | 38 | 66 | 60 50 | 64 | 83 83 |
61 | 62 34 | \$ 50 | 50 36 | 17 17 | _ | | Supplementary Table | e 4C. Non-codin | DE genes be | etween Cases and Controls | | | 1 | | | | Median I | ogFC | | | | | | FDR | | | | | | Percent | Up | | | | - | Percent I | lown | | $\overline{}$ | |------------------------------------|--------------------------------|--------------------|---|------------|------------|--|-------|------------|--------------|---------------|----------|---------------|-------|------|------------|----------|--------|--------------------|-------------|------|----------|------------|---------|----------------|-----------|------|----------------|---------------|-----------|----------------|--------------|---------------| | | | | IPA ANNOTATION | | Previously | Human IncRNA ATLAS Hon et al. Nature 2017:548;199-20- | | Over All T | imepoin ts | | | 2 mo bafore : | SC . | Ov | er All Tim | ep oints | | 12 mo b | efore SC | | Over All | Timepoints | | | before SC | | Over A | All Timepoint | | | no before SC | _ | | Ensembil Gene IDs | Gene Names | Symbol | Entrez Gene Name Locatio | on Type(s) | | FANTOM CAT tool CAT gene class CAT gene category | | | | | | | | | | | MC C | | D4-CD8- PBA | | | | | | | | | CD4 CD8- | | | | | | ENSG00000228463 | AP0062222 | 57 | | | | on give one on great and | 0.83 | | | | | | | 0.00 | | | | | | 78 | | | | | | 2 | 2 | | | | | | | ENSG00000260711 | RP11-747H7.3 | | | | | | 0.71 | | | - 1 | | | | 0.00 | | | | | | 69 | | | - 1 | | | | 11 | | | | | | | ENSG00000260065 | CTA-445C9.15 | | | | | No implications in coexilncRNA intergene_IncRNA | 0.63 | 0.05 | 0.12 | 0.26 | -0. | .24 0.06 | 0.32 | 0.00 | 0.81 (| 0.23 0 | .04 | 0.92 | 1.00 0.9 | 9 69 | 54 | 66 | 63 | 45 | 58 | 58 3 | 1 46 | 34 | 37 | 55 | 42 | 42 | | ENSG00000249667 | LINC01259 | UNC01259 | long intergenic non-protein coding RNA 12990 ther | other | | No implications in coex IncRNA intergenothers | 0.55 | 0.55 | | 0.80 | 0.65 | | 0.76 | 0.00 | 0.02 | 0 | .00 0. | .73 | 0.6 | 0 67 | 65 | | 68 | 80 | | 67 3 | 3 35 | | 32 | 20 | | 33 | | ENSG00000271938 | RP11-589C21.6 | | | | | 1 eQTL linked co-expre IncRNA intergenp_IncRNA_intergen | -0.59 | -0.72 | -0.27 | -036 | 0.12 -0. | 45 -0.12 | -0.29 | 0.01 | 0.00 | 0.07 0 | .07 0. | 99 0.50 | 0.99 0.8 | 1 33 | 24 | 26 | 26 | 50 36 | 33 | 33 6 | 76 | 74 | 74 | 50 64 | 67 | 67 | | ENSG00000234449 | RP11-7060 15.3 | | | | | | 0.64 | 0.82 | | | 0.0 | 85 | | 0.01 | 0.01 | | | 0.33 | | 69 | 73 | | | 73 | | 3 | 1 27 | | | 27 | | | | ENSG00000235576 | AC092580.4 | | | | | No implications in coex; IncRNA intergene_IncRNA | 1.08 | -0.18 | 0.77 | 0.10 | 1.08 -0. | 51 1.72 | 0.06 | 0.01 | 0.38 | 0.00 | .15 0. | 56 0.70 | 0.66 0.9 | 9 75 | 46 | 66 | 58 | 90 27 | 58 | 58 2 | 15 54 | 34 | 42 | 10 73 | 42 | 42 | | ENSG00000269996 | NA. | | | | | No implications in coex/IncRNA intergenothers | 0.63 | 0.41 | 0.06 | 0.29 | 0.74 0. | 43 -0.21 | 0.08 | 0.01 | 0.32 | 0.99 0 | 54 0. | 65 0.75 | 0.99 1.0 | 0 81 | 70 | 55 | 61 | 80 73 | 42 | 50 1 | 19 30 | 45 | 39 | 20 27 | 58 | 50 | | ENSG00000232677 | LINC00665 | UNC00665 | long intergenic nan-protein coding RNA 665 Other | other | | 6 eQTL linked co-expre IncRNA