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Abstract—The energy consumption of mobile networks is
already substantial nowadays, and only expected to further
increase with the roll-out of 5G. Base stations are the key
elements in this context: reducing their energy consumption is
of paramount importance for network operators, not only to
lower operating costs, but also to meet sustainable development
goals. Today’s base stations are typically over-provisioned, i.e.,
they comprise multiple cells to meet the peak load in a region.
Therefore, substantial energy savings are possible by switching
off cells that are under-utilized. This article proposes a data-
driven approach to determine the time periods when a cell can
be switched off. Forecasting is used to accurately predict network
utilization and automatically find the time intervals to reliably
switch off a cell. We carefully analyze the requirements of the
system as a whole, from data collection to forecasting methods, to
enable effective energy savings in practice. Considering several
real-world traces from LTE networks, we show that an average
of 10.24% energy savings is possible. We explore the trade-
offs between energy savings and overhead in switching off cells,
and provide insights into the choice of methods accordingly. In
particular, we show that the accuracy of forecasting is not the
most important factor in achieving energy savings; instead, the
prediction (uncertainty) interval plays a key role in being able
to achieve energy savings with less impact on end-users. Finally,
we propose a model to generate utilization traces that match the
distribution of real-world traces obtained from cellular networks.

Index Terms—Energy savings, LTE, forecasting, time series

I. INTRODUCTION

With eight billion mobile subscriptions worldwide [1], the
market growth of the telecommunication industry has been ac-
companied by a substantial increase in the energy consumption
of mobile networks. Cellular base stations are the key elements
in this context, as they consume 80% of the energy expenditure
in operating mobile networks [2, 3]. Besides, more and more
base stations are being deployed in 5G to support a 1,000-
fold increase in traffic, while simultaneously aiming at a 50%
reduction in energy consumption [4]. Consequently, mobile
networks are required to increase their energy efficiency by
several orders of magnitude over the coming years. Indeed,
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a lower energy consumption is of paramount importance for
cellular network operators already now [5], not only to reduce
operating costs, but also to meet sustainable development
goals [6, 7].

However, today’s cellular networks are typically over-
dimensioned: cells are deployed to meet the peak demands —
also known as the busy hour. As a consequence, significant
energy savings can be achieved by switching off cells during
periods of low utilization. Base stations support switching off
under-utilized cells during pre-configured time periods [8, 9].
Unfortunately, in practice, it is very challenging to determine
the time periods when a cell can be switched off. Traffic
patterns significantly differ from cell to cell and also vary
over time. Figure 1 illustrates these two issues based on a
Long-Term Evolution (LTE) traffic trace of a mobile network
operator. We first plot the CDF of the durations (per day)
when the utilization is low enough for a cell to be switched
off for two representative cells. The durations when the cell
can be switched off show variations between weeks in one
case (Figure 1a), whereas it is more consistent in the other
(Figure 1b). However, a closer look at the actual time intervals
when the latter cell can be switched off (marked as light bands
in Figure 1c) reveals that the utilization patterns significantly
change between weeks. For instance, the opportunities for
energy savings on Wednesday and Saturday in the first week
are very different from those in the last week. Thus, in practice,
it is not at all trivial to determine (in advance) the time periods
when a cell can be switched off, especially given current best
practices: network operators typically determine such periods
based on the time of the day or simple thresholds [9]. Clearly,
such an approach is error-prone and not scalable as the number
of cells increases.

Recent advances in both machine learning (ML) and com-
munication technologies offer the opportunity to solve such
a challenge [10]. On the one hand, deep neural networks
as well as novel techniques for time series forecasting have
gained increasing accuracy [11], in addition to the ability
to characterize the uncertainty of predictions [12]. On the
other hand, modern cellular networks (i.e., 4G and 5G) allow
for significant flexibility in managing radio resources through
software components running in virtualized environments, for
instance, at the edge of the access network [10, 13]. However,
the opportunities brought forward by these developments come
with a cost: the resulting system is complex and software-
based solutions need to be carefully designed by taking a
holistic approach into account to avoid issues.

In this context, we propose a data-driven approach to
determine the time periods during which an under-utilized cell
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Fig. 1: Cumulative distribution function of the duration of possible off periods for a cell with (a) high and (b) low variance in
resource utilization. (c) Heatmap showing the resource utilization of a cell over days in a week for different weeks.

can be switched off. Forecasting is used to accurately predict
network utilization and automatically find the time intervals to
reliably switch off a cell (Section II). Such an approach does
not require global information on the network, but only of the
utilization metrics for co-located cells served by a single base
station. As a consequence, it scales to tens of thousands of cells
and can easily be adopted by network operators. We carefully
analyze the requirements of the system as a whole – from data
collection to forecasting methods – to enable effective energy
savings in practice and evaluate the proposed solution based on
data from a real LTE network. To the best of our knowledge,
this is the first comprehensive study on the energy savings
that can be achieved by switching off under-utilized cells
(Section VII). In fact, the state-of-the-art has so far addressed
switching off entire base stations [14–16] as opposed to indi-
vidual cells within a base station. Moreover, existing solutions
in the literature have been evaluated through simulations in
which traffic is assumed to follow a statistical distribution [17–
19], perfectly known in advance [20] or predicted without
taking the related uncertainty into account [11, 21].

The main contributions of this article are as follows. First,
we establish the requirements for accurate data collection
of utilization data in the context of power management at
cellular base stations (Section III). Specifically, we evaluate
the suitability of utilization data with different granularities
for forecasting purposes. Moreover, we propose a model to
expand utilization traces with coarse granularity so as to match
the distribution of real-world data from cellular networks at
a millisecond timescale. Second, we analyze the accuracy
as well as fitting time of several forecasting methods
(Section IV). We consider different options to decide when to
switch off cells for energy conservation accordingly. We also
define control strategies to overcome inaccurate predictions
or unexpected events during power management. Finally, we
carry out an extensive evaluation of energy savings at
LTE base stations over a large and diverse set of utilization
patterns (Section V). Specifically, we characterize utilization
traces from a real operator across different dimensions to
understand which methods work best in specific scenarios. We
explore the trade-offs between energy savings and overhead
in switching off cells, and provide insights into the choice of
methods accordingly.

Our results show that switching off decisions have to be
tailored to the characteristics of the traffic in considered
cells, depending on the key performance metrics targeted by

mobile operators – for instance, the number of user migrations
(Section VI). However, this is not achieved by simply using
the most accurate forecaster; instead, the uncertainty interval
is critical in busy cells to able to achieve energy savings with
less impact on end-users. Our results indicate that an average
of 10.24% percent of energy savings is possible within a
base station when the capacity cell is switched off according
to the predicted traffic. This represents annual savings of
approximately USD 87.6 million savings in China alone1 with
3 million base stations [22].

II. SAVING ENERGY IN CELLULAR NETWORKS

This section introduces a reference architecture for reducing
energy consumption of cellular networks. It also details the
components for planning and implementing power manage-
ment policies at a base station. Last, it introduces a novel
approach for power management at cellular base stations.

A. System architecture

The reference architecture follows the principles defined by
the O-RAN Alliance [13] to enable ML-powered functionali-
ties in modern cellular networks and illustrated in Figure 2.

