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Abstract—Digital Twin is a new concept that consists of creat-
ing an up-to-date virtual asset in the cyberspace which mimics
the original physical asset in most of its aspects, ultimately to
monitor, analyze, test, and optimize the physical asset. In this
paper, we investigate and discuss the use of the digital twin
concept of the roads as a step towards realizing the dream of
smart cities. To this end, we propose the deployment of a Digital
Twin Box to the roads that is composed of a 360◦camera and
a set of IoT devices connected to a Single Onboard Computer.
The Digital Twin Box creates a digital twin of the physical road
asset by constantly sending real-time data to the edge/cloud,
including the 360◦live stream, GPS location, and measurements
of the temperature, humidity. This data will be used for real-time
monitoring and other purposes by displaying the live stream
via head-mounted devices or using a 360◦web-based player.
Additionally, we perform an object detection process to extract
all possible objects from the captured stream. For some specific
objects (person and vehicle), an identification module and a
tracking module are employed to identify the corresponding
objects and keep track of all video frames where these objects
appeared. The outcome of the latter step would be of outermost
importance to many other services and domains such as the
national security. To show the viability of the proposed solution,
we have implemented and conducted real-world experiments
where we focus more on the detection and recognition processes.
The achieved results show the effectiveness of the proposed
solution in creating a digital twin of the roads, a step forward to
enable self-driving vehicles as a crucial component of the smart
mobility, using the Digital Twin Box.

Index Terms—Digital Twin, Smart Cities, 360◦Streams, Object
Detection and Recognition, IoT, and 5G.

I. INTRODUCTION

Over the last decade, there were many rapid technological
advancements in various fields such as networking, cloud
computing, computer vision, Internet of Things (IoT) and
Artificial Intelligence (AI). These technologies are supporting
each other in a way or another. For instance, the rapid
expansion of IoT devices is expected to reach 5.8 billion
endpoints by the end of 2020 [1]. These devices, among
many others, are constantly generating and sending data over
the network, which creates a bandwidth crunch for network
providers. Consequently, the current network infrastructure
will be incredibly overwhelmed, which desperately pushes
towards enhancing the network’s performance in terms of
bandwidth and latency. Luckily, the 5G technology is already
here, or to be deployed soon, to carry out the expected sheer

volume of the exchanged data. Once the data arrives at its
destination, it will be treated and processed to extract relevant
information, such as detecting and tracking objects from a
video stream, and generating useful knowledge. The latter
task demands heavy computations that require powerful RAM,
CPU and likely GPU capable machines which are nowadays
easily accessible, thanks to cloud computing technologies.
Alongside the hardware advances, the abundant amount of
data we are witnessing in this era has essentially contributed
to the mushrooming and matureness of AI techniques [2].

With continuous technology advances, consumers become
more and more demanding and their satisfaction level is
pushed further. A major paradigm we are witnessing nowa-
days is the shift towards automated systems as consumers
are increasingly looking forward to a fully connected world
that encompasses most of our life’s fields including education,
healthcare, industry, transportation, and social life. This inter-
connection promises a lavish lifestyle and enhances safety,
efficiency, productivity, energy consumption, environmental
protection, and sustainability.

All the aforementioned technological developments have
actively contributed to the emergence of new concepts such as
smart cities, ultimately to further improve the quality of life
of people. Over the past few years, this concept has drawn
much attention from many researchers due to its countless
benefits. The motivation behind this is the upward population
trend, the scarce resources and the environmental damage
caused by modern industries and resulting in climate change.
These factors are primarily threatening the global food of the
coming generations, which are expected to reach roughly 10
billion by 2050, according to the United Nations forecast [3].
This fact desperately urges for rethinking and redesigning our
actual cities, that are deemed to be the main source for the
aforementioned issues, to make them eco-friendly, optimized,
smarter and safer. We mean by smarter, a city where every
object (e.g., buildings, factories, and cars) has the capability
of safely operating autonomously, taking decisions, adapting
to changing conditions while being able to timely commu-
nicate and exchange information with the other entities. For
instance, Smart Factories (SFs), Autonomous Vehicles (AVs)
and Digital Twins (DTs) are new emerging and fascinating
technologies towards realizing the dream of smart(er) cities.