divergerp_IncRNA_diverger | -0.67 | -0.50 | -0.17 | -022 | 0.94 -0. | .50 -0.18 | -0.50 | 0.02 | 0.04 | 0.80 | .98 0. | .04 0.55 | 0.99 0.7 | 8 28 | 30 | 39 | 37 | 10 18 | 25 | 17 7 | 72 70 | 61 | 8 | 90 82 | 75 | 83 | | ENSG00000223692 | DP2A-IT1 | DIP2A-IT1 | DIP2A intronic transcript 1 Other | other | | | -0.66 | -0.76 | -0.20 | -0.29 | 0.00 -0. | .98 -0.25 | 0.25 | 0.02 | 0.00 | 0.98 0 | .22 0. | 99 0.43 | 1.00 0.9 | 9 28 | 32 | 34 | 42 | 50 36 | 33 | 58 7 | 2 68 | 66 | 58 | 50 64 | 67 | 42 | | ENSG00000270127 | PRIORP1 | | | | | | 0.58 | 1.03 | | 1.13 | 0.24 1/ | 41 | | 0.02 | 0.00 | 0 | .00 0. | 99 0.19 | | 72 | 76 | | 66 | 50 73 | | 2 | 8 24 | | 34 | 50 27 | | | | ENSG00000261685 | RP11-401P9.4 | | | | | | 0.44 | 0.70 | | 0.60 | 0.43 0. | 65 | 0.53 | 0.05 | 0.00 | 0 | .01 0. | .70 0.26 | 0.5 | 8 61 | 73 | | 68 | 60 64 | | 75 3 | 9 27 | | 32 | 40 36 | | 25 | | ENSG00000259715 | CTD-3110H11.1 | | | | | | 0.29 | 0.96 | 0.40 | ŀ | | .08 0.50 | | | | 0.52 | | .99 0.95 | 1.00 | 64 | 81 | 63 | - 1 | 40 45 | Ø | | 19 | | | 60 55 | | | | ENSG00000273038 | RP11-479G22.8 | | | | | | -0.15 | -0.66 | -0.45 | | 0.30 -0. | | | | | 0.01 0 | | 99 0.10 | 0.99 0.6 | | 27 | 29 | 39 | 40 18 | 50 | | 73 | | 61 | 60 82 | | 58 | | ENSG00000254419 | RP11-261P9.4 | | | | | | 0.37 | 0.68 | 041 | | 0.12 0/ | 47 0.73 | | | | 0.25 | | .99 0.33 | 0.80 | 61 | 73 | 63 | | 60 73 | 모 | | 9 27 | 37 | | 40 27 | 8 | | | ENSG00000235532 | LINC00402 | LINC00402 | long intergenic non-protein coding RNA 402 Other | | | No implications in coexilncRNA intergenothers | 0.35 | 0.87 | | 0.38 | | | | | 0.01 | | .00 | | | 58 | 70 | | 71 | | | | 12 30 | | 29 | | | | | ENSG0000022740B | AC009299.3 | LINC01806 | long intergenic non-protein coding RNA 18050 ther | other | | No implications in coexylncRNA intergenp_IncRNA_intergen | | | 0.73 | | 0.41 05 | 59 0.85 | | | | | | | 0.25 0.1 | | | 79 | 84 | 70 91 | Ø | | 12 14 | 21 | 16 | 30 9 | 33 | 17 | | ENSG00000260461 | RP11-541N10.3 | | | | | No implications in coexilncRNA intergene_IncRNA | 0.16 | 0.68 | | | 0.05 | | -0.08 | | 0.01 | | | .99 | 0.9 | | 70 | | 58 | 50 | | | 31 30 | | 42 | 50 | | 58 | | ENSG00000223745 | RP4717123.3 | | CCDC18 antisense RNA 1 Other | | | 4 eQTL linked co-expre IncRNA divergerp_IncRNA_diverger | 0.09 | 0.59 | 1.45 | 0.17 | 0.5 | 17 0.81 | 0.15 | 0.40 | 0.02 | 0.11 0 | .14 0. | 99 026 | 0.33 0.9 | 9 50 | 68 | 71 | 63 | 40 64 | 83 | 58 5 | 60 32 | 29 | 37 | 60 36 | 17 | 42 | | ENSG00000265185 | SNORD3B-1 | SNORD3B-1 | small nucleolar RNA, C/D box 38-1 Other | other | | No implications in coexilincRNA intergenothers | 0.63 | 0.22 | | 0.80 | 0.73 15 | | 1.28 | 0.06 | 0.08 | 0.00 | 00 0 | 99 001 | 0.09 0.2 | 4 58 | | 76 | 58 | 60 73 | 75 | 67 4 | 12 41 | 92 | 42 | 40 27 | 25 | 33 | | ENSG00000245164 | LINCOOB61 | UNC00861 | long intergenic non-protein coding RNA 861 Other
PRKCO antisense RNA 1 Other | | | No implications in coexilnoRNA intergenothers | | 0.33 | 1.10
0.77 | | | | | | | | | | | | 59
59 | 76
82 | 58 | | - | | | 24
18 | 34 | | _ | 33 | | ENSG00000237948
ENSG00000202198 | PRICQASI
RN7SK | PRKCQ-AS1
RN7SK | | s other | | 1 eQTL linked co-expresincRNA divergerp_incRNA_diverger | 0.14 | 0.29 | -0.61 | 0.29
