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Federated Machine Learning: Survey, Multi-Level
Classification, Desirable Criteria and Future Directions in

Communication and Networking Systems
Omar Abdel Wahab, Azzam Mourad, Hadi Otrok and Tarik Taleb

Abstract—The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional
model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern
systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of
processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the
central entity gave rise to a decentralized machine learning approach called Federated Learning. The main idea of federated learning is
to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any
third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems
from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature,
where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys
focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management
and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them
design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a
comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and
highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we
design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that
they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the
topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this
particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions
that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our
survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level
classification scheme it presents.

Index Terms—Federated Learning; Federated Learning Tutorial; Multi-Level Classification; Statistical Challenges; Transfer Learning;
Machine Learning; Security; Communication and Networking Systems.
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1 INTRODUCTION

The fast-growing adoption of Internet of Things (IoT) and social
networking applications is leading to an unprecedented growth in the
volumes of data that are generated on a daily basis. In particular,
the International Data Corporation (IDC) anticipates that, by 2025,
there will be 79ZB of data created by billions of IoT devices,
pushing organizations to rethink their data governance, retention, and
usage strategies. Storing and analyzing such large volumes of data
has long been done on the cloud, owing to the large number of
advantages that the cloud computing technology provides, such as
cost efficiency and unlimited computing and storage capabilities [1],
[2], [3]. Nonetheless, due to the ever-rising data privacy concerns
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and network limitations, a pure centralized cloud-based data storage
and analytics approach becomes unrealistic. In fact, data owners often
feel concerned about sharing their data with a third-party whether it
is a well-known organization or mysterious to them. In this context,
strict legislations such as the US Consumer Privacy Bill of Rights1

and the European Commission’s General Data Protection Regulation
(GDPR)2 have been designed to protect users’ privacy. For instance,
the Articles 5 and 6 of the GDPR restrict the data collection and
storage to only what is user-consented and decidedly indispensable for
processing. Moving to the network limitation problem and emergency
of low-latency applications requiring fast analysis, the fact that the
cloud data centers are often deployed in locations that are far from
those of the data owners leads to high data processing delays due to
the long-distance communications. In the light of these two crucial
factors, the trend in data storage and analysis is shifting from being
cloud-based and centralized to being distributed and on-device [4],
[5]. The key enabler technology for such a shift is that of edge
computing [6], [7], wherein edge nodes such as smartphones, sensor,
micro servers, autonomous vehicles and home gateways are supplied
with computing and storage capabilities to enable them to host
and analyze data locally within minimal delay. Edge nodes then
periodically communicate with the cloud servers to send them the
processed data for historical and long-term storage.

1. https://www.congress.gov/bill/116th-congress/senate-bill/2968/text
2. https://gdpr.eu/data-privacy/
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In order to make this idea feasible, it was necessary to adapt the
machine learning process to this vision in order to enable what is
known as the machine learning at the edge. In this context, the new
paradigm of Federated Learning (FL) has been proposed in 2016 by
McMahan et al. [8] to enable local and distributed machine learning
training at the level of edge nodes or end devices. The main idea
of federated learning is to enable a large number of edge devices
or servers storing local data observations, called clients, to locally
and collaboratively train one single machine learning model without
having to share their raw data. A coordinating server (often called
parameter server3) then aggregates the contributions from all the
clients, derives an updated model and shares this model with the
participating clients to benefit from their learning experience and to
enable them to pursue their local training in future iterations. Feder-
ated learning substantially differs from the centralized (cloud-based)
machine learning paradigm and poses additional unique challenges in
the following aspects [9]:

Privacy: In federated learning, the raw data never leaves the
user’s device since the training is done locally on each device.
Nonetheless, having more users involved in one collaborative
model increases the risk of launching inference attacks that
aim to infer sensitive information from the users’ training data;
Communication: In federated learning, no raw data need to
be communicated with any central server, which reduces the
amount of information that needs to be transmitted over the
network. However, since the machine learning model is trained
collaboratively, many model updates need to be communicated
between the clients and the server over many iterations, which
poses additional communication costs.
Latency: With federated learning, the decision-making mod-
els are trained locally on the edge/end devices instead of being
sent to the cloud, leading to lower latency and waiting times.
Statistical Heterogeneity: Given that the training data on
each client device depends on its own usage patterns, the local
dataset of one client in federated learning is not expected to
be representative of the overall data distribution. Similarly, as
clients use their services or applications in varying degrees,
the local datasets across clients tend to have varying sizes.
Massive Distribution: The number of clients that participate
in the federated training is expected to be significantly larger
than the average number of training samples per client.
Connectivity: In federated learning, client devices are fre-
quently offline or on slow or expensive connection. This means
that the connectivity in federated learning is limited and that
the process of selecting clients to participate in the federated
training might be biased toward certain conditions (e.g., local
time zone, device being charged or not, etc).

From the technical perspective, federated learning can be implemented
using two main strategies: Horizontal Federated Learning (HFL) and
Vertical Federated Learning (VFL) [10]. In HFL, the participating
client devices share the same set of features but target different
populations. An example of HFL could be two banks operating in
the same country. Even though the clientele of the banks is non-
overlapping, their data are likely to have a similar feature space since
they adopt similar business models and operate in the same country. In
VFL, the client devices share the same population but target different
sets of features. An example of VFL is two companies offering two
different services (e.g., counselling and shipping) but having a large
intersection at the level of the clienteles. Such companies might be
interested in cooperating on the (distinct) feature spaces they own to
gain each a better understanding about its own business situation.

3. In the rest of the paper, we use the term parameter server to refer to the
cental coordinating server.

1.1 Related Work

Few recent survey articles on federated learning have been pro-
posed. We discuss hereafter these surveys and highlight the unique
contributions of our work. In [11], the authors provide a detailed
survey on the challenges and research directions of federated learning.
In particular, they discuss the challenges related to communication
efficiency, data privacy, data heterogeneity and model aggregation.
In [12], the authors classify the federated learning approaches based
on six aspects, i.e., machine learning model, data distribution, com-
munication architecture, privacy mechanism, scale of federation and
motivation of federation. In [13], the authors discuss the unique
features and challenges of federated learning, offer a broad overview
of the literature and highlight several future research directions. In
particular, they consider four challenges of federated learning, i.e.,
communication-efficiency, systems heterogeneity, statistical hetero-
geneity and privacy. In [10], the authors discuss the definitions,
architectures and applications of federated learning framework. They
classify the literature of federated learning based on the learning
architecture, resulting in three categories: vertical federated learning,
horizontal federated learning and federated transfer learning. Different
from these surveys, we consider in this work a wider set of challenges
such as client selection and scheduling, and service pricing. Moreover,
different from these surveys, we provide in this work a more fine-
grained three-level classification of the current literature based on
the challenge that they address, the sub-challenges that exist within
each challenge and the techniques used to address each particular
sub-challenge. Furthermore, we define a set of desirable criteria and
future research directions that we believe are necessary to address
each underlying challenge.