Digital Twin is a technology that seems to drum up a lot of
interest in the future. It is defined as ”a virtual representation
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of what has been produced” [4]. So, we have: (a) the physical
asset, (b) the cyber representation of the physical asset, and
(c) the link between those entities which is the data gathered
through different sensors and sent to the machine that pro-
cesses the data and produces the virtual representation. This
concept is of a paramount importance and could be used for
many purposes such as monitoring, managing, maintaining,
optimizing as well as forecasting. It could be effectively
employed in numerous domains including teaching, healthcare
consultancy and tourism. To this end, the physical asset
should be equipped with relevant sensors (e.g., humidity
and temperature sensors) to accomplish specific tasks. These
sensors constantly collect data and send it in real-time over the
network to either edge or cloud servers. Obviously, the more
sensors are deployed to the physical asset, the more accurate
the view we get. Once the data reaches its destination, it will
be analyzed, synthesized, and eventually displayed to the users
in an adequate representation. In this vein, DTs can benefit
and leverage new emerging technologies such as IoT devices
at data acquisition phase, 5G at transmission phase, AI and
ML for data mining, analysis and prediction, and finally using
video streaming, Virtual Reality (VR) and Augmented Reality
(AR) for better data representation and immersive viewing
experience.

In this paper, we present and describe our Digital Twin
Box (DTB) platform for the digital twinning of roads. DTB
consists of a number of devices including 360◦camera, GPS
device and internet dongle for connectivity. A number of DTB
are deployed to the roads to live stream the moving objects
to the cloud servers. These streams are offered to the viewers
in real-time (live streams) or shifted (VoD) way. Also, the
video streams go through an Object Detection module to
extract the different objects and save them in the database.
Later, these objects could be used by several applications and
domains such as the national security, tourism, and Intelligent
Transportation Systems (ITS). The use of 360◦cameras is
motivated by the immersive user viewing, which enables a
richer and more engaging experience. However, this comes at
the expense of overwhelming the bandwidth since it requires
higher bitrates [5], which would exert an additional burden
on the underlying infrastructure and result in lower user QoE
compared to legacy video streams. As a remediation, we pro-
pose to locally process the video streams and only transmit the
outcome from the object detection and recognition processes.

The rest of this paper is outlined as follows. Section II pro-
vides a brief review of the previous work. Section IV describes
the proposed DT architecture and its different components
and modules. The testbed setup as well as the experimental
results from the object detection and recognition processes in
terms of processing time and number of detected objects are
provided in Section V. Finally, Section VI summarizes the
paper’s contributions and sheds light on some future research
directions.

II. RELATED WORK

In [6], the authors propose a way for generating knowl-
edge as digital twins models from the huge amount of

data generated from the industrial production lines. To do
so, they employ graph-based query language enriched with
reasoning rules. The proposed solution aims to facilitate the
understanding of complex generated data from production
line management systems and automate the process of in-
ferring important rules that helps for decision making. The
proposed automation pipeline consists of four different stages,
namely feature extraction, ontology creation, knowledge graph
generation and semantic relation extraction. Borodulin et al.
propose the concept of the Digital Twin-as-a-Service (DTaaS)
model in [7]. The proposed model uses a cloud computing
platform for the orchestration and simulation of industrial
processes in smart factories. It considers the DT as a set of
cloud services and permits the dynamic resource allocation in
the cloud.

