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Abstract—Existing hardware with microphones can potentially
be used as sensor networks to capture speech and audio signals
for the benefit of better signal quality than possible with a single
microphone. A central pre-requisite for such ad-hoc acoustic
wireless sensor networks (ASWNs) is an efficient communication
protocol with which to transmit audio data between nodes. For
that purpose, we present the world’s-first speech and audio
codec especially designed for ASWNs, which has competitive
quality also in single-channel operation. To ensure quality in
the single-channel scenario, it closely resembles conventional
codecs of the TCX-type, but extended with features to facilitate
multi-device operation, including dithered quantization, delay
estimation and compensation, as well as multi-channel post-
filtering. The codec is intended to become a baseline for future
research and we therefore provide it as an open-access library.
Our experiments confirm that performance is in the same range
as recent commercial single-channel codecs and that added
devices improve quality.

Index Terms—speech and audio coding, ad-hoc acoustic sensor
networks, time difference of arrival estimation, delay compensa-
tion, multi-channel post-filtering

I. INTRODUCTION

Wireless acoustic sensor networks (WASNs) can be used to
sample the spatial acoustic space to gain a better signal quality
than a single sensor ever could [1], [2]. Moreover, ad-hoc
WASNs, viz., collections of all arbitrary available devices with
microphones, can work as WASNs with very low hardware
costs. For example, typical offices, meeting rooms and living
rooms often have many devices with microphones and network
access. Using them all, for example, in a teleconferencing
scenario, could improve sound quality without added hardware
costs and can allow improving the user experience by making
the interface user-centric. Similarly, WASNs could be used
as acoustic front-ends for speech interfaces such for smart
speakers.

Recent communication codecs such as 3GPP EVS and
the ETSI LC3plus codec [3], [4] are however designed to
be used with a single sensor device. On the other hand,

distributed source coding techniques for WASNs have been
widely studied, e.g. [5]–[11], but as far as we know, none
of such contributions have resulted in a publicly available
implementation of a codec, which would reach a competitive
performance also in a single-channel mode. In particular, most
such works have studied rate-distortion theory, but have not
actually implemented a quantizer and codec. Still, based on
our experience with standardization [12], we argue that a codec
can be successful in the market only if, in addition to some
novel benefits, its performance is at least comparable to prior
standards in terms of perceptual quality, algorithmic delay
and resource consumption. There is therefore demand for an
implementation of a codec specifically designed for ASWNs.

The contributions of this paper are; 1) We present, as far
as we know, the first, publicly available speech and audio
codec for acoustic sensor networks, whose performance is
comparable with conventional communication codecs in a
single channel/device configuration. 2) The proposed codec
combines elements from many of our recent works, includ-
ing [13]–[21], but for the first time, allows their testing in
a realistic environment. 3) The proposed codec also includes
a TDoA estimator and a novel delay compensation method
in the MDCT-domain, which is an important part of WASN
codecs [22]. We must however emphasize that many of the
individual components are not state-of-the-art, but we have
rather opted to use simple methods to keep the complexity of
development task reasonable. In particular, we have focused
on building a baseline for future experiments.

Our particular focus in this paper is a typical home scenario,
where a user has a mobile or wearable device near him, such as
a smartphone or smartwatch, as well as another device further
away, such as a smart speaker or -TV. The characteristic trait
of this scenario is that the device near the user is mobile
and therefore necessarily constrained in resources such as
computation capacity and battery life. The faraway device, on
the other hand, is stationary and connected to a power outlet,
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but since it is far away, its signal quality is lower. It is this
dichotomy between resources and signal quality which we aim
to leverage for our benefit.

II. SYSTEMS STRUCTURE

The overall systems structured is illustrated in Fig. 1.
For simplicity of systems design, each sensor node works
independently without communication between other sensor
nodes. In particular, we have not implemented authentication,
on-line bitrate optimization nor other complicated interactions
between sensor nodes. Each encoded bit-stream can thus also
be independently decoded and the decoded quantization levels
of all sensors are forwarded to the channel merge process;
First, we calculate the time-difference of arrival (TDoA)
between pairs of channels. We assume that the number of
sensors is small such that we can calculate TDoA’s for all pairs
of sensors. Furthermore we assume that the signal contains
only one dominant source. Second, channels are delayed to
align with the most-delayed channel. Finally, channels are
combined with a post-filter. In the following, we present each
block in more detail.

