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Abstract: A sensor instrumentation and an automated process are proposed for sea-ice
field analysis using ship mounted machine vision cameras with the help of inertial and
satellite positioning sensors. The proposed process enables automated acquisition of sea-ice
concentration, floes size and distribution. The process contains pre-processing steps such as
sensor calibration, distortion removal, orthorectification of image data, and data extraction
steps such as sea-ice floe clustering, detection, and analysis. In addition, we improve the state of
the art of floe clustering and detection, by using an enhanced version of the k-means algorithm
and the blue colour channel for increased contrast in ice detection. Comparing to manual visual
observations, the proposed method gives significantly more detailed and frequent data about the
size and distribution of individual floes. Through our initial experiments in pack ice conditions,
the proposed system has proved to be able to segment most of the individual floes and estimate

their size and area.

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

Sea-ice field analysis is important in multiple areas, such as
environmental (e.g. track seasonal changes in ice coverage),
logistics (e.g. path planning) or ship maintenance. With
an increase in demand for shipborne transport, new transit
routes in polar regions are being explored, which is the case
for example of the Polar Silk Road described in Tillman
et al. (2018). However, this presents new challenges, both
for the vessels themselves and their human companion.

Currently, navigation through ice-infested waters requires
a high degree of expertise and experience, and may present
a serious threat. At the same time, shipborne ice obser-
vations are done by volunteers, thus subject to personal
interpretations.

Ice field analysis may be performed by different means.
In each case, however, because of the non-uniformity and
even arbitrariness of the measured natural environment, a
number of challenges arise. For instance, satellite based ice
field analysis, classified under remote sensing, offer a wide
area coverage, however, can only provide sparse spatial
and temporal resolutions. On a local scale, such analysis
may be performed using aerial or ship-based images. Paget
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et al. (2001), and Zhang and Skjetne (2015) use a combi-
nation of thresholding and morphological operations, as
well as the K-means algorithm in the second case, for
detecting ice floes from aerial images. Weissling et al.
(2009) includes orthorectification through Ground Control
Points, band thresholding and K-means algorithm. In all
presented cases, the orthorectification process could be
improved greatly, as well as the automation level.

In our work, a first approach is developed towards a com-
plete system for performing automatic shipborne ice-field
analysis, which focuses on obtaining total ice concentration
and sea-ice floes dimensions in a predefined area in front
of the ship’s bow and in pack ice conditions (see Fig. 6a
as an example). Selected ideas from previous works are
used (such as thresholding and K-means), and novelty
techniques introduced (such as orthorectification using
rotation matrices and an inertial measurement unit (IMU),
and a modified version of the K-means algorithm, namely
Dynamic Thresholding or DT in short). In addition, we
show that the blue channel from an RGB camera is most
suited for the segmentation task and an experimental
system for recording data is proposed.

In the next section, we propose the methodology needed
to analyse the data coming from the experimental setup
on a ship and obtain the ice floe analysis results in Section
3. Then, we discuss the results in Section 4.
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2. METHODS

The proposed complete process for performing ice field
analysis, by means of machine vision, is presented in Fig. 1.
The order in which the operations are executed is crucial,
since they alter the imagery data and hence directly
influence the behaviour of all the subsequent operations.
In the following subsections, each part of the process and
their related methods are described.

2.1 Image pre-processing

Before attempting to perform an analysis to detect and
measure sea-ice floes, images need to undergo a series of
operations, in which camera artifacts are removed and
images are geometrically rectified, such that they present
an approximated true horizontal shape of the floes (i.e. as
seen perpendicularly from above).

Remove vignetting.  Vignetting effect is a systematic
flaw which attenuates optical rays with larger span-off
angle from the camera’s principal axis (i.e. pixels tend
to appear darker the further they are from the image’s
optical centre). Since it is systematic, it can be modelled
and removed. We built on top of selected ideas from
Zheng et al. (2008); Lyu (2010); Kang and Weiss (2000),
a number of assumptions were made: the vignetting effect
is radial around the optical centre of an image and it can
be extracted from a flat, texture-less surface.

At first, the camera lens was covered with a semi-
transparent, homogeneous material, then pointed at a
texture-less surface in controlled lighting conditions. Next,
a set of 12 images were taken and pixel-wise averaged. In
this fashion, an empirical representation of the camera’s
vignetting effect is obtained.