The authors in [8] tackle the security aspect of the cyber-
physical systems (CPS) in the industrial context since any
failure with this regard would have catastrophic outcomes for
the organization assets and could harm humans safety. To
this aim, they propose a new framework called CPS Twining,
that allows operators to create and maintain security-aware
digital twins of CPS for monitoring and testing purposes
in virtual isolated environments. The proposed framework
allows the creation of the virtual environment solely from
the specification languages (e.g., AML). Additionally, the
generated virtual environments can be used by security experts
for testing and validation without affecting the production en-
vironment. A prototype has been implemented to demonstrate
the effectiveness of the proposed framework.

For the healthcare domain, particularly for elderly health
management, a cloud-based digital twin framework, dubbed
CloudDTH, has been proposed by Liu et al. in [9]. Cloud-
DTH allows bridging the gap between the medical physical
environment and its clone in cyberspace by designing real-
time services for the monitoring and management of the entire
lifecycle of elderly people. The proposed framework has been
validated through application scenarios, that include different
factors such as weather (e.g., wind speed and temperature),
real-time and recorded patient’s physiological data, to demon-
strate the feasibility of digital twins in the healthcare field.

In [10], the authors introduce a new digital twin model
for vertical farming for sustainable agriculture. The proposed
model enables the planning, monitoring and optimization of
the operations of the farming process, ultimately improving
the productivity of the farms and lowering the costs.

In the Sports field, Barricelli et al. have proposed in [11]
the integration of digital twin technology for the monitoring,
assessment, prediction and behavioral suggestions of the ath-
letes. To this end, they propose SmartFit framework that could
be used by coaches and trainers to monitor in real-time the
readiness of their athletes for competitions. SmartFit contin-
uously gathers, through IoT sensors embedded in wearable
devices, relevant data (e.g., mood and food income) from the
athletes. This data is accumulated in the history of the athlete
and used later for predicting his performance. Using machine
learning techniques, the data history, including the collected
measurements and the coach’s feedback, is processed and used
for suggesting optimized actions for the athlete.
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In [12], the authors propose a decentralized approach, based
on blockchain, for the creation of a secure digital twins
process. The proposed approach permits the verification of
data sources and uses only trusted data for the creation of a
digital twin. Furthermore, it guarantees the traceability and
accessibility of the different logs and transactions at the
different four phases of digital twin creation. The proposed
approach has been evaluated through different analyses includ-
ing security, cost and digital twins requirements conformity.

In [13], El Saddik emphasizes the role of recent multimedia
content and the Tactile Internet in providing richer and more
engaging user experience. Due to new technological advances
in sensory devices, it is now possible to capture and save
not only the sound and image but also haptics, olfaction and
tastes sensing. These advances would extend the capability of
digital twins technology to create a cyber clone very close to
its physical or original copy, which certainly offers a richer
experience in terms of interactivity and collaboration.

For the construction sector, the authors in [14] proposed
exploring the digital twin technology for the management
and optimization of the building’s operations. To do so, they
presented the different steps for the implementation of a case
study consisting of a digital twin of a building facade. In this
research, the authors discuss the practically-faced issues and
limitations during their experiments, mainly related to the IoT
devices.

III. ROAD’S INFRASTRUCTURE DIGITAL TWIN USE
CASES AND POTENTIAL CHALLENGES

In this section, we showcase some highly important use
cases and domain applications that essentially rely on the
digital model of the roads’ infrastructure and highlight some
of its related endless benefits. Also, we discuss some of the
important challenges related to this technology.

A. Use cases

1) Self-driving Vehicles: Self-driving vehicles, also known
as autonomous vehicles, define a new flourishing technology
that is gaining ample interest from researchers around the
globe in both industry and academia. This technology is
promising manifold benefits at different domain levels, such as
economical and environmental, by providing the vehicles with
the necessary intelligence to perform common maneuvers and
take decisions without requiring humans’ assistance. How-
ever, such advanced intelligence can never be achieved with
traditional roads’ infrastructure, since it heavily relies on the
constant exchange of data with its surroundings, among which
the road itself. This could be achieved by creating a digital
twin of the roads, by deploying sensors into the physical
world, collecting and sending data to the IT infrastructure
(edge or cloud) to be saved and potentially processed to infer
knowledge.