The potential of federated learning in the domains of wireless
communication and mobile edge network has been studied in [14] and
[15] respectively. The authors of [14] investigate the role of federated
learning in the emerging 5G technology. Several use cases that
demonstrate how federated learning could be effective in addressing
key challenges related to 5G are discussed. In the context of edge
computing and content caching, discussions supported with simulation
results show that federated learning is an effective means to predicting
popular content on mobile devices while preserving the privacy of the
users’ data. Moving to spectrum management, federated learning can
be capitalized on to allow each radio to transfer its local utilization
model to a central aggregator, which then leverages these data to
create a global learning model. This global model can then be used to
derive efficient spectrum access decision-making models. Finally, in
the context of 5G core network, vertical federated learning, in which
distributed datasets share the same sample space but differ in the
feature space, can be used to design intelligent network management
techniques. The idea is to allow each entity to manage some specific
features (e.g., access mobility management function, session manage-
ment function, etc.) of the whole dataset that englobes the overall
users of the network. Different from our work which addresses the
different aspects of federated learning, this survey is restricted to
discussing the role of federated learning in the domain of wireless
communications. In [15], the authors present a survey that combines
the concepts federated learning and Mobile Edge Computing (MEC).
After presenting a tutorial on federated learning and explaining its
role as an enabling technology for MEC optimization, the authors
classify the federated learning approaches into two categories, i.e.,
federated learning at mobile edge networks and federated learning
for mobile edge networks. The first category gathers the approaches
that address the challenges of implementing federated training on
the edge devices, while the second category gathers the approaches
that investigate federated learning as a means for optimizing MECs.
These two surveys are restricted to only discussing the potential
of federated learning in different aspects of networking, but they



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 3

provide no classification of the existing federated learning literature
nor desirable criteria for future solutions. In this survey, we believe
that, besides illustrating the potential of federated learning in the
communication and networking domain, providing a multi-level fine-
grained classification of the federated learning literature in general
would help researchers in the domain better understand the field which
would enable them to design more detailed and efficient solutions.

In [16], the authors survey the current progress on federated
learning in the domain of healthcare informatics. They classify the
current approaches in terms of statistical challenges, communication
efficiency, privacy and security issues. Different from this survey
which is specific to the healthcare informatics domain, our survey is
oriented to the communication and networking research community.
In [17], the authors survey the topic of distributed machine learning
with federated learning as an example. The distributed machine
learning is divided into three main processes, i.e., machine learning
optimizers, distributed optimization and data aggregation. Thereafter,
the federated learning framework is introduced and discussed only
from the perspective of communication efficiency. Different from
this survey, our survey is specific to federated learning, where we
address the different aspects and application domains of this emerging
concept.

We summarize in Table 1 the main similarities and differences
between our survey and the existing surveys on federated learning.

1.2 Contributions
The motivation for this survey stems from four main observations. The
first one is that the existing survey papers focus only on some com-
mon challenges of federated learning such as statistical challenges,
communication efficiency, security and privacy. Nonetheless, there
exists some other substantial challenges that need further investigation
such as service pricing and client selection and scheduling. In this
work, we provide a comprehensive survey that considers all these
aspects to provide the reader with a holistic view of the federated
learning paradigm.

The second observation is the lack of a fine-grained multi-
level classification of the federated learning literature, where
the classification schemes in the existing surveys are based on only
one aspect such as the addressed challenges, learning architecture
or role of federated learning in a particular application domain (i.e.,
healthcare and networking). In this work, we take one step ahead
and propose a three-level fine-grained classification scheme. First, we
classify the federated learning approaches based on the challenge that
they address. Then, we classify each corresponding challenge into
several specific sub-challenges to enable a better understanding of the
topic. Finally, we provide a classification within each sub-challenge
based on the technique used to address the underlying sub-challenge.
Even though a couple of survey papers [15], [14] discuss the potential
of federated learning in the networking domain, these surveys do
not provide any classification of the federated learning literature.
Different from these papers, our vision in this work is that providing a
detailed and fine-grained classification of the broad federated learning
literature in an accessible fashion would help the communication and
networking research community better understand the tiniest details
in the domain. This would enable them to design more thoughtful
and to the point solutions. For example, by learning the statistical and
security challenges that encounter federated learning along with the
techniques that are used in the literature to address them, a researcher
in the domain of communication and networking would be able
to design a more holistic federated learning-based communication
solution that also deals with the non-Independent and Identically
Distributed nature of the data and the malicious attacks that can be
launched against the distributed training process.

The third observation is the lack of explicit and elaborate
directives for researchers to help them design future federated

learning solutions. We define in this work, for each underlying
challenge, a set of desirable criteria and future research directions that
we believe are helpful for the success and effectiveness of the future
federated learning solutions. In summary, the proposed classification
scheme and criteria aim to help (1) readers to easily visualize the
current challenges of federated learning along with the state-of-the-art
techniques that are employed to address them; (2) research community
to have a clear roadmap on how to design prospective solutions based
on a set of explicit and well-defined criteria; and (3) beginners in the
field to easily grasp the main concepts of federated learning and to be
on the lookout for the current trends in this emerging field.

We also provide an accessible tutorial on FL, its alternative
learning paradigms (i.e., distributed learning, parallel learning, en-
semble learning and gossip learning), and its enabling technologies
(i.e., Internet of Things (IoT), cloud computing, edge computing
and 5G/6G networks). Additionally, we discuss the applications of
federated learning in the domain of communication and networking
and highlight some future promising applications of federated learning
in this domain.

1.3 Survey Methodology
The approaches chosen to be included in our survey are selected
from papers published between 2016 (the year when the concept of
federated learning was first introduced) to 2020 in refereed journals
and conferences as well as in preprints, resulting in 130 surveyed
papers. We believe that we have covered most of the papers that ad-
dressed problems related to federated learning. The strategy followed
to gather these papers consisted in (1) searching for the keyword
“federated learning” on many existing search engines; and (2) tracking
the citations of the collected papers to make sure that we cover the
articles that may not be returned in the search engine’s result set.

The classification scheme consists of three interdependent lev-
els. In the first level, the current federated learning approaches are
categorized based on the high-level challenge they address. In the
second level, each high-level challenge is broken down into several
specific low-level sub-challenges. In the third level, a classification
within each sub-challenge is provided based on the technique that is
used to deal with that sub-challenge. Note that in some cases, it is
possible for an article to appear in more than one category of high-
level challenges. For example, if a certain article mainly addresses a
statistical challenge of federated learning but also provides a privacy-
preservation component, the article would appear under both the
statistical challenges category and privacy concerns category. In such
a case, only the statistical part of the article is classified and discussed
under the statistical challenges category, whereas the privacy part is
classified and discussed under the privacy concerns category.

The criteria that are defined in this survey have been inspired
by our readings of the surveyed papers. We do not claim that our
proposed criteria cover all the necessary aspects for improvement;
but we believe that these criteria could be quite useful for designing
innovative solutions and overcoming some persisting challenges. It is
worth mentioning that, in some cases, not all the criteria defined for a
particular aspect (e.g., communication efficiency, client selection and
scheduling, etc.) need to be met to design an “ideal solution”. A subset
or a combination of these criteria might be enough to design a good
solution.