The empirical mask from the previous step was divided
in four quadrants and used to produce a plot of pixel
intensity versus radial distance (i.e. Euclidean distance) to
the known optical centre. The division in quadrants serves
for visualization purposes only and the result can be seen
in Fig. 2, where the radial behaviour of the vignetting
effect becomes apparent.

Next, the data from Fig. 2 was fit with a smoothing
spline parametric equation, and the result plot in the
same figure as a pink line. Lastly, the inverse operation
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Fig. 2. Plot of pixel intensity vs. radial distance to the
optical centre. Superimposed as a magenta line, a fit
smoothing spline.

is followed: aforementioned fit equation is fed with the
radial distances of pixels in a blank image, obtaining their
intensity value. Such image is the estimated de-vignetting
mask, henceforth referred to as simply DV, and depicted
in 6b.

In order to remove the vignetting effect, an image is
divided by DYV, followed by a normalization operation
using the maxima and minima pixel intensities from the
original image.

Add mask. The second step involves removing all the
elements which are alien to the analysis, to prevent them
from influencing it (e.g. in this case, the ship). This
operation can be expressed using the Hadamard pixel-wise
product as:

O=IoM, (1)
where I and O are the input and output images, re-
spectively; and M is the masking binary matrix of same
dimensions as the input image and composed by 1s (pixels
to keep) and Os (pixels to remove).

Remove lens distortion.  Lens distortions are inherent to
the mechanics and setup of a camera, and affect the way
a camera maps the 3D world into a 2D image. The model
used for such mapping can be estimated and compensated
for errors up to a degree. This estimation is referred to as
camera calibration and which, among other parameters
such as radial and tangential distortions, provides the
camera’s intrinsic matrix K, as defined by Corke (2011).
Aforementioned estimation was done by means of the
Matlab® Calibrator App as described in Matlab (2018).

Orthorectify image.  Given the platform used for captur-
ing the data (i.e. a ship), images will present a perspective
distorted view of the sea-ice field due to the angle differ-
ence between their optical principal axis and the normal
axis of the horizontal plane (i.e. sea water in the present
case). Geometric perspective transformations can, with
limitations, recover the true shape of the captured envi-
ronment. The approach presented here for geometrically
orthorectifying an image is based on the camera coordinate
system, transformation frames and matrices from robotics
and the concept of homography which, in the context of
computer vision, states that two distinct projections by a
camera model of the same planar surface can directly be
related through a homography matrix (see Corke (2011)
and Sonka et al. (2014) for additional information). This
relation is expressed as:

I'~HI, (2)
where I and I’ are the original and rectified images
respectively and H is the homography matrix, which
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provides the required projective transformation up to a
scaling factor, since homogeneous coordinates are used. In
the ideal case of fully planar surfaces, the aforementioned
relation is strictly accurate. For simplicity and given the
scale of the measurements, it is assumed that the sea-ice
forms an approximate planar surface.

Then, the homography matrix H is described in (3),
where matrix K is the camera’s intrinsic matrix and VgR
is a rotation matrix describing the camera’s attitude in
world frame, formulated in (4) and composed of an IMU’s
own attitude estimate "R and rotational relation to the
camera éR.

H=K"WRK™ (3)
‘CR="[R (R (4)

Lastly, a detailed geometric derivation of a scaling factor
s=[mm/pizel], which relates pixel measurements in the or-
thorectified image with world measurements, is described
in Sandru (2018).

2.2 Image processing

After the pre-processing phase, useful information can be
extracted from the images, for instance discerning between
ice/snow, slush and open water (i.e. image segmentation).
Thresholding is one of the most common techniques used
in image segmentation: based on their intensity value,
pixels are classified in classes and/or grouped together ac-
cording to one or more thresholds. The process of selecting
the thresholding values can be manual (i.e. define static
values), or automated through a clustering algorithm, such
as the K-means algorithm (see Lloyd (1982), and Arthur
and Vassilvitskii (2007) for an in detail explanation of the
original algorithm and its improved version, respectively).

Several studies of surface albedo of ice, snow and open
water, e.g. Brandt et al. (2005) or Zatko and Warren
(2015), suggest a noticeable distinction between our pro-
posed classes based on their light reflectance indices and,
furthermore, imply one especially interesting idea: contrast
among classes is increased based on the wavelength of the
incident rays.