2) National Security: The creation of a digital twin of the
roads would greatly contribute to the diminution of crimes
(e.g., car theft) and help the authorities to catch and/or
track suspicious persons and vehicles. This is achieved by

employing object detection and recognition mechanisms to
eventually identify both persons and vehicles and check, for
instance, if a given person is wanted or not.

3) Insurance and Safety: Roads’ digital twins would be
of outermost importance service for insurance companies to
resolve accidents’ conflicts using the recorded footage. Addi-
tionally, if the spot where an accident occurred is equipped
with Internet of Things (IoT) devices that measure the am-
bient temperature and humidity, this data would be useful to
construct a better understanding of the accident circumstances
and would lead to accurate and fair decisions.

Fig. 1: Global system architecture.

B. Challenges

In spite of the myriad benefits of the DT technology, there
are a number of potential salient challenges. For instance, the
presentation of the humongous generated data in a convenient
way to the end-user based on their own customization and
preferences is a hard task. In this vein, the use of local
dynamic maps concept could be a potential solution. Another
possible challenge is to study the DTBs’ locations in a way
to minimize the number of deployed DTBs, which result in
lowering the deployment and maintenance costs, while still
ensuring better coverage of the roads. A third painstaking
challenge, that should be deeply investigated, is the security
side of the DT, especially when data originates from IoT
devices. It is known that IoT devices are naturally vulnerable
to security threats, which desperately calls to employ reliable
and robust frameworks, such as the blockchain [12], [15], to
protect data sources from cyber-attacks as well as the data
itself until it reaches its final destination. Any alteration or
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manipulation of the data would result in catastrophic conse-
quences, especially for some domains such as autonomous
driving. Indeed, the blockchain framework provides a fas-
cinating distributed approach to preserve data integrity and
traceability. The last challenge is the decrease of the detection
accuracy over the night due to low contrast against the
background. it is worth noting that all these important aspects
are out of the paper’s scope.

IV. SYSTEM ARCHITECTURE

In this section, we describe the proposed system architec-
ture for the creation of a digital twin of the roads and its
different components as a step towards the realization of the
smart cities’ dream. This step consists of creating a digital
model of the infrastructure, among which the roads, and
make them more intelligent. Crucially, this would underpin
many other technologies, such as self-driving vehicles, that are
deemed to be an indispensable part of the big dream of smart
cities. Specifically, we introduce the concept of DTB and
describe its interaction with the edge and cloud infrastructures.
Ultimately, DTB aims to gather various data of different
nature that is eventually sent to the cloud servers. This
data will be stored for ulterior exploitation, and potentially
processed to extract and infer relevant information that could
be used in many domains, among which security, tourism,
and transportation. The collected data is mainly a 360◦live
stream using 360◦camera, a GPS location and other relevant
data such as temperature and humidity.

The global proposed system architecture is depicted in
Fig. 1. This figure contains different components contributing
altogether to the efficient creation of a digital twin of the
roads’ infrastructure. The proposed architecture allows the
accommodation of various services with different levels of
requirements. In the following, we provide a detailed descrip-
tion of each component, its role in the proposed architecture,
as well as its interaction with the other components.

A. Digital Twin Box

DTB is a set of IoT devices connected to a Single Onboard
Computer (SOC), such as a Raspberry Pi. Mainly, we find
a 360◦camera that is capable of delivering 360◦spherical
video stream. This SOC keeps streaming live the roads. These
streams could be accessed in real-time, e.g., for monitoring
purposes. They are also temporarily stored at the cloud servers
for shift viewing experience. More importantly, the received
stream will go through an object detection and recognition
process to extract all possible objects contained in the video.
To do so, all video frames need to go through the detection
process, where we first detect the different objects present
in the frame along with their types (e.g., person, car, and
traffic light). These objects are cropped using their coordinates
within the frame. In this work, we are interested in the tracking
of two types of objects, namely persons and vehicles (e.g., car
and truck).