The single-channel codec part follows the principal structure
of the TCX-mode in the Enhanced Voice Services codec,
standardized by 3GPP [3], which is based on the MDCT-
transform with frame-length of 30 ms and -step of 20 ms [12],
[23]. The windowing function is half-sine, but with a flat top to
obtain low-delay overlaps between adjacent windows [12]. The
spectral power envelope is modeled with a matrix transform
A, such that for the power-spectrum x, we obtain the envelope
parameters as y = Ax. The logarithms of the parameters
are quantized to ŷ, exponentiated and converted to a power-
envelope ŝ with an inverse transform B as ŝ = Bŷ. We
have chosen to use M = 16 envelope parameters at a
sampling rate of 16 kHz. The transform matrices, A and B as
well as the quantization accuracy of envelope parameters are
numerically optimized to optimize bitrate [15], in difference
to the traditional approach of matching average envelope
quantization error [24]. Spectral whitening is implemented by
dividing the spectrum by the square root of the quantized
power envelope [20]. The envelope parameters are encoded
with a variable bit-rate entropy coder using a multivariate
Gaussian distribution following [19].

The perceptual model is a neural network approximating
the perceptual model of 3GPP EVS [3]. We use an approx-
imation because the perceptual model in EVS is defined by
linear predictive analysis in the time-domain, which would
introduce unnecessary computational complexity if used here.
The network takes as input the quantized logarithmic envelope
parameters and gives the logarithm of the relative target error
magnitude ek for each spectral component k. The network is
a four-layer fully connected network where the layer sizes
are 16, 50, 50, 50 and 320, with ReLU activations for the
hidden layers. It was trained with the 100,000 frames of audio
files from LibriSpeech, using an Adam optimizer [25] with a
learning rate of 10−4, and batches of size 200.

The relative target bitrate of the kth spectral component
is then bk = − log2 ek + ok, where ok is a frequency-
specific bit-rate bias term. If the target absolute bitrate for
the whole frame is Bframe and the number of bits used for the
envelope is Benvelope, then the remaining bits for the spectral
components is Bspectrum = Bframe − Benvelope. Consequently,
we must offset the relative target bitrate bk by γ such that
Bspectrum =

∑
k ReLU(bk + γ). Here, the bitrate of individual

spectral components must be non-negative, such that we
threshold (bk + γ)’s at zero with the linear rectifying unit
ReLU(), and iteratively solve the largest possible γ such that
the overall bitrate is optimally used. For the iteration we use
the binomial search for a rapid and simple solution. We thus
obtain the target bitrate for each spectral component.

The probability distributions of spectral components are
modeled by logistic mixture distributions with 5 components,
following [15]. The bit-rate bias terms ok of all spectral
components are further estimated numerically by determining
the bitrate of fixed-accuracy quantization for the given logistic
mixture distributions. The bias terms are trained off-line and
stored in a look-up table.

As a last step of the encoder, the spectral components are
quantized with uniform quantization, with a random offset
(dithering) [14]. This offset is assumed to be known at the
decoder and is not transmitted. In practice we can use, for
example, the bitstream of the envelope coder as a seed value
for a pseudo-random generator to determine the offsets. The
benefit of dithering is that output energy of the codec remains
non-zero also for low-bitrate components and that independent
sensors have uncorrelated quantization errors [14]. The quan-
tized spectral components are then encoded with arithmetic
coding [12], [26].

The transmitted data thus consists of envelope parameters
and spectral components. Observe that there is no separate
gain or energy term for the spectrum, but for simplicity, it is
taken to be part of the envelope model. The decoder reverses
the steps of the encoder to obtain the quantization bins of
spectral components. The quantized values are estimated as
the expectations within respective quantization bins, where
the expectations are calculated over the corresponding logistic
mixture models. To obtain numerically stable expectations
of the spectral components, we cannot use the analytical
formula for the expectation. Therefore, for a quantization



bin x ∈ [L,R], we approximate the expectation of spectral
components by taking the mean of the cumulative probabilities
of L,R, that is,

E [x ∈ [L,R]] ≈ c−1

(
1

2
[c(L) + c(R)]

)
, (1)

where c() and c−1() are, respectively, the corresponding
cumulative distribution function and its inverse.

After receiving the decoded multi-channel signal, we need
to estimate the target signal by multi-channel filtering. Observe
that conventional beamforming approaches are not directly
applicable here since they rely on phase-rotations of the
complex-valued spectrum [27], [28], whereas we have access
only to a real-valued MDCT-spectrum. We therefore imple-
ment a simple delay-compensation scheme as follows.

We compute the cross-correlation function between
whitened signal from multi-device signals and then estimate
the TDoA as the maximum peak location with reference to
the zero time lag [29]. We then compensate for the difference
in delay across channels, by delaying channels to the delay
of the latest-arriving signal. This delay is implemented by
calculating the correlation in the basis functions of the MDCT
of the target delay with two consecutive frames with actual
delay. The delay is thus implemented as a mapping from two
observed frames to the target frames of desired delay. Finally,
the synchronized channels are merged with a classical multi-
channel Wiener filter, using the average background noise plus
quantization noise energies. The output signal is then obtained
by an inverse MDCT [12], [23].