The base station is the element of the cellular network
handling physical radio resources, and consequently, the main
source of energy consumption in the network. The base station
provides utilization-related metrics in real-time and accepts
power management commands, such as switching on or off the
hardware associated with certain radio resources (e.g., radio
channels). Metrics are collected at a control module which
processes and stores them into a radio network database for
later use. The controller uses such metrics to execute a power-
management policy and to address the related consequences
(e.g., load balancing and allocation of radio resources). A
planning module predicts utilization based on historical data
with a certain granularity as available in the radio network
database. In particular, it obtains a forecast according to
certain methods – such as those discussed in Section IV –
which could also employ ML, particularly, neural networks.
Predicted utilization is leveraged to define power management
policies applied to the base station. Such policies include
two components: an energy savings plan, describing the time
periods (in a future horizon) during which radio resources can

1Estimated with a cost of 0.08 USD/kWh according to https://www.
china-briefing.com/news/china-electricity-prices-industrial-consumers/

https://www.china-briefing.com/news/china-electricity-prices-industrial-consumers/
https://www.china-briefing.com/news/china-electricity-prices-industrial-consumers/
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Fig. 2: Overview of an energy saving system for cellular
networks based on forecasting. Several metrics are collected
from the base station and also stored in a radio network
database. Utilization data are sent to a forecasting module and
the predicted values are leveraged to define power management
policies. Such policies are then applied by issuing commands
to switch on (off) radio resources, while still controlling the
actual utilization in real-time to ensure a target utilization
level.

be switched off; and a control strategy applied while executing
power management to ensure a target level of utilization.

The control module operates in real-time and is located at
the base station or at the edge of the access network. The
planning module, instead, operates over longer timescales and
is located at the core network or at a geographically-close
cloud data center [13]. The technical aspects of the operations
associated with these modules are detailed in the next two
sections.

B. Power management approach

Cellular base stations provide network connectivity with a
layered architecture of overlapping cells that differ in capacity
and coverage [21]. In practice, a single base station comprises
different types of co-located cells (i.e., layers): a coverage cell
operating at lower frequencies over a large coverage area, and
one or more capacity cells operating at higher frequencies
to provide higher data rates to users in closer proximity
(Figure 3a). Cells with such a coverage-capacity relationship
are indeed very common in current LTE networks and are also
an important element of 5G deployments [23].

Accordingly, our approach to power management explicitly
targets coverage-capacity cells at a single base station. In
particular, it switches off a capacity cell when its utilization
is low, as long as the users eventually served by that cell can
be accommodated by the associated coverage cell. Figure 3b
shows a sample allocation of users over time according to the
proposed approach. Initially, the capacity cell serves four users
and the coverage cell serves only one user. At time t1, two
users leave the capacity cell and the related utilization become
low. These two users can actually be served by the coverage
cell, in addition to the existing user (already connected to the
coverage cell). Thus, the capacity cell is switched off and the
two users moved to the coverage cell. At time t2, one more
user enters the coverage cell, raising the utilization over an
acceptable threshold. As a consequence, the capacity cell is
switched on again, and two users are moved from the coverage

to the capacity cell. Note that the proposed approach relies on
the coverage cell being always2 on, as the related area cannot
otherwise be served.

Our approach is scalable for different reasons. First, it
only operates at individual base stations, thus, it does not
require complex coordination across the cellular network. In
contrast, solutions that switch on or off entire base stations
require exchanging messages to coordinate decisions between
different base stations [17], which may incur a substantial
overhead in large networks. Second, our solution only requires
identifying base stations with a coverage-capacity relationship
beforehand. The related information is readily available to
network operators and does not rely on special tools or
complex pre-processing of possibly large radio network maps.

III. DATA-DRIVEN POWER MANAGEMENT

Data-driven power management requires collection and pro-
cessing of utilization metrics. Accordingly, the rest of this
section discusses metric selection and the choice of a suitable
granularity for forecasting purposes. The discussion concludes
with a method to generate accurate, fine-grained utilization
from data available at a coarser granularity.

A. Metrics and granularity

The previous section has simply referred to utilization, even
though there are different ways to characterize such in practice.
Finding a suitable metric is particularly important, so that
network operators can meaningfully specify when a cell should
be switched off [24]. For this reason, the widely-used physical
resource block (PRB) utilization [25, 26] is considered next –
the PRB is the smallest unit of frequency and time allocated
to a user in a cell.

The joint utilization history of a capacity-coverage pair can
be seen as a time series, thus, it is possible to use forecasting
methods to predict future utilization. Before choosing a fore-
casting method (Section IV), we must first establish the input
data and granularity to be used. We note that the utilization of
individual cells is not suitable for forecasting, as the related
utilization goes to zero for the period they are switched off.
Forecasting should not consider such periods as valid data
to avoid biased estimates, as they result from the switchoff
as a side effect. To solve this issue, the forecaster considers
the joint utilization of the capacity and coverage cells (i.e.,
the sum of their individual utilizations) as input. Choosing an
appropriate forecasting method, however, relies on selecting
the appropriate timescale to predict PRB utilization. In fact,
a too detailed characterization of PRB utilization incurs in
significant overhead, while a too coarse granularity may not
be representative of the actual utilization dynamics.

In this respect, we characterize the properties of PRB
utilization traces at different timescales. In LTE networks,
the radio resources of a cell (i.e., PRBs) are scheduled and
allocated to users at a transmission time interval (TTI) of
1 ms. If we could accurately forecast utilization at such a

2This design choice does not actually prevent to obtain considerable energy
savings, as it will be shown in Section V.
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Fig. 3: (a) Base station with co-located coverage-capacity cells. (b) Sample allocation of users to cells over time: the coverage
cell is always on while the capacity cell is switched off during periods of low utilization. Users of a switched off capacity
cell are moved to the coverage cell as long as resources therein are sufficient: the capacity cell can be switched on again (and
users assigned to it) when necessary.
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Fig. 4: Sample utilization traces from an actual mobile network with different granularities: data for one minute of traffic for
a cell with (a) low and (b) high utilization at a millisecond-level granularity; data for one week of traffic for a cell with (c)
low and (d) high utilization collected over 15-minute intervals.

small timescale (every millisecond), we could make real-time
decisions to switch off cells and achieve larger energy savings.
In fact, prediction of packet arrivals in each TTI has been
found to be feasible in [27, 28]; however, an analysis of the
PRB utilization at this granularity has not been studied so far.
Our analysis has found that the utilization trace at the TTI
level for each pair of coverage and capacity cells is actually a
stationary time series, without any trend or seasonality – thus,
it does not have a predictable pattern in the long-term [29]. We
use the Augmented Dickey-Fuller test [30], a statistical method
for testing whether a time series is stationary or not: the null
hypothesis is that the time series is non-stationary. The p-value
of the Augmented Dickey-Fuller test for the utilization at TTI
level is near zero, meaning that the time series is stationary.
Figures 4a and 4b show two representative examples of real
traces from base stations collected at 1 ms intervals over a
period of 1 minute with a mean utilization of 13.5% and
61.5%, respectively. An analysis of the distribution of the PRB
utilization shows that the utilization tends to have small values
(below 20%) or large values (nearly 100%) but not the ones
in the middle, irrespective of the mean utilization.

Although TTI-level traces can be obtained from the base

stations, monitoring the utilization at this granularity results
in a large overhead and is typically carried out only when
strictly necessary [31]. Thus, metrics are generally aggregated
– typically in 15-minute intervals – and sporadically sent (e.g.,
once a day) to the network operator for processing and analysis
using appropriate tools and dashboards [31]. In contrast to
the utilization time series at the TTI level, the traces at 15
minute intervals are indeed non-stationary (e.g., with p-values
of 0.74± 0.24 for 80 pairs of cells in our dataset) and clearly
exhibit daily patterns regardless of overall average utilization
(see Figures 4c and 4d). Therefore, we consider aggregated
utilization traces in the rest of the article.