Fig. 2: Object Detection and Recognition flowchart.

After detecting an object and identifying its class category,
we perform an object recognition task (i.e., focusing only on
the categories of persons and cars) to recognize and identify
which person/car it is and if the system has already seen
this object previously, in the same or different video, and
accordingly register the detected object in the databases of the
system. In the case of a new object, we create a new entry for
it in the objects table and save in the database in which video
and frame the object has been seen. Otherwise, we retrieve the
object ID and update its corresponding video and frame. The
idea beneath is to keep track of all objects (currently of only
person and car types) in the database. These data would be of
great importance and could be used by many other services
in various use cases as described in the previous section.

Although the global process of object detection and recog-
nition looks similar for all objects, there are some differences
in the recognition phase. For the person category, a face
detection and recognition modules would be required to first
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locate the face in the whole body image and then perform the
matching process with previously recognized persons’ faces
existing in the database, respectively. As to the car identifi-
cation process, it entails two separate modules namely plate
detection and plate recognition, to respectively locate the plate
number, crop it, and read the corresponding alphanumeric
string. For the rest of the objects (e.g., animal, traffic light,
and traffic sign), there is no need to perform the recognition
process because they are either static objects with no identity
or simply not worthwhile (and perhaps not economical) to
identify and track in the context of smart cities.

At the end of the object detection and recognition process,
it is important to save all detected objects in the database as
records as well as cropped images on the disk. This would be
useful for inferring new information and making important
recommendations. For instance, if a DTB is deployed in a
residential area and a dangerous animal is detected, this would
help to raise an alert to the authorities to take the relevant
actions. It could be also used to generate automatic statistical
reports regarding the frequency of human/car circulating in
a specific area that could be used to improve the services
provided in that area. Fig. 2 illustrates the flowchart diagram
for the whole object detection and recognition process.

It should be noted that the delivered stream is accompanied
by other sensed data such as GPS location, measured ambient
temperature, humidity and air quality. For the data coming
from IoT devices, it could be also collected from sensors
on board Unmanned Aerial Vehicles (UAVs) that are sent
for a specific mission, which would provide more accurate
measurements [16]. This data will be also saved in the
database with its corresponding timestamp. The combination
and fusion of all these data with the video stream feed would
result in a more holistic view of the area and its environment at
different points in time during the four seasons, which might
be useful for tourism and insurance domains.

B. Where to process in the network?

The different aforementioned processes use Machine Learn-
ing (ML) models to accomplish their corresponding tasks.
Generally speaking, object detection and recognition tasks are
time-consuming and require high CPU and RAM resources.
In many cases, it becomes necessary to carry them on GPU-
capable machines to achieve reasonable response times. In
this subsection, we discuss the different possible options to
perform such heavy processing tasks.

1) Extreme Edge: Offloading the object detection and
recognition tasks to the extreme edge (i.e., at the SOC) has
the advantage of attenuating the cloud servers’ workload
and reducing the streaming latency [17]. The latter would
be of vital importance for some other technologies such
as autonomous driving whereby, for instance, vehicles need
to instantly detect, recognize and interpret traffic signs to
take some critical actions (e.g., braking and deceleration).
Furthermore, processing tasks at the extreme edge would
greatly improve the system’s scalability notably when the
number of deployed DTBs is high. It also helps reducing
pressure on the underlying network infrastructure, especially

when the transmitted service is bandwidth-consuming such
as video streams, and only the detected objects are accessed
by the users. Besides, self-driving vehicles technology would
take advantage of it to increase their awareness of their
surrounding, especially to detect objects behind the corner,
by communicating with DTBs of other vehicles the DTB.
However, this would increase the cost of the DTB since it
requires a powerful GPU-capable SOC such as Jetson AGX
Xavier.