1.4 Survey Insights
As mentioned earlier, our classification scheme consists of three
levels. The first classification level, which is based on the high-
level addressed challenge, resulted in six categories, i.e., statistical
challenges, communication efficiency, client selection and schedul-
ing, security concerns, privacy concerns and service pricing. This
classification scheme is depicted in Fig. 1. We provide in Fig. 2
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Fig. 1: Classification of the federated learning papers based on the high-level challenge that they address
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Fig. 2: Percentage breakdown of the federated learning literature: The approaches that address statistical and communication efficiency

challenges account for 50% of the existing literature.
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Fig. 3: Percentage breakdown of the federated learning literature based on the publication type: Most of the federated learning papers are

published as preprints.

percentage breakdown of the federated learning literature based on

the first-level classification scheme. By observing this figure, we

conclude that the statistical and communication efficiency challenges

have been investigated the most, where each of them accounts for

25% of the surveyed papers. Thereafter comes the privacy concerns

category with 19% of the surveyed papers, followed by the client

selection and scheduling with 14% of the surveyed papers, the security

concerns category with 10% of the surveyed papers, and finally the

service pricing with 7% of the surveyed papers. The second and third-

level classifications are explained later in the paper in a fine-grained

way within each high-level challenge category. We provide in Fig. 3

percentage breakdown of the federated learning literature based on

the publication type. We notice from this figure that most federated

learning articles (i.e., 56%) are published as preprints. On the other

hand, conferences account for 23% of the papers while journals

account for 21%. These percentages can be attributed to the fact that

federated learning is a relatively new research topic combined with

the fact that the publication time can sometimes be long. Therefore,

we expect that, in the few coming months and years, many of the

surveyed papers will move from preprints to be published as journals

or conferences.

1.5 Survey Outline

In Section 2, we explain the concept of federated learning, discuss

the commonalities and differences between federated learning and

other related learning concepts and finally clarify the links between

federated learning and the emerging technologies such as Internet of

Things (IoT), cloud computing, edge computing and 5G/6G networks.

We also review the applications of federated learning in the commu-

nication and networking domain.
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TABLE 1: Comparative summary between our survey and the existing surveys on federated learning

Approach Similarities Differences

Kairouz et al. [11]
Similar to our survey, this survey addresses some common chal-
lenges of federated learning such as Non-IID Data, communication
efficiency, user data privacy, security concerns and bias mitigation.

The classification scheme proposed in this survey is quite high-level, where for
example the statistical and communication concerns are discussed under one
category called “Improving Efficiency and Effectiveness”.
No classification is provided for the techniques that are proposed to address the
discussed challenges.
Our work addresses additional challenges that are not mentioned in [11] such as
reliable client selection, resource management and training service pricing.

Li et al. [12]
Similar to our survey, this survey addresses some common chal-
lenges of federated learning such as privacy concerns and commu-
nication efficiency.

This work provides a system-level classification scheme of federated learning
that consists of six aspects, which are: data distribution, machine learning
model, privacy mechanism, communication architecture, scale of federation, and
motivation of federation.
The presented classification scheme is not based on a clear criterion, which
might be confusing for the reader. For example, communication and privacy are
challenges of federated learning, while the scale and motivation of the federation
are rather system design choices.
Our classification scheme is more systematic, multi-level and based on clear
criteria at each level.

Li et al. [13]

Similar to our survey, the classification scheme provided in this
survey is multi-level and considers the high-level challenges of
federated as well as the sub-challenges within each underlying
challenge.

No classification is provided for the techniques that are used to address each
specific sub-challenge.
Our work addresses challenges of federated learning that are not discussed in
[13] such as reliable client selection, resource management and training service
pricing.

Yang et al. [10]
Similar to our survey, this survey discusses the privacy concerns
of federated learning and explains the concept of federated transfer
learning.

The classification scheme presented in this survey is based on the distribution
characteristics of the data, resulting in three categories: vertical federated learning,
horizontal federated learning and federated transfer learning.
Our classification scheme is based on different criteria such as the high-level
challenges of federated learning, specific sub-challenges under each high-level
challenge and techniques proposed to address each particular sub-challenge.

Niknam et al. [14] Similar to our survey, this survey is mainly dedicated to the
communication and networking community.

This survey focuses on the possible applications of federated learning in the
5G networks and explains the key technical challenges for future research on
federated learning in the context of wireless communications.
In our survey, we adopt a different approach for presenting the concept of fed-
erated learning to the communication and networking community. In particular,
besides illustrating the potential of federated learning in the communication and
networking domain, we provide a multi-level fine-grained classification of the
federated learning literature in general.

Lim et al. [15]

Similar to our survey, this survey is mainly dedicated to the commu-
nication and networking community. Similar to our survey as well,
this survey takes into consideration some overlooked challenges in
other surveys such as client participation motivation and resource
allocation.

No sub-classification is provided for the studied challenges based on modular
specific sub-challenges.
In our work, we uncover several research directions that are not discussed in [15],
including but not limited to: Multi-hop routing, utility-based federated training,
optimization of interdependent server-client strategies, zero trust security, open
market-based federated learning.

Xu et al. [16]
We address some common challenges of federated learning such
as statistical challenges, communication efficiency, privacy and
security concerns.

This survey is mainly dedicated to the healthcare informatics community, while
our survey is dedicated to the communication and networking community.
No sub-classification is provided for the studied challenges based on modular
specific sub-challenges.

Gu et al. [17]
Similar to our survey, this survey discusses the communication
challenges of federated learning and explains the role of edge
computing in boosting the applicability of federated learning.

This survey discusses distributed machine learning in general and takes federated
learning as only one example.
The classification scheme provided is based on the execution processes of
distributed machine learning, resulting in three principal classes, i.e., machine
learning optimizers, distributed optimization and data aggregation.

Sections 3 to 7 are dedicated to discussing each single high-
level challenge depicted in Fig. 1. More specifically, in Section 3,
we classify and discuss the statistical challenges of federated learning
and highlight some desirable criteria for future solutions. In Section 4,
the communication efficiency challenges are classified and discussed
and some desirable criteria for future solutions are highlighted. The
client selection and scheduling challenges are classified and discussed
in Section 5 and desirable criteria for future solutions are highlighted.
The security challenges of federated learning are classified and dis-
cussed in Section 6 and some desirable criteria for future solutions
are highlighted. The privacy challenges of federated learning are
classified and discussed in Section 7 and desirable criteria for future
solutions are highlighted. In Section 8, we classify and discuss the

service pricing challenges of federated learning and highlight some
desirable criteria for future solutions. In Section 9, we discuss the
future directions in federated learning based on each category of
high-level challenges described in our classification scheme (Fig. 1).
Finally, in Section 10, we conclude the paper and recapitulate the
main insights of the survey.

2 FEDERATED LEARNING: DEFINITIONS, PRELIMINAR-
IES, AND RELATED CONCEPTS

In this section, we first explain the concept of federated learning
and that of federated averaging. Thereafter, we explain the main
commonalities and differences between federated learning and the



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 6

other related learning concepts such as distributed learning, ensem-
ble learning, parallel learning, gossip learning and shared machine
learning. Finally, we explain the links between federated learning and
several emerging technologies such as Internet of Things (IoT), cloud
computing, edge computing and 5G/6G networks.

2.1 Federated Learning

Federated learning is a distributed machine learning approach in
which the training of a certain machine learning model is collabo-
ratively done by a number of participants called clients over multiple
iterations. The concept of federated learning was first introduced in
[8] as a distributed training model that is executed by a set of mobile
devices that share local model updates with a central server whose
role is to aggregate these updates to build a global machine learning
model. An aggregation model called Federated Averaging (explained
in Section 2.1.1) is also introduced to allow the server to combine
local stochastic gradients from the different devices using iterative
model averaging. A federated learning scenario consists of one central
server called parameter server and a set of N clients, each having
its own local dataset. At the beginning of each federated training
iteration, a subset C N of clients is chosen to receive the current
global state of the shared model in terms of model weights4. Upon
receiving the global state, each client uses its own CPU and energy
resources to carry out local computations on its own dataset based on
the shared parameters. Clients then send the model updates (i.e., the
weights that are learned locally based on the client’s local dataset)
to the parameter server which applies these updates to its current
global model to generate a new one. This process is repeated over
several iterations (sometimes referred to as epochs5) until the global
model reaches a certain accuracy level determined by the parameter
server. In summary, a federated learning scenario consists of two main
phases, i.e., local update and global aggregation. The local update
phase refers to the process of computing the gradient descents by the
client devices to minimize the underlying loss function with respect
to their local data. Global aggregation includes the steps of collecting
the updated model parameters by the server from the different client
devices, aggregating these parameters and then sending back the
aggregate parameters to the clients to be used in their next training
iteration. The general idea of federated learning is depicted in Fig. 4.