K-means.  In short, the K-means algorithm (through an
iterative process) tries to group a set of j observations
(pixel values in an image histogram in our case) into k
clusters or groups, by minimizing the overall distances
within each cluster of the observations to the mean value
(or centroid) of the cluster. In (5), ¢5,, € [0, 1] corresponds
to pixel intensity values at input image coordinates (x,y),
q;,y is the pixel value of the output segmented image
at coordinates (x,y), classes k are defined as 1 for open
water, 2 for slush, 3 for ice/snow and 0 for everything else,
centroids are represented by C; and sorted in ascending
order based on their value. Note that Cy = 0 and is ignored
by the clustering algorithm. From (5) it can be noted
that the thresholding values to segment pixels among
classes are set as the mid-distance between two consecutive
centroids.
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1, O<qm’y < (Cl+02)/2

2, (01 + CQ)/Q <oy < (CQ + 03)/2
3, (02 + 03)/2 < qz,y <1

0, Guzy=0

(5)

Ao,y

Dynamic Thresholding.  In such cases where imagery
data acquisition is sequential and at sufficiently high rate
(e.g. 1 Hz in our case), we propose that the K-means and
thresholding algorithms can be fused together as follows:
first, the K-means algorithm is run on the first image, thus
obtaining a set of centroids which are used for segmenting
the first and following image; second, a new centroid is
obtained for each class by calculating the mean value
in each class for the second image; third, the updated
centroids from the second step are used for segmenting
the following image; lastly, steps 2 and 3 are repeated for
all the following images. This approach, referred to as DT
(Dynamic Thresholding) thereon, aims at greatly reducing
the computation cost inherent to the K-means algorithm.

2.8 Sea-ice floes detection and analysis

Once the image is properly segmented in classes and a
scaling factor calculated, the analysis is focused towards
extracting ice concentration and floes dimensions.

Morphological operations The first step is aimed at re-
ducing the complexity of detecting individual ice floes
by increasing their (pixel-wise) separation. One heuristic
technique based on mathematical morphology involves
morphological operations, particularly erosion and dila-
tion (see Peterlin (1996) for additional explanations and
details). Erosion shrinks an object area, while dilation
increases it, by a factor determined by the structuring ele-
ment’s size and shape. Choosing the structuring element’s
size is a trade-off: on one hand a smaller size will separate
only weakly connected ice floes, but their shape is highly
preserved after the dilation process; on the other hand,
a larger size will more effectively separate two connected
ice floes, however their shape will be distorted after the
dilation procedure.

Floe detection and analysis  Objects detection (i.e. ice
floes), their dimensions and ice/slush/open-water con-
centrations were obtained by means of image processing
functions from Matlab (2019), particularly the following
functions: bwlabel (identify individual 2D objects in an
image) and regionprops (obtain details about a 2D object
such as their major and minor axes, and area).

In the present work, first erosion is applied using a man-
ually picked structuring element size and shape (static for
a given input image resolution), then, object detection
is performed and each detected ice floe is individually
labelled. Next, a dilation operation is applied using the
same structuring element to each individual ice floe and
their individual dimensions obtained. Lastly, previous di-
mensions (in pixels) are transformed to world dimensions
(in millimetres) using the scaling factor s from the or-
thorectification process.
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N

Fig. 3. Experimental setup installed in the crow’s nest of
S.A. Agulhas II. Superimposed, coordinate frames of
the IMU, cameras, Ship and World.

3. EXPERIMENTS AND RESULTS

The experimental setup used for capturing data comprises
a Basler machine vision camera (see Basler (2019)), two
low-cost GPS antennas (for redundancy, see GlobalSat
(2011) and u-blox (2008) for specifications), a commercial
IMU (see MicroStrain (2007) for more details) and a
standard PC equipped with four, 8 Tb hard disks (two of
them allocated for backup). All sensors were set to record
at 1Hz, except for the IMU, which was recording at 150Hz.
Data collection was performed first, and the processing was
done offline at a later stage. The data from the IMU was
processed using the method detailed in Hyyti and Visala
(2015), obtaining directly the rotation matrix " R. Device
synchronization was achieved through the PC’s own clock,
with an estimated accuracy in the order of few tens of
milliseconds. This estimation is based on a comparison
between each device’s internal timestamp on the data (i.e.
microcontrollers’ ticks), and the PC’s timestamp on the
same data. The system was mounted in the crow’s nest of
the S.A. Agulhas II, as depicted in Fig. 3. Data capture was
performed during the vessel’s relief voyage to Antarctica
in 2017-18.