B. Trace expansion

As previously discussed, a granularity in the order of min-
utes is appropriate for forecasting, resulting in low overhead
and storage requirements. However, data at much smaller
timescales (e.g., at the TTI level) is still required to evaluate
a control strategy during power management. To address such
an issue, this section proposes a method to generate utilization
data at the TTI level from traces with a higher granularity,
namely, seconds or even minutes. The corresponding process
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Timestamp U T

02:20:02:477 0.16 1
02:20:02:478 0.04 7
02:20:02:485 0.04 8
02:20:02:493 0.25 · · ·

(a)

Util. range Sampled discrete distribution
[0− 20]% (1, 0.38) (2, 0.33) (3, 0.12) · · · (106, 0.003) · · ·
[20− 40]% (1, 0.50) (2, 0.36) (3, 0.08) · · · (296, 0.0025) · · ·
[40− 60]% (1, 0.65) (2, 0.29) (3, 0.03) · · · (13, 0.0017) · · ·
[60− 100]% (1, 0.71) (2, 0.27) (3, 0.015) · · · (10, 0.0014) · · ·

(b)

TABLE I: (a) Sample PRB utilization at the TTI level. (b) Sampled discrete distributions for time duration T aggregated by
utilization ranges.

operates on the data in the radio information database – equiv-
alently, utilization traces from a dataset – and it is referred
to as expanding the aggregated values. In the following, the
properties of a real TTI trace are described first and then
leveraged to derive a model to generate such a trace from
data with coarser granularity. The correspondence between the
two traces is finally established through an evaluation of their
statistical properties.

1) Characterization of TTI-level traces: Table Ia shows an
example of the PRB utilization at the TTI level, where the first
column denotes the timestamps (with millisecond accuracy),
the second column indicates the corresponding PRB utilization
at each timestamp and the third column indicates the time
duration between two consecutive records. The TTI-level trace
typically has only non-zero utilization records to minimize the
size of the file, i.e., the utilization is 0 at all timestamps not
present in the TTI trace.

Thus, there are two random variables that are important for
expanding the aggregated trace: one is T – the time duration
between timestamps (i.e., [1, 7, 8, . . .]), and the other is U –
the utilization at each timestamp (i.e., [0.16, 0.04, 0.04, 0.25,
. . .]). T is a discrete random variable which also depends
on the aggregated PRB utilization. That is, if the aggregated
utilization is high, the probability of T = 1ms is high as well
(i.e., the PRBs are utilized more often) compared to when
the aggregated utilization is low. Accordingly, we sampled
1,000 discrete distributions for T from the real TTI traces for
different aggregated utilization values (in ranges of [0%-20%],
[20%-40%], [40%-60%], [60%-100%]) as shown in Table Ib.
The table shows that the percentage of occurrence of 1 ms
increases as the aggregate PRB utilization increases.

The U values are assumed to be independent and identically
distributed (i.i.d.). The time series plots (Figures 4a and 4b)
show that there is no obvious trend in the utilization, indicating
that the data appears to be identically distributed. Next, we
check whether the U values are independent by plotting lag
plots, i.e., scatter plots of each utilization value (U ) in the
real TTI trace against a point at a different time lag, k
(for instance, 1 ms ahead). We consider different lag values
k = 1, 50, 500, 1000. Figure 5 shows the points are randomly
distributed in all lag plots demonstrating that the data is
independent and not correlated. Based on our analysis of the
TTI-level trace, we conclude the U sequence is i.i.d. Next,
we describe our approach to generating such traces from the
aggregated data.

2) Generation of TTI-level traces from aggregated data:
For each row in the aggregated trace, we first obtain a list of
timestamps at 1 ms intervals and then get the corresponding

Algorithm 1: GETBETAPARAMS(m, t = .5)

Input: m, an aggregated mean to be expanded
Output: α, β for the corresponding beta distribution

1 if m < 0.5 then v = t ·m
2 else v = t · |m− 1|
3 α = ((1−m)/v − 1/m) ·m2

4 β = ((1−m)/v − 1/m) ·m · (1−m)
5 return α, β

TABLE II: The p-values of the paired t-test results for the
percentages of different sleep modes (SM) in real and sampled
traces for different signaling synchronization (SS) periodicity.

SS SM1 SM2 SM3 SM4

5 0.22 0.18 N/A N/A
10 0.22 0.56 N/A N/A
40 0.23 0.37 0.11 N/A

100 0.23 0.50 0.04 N/A

utilization values for the expanded timestamps. The list of
timestamps are obtained by sampling the time durations from
the discrete distribution (Table Ib) for the corresponding
utilization range.

We observe that the distribution of utilization values follows
a U-shape (Figure 6a), with several occurrences of both high
and low utilization values. Accordingly, we choose the beta
distribution to model the utilization as it follows a U-shape
when its parameters, α and β, are less than one [32]. This
distribution is commonly used to model such patterns that are
constrained between 0 and 1 [33, 34]. We propose Algorithm 1
to determine α and β, given the aggregated PRB utilization,
m. We use a linear relationship between the variance v and
m through an empirically determined coefficient t (lines 1–
2). The variance decreases when the aggregated utilization
m is close to 0 or 1. For instance, if m is 1, the expanded
utilization traces are all set to 1 (i.e., the variance is 0). Next,
α and β are set (lines 3–4) according to properties of the beta
distribution [32]:

m =
α

α+ β
, v =

α · β
(α+ β)2 · (α+ β + 1)

(1)

The beta distribution with α and β (set according to Algo-
rithm 1) is used to sample the utilization values with the
number of samples set to the size of the initially obtained
list of timestamps.

3) Evaluation: We evaluated the properties of the expanded
trace as compared to a real TTI trace, both in terms of the time
durations between samples as well as the PRB utilization. To
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(a) (b) (c) (d)

Fig. 5: Lag plots of utilization (U ) values from original TTI trace at lag values (k) set to (a) 1, (b) 50, (c) 500, and (d) 1000.

(a) (b)

Fig. 6: (a) Histogram and (b) empiricial CDF of the PRB utilization for a real trace at TTI-level and the corresponding one
for the sampled trace using our generation model.

this end, we used a TTI trace collected over a duration of
37 minutes in an LTE network. The aggregated one-minute
utilization levels was input to our expanding approach; we
then compared the properties of the real and expanded trace.

First, we test the properties of the time durations in the
expanded trace. We particularly focus on obtaining an accurate
measurement of energy consumption from the expanded trace.
In this context, the time durations in the TTI trace when the
utilization is 0 are particularly important. This is because base
stations can go into sleep modes (SM), wherein a subset of its
components is deactivated to conserve energy [3], whenever it
is idle for a sufficiently long duration. Specifically, a cell enters
SM1 if the utilization is zero for 0.0714 ms, SM2 after 1 ms,
SM3 after 10 ms and SM4 after 1,000 ms (Table IV). A deeper
sleep mode allows the base station to consume less energy.
However, a base station has to periodically wake up to send
signaling messages, i.e., synchronization signaling (SS), to
provide network connectivity to users [20]. In our evaluation,
we consider SS periodicity values supported by both LTE
(5 ms) and 5G networks (10, 40 and 100 ms) [35, 36].

Therefore, for the real trace and the expanded trace, at
each data point there is a pair of values SMX and SM̂X

corresponding to the percentage of time spent in each sleep
mode (X ∈ {1, 2, 3, 4}). We used the paired t-test to test
whether the percentages for each sleep mode for the 37 pairs
have different mean values or not. Table II shows the p-values
of the paired t-test for each SM where the null hypothesis is
that both the real and expanded traces have the same mean time
spent in each SM. The table clearly shows that the p-values
are higher than 1% and cannot reject the null hypothesis.
This indicates that the expanded trace results in a similar

distribution of sleep modes and thus, a similar distribution
of time durations as in the real TTI trace. Note that certain
signaling periodicity values prevent a cell from entering deeper
sleep modes; for instance, a cell cannot enter SM3 or SM4
when the SS is 5 ms. Accordingly, the use of certain sleep
modes are denoted as N/A in Table II when the cell cannot
enter these modes.