Formally, assume that a subset C N of clients is selected by
the parameter server to participate in the federated training process.
Each client c C holds a training dataset Dc Xc Yc , where Xc

Dc d represents the feature space vector of c’s training data and
Yc

Dc m is the associated label matrix. To determine the optimal
set of parameters that fits the training data, the training model has to
optimize a loss (objective) function, which penalizes the model when
it produces an inaccurate label on a data point. Let l W;xi yi be
the loss function for each data sample xi, with W being a matrix (or
several matrices) of weights between neurons [18]. Correspondingly,
the loss function on a client’s local dataset Dc is given in Equation
(1).

fc W
1

Dc i Dc

l W;xi yi (1)

Let S C
c 1 Dc denote the total number of samples over the C

clients. The global loss function over all the C clients and S samples
is given in Equation (2).

F W
C

c 1

Dc

S
fc W (2)

4. In the following, we refer to the model weights as model paramaters.
5. In the rest of the paper, we use the terms iteration and epoch interchange-

ably.

The type of the loss function F W is dependent on the underlying
machine learning model [19]. For example, it can be convex in case
of a logistic regression model or non-convex in the case of a neural
network model.

2.1.1 Federated Averaging
Federated Averaging, also referred to as FedAvg, is a global model
aggregation algorithm that is executed by the parameter server once it
receives the local updates from the clients. Algorithm 1 describes
the logic of FedAvg. In the first step of the algorithm, the server
initializes the parameters 0 of the training model (line 3) and
solicits the appropriate set of clients to participate in the training
(line 5). Thereafter, each client carries out the local training through
minimizing the local loss function (Equation (1)) using the SGD
algorithm on the mini-batches selected by the algorithm from the
training dataset (line 7). Once the model updates from the different
clients are received, the server minimizes the global loss function
(Equation (2)) through averaging over the received gradients. The
federated learning training continues until the global loss function
converges or until a desirable accuracy level is attained.

The complexity of the FedAvg algorithm is analyzed in [20],
where the authors theoretically prove that FedAvg converges to the
global optimum at a rate of O 1 T for strongly convex and smooth
problems, with T being the number of stochastic gradient descent
iterations. Another observation is that the impact of E epochs of local
updates with a fairly small learning rate is similar to that of one epoch
with a larger learning rate. Moreover, the authors demonstrate that
the impact of partial client participation (i.e., not all selected clients
participating in the training process) is manageable, where it makes
the averaged sequence to have a larger variance. The authors argue
that this problem can be regulated through adjusting the learning rates
of the clients.

Algorithm 1: Federated Averaging Algorithm
1: Input: Number of global iterations T
2: Input: Number of local training epoches E
3: Input: Desired level AT of model accuracy
4: Output: Final parameters t
1: procedure FEDAVG
2: ServerGlobalUpdate:
3: Initialize parameters 0
4: Repeat
5: C Select a subset of clients
6: for each client c C do
7: c

t CientLocalUpdate( t 1)
8: end for
9: t C

nc

n
c
t

10: Until AT is attained

11: ClientLocalUpdate( )
12: for local iteration e 1 to E do
13: for each each batch b in client’s split do
14: L b;
15: end for
16: end for
17: return local model
18: end procedure

2.1.2 Variants of Federated Averaging
Several variants of FedAvg have been proposed to improve the
aggregation of model updates in federated learning. In what follows,
we discuss these variants and shed light on their main contributions
compared with FedAvg.
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Fig. 4: Federated Learning: The parameter server shares a global machine learning model with the client devices, which use the parameters of

the global model to locally train a model on their local data and then share the model updates with the server.

• FedProx: FedProx [21] is a variation of FedAvg that includes

a component to represent the statistical heterogeneity across

client devices. The main idea of Fedprox is to add a proximal

term to the local training subproblem on each client device.

This term compels the local updates to be closer to the initial

global model with the aim of limiting the influence of each

local model update on the global model. In all, FedProx is

proposed to improve the convergence on statistically hetero-

geneous data. Similar to FedAvg, in FedProx, all the devices

are weighted equally in the global aggregation phase, such that

the differences in the device capabilities (e.g., hardware) are

not taken into consideration.

• FedPAQ: FedPAQ [22] is a communication-oriented aggre-

gation technique that suggests to do periodic averaging of

the local model updates. Specifically, instead of synchronizing

their model updates with the server at each iteration, FedPAQ
enables clients to carry out multiple local updates on the

model prior to sharing the updates with the server. To further

reduce the communication overhead, FedPAQ allows as well

for a partial device participation, where only a subgroup of

client devices is chosen to participate in the training at each

iteration on the basis of several factors such as the device

being (1) connected to a free wireless network, (2) idle and

(3) reachable to a base station. Similar to FedAvg, the new

global model in FedPAQ is computed as the average of local

models, which entails high complexity in both strongly convex

and non-convex settings.

• Turbo-Aggregate: Turbo-Aggregate [23] is a communication

and security-oriented aggregation technique that is based on

a multi-group circular strategy for aggregating the model up-

dates. Specifically, clients are divided into multiple groups and

at each iteration the clients belonging to one group transmit the

aggregated model updates of all clients in the previous groups

and the local model updates of the current group to the clients

of the next group. Turbo-Aggregate includes as well a security

component that employs an additive secret sharing mechanism

whose main idea is to add some randomness into each local

model to preserve the privacy clients’ data. The randomness

is designed to disappear upon the aggregation of the local

models. Turbo-Aggregate is quite suitable for wireless topolo-

gies, in which network conditions and user availability can

vary quickly. Nonetheless, the secure aggregation mechanism

embedded in Turbo-Aggregate, although effective in handling

user dropouts, cannot adapt to new users that join the network.

Therefore, it would be interesting to extend it through devel-

oping a self-configurable protocol that can accommodate new

users on-the-go, by re-configuring the system specifications

(i.e., the multi-group structure and coding setup) to ensure

that the resilience and privacy guarantees are satisfied.

• FedMA: FedMA [24] is a statistics-oriented aggregation tech-

nique that takes into account the permutation invariance of

the neurons in the neural network model before performing

the aggregation. The objective is to enable global model

size adaptation. FedMA employs a Bayesian non-parametric

mechanism which allows it adjust the size of the central model

to the heterogeneity of data distribution. However, FedMA can

be vulnerable to model poisoning attack, where an adversary

can easily trick the system to expand the global model in order

to accommodate any poisoned local model.