In order to test the assumption that the highest contrast
among classes (ice/snow, slush and open water) is achieved
in the near UV spectra of light, imagery data was recorded
in raw format and, using the camera’s Bayes filter distri-
bution, three distinct channels were obtained, namely red
(R), green (G) and blue (B). A single row plot containing
all three classes is depicted in Fig. 4.

At the current stage, it was not possible to obtain a ground
truth which could be used to determine the accuracy of
the orthorectification process in recovering the true shape
(and dimensions) of the sea-ice floes. However, the error
in the aforementioned accuracy can partly be estimated
by using the ship’s own width (from CAD drawings as
true value) at a common location with the imagery data.
This location was chosen to be the bottom row of the
images, as shown in Fig. 5. The results of the expected
estimation error are presented in Table 1, given as the
measurement error percentage + the discretization error
(since the measurement is based on the distance between
two pixels, discretization error is calculated as two times
the scaling factor). Theta angle represents the angular
difference between the camera’s principal axis and normal

Andrei Sandru et al. / IFAC PapersOnLine 53-2 (2020) 14539-14545

Original raw image, cropped
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Fig. 4. Cropped raw image with highlighted row (top) and
RGB channels plot of the same row (bottom).

Fig. 5. Approximate width of S.A. Agulhas II at the last
pixel row of an image.

axis of the horizontal plane. Height is measured between
the camera centre and the deck rail. For the sea-ice
analysis, a height of 34.1m was used instead for calculating
the scale at water level.

Once the above has been established, in Fig. 6 the im-
agery output of a run sequence of the complete process is
presented. The distance (in front of the ship) for orthorec-
tification in Fig. 6g is manually selected, as well as the
kernel sizes for the morphological operations before and
after the K-means algorithm in Fig. 6h. Aforementioned
kernel sizes are maintained static through the sequence
run. Lastly, examples of potential statistics to be obtained
are shown in Fig. 6j where Major and Minor axis are the
mean measured major and minor axis of an ellipse which
has the same normalized second moments as the detected
ice floes, Concentration Floes refers to the concentration
of the detected ice floes (see Fig. 6i), Concentration Ice
Total refers to the total amount of ice detected by the

Table 1. Estim. of expected error at deck level

Theta angle (0) 76°
Height ~20m
Scale[m/px] ~0.05
Measurement 20.79m (403pixels)
True value 20.1m
Expected error 3.43%
Discretization error +0.10m
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(a) Original blue channel (b) Devignetting mask

(c) Vignetting removed (d) Ship mask

(e) Ship removed (f) Distortion removed

(g) Orthorectified

(h) K-means run

Major axis: 43.8504m
Minor axis: 29.4348m
Area: 1119.6926m2
Concentration Floes: 36.2795%

Concentration Ice Total: 36.2865%
Concentration Ice Slush: 43.4376
Image time: 05-Jan-2018 14:16:51

(i) Detected floes (j) Ice floes stats

Fig. 6. Visual presentation of a run sequence of the
complete process

K-means algorithm (white areas in Fig. 6h), and lastly
Concentration Ice Slush includes both the green and white
areas in Fig. 6h.

Next, a comparison was performed between a set of se-
lected images, where sea-ice floes boundaries were first
manually identified and then using the K-means algorithm
(see Fig. 7). The numerical mean statistics of the identified
ice floes in both cases are depicted in Fig 8.

Single image analysis was performed using the K-means
algorithm. However, for extended runs the proposed more
efficient algorithm, DT, was utilized. As a consistency
comparison, Fig. 9 represents a plot of the centroids for
both algorithms for a sequence of 100 images. Only three
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Reference

Fig. 7. Input images (left column); reference, i.e. manually
identified ice floes (centre column) and using K-means
(right column).

of the centroids are plotted, as the first is constant for both
algorithms (i.e. Cyp = 0). It is worthwhile mentioning that
the average processing time per image for K-means was
around 10 seconds, while for DT it took 10 seconds for
the first image, and ~ 0.21 seconds for all the subsequent
images. The processing was done using an Intel Xenon E3-
1230 in Matlab environment.

Lastly, a sequence of images was analysed using DT,
and compared with visual observations, where a (shortly
trained) volunteer records ice thickness, concentration and
floes sizes on a minute basis, which are then averaged
over a period of 10 minutes and represent the colour
intensity of each red block in Fig. 10. A more detailed
description of the visual observations procedure can be
found in Suominen et al. (2017).