Next, Figure 6b shows the CDF of the PRB utilization for
the real TTI trace as well as the expanded one. The CDF shows
that the distribution of the values in the expanded and real trace
have similar patterns, with a small variation in about 10% of
the samples. We observe from the histogram (Figure 6a) that
the real trace exhibits slightly higher occurrence of utilization
values between 20% to 50%. However, this difference is
minimal (as seen in the CDF) and we find our expanding
approach is suitable for evaluating the energy savings3.

IV. FORECASTING UTILIZATION TO SAVE ENERGY

This section addresses the planning aspects related to sav-
ing energy in a cellular network. This corresponds to the
forecasting and power management policy modules in the
proposed energy saving system (recall Figure 2). First, we
analyze the performance of state-of-the-art time series fore-
casters in predicting the utilization in traces obtained from real
LTE networks. Next, we describe how a power management
policy can define energy savings plans based on the predicted
utilization as well as control strategies to overcome inaccurate
predictions.

3Our evaluation uses the utilization values aggregated at 10-second intervals
(see Section IV-B).
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Fig. 7: Box plots with mean (denoted by triangles in each box) of (a) fitting time, (b) MAE and (c) MSE using different
forecasting methods.

A. Evaluation of different forecasting methods

We evaluate the suitability of several state-of-the-art fore-
casting methods to predict the PRB utilization in pairs of
capacity-coverage cells. Particularly, we choose automated
forecasting methods that can be easily used by domain ex-
perts without detailed knowledge about the model itself. For
instance, such methods require only the seasonality (weekly
or daily) of the time series to be defined. Thus, they can be
applied by operators to networks with unknown and possibly
very different traffic patterns.

To this end, we first study the accuracy and fitting time of
state-of-the-art forecasting methods, described next.

Auto ARIMA fits a range of AutoRegressive Integrated Moving
Average (ARIMA) models and automatically selects the
best one [37]. We use an open source Python implementa-
tion4 of Auto ARIMA. We use a non-seasonal ARIMA model
due to the extremely long fitting times when seasonality is
included [38].

Holt-Winters (HW) [39, 40] decomposes time series into
three components: a level, a trend, and a seasonal ef-
fect. In our experiments, we use statsmodels, a widely
used Python implementation5, with Holt-Winters’s additive
method and the seasonality set to one day.

TBATS [41] is a time series forecasting model based on expo-
nential smoothing, and it supports different seasonalities –
including daily, weekly, and yearly. We use an open source
implementation6 of TBATS in Python for our experiments.

LSTM is a type of Recurrent Neural Network (RNN) which is
designed for sequential data and has been adopted in vari-
ous domains including time series forecasting [11, 27, 42].
We implement LSTM in Tensorflow [43] with the hyper-
parameters provided by Trinh et al. [27] for forecasting
traffic at base stations.

ANN uses feedforward Artificial Neural Networks (ANNs)
trained to predict the utilization at time interval t of day d
with the following7 set of features [11] – Ud−1,t (the

4https://github.com/alkaline-ml/pmdarima
5https://www.statsmodels.org/
6https://github.com/intive-DataScience/tbats/
7While Vallero et al. [11] additionally use feature Ud,t−1, we do not

include it in our analysis as we forecast the utilization of the next day at once
– the utilization values for day d are not available at the time of forecasting.

utilization at t on the previous day), Ud−2,t (the utilization
at time t two days before d) and Ud−1,t−1 (the utilization
at previous time interval t on the previous day).

MANN [11] is similar to ANN, but uses the mean of the values
observed in the past. Specifically, the features used as input
to the ANN are the difference between the mean utilization
at time interval t and Ud−1,t, Ud−2,t and Ud−1,t−1.

Prophet [38] is a regression model for time series forecasting
developed at Facebook. It is designed to allow domain ex-
perts to add components (trend, seasonality, and holidays)
to the model and easily make adjustments as needed. We
use the open source implementation8 released by Facebook
Data Science team.

Mean is a baseline forecasting approach which simply utilizes
the mean of the values observed in the past. It is used for
comparison purposes only [38].

We evaluate the forecasting methods in terms of the fitting
time and accuracy of forecasts on a dataset of PRB utilization
for 11 pairs of cells over a period of 7 days obtained from
an LTE network provider. The utilization of each cell is
aggregated in 15-minute intervals, which results in 96 data
points for each day. We used the utilization history of the
first 6 days for fitting each forecasting model, and used the
last day for evaluating performance in terms of mean absolute
error (MAE), mean squared error (MSE) and fitting time. We
set the seasonality in both TBATS and Prophet to one day.

Figure 7 reports the results from our experiments. We
observe that Mean and Prophet have the shortest fitting time
within 10 seconds. ANN and MANN achieve a fitting time of
less then 50 seconds, whereas LSTM, HW and TBATS have a
fitting time in the order of minutes. In terms of MAE and
MSE, Prophet and Mean provide an overall better performance
compared to the other methods. For instance, the average
MAE values achieved by Prophet and Mean are 8.17 and
8.4 respectively followed by ANN (9.10), LSTM (9.17) and
MANN (9.43). Similarly, Prophet provides the best performance
for MSE (160.17) followed by Mean (179.28), LSTM (192.57),
ANN (199.65) and MANN (234.17). The low spread of the
accuracy metrics for Prophet, Mean, LSTM and ANN show that
these methods have lower variability compared to the others.
Thus, we consider Prophet, Mean, ANN, MANN and LSTM as

8https://facebook.github.io/prophet/

https://github.com/alkaline-ml/pmdarima
https://www.statsmodels.org/
https://github.com/intive-DataScience/tbats/
https://facebook.github.io/prophet/
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suitable candidates for forecasting PRB utilization at base
stations in the next section.

B. Determining a power management policy

Once the predicted PRB utilization for a pair of capacity-
coverage cells is obtained, the next step is to devise an energy
savings plan. Specifically, an energy savings plan comprises
the time periods during which a capacity cell may be switched
off. Such time periods are chosen based on an operator-
defined utilization threshold δ. Thus, the plan consists of the
periods corresponding to when the predicted utilization does
not exceed δ.

Next, switching off a cell typically requires migrating users
from the capacity cell to the active coverage cell. An important
consideration for determining the off-periods is the trade-off
between energy savings and the overhead in moving users
between cells. Frequently migrating users between cells is
undesired [17, 18], as it may result in increased (signaling)
load in the cells [44]. Moreover, there is a risk of service
degradation due to potential back-and-forth signaling [45]
when users are moved between cells [46].

A simple approach to reduce user migrations is to use a low
δ value. However, this would result in smaller energy savings
and under-utilized capacity cells. Another approach to reduce
user migrations is to make the decision to switch off a cell
as robust as possible. For instance, if the actual utilization is
higher than predicted, our method should not switch off the
capacity cell and unnecessarily migrate users to the coverage
cell. To this end, instead of using the predicted values directly,
we can use the upper bound of the forecasted values to decide
when to switch off the cell. Figure 8 shows that the output
from Prophet includes the predicted utilization (i.e., solid blue
line in the figure) and an uncertainty interval9 (UI) for each
predicted value (for instance, UI = 95% for the lower and
upper predictions in the figure). We evaluate the impact of
choosing the time periods based on the uncertainty interval in
the next section.