• HierFAVG: HierFAVG [25] is a communication-oriented ag-

gregation technique that aims to foster partial model aggre-

gation at the level of edge servers. Specifically, HierFAVG is

based on a hierarchical client-edge-cloud architecture whereby

each edge server is allowed to aggregate the model updates of

its own clients. Subsequently, after a fixed number of model

aggregations, the edge-level aggregate models are forwarded

to a cloud server for a global aggregation. Such a multi-level

structure enables a more efficient model exchange over the

existing edge-cloud architecture. However, HierFAVG is still

vulnerable to the problems of stragglers and end device drop-

outs.

We summarize in Table 2 the main aggregation techniques in federated

learning and classify them based on the federated learning challenge

that they try to solve (Fig. 1).

2.2 Federated Learning and Other Learning Approaches

We explain in this section the main points of similarities and points

of differences between federated learning and the existing learning

approaches, i.e., distributed learning, ensemble learning and parallel

learning. We also summarize in Table 3 the main idea of each of these

learning approaches.

2.2.1 Distributed Learning
Distributed machine learning or sometimes called parameter server
framework is a multi-node machine learning approach that is proposed
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TABLE 2: Comparative summary of the main federated learning aggregation techniques

Aggregation Technique Classification Main Idea Discussion

FedAvg [9] Statistical
Clients perform several batch updates on their local
data and to transmit updated weights rather than the
gradients with the server.

From a statistical perspective, FedAvg has
been shown to start diverging in settings
where the data is non-identically distributed
across devices.
From a system’s perspective, FedAvg does not
allow participating devices to perform vari-
able amounts of local work based on their
underlying systems constraints.

FedProx [21] Statistical
Add a proximal term to the local training subproblem
on each client device to limit the influence of each
local model update on the global model.

FedProx is proposed to improve the conver-
gence on statistically heterogeneous data.
Similar to FedAvg, in FedProx, all devices are
weighted equally in the global aggregation
phase, in that the differences in the device
capabilities (e.g., hardware) are not taken into
consideration.

FedPAQ [22] Communication Enable clients to carry out multiple local updates on
the model prior to sharing the updates with the server.

Similar to FedAvg, the new global model in
FedPAQ is computed as the average of local
models, which entails high complexity in both
strongly convex and non-convex settings.

Turbo-Aggregate [23] Communication and security

A multi-group strategy in which the clients are di-
vided into several groups and the model updates
are shared among groups in a circular manner. An
additive secret sharing mechanism to preserve the
privacy clients’ data.

Turbo-Aggregate is quite suitable for wireless
topologies, in which network conditions and
user availability can vary quickly.
The secure aggregation mechanism embedded
in Turbo-Aggregate, although effective in han-
dling user dropouts, cannot adapt to new users
that join the network. Therefore, it would be
interesting to extend it through developing a
self-configurable protocol that can accommo-
date new users on-the-go, by re-configuring
the system specifications (i.e., the multi-group
structure and coding setup) to ensure that the
resilience and privacy guarantees are satisfied.

FedMA [24] Statistical
Account for the permutation invariance of the neu-
rons before performing the aggregation to enable
global model size adaptation.

Can adjust the size of the central model to
the heterogeneity of data distribution using a
Bayesian non-parametric mechanism.
The Bayesian non-parametric mechanism in
FedMA can be vulnerable to model poisoning
attack, where an adversary can easily trick the
system to expand the global model in order to
accommodate any poisoned local model.

HierFAVG [25] Communication

A hierarchical client-edge-cloud aggregation archi-
tecture whereby edge servers aggregate the model
updates of their clients and then send them to the
cloud server for global aggregation.

This multi-level structure enables a more effi-
cient model exchange over the existing edge-
cloud architecture.
HierFAVG is still vulnerable to the problems
of stragglers and end device drop-outs.

to improve the performance and scale to larger input data sizes. The
main difference between distributed learning and federated learning
is that is in the former approach, local workers serve as local
data collectors and are not supposed to receive any global model
from the parameter server. Instead, these workers train the machine
learning model locally and send the parameters back to the server,
without waiting to receive any updated global model thereafter. The
parameter server organizes the locally trained models to provide a
global estimation of the parameters under investigation. From an
architectural point of view, federated learning intersects with the
concept of data parallelism rather than that of model parallelism
[26] in that each client device executes the same machine learning
task on different chunks of the distributed data. On the other hand, in
model parallelism, each node is supposed to perform a different task
on the same dataset. For example, in a deep learning scenario, model
parallelism could be achieved through splitting the layers of the deep
network across devices to be evaluated in parallel.

2.2.2 Ensemble Learning

In this learning approach, the training dataset is distributed over
multiple learners to be trained by different machine learning models.
The results from the different learning models are then aggregated
using some aggregation techniques (e.g., bagging, boosting, etc.) to
improve the training accuracy. The objective of ensemble learning
is to learn from a mixture of models to minimize the probability
of relying on one insufficient model, rather than trying to improve
a single global model using naturally distributed data as is the case
in federated learning. Moreover, unlike federated learning wherein
the data is non-Independent and Identically Distributed (non-IID)
and depends on each single client’s activities, the data in ensemble
learning are split in an IID fashion as they come from one single
training dataset.
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(a) Distributed Machine Learning
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(b) Ensemble Learning

Fig. 5: The main difference between distributed learning and federated learning is that in the former concept workers are not supposed to

receive any global model from the server at each iteration, while in the latter workers receive a new version of the global model and derive

updated parameters. The main difference between ensemble learning and federated learning is that the objective of the former is learn from

a mixture of models to enrich the learning process, while in the latter the objective is to improve one single global model using naturally

distributed data.
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(a) MapReduce

����������	�


� ������ ��� ����

���� ���

��������
 !�"#$�%

 �$&'("
)����'%'�"

*+	,- *.���.

/�"�0�1' 2'�3'�
4!51"'�

61'�

7� 89�� ����

(b) Shared Machine Learning

Fig. 6: The main difference between MapReduce and federated learning is that workers in the former concept are cluster machines that are

deployed by the task owner, while in the latter workers are automatous and non-technical. The main difference between federated learning and

shared machine learning is that the former only solves problems with in-domain data while the latter relaxes this restriction.

2.2.3 MapReduce and Parallel Learning

MapReduce [27] is a programming model for processing huge

amounts of data over a cluster of machines. The MapReduce model

consists of two phases, i.e., Map and Reduce. In the Map phase,

the input data are processed to generate a set of intermediate key

value pairs. In the Reduce phase, the intermediate values outputted

in the Map phase and associated with the same intermediate key are

combined and processed to produce the final results. MapReduce is

logically related to federated learning. On can think of the parameter

server in federated learning as the Reducer and the client devices

as the Mappers. However, there is one essential difference between

federated learning and MapReduce at the technical level. First, in

federated learning the clients are autonomous and actually own the

data that they analyze. Hence, they autonomously take the decision

on whether or not to participate in the training. In MapReduce, on

the other hand, Mappers are cluster machines that are owned by the

data analytics task owner. This means that the availability of federated

learning drastically varies based on the participation decision of the

clients. On the other hand, the availability in MapReduce is more

stable since the participation of the machines is guaranteed. The only

availability burden in MapReduce would stem from some failure on

the cluster machines. In addition, the data in MapReduce are split in

an IID fashion, where a single training dataset is split into chunks

(usually of 128MB) and stored in the Hadoop Distributed File System

(HDFS) to be executed locally there by the Mappers.

2.2.4 Gossip Learning
Gossip learning [28] is a variation of federated learning in which no

central entity is needed to initialize a global model or to aggregate

model updates from local learners. Similar to federated learning,

gossip learning is based on an on-device collaborative training archi-

tecture in which no sharing of the raw data needs to happen. Different

from federated learning, gossip learning is fully decentralized in the

sense that no parameter server is required. Instead, client devices

directly share their model updates and the aggregation takes place

in a distributed fashion.