III. IMPLEMENTATION

We implemented the codec using the PyTorch machine-
learning library. All optimizations were performed over the
train-clean-100 set of the LibriSpeech corpus [30], at a
sampling rate of 16 kHz. For optimization of the envelope
transforms and quantization, as well as the logistic mixture
distributions for spectral components, we used the Adam-
algorithm with a single epoch and batches over single files.
The mean and covariance of envelope parameters were es-
timated as an average over all frames in the whole training
set. We have not yet incorporated an actual implementation
of the arithmetic coder, but just estimated its bitrate from the
cumulative probability distributions, since this is sufficient to
get a qualified estimate of the sound output. For the current
experiments, we implemented only a two-device version of the
multi-channel decoder.

The codec is provided as a free-of-charge, open-access
library1. Observe that we do not have the liberty or authority
to claim that the codec would be free of intellectual property
rights. As a consequence, we provide the codec only with an
academic evaluation license.

1https://gitlab.com/speech-interaction-technology-aalto-university/
pyawnes-codec
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IV. EXPERIMENTS

To evaluate the quality of the proposed codec, we evaluate
its quality in single and multi-channel scenarios. For single-
channel evaluation, we compare quality to the 3GPP EVS
codec [3] at bitrates 8, 9.6, 13.2, 16.4, 24.4, and 32 kbit/s.
To get a fair evaluation of quality, the EVS codec was not
constrained to the TCX mode, even if the proposed codec
operates only in the MDCT-domain. Since EVS thus can use
also its CELP-modes as well as advanced coding tools such
as bandwidth extension, it has an advantage over the proposed
codec [12].

As objective measures of quality, we calculated the SNR
in a perceptually weighted domain (pSNR), PESQ and STOI
over the test set of the LibriSpeech corpus [30]–[32]. The
perceptual model used for pSNR calculations is the same as
that used within the proposed codec.

Objective results of the single-channel experiment are il-
lustrated in Fig. 2. The PESQ median scores at low bitrates
are higher for EVS than the proposed codec, but at 32 kbit/s
the roles are switched. The STOI measures give a similar
trend, but such that the proposed codec is better already from
13.2 kbit/s and upwards. The proposed codec thus scales up

https://gitlab.com/speech-interaction-technology-aalto-university/pyawnes-codec
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better with the bitrate indicating that the statistical model
is more accurate in the proposed codec. However, the 95 %
ranges are overlapping over the whole range of bitrates
demonstrating that the difference in quality is relatively small.
However, STOI scores are saturated, near its maximum value
such that it is questionable whether this measure is meaningful.

In contrast, the pSNR median score is better for the pro-
posed codec across all bitrates. This measure however favours
the proposed codec since it uses the same perceptual model for
which the codec is optimized. The linear increase in quality
however again demonstrates that the proposed codec is stable
and scales uniformly to varying bitrates. At low bitrates the
difference in pSNR scores are again small, indicating that the
quality between codecs are comparable. However, since the
pSNR shows a difference between codecs so much larger than
the PESQ and STOI scores, it leads to the conclusion that the
perceptual model in the proposed codec should be better tuned
in future work.

For multi-channel evaluation, our purpose was to evaluate
a scenario where we have two microphones, one microphone
close to the source (Mic 1) and second microphone further
away (Mic 2). We can then assume that the wearable micro-
phone, Mic 1, has a better input SNR than Mic 2, 30 dB
and 10 dB, respectively. This corresponds to a living-room
scenario where a user has a handheld smartphone or wearable
microphone near him and a smart speaker further away.
We further assume that the nearby microphone is resource-
constrained and able to transmit only at 8 kbit/s, while the far
away microphone can transmit at a higher rate of 32 kbit/s.
In our comparison, we compare the two-microphone scenario
with a single-microphone scenario, located at Mic 2. To make
the single-microphone scenario fair, we use the same total
bitrate as in the two microphone case, of 40 kbit/s.

We simulated the multi-channel recording as follows. As
clean speech samples, we used the LibriSpeech test set and
noise samples from the QUT-NOISE database living room
scenario (LIVINGB-1) [33]. The clean speech signals were fil-
tered with room-impulse-response (RIR) corresponding to the
two different microphone locations in a room (RT60 = 0.3),
following Fig. 3. To add the effect of the room acoustics
to the LibriSpeech recordings, we used the Pyroomacoustics
library [34]. Noise samples were selected from random lo-
cations from the entire samples. Since these noise samples
already included room reverberation, they were added to the
speech which already had been filtered with the room impulse
response. The same noise signal was added to both channels
such that the noise statistics would be similar, albeit with
different SNRs as explained above. Observe that the noises
will go out of synchronization, when the signals are delay-
compensated.