Fig. 3: Platform setup.

2) Edge: Edge computing is also a good choice when
keeping the latency at lower values is a requirement and the
extreme edge device has very limited resources (e.g., raspberry
pi). Additionally, it helps to save the bandwidth utilization by
sending the video streams and the sensed data to an edge
server that is close to the DTB in question, which may offer
better processing capabilities while keeping the deployment
cost of the DTB as low as possible. Edge computing paradigm
offers an ideal environment for many use cases where both the
DTBs and the consumers of the live streams or the outcome
of the object detection and recognition processes are in the
vicinity of the edge servers. It is worth noting that we can still
do some light-weight object detection processes on devices
with limited resources using some models (e.g. Tensorflow
Lite) that are specifically designed and optimized for IoT and
mobile devices.

3) Cloud: Cloud computing may offer the most powerful
and scalable configuration for handling heavy tasks due to its
highly-available resources. However, sending live streams to
the cloud for processing may adversely affect its scalability,
notably when the number of deployed DTBs grows up for
fully covering an area. Moreover, this would exert high pres-
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Fig. 4: Object detection and recognition time per video frame.

sure on the network, especially when streaming bandwidth-
intensive videos, such as 360◦videos.

C. Users

The outcome of the DTBs is the digital twin of the roads,
consisting of 360◦live streams and/or the detected objects
from the live streams as well as the different sensed data
sent by the IoT devices deployed within the DTBs. This
result could be used by many consumers (e.g., individual
users, corporate, or autonomous vehicles) for different pur-
poses, among which monitoring, maintenance and safety, in
various use cases. In the tourism domain, for instance, users
can view 360◦videos (either live or recorded) using head-
mounted devices or HTML5 players to see a specific area
they are interested in, along with the different sensed data at
a specific period, before they travel. Also, the national security
authorities can also use the platform to search for a suspicious
person/car just by using his picture/its plate number to see the
different places visited by that person/car, respectively.

V. EXPERIMENTATION AND PERFORMANCE RESULTS

This section describes the setup used during the conducted
experiments and discusses its outcome. We first provide details
on the device specifications used to accomplish this experi-
ment, as well as the technologies used in our implementation.
Then, we describe the platform setup in which we have
run our implementation. Finally, we provide and discuss the
different obtained results from the experiment. The conducted
experiment has been performed using a video with 512×512
resolution.

A. Devices Specifications and Technologies Choice

In this experiment, we show the performance of the de-
tection and recognition processes at the extreme edge. To
this end, we have used Jetson TX2 single onboard computer
(SOC) from NVIDIA. The Jetson TX2 is a powerful SOC
and is designed for computation-heaving tasks. It has a GPU
architecture with 256 NVIDIA CUDA cores, a Quad-Core

ARM® Cortex®-A57 MPCore, and 8GB 128-bit LPDDR4
Memory. The operating system running on this Jetson TX2 is
Ubuntu 18.04. To detect the different objects in video frames,
we have used the Single-Shot Detector (SSD) mobile net v2
model that ships with Jetson SOCs. It is faster and provides
more accuracy compared to other state of the art models such
as YOLO and Faster R-CNN models.

For the face detection part, we have used a python library
called face recognition that uses deep learning models to
locate the face within a person’s body. The model used by
this library provides very high accuracy of 99.38%. For the
recognition phase, we perform a comparison of the new face
with the existing faces in our database and we calculate the
euclidean distance between the two faces. If the distance is
above a certain threshold (0.7 in our experiments) we consider
it the same person.

Regarding the vehicle’s plate number, we have used Google
AI vision API to detect and locate the plate number with an
accuracy of 81.7%, whereas we perform text recognition on
the text contained inside the plate box. If the text does not
follow the general pattern of the plate numbers in the country,
we reject it. Otherwise, it will be considered as a successfully
recognized plate number.