-0.20 | 0.24 0. | | | | | | | 99 0.77
89 0.83 | 0.66 0.9 | | 57 | 24 | 42 | 40 73
80 55 | 25 | | 41
14 43 | | 58 | 60 27
20 45 | 25 | 58 | | ENSG00000256576 | RP13-977J11.2 | | 6 uncharacterized LOC100996246 Other | | | No implications in coexilorRNA divergerp_IncRNA_diverger | 0.05 | 0.08 | 0.61 | 0.34 | 0.08 0 | | | | | 0.00 | | | 0.66 0.9 | | 57 | 84 | 74 | 40 55 | - | | ia 43 | 16 | 26 | 60 45 | 25 | 25 | | ENSG00000272282 | RP13-97/311.2
RP11-222K16.2 | 10/10/09/624 | 6 uncharacterized LOC100996246 Other | other | | 1 eQTL linked co-expresIncRNA intergenp_IncRNA_interger
No implications in cœx;IncRNA intergenp_IncRNA_intergen | | -0.13 | 052 | 0.52 | 0.08 01 | 0.62 | 0.30 | | | 0.00 0 | | 99 100 | 0.86 0.9 | 9 53 | 43 | 76 | 74 | 40 55 | D | /5 4 | 17 43
57 | 24 | 29 | 60 45 | 25 | 25 | | ENSG00000261574 | RP1-168P16.2 | | | | | no impricatorism custimoner mangerip_money_manger | ì | 0.55 | -0.59 | -0.65 | -0. | .67 -027 | -0.35 | | | 0.00 | | 0.62 | 0.80 0.9 | ۰ | 38 | 18 | 29 | 27 | 25 | 25 | 62 | | 71 | 77 | 75 | 75 | | ENSG00000235437 | LINC01278 | UNC01278 | long intergenic non-protein coding RNA 1278Other | other | | 1 eQTL linked co-expresincRNA intergenp_incRNA_intergen | 0.18 | | 050 | | 0.18 0 | | | 0.24 | | 0.00 0 | | .99 0.42 | 0.80 0.5 | - | 62 | 79 | 63 | 70 73 | 75 | | 16 38 | | 37 | 30 27 | | 33 | | ENSG00000212232 | SNORD17 | SNOR D17 | small nucleolar RNA, C/D box 17 Other | | | Best associated with hir small RNA others | | -0.28 | -1.07 | 0.02 | | 50 -147 | | | | | | 99 0.77 | 0.25 0.9 | | 38 | 32 | 50 | 70 18 | 33 | | 3 62 | | 50 | 30 82 | 67 | 42 | | ENSG00000245937 | LINC01184 | UNC01184 | long intergenic non-protein coding RNA 1184Other | | | No implications in coex IncRNA divergerp_IncRNA_diverger | | | 054 | | 0.22 0/ | | | | | 0.00 0 | | 99 0.77 | 0.99 0.9 | | 57 | 68 | 66 | 70 64 | 67 | | 12 43 | | 34 | 30 36 | 33 | 25 | | ENSG00000272048 | NA | | | | | No implications in coexilncRNA intergenothers | | 0.27 | 0.79 | | 0.13 0 | | -0.03 | | 0.57 | 0.00 0 | | 99 0.77 | 0.80 0.9 | | 65 | 84 | 66 | 60 73 | 75 | | 16 35 | 16 | 34 | 40 27 | 25 | 50 | | ENSG00000237772 | AC092620.3 | | | | | | | | -0.61 | -0.52 | | -0.62 | | | | 0.00 | | | 0.34 | | | 24 | 39 | | 17 | | | 76 | 61. | | 83 | | | ENSG00000273272 | CTA-384D8.34 | | | | | No implications in coex; IncRNA intergene_IncRNA | l | | -0.59 | | | -0.63 | | | | 0.00 | | | 0.32 | 1 | | 29 | | | 17 | | | 71 | | | 83 | | | ENSG00000212694 | LINC01089 | UNC01089 | long intergenic non-protein coding RNA 10890 ther | other | | 1 eQTL linked co-expresincRNA sense intothers | 0.04 | 0.28 | 051 | 0.31 | 0.07 0. | 21 0.53 | 0.39 | 0.50 | 0.59 | 0.00 | 47 0. | 99 0.85 | 0.83 0.9 | 9 58 | 68 | 79 | 74 | 30 73 | 75 | 75 4 | 12 32 | 21 | 26 | 70 27 | 25 | 25 | | ENSG00000272849 | RP11-347(19.8 | | | | | No implications in coex/IncRNA antisensothers | 0.21 | 0.39 | 0.70 | 0.41 | 0.07 01 | 0.52 | 0.06 | 0.39 | 0.20 | 0.00 | 45 1. | .00 0.77 | 0.80 0.9 | 9 58 | 76 | 74 | 63 | 40 64 | 67 | 50 4 | 12 24 | 26 | 37 | 60 36 | 33 | 50 | | ENSG00000235314 | LINC00957 | LINC00957 | long intergenic non-protein coding RNA 957 Other | other | | | 0.12 | 0.50 | 052 | 0.38 | 0.25 0. | 14 0.19 | -0.01 | 0.48 | 0.48 | 0.00 | .07 0. | .99 0.88 | 1.00 0.9 | 9 58 | 76 | 76 | 71 | 20 73 | 67 | 50 4 | 12 24 | 24 | 29 | 80 27 | 33 | 50 | | ENSG00000255135 | RP11-111M72.3 | | | | | 1 eQTL linked