2.2.5 Shared Machine Learning
Shared Machine Learning (SML) is a recent machine learning ap-

proach whose main goal is to achieve the aggregation of multiparty

data while preserving the privacy of the involved individual users. It

was introduced by Alibaba Subsidiary Ant Financial, one of the major

financial companies in the World 6. SML relies on one of the following

data protection techniques, i.e., Trusted Execution Environment (TEE)

and Multiparty Computation (MPC) systems. TTE is a processing

environment that operates on a separation kernel7 to provide resilience

against tampering. It ensures the soundness of the executed code,

6. https://medium.com/syncedreview/shared-machine-learning-ant-
financials-solution-for-data-privacy-8069cffe7bb6

7. The separation kernel is a security kernel that is employed to simulate
a distributed system with the purpose of enabling the collocation of distinct
systems demanding distinct levels of security on the same platform [29].
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TABLE 3: Summary of the main commonalities and differences
between federated learning and the other learning approaches

Approach Characteristics

Distributed Learning

Learners train their models locally and send the
derived parameters to the server. The server does not
share any initial or updated training model with the
workers.

Ensemble Learning

The training of a single dataset is distributed over
a mixture of learners to be trained using different
machine learning models. The data is split in an IID
fashion since they come from one single dataset.

MapReduce

Executed in two phases: Map and Reduce. Learners
(Mappers) are cluster machines owned by the data
analytics task owner. The availability of MapReduce
is almost stable.

Federated Learning

The server shares an initial and several updated
models with learners. Autonomous learners train the
shared model locally on their datasets and send the
updated parameters to the server. The availability
is variable and depends on the participation of au-
tonomous learners. Data is split in an non-IID fash-
ion since each learner’s data depend this learner’s
own activities.

Gossip Learning
A fully decentralized federated learning approach in
which clients directly share their model updates and
aggregate them in a distributed fashion.

Shared Machine Learning

A recent machine learning approach whose main
goal is to carry out the aggregation of multiparty
data while preserving the privacy of the involved
individual users.

the integrity of the runtime states (e.g., memory Input/Output CPU
registers) and the privacy of the data, code and runtime states [30]. An
SML algorithm that leverages TTE for data protection on multiparty
distributed data usually follows the subsequent steps:

Users download encryption tools from a Data Lab8, which
employs the Registration Authority (RA) process to guarantee
that the encrypted data can only be decrypted in the specified
enclave9;
Users encrypt their data using the encryption tool and upload
the encrypted version to a cloud storage system;
Users construct training tasks on the training platform of the
Data Lab;
The training platform sends the training tasks to a training
engine, which fetches the encrypted data from the cloud
storage to accomplish the desired training jobs.

On the other hand, MPC is an emerging cryptography approach that
can jointly compute a function over data distributed across multiple
parties, without breaching the privacy of the individual participants’
data. MPC is widely used in conjunction with federated learning as
discussed later in Section 7 2. An SML algorithm that leverages MPC
for data protection on multiparty distributed data usually follows the
subsequent steps:

Users download and locally deploy training services from the
Data Lab;
Users construct training tasks on the training platform of the
Data Lab;
The training platform sends the training tasks to a training
engine, which in its turn sends the training task to the training
server on the organization’s side;

8. A Data Lab is a Laboratory that is consecrated to do the experimentation
and qualification of the company’s data.

9. A specific part of a chip that is used to store sensitive information.

Workers of the organization load the data locally and execute
the training jobs using multiparty security protocols.

The main difference between federated learning and SML is that the
former can only operate with in-domain data and demands, as a pre-
requisite, that participating users have similar identities and statuses,
which makes it compatible only with MPC for data protection. On the
other hand, SML poses no restrictions on the identity of the users or
on the type of the data, which makes it support both MPC and TTE.

2.3 Federated Learning and Emerging Communication
Technologies
In this section, we explain how federated learning relates and can be
capitalized on in several emerging technologies such as Internet of
Things (IoT), cloud computing and edge computing.

2.3.1 Internet of things (IoT)
Machine learning has significantly contributed to the success of IoT
in many aspects such as management, deployment, security and
privacy, and data analytics and decision-making. The success of
machine learning mainly stems from the abundance of big training
data and enormous computation power [31], [32]. Nonetheless, the
adoption of machine learning in IoT has always been hindered by
privacy concerns. In fact, IoT data are often generated by IoT devices
possessed by individuals who have serious privacy concerns and might
not be willing to share their personal data. Moreover, the number
of IoT devices is exponentially increasing (80 billion devices by
2025 as reported by the Intersectional Data Corporation), leading to
a tremendous surge in the amounts of generated data (847 ZB of
data will be generated at the network edge by 2021 as estimated by
Cisco10). Hence, storing and processing all these fata in a centralized
fashion becomes quite hard and inefficient. Federated learning has
been lately proposed to answers these two concerns through enabling
end devices (e.g., IoT devices) to cooperatively train machine learning
models without having to share their data. As discussed in Section
2.1, the main idea of federated learning is to allow end devices to
train local models on their local own data and then share only the
model parameters (and not the raw data) with a parameter sever
that aggregates the parameters of the different local models to come
up with a global model. This concept has shown a great potential
in reducing the latency of the training process and preserving the
privacy of the data. On the other, IoT has also a lot to offer for
federated learning especially in the coming years where IoT devices
are expected to be empowered by 5G 6G networks with considerably
high bandwidth and low latency. This would enable IoT devices to
make efficient use of their computing resources to train their local
models in an faster and better-performing way.

2.3.2 Cloud Computing
In traditional centralized data analytics scenarios, the data gathered by
mobile devices (e.g., IoT devices, smartphones, etc.) are transmitted
to a cloud-based server or data center to be processed in a central-
ized fashion. This approach, however, suffers from two fundamental
limitations [15]. The first one relates to the privacy concerns of the
data owners, which feel reluctant to share their own data with the
cloud. This has led to the elaboration of strict data privacy legislations
such as the Consumer Privacy Bill of Rights in the US and the
European Commission’s General Data Protection Regulation (GDPR).
For example, the Articles 5 and 6 of the GDPR states that data
collection and storage should be restricted to only what is user-
consented and decidedly indispensable for processing. The second
limitation of adopting a cloud-based architecture arises from the

10. https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-
internet-report/index.html
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long communication latency, which originates from the long distance
between the mobile devices that are highly geographically distributed
and the cloud-based servers that are highly centralized in isolated
areas.

Federated learning overcomes the privacy concerns that arise in
the central cloud-based architecture through enabling an on-device
collaborative training of a single machine learning model without
having to share the raw training data with any cloud-based third-
party entity. This is achieved through first initializing a global machine
learning model on a central server over a few iterations to obtain some
initial model parameters. These model parameters are then sent to a set
of clients (data owners), which use their own resources to locally train
a machine learning model with the shared parameters on their own
data to derive an updated version of the parameters. Each client then
sends its own updated parameters to the server, which aggregates the
parameters from the different clients to produce a new global model.
This process is repeated for several iterations until the global model
reaches a certain desired accuracy level.