B. Platform Setup

An overview of the platform setup is illustrated in Fig. 3. In
our OpenStack cloud platform, we have three servers namely
web, streaming and database servers. The streaming server
receives from the DTB the 360◦video via 4G LTE network.
The SOC in the DTB captures the live stream and performs
the object detection and recognition and stores the results
in a local database. Also, it constantly reads measurements
from the IoT devices along with the GPS data and saves
the measured values locally. A backup module is periodically
executed to sync the local database at the SOC with the real-
time Firebase and a MySQL database in OpenStack servers.
It is worth noting that Firebase is used to store real-time
data such as the detected objects and GPS data, while the
relational database is used to store other data such as the
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Fig. 5: Number of detected objects per video frame.

user’s info and the countries data. On the other hand, users can
access the 360◦streams for discovering or monitoring purposes
via head-mounted devices or simply using the web-based
player. They can also access the web platform to visualize the
detected objects and track the recognized ones (i.e., persons
and vehicles).

C. Performance Results

In this subsection, we show the performance results from
the detection and recognition processes in terms of the time
consumed per frame to detect and recognize all the objects
contained in that frame, as well as the number of detected
objects.

Figs. 4(a) and 4(b) illustrate the per frame elapsed time to
detect and recognize the objects at each frame, respectively. It
is worth noting that the recognition time, represented in 4(b),
includes the time consumed to recognize both persons and
vehicles. As we can see, usually the process of detection
does not take too much time especially when there are no
objects to recognize, for instance, between the interval [55,
100] frames and [135, 290] frames. This mainly due to the
fastness of the SSD mobile net v2 model and its ability to
detect multiple objects in one shot pass. We can also see that
when the processing of one frame is relatively high, this is
mainly caused by the recognition process (the red curve), as
we can see during the intervals [0, 50], [110, 135] and [290,
340].

The number of detected objects per video frame is plotted in
Figs. 5(a), 5(b), 5(c). These figures respectively correspond
to three categories of detected objects namely persons, cars

and others which basically include the rest of the objects such
as traffic lights. Aligned with the plots from Fig. 4, the number
of detected objects is higher within the frames interval where
the time is relatively high, which is quite intuitive since the
detection and recognition of more objects incur more time.
From Figs. 4 and 5, we also conclude that the recognition
process takes more time than the detection as we observe time
picks in Figs. 4(a) and 4(b) when a person and/or car objects
are detected as per Figs. 5(a) and 5(b).

In Figs. 6(a) and 6(b), we show the number of detected
persons and cars, respectively. These figures also show the
frequency (orange bars) of the recognized objects throughout
the video as well as the average recognition time. The average
recognition time for cars is relatively high compared to
persons.

VI. CONCLUSION

In this article, we have proposed a methodology to create a
digital twin of the roads’ infrastructure, which is considered
as a step towards enabling a gamut of essential technologies
(e.g., self-driving vehicles) and services that are deemed to
be a crucial part in the journey of realizing the dream of
smart cities. It consists of deploying Digital Twin Boxes
(DTB) composed of 360◦camera, GPS device and other IoT
devices for sensing environmental measurements such as
ambient temperature and humidity. Additionally, we perform
object detection and recognition on video streams to extract
all possible objects and save them to the database. The
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Fig. 6: Persons and cars recognition frequency and average recognition time.

recognition process is performed on two types of objects,
namely vehicles and persons, and entails both identification
and tracking processes to keep track on when and where the
selected objects appeared, alongside with other measured data
received from IoT devices. The combination and fusion of all
gathered and processed data will give a better understanding
of the contextual circumstances when accessing the data. The
resulting database would be of great importance for many
other services and domains such as tourism, insurance and
national security.

In our next research plan, we endeavor to improve both
the face and car plate number recognition to increase their
accuracy. Also, we plan to optimize the placement of the
DTBs in the roads to make the overall deployment cost-
efficient.
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