co-expresincRNA divergerp_incRNA_diverger | 0.18 | 0.37 | 0.82 | 0.05 | 0.07 03 | 31 0.82 | 0.00 | 0.35 | 0.76 | 0.01 0 | 34 0. | 99 096 | 0.99 0.9 | 9 64 | 62 | 68 | 55 | 50 55 | 58 | 50 3 | 16 38 | 32 | 45 | 50 45 | 42 | 50 | | ENSG00000240905 | R N7SL798P | RN7SL798P | Other | other | | | l | | -0.91 | -001 | | -0.95 | -0.28 | | | 0.01 0 | .81 | | 0.59 0.9 | 9 | | 24 | 50 | | 33 | 42 | | 76 | 50 | | 67 | 58 | | ENSG00000225978 | HAR1A | HAR1A | highly accelerated region 1A (non-protein co/Other | other | | No implications in coexilncRNA intergenp_IncRNA_intergen | 0.00 | -0.14 | 0.62 | 0.19 | 0.38 0. | 18 0.55 | 0.38 | 0.88 | 0.33 | 0.01 0 | .82 0. | 99 0.99 | 0.66 0.9 | 9 50 | 49 | 68 | 63 | 30 55 | 67 | 75 5 | 50 51 | 32 | 37 | 70 45 | 33 | 25 | | ENSG00000266274 | RN7SL138P | RN75L138P | Other | other | | | l | | -0.58 | -065 | | -0.86 | -1.48 | l | | 0.01 0 | .07 | | 0.66 0.6 | 8 | | 32 | 37 | | 33 | 33 | | 68 | 8 | | 67 | 67 | | ENSG00000269900 | RMRP | RMRP | RNA component of mitochondrial RNA proce/Cytopla | asrother | | No implications in coexilncRNA divergerp_IncRNA_diverger | 0.13 | -0.41 | 40.66 | +0.34 | 1.00 -0. | 41 -1.14 | -0.35 | 030 | 0.12 | 0.01 0 | .14 0. | .77 0.93 | 0.14 0.9 | 9 50 | 30 | 32 | 32 | 70 36 | 25 | 33 5 | 70 | 68 | 68 | 30 64 | 75 | 67 | | ENSG00000260910 | LINCO0565 | UNC00565 | long intergenic non-protein coding RNA 565 Other | other | | 2 eQTL linked co-expresincRNA intergene_incRNA | 0.18 | 0.12 | 0.62 | 0.56 | 0.34 0. | 35 0.78 | 0.57 | 0.81 | 0.90 | 0.01 0 | .14 0. | 99 0.77 | 0.30 0.9 | 9 53 | 54 | 74 | 66 | 60 64 | 83 | 67 4 | 7 46 | 26 | 34 | 40 36 | 17 | 33 | | ENSG00000271948 | RP11-242F4.2 | I | | | | | | 0.16 | 0.67 | 0.16 | 0.51 0. | | | | | | | 76 081 | 0.66 0.9 | | 62 | 76 | 55 | 90 73 | 75 | | 19 38 | 24 | 45 | 10 27 | 25 | 50 | | ENSG00000253948 | RP11-410L14.2 | LO C10537566 | 66 Other | other | | No implications in coexilncRNA divergerp_IncRNA_diverger | 0.36 | 0.61 | 0.74 | 0.59 | 0.34 0 | 69 0.72 | 0.49 | | 0.33 | 0.03 0 | .04 0. | .99 0.55 | 1.00 0.9 | | 57 | 66 | 71 | 60 64 | 67 | | 12 43 | 34 | 29 | 40 36 | 33 | 25 | | ENSG00000272812 | RPS-855D213 | | | | | No implications in coexilncRNA divergerp_IncRNA_diverger | 0.27 | 0.33 | 0.57 | | 0.17 0. | | | | | 0.03 | | .99 0.55 | 0.80 0.9 | | 68 | 68 | | 70 73 | 75 | | 86 32 | | | 30 27 | | 25 | | ENSG00000262074 | SNORD3B-2 | | small nucleolar RNA, C/D box 38-2 Other | other | | No implications in coexilncRNA intergenp_IncRNA_intergen | -0.49 | | -0.58 | -0.69 | | -0.32 | | 0.14 | | 0.03 0 | | | 0.80 0.3 | | | 34 | 26 | | 33 | | 4 | 66 | 74 | | 67 | 83 | | ENSG00000257613 | RP11-320P7.1 | UNC01481 | long intergenic non-protein coding RNA 14810 ther | other | | | | | 0.58 | | 0.03 -0. | | | | | | | | 1.00 0.9 | | | 76 | 63 | 50 45 | 83 | | 41 | | 37 | 50 55 | | 25 | | ENSG00000260539 | GLGI | | | | | No implications in coexilncRNA intergene_IncRNA | | | 0.36 | 0.84 | 0.36 0.5 | 