Once a plan has been derived, the capacity cell is gracefully
shut down during the off-period and users in that cell are
moved to the coverage cell. However, the execution of the
plan requires the load in affected cells to be monitored in
real-time to react to any unexpected behavior. For instance,
the PRB utilization may be unexpectedly high during an off-
period, in which case the capacity cell should not be switched
off. On the other hand, if the traffic surges once a cell is
switched off, recovery actions are required to switch on the
capacity cell again. To this end, in practice, base stations
employ a control strategy (recall from Section II that this
strategy applies the power management policy in real-time
at the base station) that maintains PRB utilization between
a target maximum (PRBmax) and minimum (PRBmin) values.
Given these target levels, during a configured off-period: a
capacity cell is switched off only if the average utilization of
both coverage and capacity cell for every ten seconds during
the first five minutes of the planned off-period does not exceed
PRBmin; and the capacity cell is switched on immediately if

9https://facebook.github.io/prophet/docs/uncertainty intervals.html
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Fig. 8: The solid blue line is the forecasted utilization while
the two blue dotted lines nearby are the related bounds of the
95% prediction interval. Only the time periods (shaded in gray)
where the upper bound of the forecasted utilization is lower
than an operator-defined threshold (e.g., 70%) are selected in
an energy savings plan.

the average PRB utilization of both coverage and capacity cells
(measured every ten seconds) exceeds PRBmax continuously
for two minutes. The time periods of five minutes and two
minutes are used in existing energy saving features in base
stations [8, p. 8]. Our solution is designed to be implemented
in live mobile networks, and, thus, incorporates the monitoring
intervals supported by base stations today.

Even once an energy savings plan is obtained, the control
strategy allows the base station to react to traffic changes in
real-time and to, accordingly, decide whether to switch on
or off the capacity cell. Alternatively, such a control strategy
can be applied throughout the day, as a reactive approach, in
coverage-capacity cells that are under-utilized (i.e., the PRB
utilization is low). In such pairs, the utilization rarely exceeds
δ and thus, energy savings are possible through the control
strategy by setting PRBmin to δ. We evaluate the reactive
approach in combination with the forecasting methods later
in Section V.

V. EVALUATION

We study the opportunities for energy savings through
analysis of a real-world dataset comprising 80 pairs of cells.
We first describe the dataset and its properties, then dis-
cuss some preliminary processing required for the evaluation
setup. We then present a systematic study of the settings
for forecasters and how they impact energy savings that can
be achieved in a real network. We also present a thorough
investigation of the trade-offs between energy savings and
increased user migrations between inactive and active cells.
The analysis provides insights into implementing the energy
savings solution in real cellular networks, taking into account
the network operator concerns.

A. Setup

1) Dataset: We used real cell utilization data obtained
from an LTE network provider. The dataset contains the PRB
utilization data and the number of connected users with a
granularity of 15 minutes. The capacity-coverage relationship

https://facebook.github.io/prophet/docs/uncertainty_intervals.html
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Fig. 9: CDF of dataset dimensions: (a) potential and (b) weekly
change.

TABLE III: Range of values of potential and weekly change
(with semi-open intervals) dimensions for each percentile
value (k). For instance, k = 20 denotes the range of values
between the 10th and the 20th percentiles in the dataset.

k Potential Weekly change

10 (0.292 - 0.457] (1.945 - 4.653]
20 (0.457 - 0.575] (4.653 - 5.646]
30 (0.575 - 0.730] (5.646 - 7.084]
40 (0.730 - 0.816] (7.084 - 8.090]
50 (0.816 - 0.902] (8.090 - 9.056]
60 (0.902 - 0.941] (9.056 - 11.011]
70 (0.941 - 0.985] (11.011 - 11.980]
80 (0.985 - 0.994] (11.980 - 14.731]
90 (0.994 - 0.999] (14.731 - 19.270]

100 (0.999 - 1.000] (19.270 - 25.705]

is also included in the dataset. From this dataset, we identified
80 pairs of cells where data was available throughout the two-
month period; the related utilization pattern distribution was
representative of the larger dataset. To establish the latter, we
analyzed the trace pairs (i.e., the utilization traces of the paired
capacity and coverage cells) and characterized them according
to the following dimensions.
Potential, as the fraction of time that the sum of the coverage

and capacity cell utilization was below 70%. This directly
corresponds to the fraction of time that the capacity cell
could be switched off, at least with perfect knowledge of
future utilization. Therefore, it gives a measure of potential
energy savings. For instance, a potential of 1 indicates that
the capacity cell can be switched off permanently, while a
potential of 0 indicates that it is never safe to switch off
the capacity cell.

Weekly change, as the maximum discrepancy between the
weekly mean utilizations over the considered time period,
which captures the temporal variability of the cell. In-
tuitively, cells with high weekly change should be more
difficult to predict than others.

Figure 9 characterizes the considered trace pairs according
to the dimensions described above. We ensured that for each
dimension, the 80 trace pairs are representative of the larger
dataset. Figure 9a shows that about 40% of the cells have
a high potential for energy savings. Most cells (Figure 9b)
experience a weekly variation in mean under 15%, but there
are many cases in the dataset with an increase or decrease in
mean weekly utilization beyond this value.

For each dimension we created buckets according to the k-
th to (k− 10)th percentile of the values of the dimension, for
k ∈ [10, 20, 30, . . . , 100]. These are described by Table III and
later used in presenting the evaluation results.

2) Methodology: We used a trace-driven approach to eval-
uate our solution. We would like to recall that the dataset
described above contains PRB utilization metrics for each cell
reported every 15 minutes. However, the control strategy to
switch off a cell requires data at a smaller time interval, in
the range of seconds (Section IV-B). To this end, we first
generated such a trace containing the PRB utilization values at
1 ms intervals for the test period from the averaged 15-minute
values (see Section III-B). This resulted in TTI-level traces
for each pair of capacity and coverage cells. Specifically, each
utilization data point from the original dataset is expanded to
900,000 data points at the millisecond level in the TTI-level
trace. Once the expanded traces are obtained, we simulated
the implementation of the energy savings plan including the
control strategy for the time intervals specified in the plan.
We evaluated the energy consumed in the traces through the
widely adopted Greentouch model [3], which characterizes the
energy consumed by a base station at different load levels as
in Table IV. The model also includes advanced sleep modes
of a base station, wherein a subset of its components is
deactivated for further energy savings. In our evaluation, a
cell automatically enters the sleep modes if the utilization is
0% for a duration longer than the time required to enter the
sleep mode (i.e., the transition time in Table IV). However, an
LTE base station sends synchronization signaling every 5 ms
– even when the cell is empty [20] – preventing to employ
sleep modes 3 and 4.

Our evaluation did not account for the potential increase in
PRB utilization due to the additional messaging required for
moving users from one cell to another. However, signaling
messages are negligible with respect to typical traffic, and
thus, the related impact on overall energy consumption is
insignificant. Moreover, we have evaluated the impact of user
transitions in a conservative manner by assuming that all users
are migrated from a cell to another upon switching events. In
practice, when a capacity cell is switched on, only a fraction
of users needs to be migrated to it, as the coverage cell can
continue serving at least part of those already connected to it.

3) Considered methods and metrics: We evaluate the per-
formance of a subset of the forecasters10 introduced in Sec-
tion IV, namely, Prophet, ANN, MANN, LSTM and MEAN. Each
forecaster utilizes the data from the past seven days to fore-
cast the combined capacity-coverage utilization for the next
day11. The value of the operator-defined utilization threshold
δ (Section IV-B) was set to 70%12 and accordingly, PRBmax

was set to 70% and PRBmin to 65% in the control strategy to
implement the plan. The test period consisted of 32 days.