4. DISCUSSION

The proposed devignetting method has successfully man-
aged to obtain a mask and remove the vignette effect
from images. The effects can also be noticed indirectly
from the K-means algorithm: even though such algorithm
was used on pixel intensities, it was not affected by the
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Fig. 10. Comparison between visual observations (back-
ground red rectangles) and Dynamic Thresholding
analysis.

vignette effect, since the location of a floe in the image did
not affect its detection. Nonetheless, additional verification
tests need to be carried on, to certify the suitability of the
method.

Even though a ground truth was not available, the use of
the ship’s width as a measuring stick proved beneficial in
partially estimating the expected error in the calculated
statistical data from the ice field. Such error could be
minimized by using a higher resolution camera.
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The proposed DT algorithm is comparable to the original
K-means algorithm, as proved in Fig. 9 for a sequence of
images with at least 1 Hz frequency, but offering much
lower processing times. From Fig. 7 and 8 it becomes
apparent that over-segmentation can present a challenge
in accurately identifying ice floes and gathering correct
statistics of the ice field. One simple solution would be
to remove any detected ice floes under certain limit, for
example 20 metres across. On the other hand, under-
segmentation can in turn bias the acquired statistics
towards higher values, and it presents its own challenges:
a human observer may use other sources of information
in order to discern whether two closely connected ice floes
form two separate entities or one single ice floe. Sources
of such extra information may be their relative movement
against each other or even the shape and length of their
connection point (i.e. an hourglass shaped ice floe with a
narrow middle part would most certainly be composed by
two distinct ice floes). All in all, further development is
required and an additional layer of information added in
order to effectively remove, or at least minimize, over and
under-segmentation.

Regarding the proposed experimental setup, it is worth
mentioning that a higher degree of sensor synchronization
is desired, which would enable further analysis options.
Nevertheless, this is acceptable given the slow dynamics
of a ship. One addition would be the use of the Pulse Per
Second (PPS) output from the GPS antenna in order to
synchronize all capturing devices. On the other hand, the
blue channel from the camera does indeed provide a higher
degree of contrast among classes, which is highly beneficial
in image segmentation.

Lastly, Fig. 10A and 10B present a clear benefit, matchless
for humans: the proposed system can provide a much
denser analysis, both temporal and by amount and type
of retrieved information. The estimated concentrations
from DT and visual observations in Fig. 10A are in good
agreement for the first half of the sequence, however, DT
highly overestimates the concentration of ice and slush
(black line) for the second half. This is due to lack of
ice and having set the system to forcibly detect four
classes in any case. Therefore, the concentration estimate
is assumed accurate as long as there is some amount
of ice (green line in Fig. 10A). One additional benefit
from the system is that a Region Of Interest (ROI) can
be defined, thus obtaining an analysis not bound to the
subjective perception of a person. It is worth mentioning
that in Fig. 10B, at t ~ 1200s DT is presented with
open water imagery, while the human observer was most
probably looking at a nearby large ice floe, hence the
strong disagreement.

5. CONCLUSION

We proposed an automated process for sea-ice field anal-
ysis using machine vision cameras, inertial and satellite
navigation sensors mounted on the crow’s nest of a ship.
With the proposed sensors and methods, we are able to
estimate sea-ice concentration, floes size and distribution
automatically in pack ice conditions. Data was collected
on board the ice breaker S.A. Agulhas II during its relief
voyage to Antarctica in 2017-2018. Our automated process
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was compared to on-board manual visual observations, the
current state-of-the art method for ice field analysis on
board vessels. The results indicate that our method can
give significantly more detailed and frequent information
about individual ice floes, their sizes and shapes than any
human observer is able to.

In the future, more development should be done to increase
the accuracy and precision of the automated sea-ice floe
detection method. Even better selection than the blue
channel could possibly be found in the future work by
using some combination of the color channels. Addition-
ally, new controlled experiments should be made to verify
the accuracy of our system and calibrate any estimation
offsets or biases in the sea-ice floe concentration or mean
size. As found in our work, the manual visual observations
are not reliable enough to be used as a ground truth.

The initial results show that our automated sea-ice floe
detection and analysis process has a great potential in
providing valuable information for navigating a ship in ice
infested waters and at the same time, collecting relevant
environmental information about the sea-ice state.
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