It overcomes the communication latency problem through elim-
inating the need to send raw data to a geographically distant cloud
system and, instead, requiring that only model parameters be shared
with (often) edge servers which are usually located in the proximity
of the data owners. It is worth mentioning yet that communication
is still a challenge in federated learning as model updates can be in
the range of gigabytes in the current deep learning models, where
millions of parameters might need to be shared with the edge servers
at each iteration, for a non-negligible number of iterations. The
communication aspect of federated learning is discussed in-depth in
Section 4.

2.3.3 Edge Computing
The concept of edge computing or edge intelligence has been proposed
to overcome the limitations of the cloud-based architecture when it
comes to distributed data analytics. The main idea of edge computing
is to capitalize on the storage and computing capabilities of edge
servers and end devices to train the machine learning models closer
to the origins of the data [33]. According to this concept, the training
data are first communicated to the edge servers (or end devices) to
carry out the low-level deep learning tasks [34]. Then, the intensive
computation duties are offloaded to the cloud server which enjoys
larger computation capabilities. Edge intelligence is a key enabler
for several critical applications such as intensive care, ambient intel-
ligence, industrial automation and oil/gas mining in deserted areas.
For example, with edge intelligence, real-time data analytics and
decision-making becomes possible for closed-loop applications in
which some critical physiological parameters, such as blood glucose
level or blood pressure, must be maintained within a specific range
of values. Similarly, edge intelligence is perfectly suited for elder
people’s daily activity monitoring to promptly detect anomalies such
as a fire or a fall and hence take quick measures by calling emergency.

A successful deployment of edge intelligence requires equipping
the underlying (edge) devices with the following ingredients:

Connectivity: to enable the devices to connect to the network
(e.g., Internet, local network) to exchange messages.
Computing: It is necessary to equip the devices with internal
computing resources such as processing chips to enable data
analytics in near real-time.
Controllability: The devices should be able to implement de-
cisions, take actions, make prompt changes and incite actions
across the network.
Autonomy: It is important for the devices to be supplied
with autonomous computing capabilities that enable them to
monitor and manage their own data and resources by their
own.

In real-world scenarios, edge devices are asked to execute deep
learning algorithms that employ multiple layers on the inputs prior
to delivering the output. This is because edge devices are mostly used
to run image and speech recognition, anomaly detection and natural
language processing. Executing deep learning algorithms typically
involves large parallel matrix multiplication operations, thus requir-
ing specialized hardware. To make this feasible, edge intelligence
capitalizes on several rising technologies such as Visual Processing
Units (VPUs) and RISC-V. A VPU is an emerging category of
microprocessor that is tailored for artificial intelligence tasks. It aims
to accelerate the execution of machine vision algorithms such as
Convolutional Neural Networks (CNNs) and Scale-Invariant Feature
Transform (SIFT). VPUs are designed to include direct interfaces to
fetch data from cameras without undergoing any off-chip buffers and
to support more on-chip dataflow between several parallel execution
units. On the other hand, RISC-V is an Instruction Set Architecture
(ISA) that embodies the vision of the Reduced Instruction Set Com-
puter (RISC) standards. RISC-V is designed to be open-source and
free of charge. Unlike most other ISA designs such as x86 or ARM,
RISC-V is designed in such a way that the instruction set can be
customized to support specialized and extreme application demands
such as artificial intelligence and machine learning. This is helpful, for
example, in a camera surveillance scenario to decrease the amount of
video frames that need to be transmitted to the cloud through crafting
the application’s design and specialized processor in such a way that
most video frames could be handled by end or edge devices and only a
small fraction of the frames (e.g., those that exhibit some considerable
changes) go to the cloud for further analysis. We summarize in Table
4 the hardware specifications of some known existing edge devices to
give the reader an idea of how edge devices should be configured to
support federated learning applications11.

When coupled with federated learning, edge intelligence brings
along many non-negligible benefits [15], [35], [36], which we discuss
hereafter:

Reduced Latency and Bandwidth Utilization: Edge in-
telligence offers the flexibility to partition the deep neural
networks in such a way that some layers could be processed on
the edge devices, while the rest can be processed in the cloud.
In other words, the initial layers of the neural network which
are generally feature-abstraction operations can be executed at
the level of the edge devices. Then, as the information propa-
gates through the neural network, the layers get abstracted into
high-level features which are quite less heavy than the initial
ones. These layers can then be transmitted to be processed by
the cloud with minimal bandwidth consumption and latency.
Such an approach is perfect to be adopted with IoT devices
that rely on communication technologies that support limited
payload size such as Long Range (LoRa) and Narrowband
Internet of Things (NB-IoT) [37].
Security: Edge intelligence introduces some interesting secu-
rity benefits to the federated learning process when compared
to the traditional cloud-based architecture. In fact, the fully
centralized nature of cloud computing makes the federated
learning particularly vulnerable to distributed denial of service
(DDoS) attacks and power outages. On the other hand, the fact
that edge computing divides the storage and processing over
a large set of devices and data centers complicates the job
of attackers in successfully causing any single interruption
or network shutdown. Moreover, as most of the data are
processed on local/edge devices instead of being sent to a
central cloud centre, edge computing decreases the risks of
crafting attacks on these data. In other words, there is less data

11. https://www.therobotreport.com/why-and-how-to-run-machine-
learning-algorithms-on-edge-devices/
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TABLE 4: Edge Device Hardware Specifications for Federated Learning

Edge Device GPU/VPU CPU Machine Learning Software Support
Raspberry Pi VideoCore VC6 Quad ARM Cortex-A72 TensorFlow and TensorFlow Lite

Coral System-on-Module (SoM) – Google Vivante GC7000Lite Quad ARM Cortex-A53 + Cortex-M4F TensorFlow Lite and AutoML Vision Edge
NVIDIA Jetson TX2 NVIDIA Pascal Dual Denver 2 64-bit + quad ARM A57 TensorFlow and Caffe

Intel Neural Compute Stick 2 (NCS2) Movidius Myriad X VPU TensorFlow, Caffe and OpenVINO toolkit
RISC-V GAP8 TensorFlow

ECM3531 A – Eta Compute ARM Cortex-M3 + NXP CoolFlux DSP TensorFlow and Caffe
ARM Ethos N-77 8 NPUs in cluster, 64 NPUs in mesh + NXP CoolFlux DSP TensorFlow, TensorFlow Lite, Caffe2, PyTorch, MXNet and ONNX

to be intercepted during transmission, and even if some edge
devices get compromised, only the data that is gathered by
and contained in these devices will be at risk, compared to the
whole set of data that could be intercepted on a compromised
cloud server. Yet, it is unfair not to mention that the distributed
nature of edge intelligence triggers some security risks where,
for example, one edge device might be employed as a point
of entry to carry out cyber-attacks, enabling the attack to
infect a whole network from a single weak point. Nonetheless,
the good news is that the same distributed nature of edge
intelligence that makes room for such a type of attacks makes
it also easier to craft security solutions that can quarantine a
fraction of infected edge devices without having to shut down
the whole network.
Scalability: Companies (i.e., federated learning task owners)
are expected to be always growing in terms of exposure and
also in terms of infrastructure needs. Yet, predicting the exact
needs in terms of infrastructure is not always possible. These
needs typically include constructing a dedicated and expensive
data center with all the essential complex Information Tech-
nology (IT) equipment. Such private and expensive facilities
put strict limits on the potential growth of the companies,
locking them into their rigorous forecasts. However, in case
the actual growth overrides the company’ expectations, these
companies might have no choice but ceding those additional
opportunities due to insufficient resources. Edge intelligence
can be capitalized on to facilitate the business scaling of
the companies. Moving the storage, analytics and computing
abilities to edge devices that have smaller footprints and can
be deployed in the proximity of end users enables companies
to connivently extend the reach and capabilities of their edge
network while avoiding the burdens of building complex cen-
tralized data centers. Edge intelligence along with the related
concept of Colocation12 enables companies to easily and
rapidly extend their edge network’s reach and cost-effectively.
Reliability: By enabling the machine learning to be carried
closer to end users, edge computing reduces the chance of
a network problem in a distant data center influencing local
users’ experience. Even if some nearby regional data center
experiences an outage, due to the autonomy property discussed
earlier, the edge devices will be able to effectively pursue their
operations with their native processing resources. Having a
multitude of edge data centers and edge computing devices
makes it more unlikely for a single failure to entirely disrupt
the whole service. Thus, several pathways are available to
reroute the exchanged model updates to in case of any failure
to maintain users’ access to their federated learning services.
Transfer Learning Empowerment: As previously discussed,
in an edge intelligence scenario, the execution of the deep
neural networks is distributed among the edge devices and
the cloud. This unique opportunity can be capitalized on
to re-purpose the neural network for a completely different
application by only tuning the layers that are executed at the