10We do not consider TBATS and HW due to their long fitting time and ARIMA
due to the large average MSE.

11We experimented with different settings for the number of days (7, 14,
21 and 42) included as the training data. We found no significant differences
in the energy consumed; thus, we chose 7 as this results in smallest amount
of data that needs to be sent to and processed by the forecaster.

12In fact, a PRB utilization over 70% may result in poor user experience
and potential drop of user sessions [47].
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TABLE IV: Power consumption and transition times in different states for a base station [3].

Metric Active mode Sleep mode
Full load No load 1 2 3 4

Power (W) 702.6 114.5 76.5 8.6 6.0 5.3
Transition time (ms) – – 0.0714 1.0 10.0 1000.0

We evaluated the forecasters with different settings. Specif-
ically, Prophet can be configured to use the predicted value
directly, referred as P0 or with a 95% uncertainty level, referred
as P95. Since Mean does not provide a prediction interval, we
use the 95th percentile of the past utilization values (for a fair
comparison) and refer to it as Stats. ANN, MANN and LSTM do not
support uncertainty intervals, and thus, their point predictions
are used directly in determining an energy savings plan, similar
to [11]. The forecasters with different settings are used to
determine the time periods in which a cell can be switched
off (according to Section IV-B).

In addition to the forecasting methods, we consider the
following two approaches for comparison purposes.
Oracle. This method assumes the actual utilization of both the

capacity and coverage cells at a 15-minute granularity are
known in advance for the next day. This perfect forecast is
then used to select the time periods when the capacity cell
can be switched off, i.e., when the combined utilization of
both cells does not exceed δ percent. Oracle represents the
optimal savings possible when using a forecasting method
to plan the intervals when the capacity cell is switched off.

Reactive. This represents an opportunistic energy savings
solution that tries to greedily save energy by switching off
the capacity cell whenever possible. This is the same as
using the control strategy throughout the day. Specifically,
the capacity cell is switched off whenever the combined
utilization of the capacity and coverage cell goes below
70% for at least 5 minutes. It then remains off as long
as the combined utilization does not exceed 70% for 2
minutes. This approach is similar to the one proposed in
[16], wherein the cells are switched off whenever13 the
combined utilization is below a certain threshold. We refer
to this as React throughout the article, for conciseness.
Since this method operates at smaller time intervals than 15
minutes, it may achieve higher energy savings than Oracle
or any other forecasting method.

We evaluate the performance on the basis of the following
metrics.
Energy savings (ES). We measure the difference in the en-

ergy consumed when the capacity cell is switched off (and
traffic offloaded to the coverage cell) compared to that
when both cells are on, expressed in kilowatt hours (kWh).

Number of UE transitions. We measure the number of users
affected whenever a capacity cell is switched on or off.
This is calculated by summing the number of user equip-
ment (UEs) associated with the capacity cell at each time
the cell is switched on or off. This metric represents the
overhead in switching off cells.

13A strategy to switch on the cells in case of excess load is not defined in
[16], which is crucial in a real network.

Energy savings per UE transition. We calculate the differ-
ence in the energy consumed when the capacity cell is
switched off compared to that when both cells are on (in
kWh) divided by the total number of UE transitions. This
metric captures both the absolute energy savings and the
impact on the users: a higher value indicates that the energy
savings are obtained with lower impact on the users.

Occurrence of excess load. This metric denotes the number
of times the PRB utilization of the coverage cell exceeds
70% (aggregated every 10 seconds) during the periods
when the capacity cell is off. A high PRB utilization
indicates that the cell is congested when handling the extra
traffic from the capacity cell that is off.

Each reported metric is calculated per test day and pair
of cells, and thus, the values are reported as average over the
pairs of cells and over the test period of 32 days. Accordingly,
we also report the standard deviation in the obtained results,
which captures the variation over cell pairs.

B. Obtained results

1) Comparison of methods across dataset dimensions:
We performed a segmentation analysis of results by grouping
cell (or trace) pairs according to the percentile value, k,
of dimensions reported in Table III. The most interesting
dimension is potential (Figure 10), as it exhibits a clear
dichotomy between the trace pairs in terms of both the number
of UE transitions by the different strategies, as well as the
energy savings achieved by them. Figure 10a shows that,
rather intuitively, energy savings increase with the potential.
Both React and Oracle achieve the highest energy savings,
with React performing slightly better than Oracle. The reason
for this is that Oracle is based on a pre-planning schedule
computed using data aggregated to 15 minute intervals. As a
consequence, the aggressive switching off policy provided by
React, which operates at a finer timescale, achieves slightly
more energy savings. However, Oracle does not incur any
excess PRB utilization (Figure 10d), whereas React is the
worst method with respect to this metric. Next, ANN, MANN, LSTM
and P0 achieve similar energy savings, whereas Stats and P95
have lower average savings as they are more conservative (i.e.,
the capacity cell is switched off based on the 95th percentile
of observed values or the upper bound of the 95% prediction
interval, respectively). However, this conservative approach of
P95 allows it to maintain a lower number of user migrations
(Figure 10b).

Figure 10b shows the average number of UEs transitioned
by each strategy per day. The number of UE transitions is less
than 30 for cells with potential values in the 10th percentile
and starts increasing until the 30th percentile range, and then
decreases afterwards. As expected, when the potential is low,
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Fig. 10: (a) Energy savings (kWh) per day (on log scale), (b) number of UE transitions per day, (c) energy savings (kWh) per
UE transition (on log scale), and (d) occurrence of excess load per day, averaged over all trace pairs as a function of potential.
Each bucket (i.e., x tick) on the x-axis corresponds to 10% of the trace pairs.

the cells tend to be highly utilized and the opportunity to
switch off the capacity cell is limited, which in turn limits
the number of UE transitions. The peak of the number of UE
transitions occurs for potential in the 30th percentile range
(specifically, 0.575 − 0.730) as cells in this range have a
utilization level around δ. This results in more transitions if
point predictions are in the range of δ and could result in
more cycling between on and off states if there is a variation
in actual observed traffic. Thus, P95, with its conservative
approach, has far fewer UE transitions (10−29) than the other
strategies (when the potential is less than 0.902). P0 follows
a similar pattern though with more UE transitions (19 − 48).
Oracle and React exhibit higher and similar numbers of UE
transitions (27 − 67), while Stats is more inconsistent and
occasionally obtains the maximum value (i.e., for potential in
the 50th percentile range). Interestingly, on the right side of
the figure (with potential at least 0.902), the number of UE
transitions significantly reduces for most strategies. In detail,
P0 and React require the fewest UE transitions in this region.

As the cells are less utilized, there are fewer users that need
to be moved between cells for all strategies.

Next, in terms of energy saved per UE transition, Figure 10c
indicates that P95 significantly outperforms other methods
(with a p-value< 0.05) for potential less than 0.902. However,
in cells with higher potential, LSTM, ANN, MANN and P0, being
point predictors, are able to achieve a higher energy savings.
This is because the negative effects of under-estimating deliv-
ery ratio are more rare as the cells are under-utilized in any
case. Finally, P95 and Stats result in the lowest occurrence of
excess load (Figure 10d), whereas a reactive approach such as
React incurs more in excess load.

Finally, for the weekly change dimension, we do not observe
a significant difference between the point predictors or those
with uncertainty intervals. However, Figure 11 shows that
mean occurrence of excess load increases as the week-to-
week-change values grows. Here again, P95 is able to maintain
a lower occurrence of excess load conditions due to its
conservative approach.
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Fig. 11: Average occurrence of excess
PRB utilization per day as a function of
the week-to-week-change.