To evaluate the results, we used the following procedure.
First, the signals were time-aligned and scaled to maximize
the correlation with the original source signal. The signal
to distortion ratio (SDR) was then calculated for the whole
signal (without windowing), where the distortions include
room reverberation, background noise, quantization noise as

W
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Fig. 3. Room configuration in multi-channel experiments. Coordinates of
source and microphones in parenthesis.

well as estimation errors. For the perceptual SNR, similarly,
we calculated the ratio of the clean input signal energy and
the distortion energy, but with the same windowing, time-
frequency transform and perceptual weighting as used in the
codec. However, the perceptual model was calculated from
the time-aligned original clean source signal, to get the most
accurate weighting and fair comparison. The calculation of the
SDRs and pSNRs thus follow the conventions of the source
separation and speech coding communities, respectively. It
should however be noted that the pSNRs thus obtained give
unrealistically low values, since non-speech frames are domi-
nated by background noise, even after the multi-channel filter,
such that the frame-wise SNRs are very low. The absolute
pSNR values might thus not be meaningful and we should
focus only on the improvement in pSNR. Still, since perceptual
weighting is central to coding applications and none of the
other standard measures (SDR, SIR, SAR etc.) support such
weighting, we chose to include pSNR. In calculation of PESQ
and STOI scores, the only difference to above was that we
scaled signals to match the original signal energy.

The results of the multi-channel experiments are listed in
Table I. We observe that the signal to distortion ratio (SDR)
is on average better for the proposed joint estimate than the
single-channel reference, by 1.74 dB. The standard deviations
for the SDRs themselves are rather large indicating that the
distributions are overlapping heavily. For their difference ∆,
the standard deviation is much smaller, which suggests that
though the SDRs have a large standard deviation, in their
mutual ordering, the proposed method is on average clearly
better. The same arguments apply for the perceptual SNR
(pSNR), PESQ and STOI scores as well. The improvement
from multi-channel processing is not particularly large, but
this was to be expected as the proposed method only uses
classic, rudimentary methods for merging the two channels.

V. DISCUSSION

Distributed speech coding is attractive because users already
have plenty of hardware available, which could be used to gain
better audio quality and a more user-centric user-interface. To
make a distributed codec commercially viable, we argue that
it must give competitive quality in single-channel scenarios
and provide improved quality when applied to multi-sensor
scenarios. Since no such codec has been publicly available,
in this work, we present an implementation of such a codec.



TABLE I
RESULTS OF THE MULTI-CHANNEL EXPERIMENT; Joint IS THE PROPOSED
ESTIMATE OF THE SIGNAL USING BOTH CHANNELS (MIC 1 AND MIC 2),

Single IS FROM MIC 2 WITH SAME TOTAL BITRATE, AND
∆ = (JOINT − SINGLE) IS THEIR DIFFERENCE. FOR EACH MEASURE, THE

MEAN IS LISTED AS WELL AS THE STANDARD DEVIATION IN
PARENTHESIS.

Joint Single ∆
SDR (dB) −3.60 (3.39) −5.34 (3.63) 1.75 (1.19)
pSNR (dB) −4.95 (3.24) −6.94 (3.66) 1.99 (1.37)
PESQ 1.29 (0.11) 1.20 (0.08) 0.09 (0.06)
STOI 0.66 (0.07) 0.58 (0.05) 0.08 (0.05)

The structure of the codec is based on a similar structure as
the TCX-mode in the 3GPP EVS codec [3], but improved
with many of our recent contributions. In particular, we
use dithering to make the quantization errors across devices
uncorrelated and improve the entropy model with end-to-end
optimization [14], [15]. Novelties include also the DNN-based
approximation of the perceptual model as well as the bit-
assignment algorithm for quantization based on the perceptual
model [21].

The presented codec is intended to be a baseline codec for
further experiments. As such and for brevity of this paper,
we have not included several modules which are known to
improve quality, including models of the fundamental fre-
quency such as [35], 1-bit quantization [14], [36], temporal
noise shaping (TNS) [37] and beamforming [28].

Our experiments demonstrate that quality of the proposed
codec is comparable to 3GPP EVS in terms of objective
criteria in a single-channel mode. In a multi-device scenario,
our experiments show that the codec can improve quality in
comparison to a typical single-channel scenario with the same
total bitrate. Subjective evaluation as well as more extensive
multi-device evaluation is left for further study.
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[17] S Das and T Bäckström, “Postfiltering with complex spectral correla-
tions for speech and audio coding,” Proc. Interspeech 2018, pp. 3538–
3542, 2018.
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