54 0.59 | | | | | | .99 0.50 | 0.30 0.2 | | 68 | 66 | 68 | 70 73 | 67 | 67 2 | 15 32 | 34 | 32 | 30 27 | 33 | 33 | | ENSG00000223891 | OSER 1-AS1 | OSER1-AS1 | OSER 1 antisense RNA 1 (head to head) Other | other | | 1 eQTL linked co-expresincRNA divergenp_incRNA_divergen | f | 0.58 | | 0.68 | | | 0.54 | l ' | 0.27 | | .00 | | 0.6 | 5 | 59 | | 79 | | | 92 | 41 | | 21 | | | 8 | | ENSG00000260804 | PKI55 | UNC01963 | long intergenic non-protein coding RNA 19630 ther | other | | No implications in coexilncRNA intergene_IncRNA | l | | | 0.63 | | | | l | | | .00 | | | 1 | | | 68 | | | - 1 | | | 32 | | | - 1 | | ENSG00000270091 | RP11-7807.2 | L | | | | | | 0.44 | | 0.57 | | | 0.08 | | 0.33 | 0 | | | 0.8 | _ | 59 | | 66 | | _ | 58 4 | 7 41 | | 34 | | - | 42 | | ENSG00000203875 | SNHGS | SNHGS | small nucleolar RNA host gene 5 Other | other | | No implications in coexilncRNA intergenp_IncRNA_intergen | | | -0.32 | | 0.41 -0. | | | | | | | | 0.99 0.2 | | 27 | 32 | | 10 18 | 25 | | 72 73 | 68 | 71 | 90 82 | 75 | 75 | | ENSG00000226423
ENSG00000237310 | AC093642.4
GS1-124KS.4 | CEL LIVER | | | | 1 eQTL linked co-expresincRNA intergenothers | | | 0.45 | 0.61 | 0.12 0.0 | | 0.84 | | 0.15 | | | 99 0.55
99 1.00 | 0.2 | | | 76 | | 50 73
50 64 | | - | 19 30
16 38 | 24 | 34 | 50 27
50 36 | | 17 | | ENSG00000237310
ENSG00000237940 | GS1-124KS.4
AC093642.3 | | uncharacterized LOC100289098 Other | | | 2 eQTL linked co-expresincRNA antisensothers | | 0.33 | 0.45 | | | 13
74 0.54 | | 0.27 | 0.71 (| | | | 0.6 | | 76 | 76 | 68 | 90 93 | | 50 2 | 16 38 | 24 | 32 | 30 36 | 42 | 33 | | ENS600000237940 | ACD93842.3 | UNCD1238 | long intergenic non-protein coding RNA 12380 ther | other | | 4 eQTL linked co-expresincRNA sense intothers | 0.20 | 0.48 | 0.44 | 0.29 | 0.20 0. | /4 0.54 | 0.11 | 002 | 0.00 (| 0.05 | 30 0. | 99 003 | U.BD 0.9 | 12 | 76 | 68 | 61 | 8U 8Z | 35 | 50 2 | a 24 | 32 | 39 | zu 18 | 42 | 50 | ## IL32 coregulated genes | CD4+ | | CD8+ | | CD4-CD8- | | PBMC | | |--------------------|--|---------|----------------|--|--|--|--| | iene | Median Euclid | | Median Euc | | Median Euclid | | Median Euclidi | | .32 | 0.00 | IL32 | 0.00 | IL32 | 0.00 | IL32 | 0.00 | | D52 | 1.18 | | | | | | | | TMEM14C | 1.20 | | | | | TMEM14C | 2.13 | | BTN3A2 | 1.36 | BTN3 A2 | 1.91 | BTN3A2 | 1.32 | BTN3A2 | 1.60 | | RBV4-1 | 1.56 | 1400 | 2.00 | | | TRBV4.1 | 1.86 | | ARS | 1.74 | LARS | 2.06 | | | LARS | 1.85 | | TA-445C915
GS14 | 1.83
1.85 | | | | | + | | | JROS | 1.89 | | - | UROS | 1.03 | | | | H3BP1 | 1.92 | | - | OKOS | 1.03 | | - | | RP11-747H7.3 | 2.13 | | | | | | | | AMICA1 | 2.15 | | | AMICA1 | 2.22 | AMICA1 | 2.02 | | NSG00000269996 | 2.18 | | | | | | | | 17orf62 | 2.30 | | | | | | | | WASH7P | 2.33 | | | WASH7P | 1.99 | | | | | | RSU1 | 1.93 | RSU1 | 2.10 | RSU1 | 2.02 | | | | FCER1G | 2.35 | | | | | | | | | | AC092580.4 | 2.20 | | | | | | | | ATP8B2 | 1.63 | | 1.00 | | | | | | BTN3A3 | 1.87 | BTN3A3 | 1.95 | | | | + | | CCDC167 | 1.95 | CCDC167 | 2.08 | | | | + | - | CDC167 | 2.16