TABLE V: Overview of results averaged for pairs of cells with low potential.

ES/UE trans.
(kWh)

ES (kWh) Occur. excess load
(#)

React 0.042 (±0.032) 1.126 (±0.346) 1.739 (±1.709)

Stats 0.034 (±0.025) 0.692 (±0.246) 0.166 (±0.262)

Oracle 0.040 (±0.030) 1.109 (±0.344) 0.000 (±0.000)

LSTM 0.046 (±0.039) 0.954 (±0.320) 1.055 (±1.107)

ANN 0.039 (±0.032) 0.977 (±0.330) 0.873 (±0.920)

MANN 0.038 (±0.035) 0.962 (±0.322) 0.880 (±0.995)

P0 0.049 (±0.039) 0.974 (±0.319) 0.991 (±1.092)

P95 0.055 (±0.046) 0.574 (±0.207) 0.259 (±0.398)

2) Difference between cells with high and low potential:
Table V presents the overall results for the 40 pairs of cells
with a low potential. The highest energy savings per UE
transition is achieved by P95. Interestingly, Oracle achieves
a lower value in this respect. This indicates that the prediction
interval is more important than the accuracy of forecasting
to ensure that few users are impacted when designing energy
savings solutions. For instance, Figure 13 shows the average
number of UE transitions in detail over the 32 days in the test
period. As we can see from the figure, P95 is able to maintain a
lower number of UE transitions on all days as compared to all
other methods. Here, we also draw a distinction between the
UE transitions as a consequence of using a forecasting method
and React. Transitions can be better planned with forecasters,
as the off-periods are known in advance. For instance, the
operator can implement a graceful shutdown of the capacity
cell according to the schedule, by gradually powering down
the cell and migrating traffic gracefully to the active cell. On
the other hand, all decisions to switch on or off the cell with
React are unplanned and may result in service degradation for
users upon frequent switches.

Next, Figure 12 presents a summary of the metrics for
the 40 pairs of cells with a high potential. We observe that
in such cells, the highest energy savings are obtained by
React and the forecasters that use point predictions when
compared to P95. For example, React provides the highest
energy savings (1.56kWh) which is significantly better than
1.37kWh achieved with P95. However, there is no significant
difference between React and the point predictors (P0, LSTM,
ANN or MANN) in terms of the energy saved per UE transition.
Thus, it is reasonable to use any of the point predictors or even
React in such cells to achieve an overall higher energy savings.
Also, React is as good as the point predictors (P0, LSTM, ANN
or MANN) in terms of the energy saved per UE transition (i.e.,
no significant difference). An operator would prefer React
for high potential pairs of cells for several reasons. First,
the daily pattern of a high potential pair of cells may not
ideal for forecasting methods (e.g., see Figure 14). Secondly,
a forecasting method works exactly the same as React when
its pre-plan switches off the capacity cell for the whole day.

3) Stability of the energy savings system: Finally, we
evaluate how often the capacity cell is switched on and off
in succession, commonly referred to as ping-pong effect [48].
Such ping-pong effect is undesirable, as the users are migrated
from the capacity cell to the coverage cell for only a short
duration (i.e., 10 minutes) before being moved back again
to the capacity cell that is switched on in the next time
interval. We find that the control strategy at the base station
(Section IV-B) prevents the cell from switching on and off
the cells in consecutive 15-minute intervals. Specifically, a
capacity cell is switched off only after observing whether the
actual PRB utilization (of both the cells) is below PRBmin

for five minutes. In the test period of 32 days, there are 233
intervals where the planned duration is 15 minutes when P95
is used to forecast the off periods. Nevertheless, over all 80
pairs of cells, a capacity cell is switched off for 10 minutes
(excluding the 5-minute monitoring interval) only 185 times
over the 32-day test period. Thus, the average occurrence of
this effect is less than 0.07% over all pairs of cells. This
demonstrates the importance of having a control strategy to
respond to real-time traffic. However, since the planned off-
periods are known in advance, an operator may also choose to
remove such 15-minute intervals from the planned off-periods.
In contrast, React switches off cells whenever the utilization
goes below PRBmin and is thus suitable only for high potential
cells, where the cells are typically less utilized.

VI. DISCUSSION

a) Summary and main insights: The above analysis of
cell pairs provides a framework for operators to select methods
appropriate for their network based on: the potential of the cell
pairs, and; what they deem most important in their network.
For instance, given our dataset, using P95 for pairs with
potential less than 0.902, and React for the rest is the best
strategy for minimizing the number of UE transitions. We
note that the potential can be calculated using the previous
few weeks of utilization history (e.g., aggregated to 15 minute
intervals), which is likely to be available to an operator.

Finally, the energy savings when expressed as a percent
show greater variation between high and low potential cell
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Fig. 12: (a) Energy saved (ES) per day (kWh) (b) Energy savings (kWh) per UE transition, and (c) Number of UE transitions
per day for 40 cells with high potential.
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Fig. 13: Average number of UE transitions for pairs of
cells with potential below 0.902 over 32 days.
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Fig. 14: Utilization trace for a sample cell pair with high
potential where there is no daily pattern, which is not
ideal for using forecasting methods.

pairs. For instance, as a percentage of the energy consumed
when both cells are on, Oracle can achieve 22%–33% energy
savings for high potential cases and around 6% for low values
of potential (although in terms of absolute numbers they vary
between 1 to 1.5 kWh). The large difference in the energy
savings achievable for cell pairs with high and low potential
indicate that the composition of cells with different utilization
levels used for different studies may result in different levels
of energy savings. This can be one of possible reasons for
the different degrees of energy savings claimed by different
companies [49, 50] or in the literature [21]. Nevertheless, in
our network, an average of 10.24% energy savings is achieved
by utilizing P95 in the low potential cells and React in high
potential cell pairs. This is in line with the energy savings of
approximately 6% reported in [51] for scenarios where cells

are shutdown.
b) Extensions to other scenarios: Our solution deter-

mines energy saving plans for pairs of capacity-coverage cells
at each base station. However, there is typically more than
one capacity cell per base station. In this case, it is possible
to extend our approach by prioritizing capacity cells and then
switching them off according to the assigned priority (e.g., by
increasing average utilization). The forecasting of utilization
still takes place over pairs of cells, as capacity cells are
switched on or off one at a time. Moreover, the O-RAN
architecture allows network operators to collect and analyze
data from multiple cells that are not necessarily located at
the same base station. In fact, our solution is applicable as
long as a coverage-capacity relationship exists, such as in
heterogeneous networks with macro coverage cells and small
cell base stations for added capacity [15].

c) Energy savings in 5G networks: Our results focused
on an LTE network, as the dataset we had access to is based
on such a technology. However, the proposed approach could
be applied to 5G networks as well. In fact, our evaluation
incorporates the periodic synchronization signaling in LTE
that takes place every 5 ms, thereby preventing a cell from
entering deeper sleep modes [20]. In contrast, the periodicity
of such signaling can be configured to as large as 160 ms in
5G [35, 36]. As a consequence, base stations are able to enter
deeper sleep modes when synchronization is more sporadic.
Thus, instead of switching off the cell, the energy savings plan
can configure a larger periodicity of signaling during the off-
periods. Our preliminary results have shown that considerable
energy savings are possible in underutilized capacity cells by
increasing the signaling periodicity to 160 ms. An advantage
of this approach is that users need not be moved between cells.
However, such an approach would need to be aware that the
periodicity of signaling is affected by the type of services –
for instance, low-latency services cannot tolerate an increase
in delay due to less frequent signaling.