1.55 | CCDC10/ | 2.08 | | | | + | - | CD27 | 1.32 | | + | | | | + | | CD3D | 1.49 | | + | | | | 1 | 1 | ENSG00000211953 | 2.14 | | | | | | 1 | | ENSG00000229164 | 2.05 | | | | | | | | FAIM3 | 1.98 | | | | | | | | FAM65B | 2.17 | | | | | | | | FLT3LG | 2.19 | | | | | | | | FYB | 1.94 | | | | | | | | GIMAP2 | 2.03 | | | | | | | | GIMAP5 | 2.27 | | | | | | | | GZMM | 2.41 | | | | | - | | | HAR1A
IGHV4.31 | 2.45
2.37 | | | | | - | + | _ | IGSF8 | 1.91 | | | | | - | | | IL24 | 2.27 | | | | | | + | | LCK | 1.94 | | _ | | | | | | LDLRAP1 | 2.20 | | | | | | | | LINC00861 | 2.26 | | | | | | | | LINC01184 | 1.79 | LINC01184 | 1.58 | | | | | | LINC01278 | 1.40 | | | | | | | | MAL | 2.17 | | | | | | | | MAML2 | 1.83 | | | | | | | | MAPKAP1 | 2.27 | | | | | | | | PDE7A | 1.80 | | | | | | | | PLAC8 | 2.11 | | | | | | + | | PRKCQ
PRKCQ-AS1 | 2.23 | | | | | | + | _ | PSMD5-AS1 | 2.02 | | _ | | | | | | RP11-111M22.3 | 2.04 | | | | | | | <u> </u> | RP11-222K16.2 | 2.16 | | | | | 1 | 1 | | SH3YL1 | 2.22 | | | | | | 1 | | STX8 | 2.14 | | | | | | | | SUCLG2 | 2.18 | | | | | | | | SUSD3 | 2.41 | | | | | | | | SYNGAP1 | 2.05 | | | | | | | | TCOM | | | | | | | | | TC2N | 1.90 | | | | | | | | TESPA1 | 2.31 | | | | | | | | TESPA1
TMIGD2 | 2.31
1.95 | | | | | | | | TESPA1
TMIGD2
TRABD2A | 2.31
1.95
2.02 | | | | | | | | TESPA1
TMIGD2
TRABD2A
TRBV2 | 2.31
1.95
2.02
1.83 | | | | | | | | TESPA1
TMIGD2
TRABD2A
TRBV2
TRBV20.1 | 2.31
1.95
2.02
1.83
1.76 | | | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | | | | | | | | TESPA1
TMIGD2
TRABD2A
TRBV2
TRBV20.1 | 2.31
1.95
2.02
1.83
1.76 | ANYAE | 1.27 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXAS
ANXAS | 2.37 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 | 1.57 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6 V0E2 | 1.57
1.83 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 | 1.57 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6V0E2
CD8B | 1.57
1.83
2.03 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6 V0E2
CD8B
CPNE1 | 1.57
1.83
2.03
1.59 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6 VOE2
CD8B
CPNE1
CST7 | 1.57
1.83
2.03
1.59
2.01 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6 V0E2
CD8B
CPNE1
CST7
DGKQ | 1.57
1.83
2.03
1.59
2.01
2.08 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 | 1.57
1.83
2.03
1.59
2.01
2.08
2.33 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6
ATP6V0E2
CD8B
CPNE1
CST7
DGKQ
FLI1
GLG1 | 1.57
1.83
2.03
1.59
2.01
2.08
2.33
2.41 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 GLG1
GLIPR2 | 1.57
1.83
2.03
1.59
2.01
2.08
2.33
2.41
2.34 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXAG ATP6V0E2 CD88 CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 | 1.57
1.83
2.03
1.59
2.01
2.08
2.33
2.41
2.34
1.42
2.29
2.10 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD88 CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 NAGA | 1.57 1.83 2.03 1.59 2.01 2.08 2.33 2.41 2.34 1.42 2.29 2.10 2.18 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 NAGA NCAPD2 | 1.57 1.83 2.03 1.59 2.01 2.08 2.33 2.41 2.34 1.42 2.29 2.10 2.18 1.67 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 NAGA NCAPD2 NMRAL1 | 1.57 1.83 2.03 1.59 2.01 2.08 2.33 2.41 2.34 1.42 2.29 2.10 2.18 1.67 1.46 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 NAGA NCAPD2 NMRAL1 OGDH | 1.57 1.83 2.03 1.59 2.01 2.08 2.33 2.41 2.34 1.42 2.29 2.10 2.18 1.67 1.46 2.02 | | | | | | TESPA1 TMIGD2 TRABD2A TRBV2 TRBV2 TRBV20.1 TXK | 2.31