VII. RELATED WORK

Reducing energy consumption in mobile networks is an
active research area [6, 52, 53]. More specifically, several
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works target switching off base stations during periods of
low utilization [11, 14, 17–20, 54]. In this context, Han et
al. [55] survey several load-aware optimization problems that
switch off under-utilized base stations. However, many works
focus on the impact of switching off cells on interference and
re-association of users to the active base stations [19, 54].
For instance, Beitelmal et al. [19] analytically evaluate energy
savings of switching off cells for the special case where base
stations are evenly distributed to cover a certain geographical
area. Feng et al. [54] propose an optimization problem to
switch off under-utilized base stations to improve energy effi-
ciency through power control. Their solution also determines
the optimal association of users to active base stations. Rached
et al. [18] propose an algorithm that dynamically switches off
base stations while satisfying a given power budget and a min-
imum percentage of successfully served users. Their solution
determines the time periods during which base stations are
switched on or off based on an operator-defined risk level
and by observing the traffic in real-time. In contrast to the
approaches above, our solution considers pairs of coverage-
capacity cells within a single base station. Consequently, it
does not require coordination between separate base stations.
Moreover, the articles described above address the problem
of energy-efficient mobile networks by using either analytical
modeling or simulations. Instead, we focus on a solution that
can be easily applied to real cellular networks.

Some works in the literature are grounded on data available
from cellular network operators. Among them, Vallero et
al. [11] predict the traffic in each cell and use this forecast
to switch off cells when underutilized. Next, Parzysz and
Gourhant [20] propose the use of flexible duty cycles, so
that the base stations can be put in deeper sleep modes in
periods of low utilization. Their solution requires knowing the
average utilization in advance; however, they do not focus on
forecasting utilization in their article. Dalmasso et al. [16]
present a simple heuristic that monitors the utilization at
the beginning of each half hour and reactively switches off
underutilized base stations for that duration. We evaluate such
a reactive approach in this article and find that it works best
for low utilized cells, whereas, many users need to be migrated
between cells in busier cells. Peng et al. [14] present a traffic-
aware algorithm to select active base stations in 3G networks.
Their solution divides the network area into grid cells and
uses the traffic profile information to determine active sets of
base stations from those with overlapping coverage. However,
determining such a grid may be complex, especially for
scenarios with a high density of base stations [15], such as in
urban environments. In contrast, we target switching off cells
within a single base station to save energy, without requiring
global information about the network. As a consequence, our
approach scales to cellular networks with a large number
of base stations. To the best of our knowledge, this article
presents the first comprehensive data-driven study of energy
savings for modern cellular networks based on forecasting
PRB utilization.

Traffic prediction in cellular networks is an active research
area as well [11, 12, 21, 56]. The Holt-Winters (HW) model
is used to predict the hourly utilization at base stations in

[21, 56]. However, the forecasting performance is not com-
pared to other alternatives. Instead, we evaluate the HW model
and show that it is not as accurate as other forecasting methods
for our traces with a 15-minute granularity. Vallero et al. [11]
propose feed-forward artificial neural networks to predict the
hourly traffic in cells and compare their approach to Long
Short Term Memory (LSTM) networks [57]. We evaluate both
the neural networks and LSTM in this article and find that the
absence of an uncertainty interval in the predictions limits their
use in busy cells for energy savings. Xu et al. [12] employ
a distributed Gaussian process to predict hourly utilization
and evaluate their solution on a dataset collected from a real
network in China. Their solution also includes a measure of
uncertainty in the predicted results. However, their proposed
solution has a high computational complexity and would need
to be tuned for each network in which it is deployed. In
contrast, we focus on automated forecasting methods that
require only minimal configuration. Azari et al. [58] show
that LSTM outperforms ARIMA in predicting user traffic at
a timescale between 2 to 60 seconds. However, the evaluation
was carried out on a traffic trace generated by the authors.
Nevertheless, we also find that LSTM performs better than
ARIMA when forecasting traffic at 15-minute intervals in our
dataset. Finally, Albanna and Yousefi’zadeh [59] observe that
certain cells are able to handle more users before the PRB
utilization reaches a certain threshold (80% in their article).
Accordingly, they propose a deep neural network that predicts
the average number of connected UEs that cross a utilization
threshold of 80% . Such a predictor can help set different cell-
specific utilization thresholds in our energy savings solution
to maximize the energy saved per UE transition. A few
works have addressed the prediction of network utilization
and traffic at shorter time intervals. Trinh et al. [27] propose
the use of LSTM networks to predict traffic (in Mbps) at the
TTI-level (1 ms) and find that LSTM outperforms ARIMA
models. More recently, Rostami et al. [28] present an LSTM
network to predict traffic (packet arrival times) in the next
1 to 30 TTIs. They find that the prediction accuracy is high
when predicting arrivals up to 15 TTIs ahead. However, their
evaluation considers only lightly loaded base stations with the
dataset captured between 1 a.m. and 6 a.m. In contrast, we
find that the utilization at TTI-level is a stationary time series
in our dataset, and thus, does not have a predictable pattern
in the long-term. In a different scenario of forecasting data
center load, Mozo et al. [60] observe that the utilization trace
at one second granularity contains a lot of noise. Specifically,
they find that at a one-second resolution, the forecaster (using
neural networks) does not outperform a naive approach that
simply forecasts the last observed value.

Finally, an analysis of traffic utilization patterns in TTIs has
not been explored in the literature. The closest relevant work is
presented by Peng et al. [61]. The authors propose compound
probability distributions to model the packet arrivals and their
lengths in a TTI. Specifically, the distributions model the
arrival of a heavy-tailed number of heavy-tailed packet lengths.
In this article, we model the distribution of PRB utilization in
TTIs with a beta distribution to represent the U-shaped pattern
of utilization values.
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VIII. CONCLUSION

In this article, we proposed a data-driven approach to
forecast the time periods during which an under-utilized cell
can be switched off and save energy in cellular networks.
To this end, we evaluated several state-of-the-art forecasting
tools in predicting future utilization in traces obtained from
a live LTE network. Our evaluation indicates that the design
of the energy saving solution does not depend only on the
accuracy of the forecasting tool. This is because switching off
a capacity cell at a base station impacts the UEs (end users),
who then have to be migrated to the active coverage cell. In
this context, a network operator typically aims to minimize
the number of user transitions. Thus, a forecasting tool that
provides prediction or uncertainty intervals is crucial to plan
the durations when a cell can be switched off. Specifically, a
conservative approach that utilizes the upper bound of the 95%
prediction interval is able to achieve a higher energy savings
per migrated UE. Nevertheless, in cells that are usually under-
utilized (for instance, those that can be switched off during
the whole day), the uncertainty interval is not as important,
and a point predictor is able to achieve higher energy savings.
Overall, our evaluation showed that by switching off capacity
cells based on predicted load, an energy savings of 10.24% is
realistically possible. The analysis considered only switching
off one capacity cell at a time, and thus, more promising en-
ergy savings are expected when more capacity cells are turned
off. Due to the encouraging results, we aim to implement such
a feature in a real cellular network. In this article, we have also
proposed a method to generate PRB utilization traces at the
TTI-level from aggregated data. Thus, researchers can evaluate
the TTI trace generation with their own datasets. Indeed, a
Poisson model may also be used for certain ranges of average
utilization values [61]. Although we find the expanded TTI
trace suitable for our evaluation, further modifications of the
algorithm are required to obtain a better fit for PRB utilization
at the TTI-level. Evaluating other such models remains as
future work, and our analysis provides a valuable step in this
direction.
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