1.95
2.02
1.83
1.76
2.11 | ANXA6 ATP6V0E2 CD8B CPNE1 CST7 DGKQ FLI1 GLG1 GLIPR2 HLA.F IPCEF1 LILRA1 NAGA NCAPD2 NMRAL1 | 1.57 1.83 2.03 1.59 2.01 2.08 2.33 2.41 2.34 1.42 2.29 2.10 2.18 1.67 1.46 | | | | | DARVE | 1.00 | |--|--|--|---------------|------| | | | | P2RX5 | 1.96 | | | | | PIP4K2A | 1.41 | | | | | PKI55 | 2.42 | | | | | PLOD3 | 2.47 | | | | | PRDX2 | 0.91 | | | | | RP11.410L14.2 | 2.30 | | | | | SIGMAR1 | 1.48 | | | | | TMEM106C | 1.61 | | | | | TMEM8A | 2.40 | | | | | TRBV19 | 1.63 | | | | | TUFM | 1.85 | | | | | ZNF609 | 2.21 | ## IFNG coregulated genes #### CD8+ Gene Median Euclidian distance | IFNG | 0.00 | |---------|------| | NKG7 | 1.56 | | ZEB2 | 1.61 | | TBX21 | 1.88 | | BHLHE40 | 2.02 | | OASL | 2.29 | | KLRD1 | 2.30 | ## INS coregulated genes #### PBMC Gene Median Euclidian distance | INS | 0.00 | |-------|------| | GCG | 1.12 | | REG1A | 1.74 | #### Supplementary Table 5B: Transfac promoter analysis of IL32 and codustered genes for overpresented transcription factor binding sites with FDR < 0.05 Final: https://eachforoverpresentedTFbindingsites), background=randomly sected gene set, default parameters, using bet supported promoter (-10 000 to +1000 region of the gene 'promoter'). Paul set threshold 1.1 Paul set the rended with Benjamini Holchberg method (FRR), FPR-010 were consident digit fixed and are shown below. | C | D4+IL32 co | duter* | Profile (group | of matrices) | : Taxon: Verteb | orate_non_red | du ndant_minFP | | | |----|-------------|-----------------|-----------------|---------------|--------------------|-------------------|----------------|-----------------------|--| | ١, | fatrix | Accession | Factorname | Yes | No | Yes/No | p value | FDR/BH corne Gene swi | thmatricescount | | | | | KLF6 | 42.9 | 27.3 | 1.6 | 0.00 | | 5H3BP1, UROS, IL32, CD52, RGS14, TMEM14C, LARS, BTN3A2, WASH7P (LOC100288778), RP11-747H7.3 (BNSG00000260711), C17orf62 | | v | \$IK_Q5_01 | M07260 | Ikaros | 13.3 | 7.4 | 1.8 | 0.00 | 0.00 AMICA1, | SH38P1, UROS, IL32, CD52, RGS14, TMEM14C, LARS, BTN3A2, WASH7P (LOC100288778), RP11-747 H7.3 (BNSG00000260711), C17orf62 | | v | \$ING4_01 | M01743 | ING4 | 15.3 | 9.5 | 1.6 | 0.00 | | SH3BP1, UROS, IL32, CD52, RGS14, TMBM14C, LARS, BTN3A2, WASH7P (LOC100288778), RP11-747H7.3 (BNSG00000260711), C17orf62 | | v | \$GKLF_Q4 | M0 1835 | KLF4 group | 10.1 | 5.8 | 1.8 | 0.00 | 0.00 AMICA1, | SH3BP1, UROS, IL32, CD52, RGS14, TMBM14C, LARS, BTN3A2, WASH7P (LOC100288778), RP11-747H7.3 (BNSG00000260711), C17orf62 | | v | \$RREB1_01 | M00257 | RREB-1 | 2.0 | 0.4 | 4.8 | 0.00 | 0.00 AMICA1, | SH38P1, UROS, IL32, CD52, RGS14, TMBM14C, LARS, WASH7P (LOC100288778) | | v | \$ERALPHA_ | 0 MO 1801 | ER group | 1.3 | 0.2 | 8.0 | 0.00 | 0.01 AMICA1, | 5H3BP1, UROS, IL32, CD52, RGS14, TMBM14C, LARS | | | NSG00000026 | 9996, TREVI-1 a | d CR-44509.15 e | cluded due to | un available promo | ters and mess day | | | | | CD8+IL32 codu#er | Profile (group of matrices |): Taxon: Vertebrate | • | | |--|----------------------------|----------------------|-------------------|---| | Matrix Accession
No findings with FDR < 0.0 | Factorname Yes | No Ye | s/No pvalue | FDR (BH corne Genes with matrices count | | CD4.CD8.II32 codusts d | Profile (group of matrices | h Tawner Vertebrate | non redundant min | , | Yes/No p value FDR(BH corre Gene: Matrix Accession Factor name Yes No Yes/No public FDR (No findings with FDR < 0.05 **MG000000 21 1933, IN 5000000 293 64, PMCQAS1, P3MOS AS1, and HARIA excluded due to unwalled a promoter requesce | PBMC IL32 | PBMC IL32 cocluster* | | Profile (group of matrices): Taxon: Vertebrate_non_redundant_minFP | | | | | | | |------------|--|--------|--|------|------|--------|---------|--|--| | Matrix | Accessio | ion Fa | actorname Yo | s | No | Yes/No | p value | FDR(BH core Genes with matrices count | | | V\$IK_Q5_0 | M07260 | O Ika | karos | 12.9 | 9.0 | 1.4 | 0.00 | 0.00 AMICAL, ANXAS, ANX | | | V\$CPBP_Q | MO 1822 | 2 KL | ILF6 | 38.2 | 33.0 | 1.2 | 0.00 | 0.00 AMICA1, ANXAS, ANX | | | V\$ING4_01 | MD 1743 | 3 IN | NG4 | 14.5 | 11.4 | 1.3 | 0.00 | 0.00 AMICA1, ANXAS, ANX | | | *GLG1,TRBV | NO.CO., TRIVIS and TRIVI I excluded due to unwandate promoter separace | | | | | | | | | Description of column names Matrix The ET matrix that was enriched Accession Factor name Name of the factor corresponding to the matrix The factor name Name of the factor corresponding to the matrix No The factor corresponding to the matrix The factor corresponding to the matrix The factor corresponding to the matrix The factor of the factor corresponding to the matrix The factor of # Supplementary Table 6A: Details on the single-cell RNA-Seq data after pre-processing using Cell Ranger # After Cell Ranger's Pre-processing Pipeline | PBMC sample | Age | Selection Basis | # of cells | Mean reads / cell | Median genes / cell | Total genes detected | |-------------|-----------|--------------------------|------------|-------------------|---------------------|----------------------| | Case 2 | 24 months | IL32 high | 1,394 | 155,454 | 933 | 16,397 | | Control 2 | 24 months | | 2,803 | 105,769 | 749 | 16,737 | | Case 5 | 12 months | IL32 low, INS high | 1,499 | 184,116 | 968 | 16,068 | | Control 5 | 12 months | | 3,412 | 75,855 | 776 | 16,940 | | Case 3 | 12 months | IL32 high | 3,373 | 56,940 | 823 | 16,927 | | Control 3 | 18 months | | 1,468 | 199,172 | 846 | 15,235 | | Case 9 | 24 months | IL32 very high, INS high | 3,342 | 60,377 | 950 | 17,366 | | Control 9 | 18 months | | 3,079 | 76,789 | 776 | 16,595 | ## $Supplementary \ Table \ 6B: Clusters \ and \ their \ proportions \ after \ merging \ the \ data \ from \ eight \ sc \ RNA-seq \ samples \ (4 \ Cases+4 \ controls)$ 18396 | 1 | Number of individual cells | | |-------------------------------|----------------------------|--------| | Naive T cells | 8438 | 45.87% | | RGCC+Tcells | 2033 | 11.05% | | CD62L+T cells | 1559 | 8.47% | | B cells | 1465 | 7.96% | | Act. Th cells | 1432 | 7.78% | | Act. GNLY+CD8+ | 1078 | 5.86% | | Act. NK cells | 976 | 5.31% | | Act. GZMA+CD8+Tcells | 824 | 4.48% | |
Monocytes/DCs | 339 | 1.84% | | Act. prolif. GZMA+CD8+T cells | 162 | 0.88% | | Developing T cells | 66 | 0.36% | | Platelets | 24 | 0.13% | Total