12. The practice of renting the space and computing hardware (e.g., net-
working, power and cooling components, physical security, etc.) provided to
the edge devices at a third-party provider’s data center facility.

level of the cloud, without having to change the layers at the
edge devices. Knowing that the application logic of the layers
that are in the cloud is reasonably easy to tune, this unique
architecture gives the opportunity to use the same devices to
model different applications. The practice of tuning parts of
the machine learning model to carry out different applications
is a concrete example of Transfer Learning, which is explained
in more details in Section 3.1.2.
Data Regeneration: Provided that the feature abstraction
duties are executed at the level of the edge devices, it becomes
possible to reconstruct an approximation of the original data
at the level of these devices themselves without having to
get large inputs from the cloud. This further reduces the
bandwidth utilization and the latency of the data regeneration
and hence the overall federated learning process.

2.3.4 5G/6G Networks

The telecommunications industry continues to evolve over the years,
providing users with increased connection speeds and improved net-
working experience. Numerous cellular network versions have been
unleashed over the past years to meet the augmented needs of users
for speed and capacity. Currently, the Fourth-Generation (4G) is still
the most widespread generation of cellular communications. From
a technical perspective, the 4G provides Internet speeds that are
approximately ten times faster than they were in the Third-Generation
(3G). Similar to the 3G, the 4G technology can be divided into two
broad components, i.e., Long-Term Evolution (LTE) and Worldwide
Interoperability for Microwave Access (WiMax). Choosing between
LTE and WiMax mainly depends on the option that is available to
the users and how they intend to use it. WiMax is generally a better
option in case users need a connectivity for a fixed location and are
situated not far from the source of this connectivity. On the other hand,
LTE is more suitable for situations wherein users need connectivity
on the go in a broad range of locations, owing to the wide coverage
and enhanced consistency provided by this type of networks. Beyond
the 4G, the upcoming Fifth-Generation (5G) networks promise to
uphold a wider spectrum of services such as Augmented Reality,
Virtual Reality, large-scale IoT, and autonomous driving. This will
be enabled though the three essential technical characteristics this
generation of networks, i.e., enhanced Mobile BroadBand (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and massive
Machine-Type-Communications (mMTC). By providing throughput
speeds of up to 20 Gbps, eMBB is mainly tailored to support new data-
driven use cases that demand high data rates such as content sharing
in stadiums and arenas, smart cities and unlimited virtual experiences.
URLLC provides ultra-responsive connections with ultra-low latency.
Contrary to eMBB, data rates in URLLC are not intended to be
very high but the connection is designed to support high mobility.
This makes URLLC suitable for mission-critical applications such
as remote medical assistance, autonomous driving and industrial
automation. The main focus of mMTC is to offer connectivity to
a large number of devices, yet with low reliability. It can offer
long-range communication with energy efficiency and asynchronous
access, features that are suitable for low-power devices in an enormous
quantity such as IoT devices. In short, the purpose of the 5G networks
is to move the wireless communication world from a communication-
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oriented architecture to a service-based architecture that supports the
idea of “connected things”.

The Sixth-Generation (6G) is the successor of the 5G which
promises to achieve a transition from the concept of “connected
things” offered by the 5G to that of “connected intelligence” [38]. In
fact, the 6G is expected to rely on advanced artificial intelligence foun-
dations to craft innovative and intelligent services through efficiently
collecting, communicating and analyzing data anytime, anywhere. To
fulfill this promise, the 6G needs to be paired with the concept of
ubiquitous AI, which is interested in making the different aspects
of networking human-centric instead of being data-, machine-, or
application-centric. Achieving the dream of ubiquitous AI is however
not possible with the traditional machine learning design which is
based on a central cloud-based server architecture. In fact, the pri-
vacy considerations and communication resource limitations in future
intelligent wireless networks make it unpractical to let the different
wireless devices that participate in the machine learning scenario to
send all their collected data to the cloud for centralized analytics.
Therefore, the academy and industry push is increasingly shifting
toward the design of decentralized machine learning frameworks that
enable wireless devices to execute a shared learning model without
having to transmit their local data. Federated learning stays at the
core of this trend, given all the revolutionary benefits it promises to
bring to the machine learning experience.

The relationship between federated learning and 5G/6G networks
is bidirectional in the sense that federated learning offers many
benefits toward boosting the adoption of 5G/6G networks and 5G/6G
are also great contributors to the success of the federated learning
experience. In fact, federated learning is a perfect candidate for
solving many challenges in 5G/6G networks. For example, federated
reinforcement learning algorithms can be used to provide efficient so-
lutions to complex convex and non-convex optimization problems that
could be designed to model several crucial problems such as resource
management, network control, interference alignment and user group-
ing [39]. Moreover, federated supervised learning algorithms can be
used to provide a wide range of analytical services in these rising
networks, including but not limited to wireless environment analysis,
user identifications, user authentication, access control management,
behavior prediction, and intrusion detection and prevention. On the
other hand, 5G/6G networks could also be capitalized on to foster
the applicability and efficiency of federated learning. Specifically, by
equipping the IoT and edge devices with 5G/6G networks that enjoy
high bandwidth rates and low latencies, these devices will be able to
make more efficient use of their computing resources to train their
local models in an faster and better-performing way. Likewise, the
processes of exchanging global model and model updates between the
client devices and parameter server will be more efficient thanks to
the advantages brought by the eMBB technology which is integrated
into the design of both the 5G/6G networks.

2.3.5 Applications of Federated Learning in Networking
In the domain of networking, federated learning has mainly been used
for task scheduling and resource allocation. It is particularly useful
in these scenarios as it enables the decentralization of the decision-
making process and the modularization of the task that each network
node would be responsible for. In the following, we survey and discuss
in more detail the main approaches that employed federated learning
to solve challenges related to the networking domain.

For example, the authors of [40] and [41] capitalize on federated
learning to enable ultra-reliable and low-latency vehicular commu-
nications. To do so, a network-wide power minimization problem
is formulated to assure high reliability and low latency in terms of
probabilistic queueing delay. First, statistics of queue delays exceed-
ing a certain threshold are acquired using the extreme value theory.
A distributed maximum likelihood estimation technique based on

federated learning is then advocated. Each vehicle gradually (over
different time scales) constructs and shares a local model consisting
of Generalized Pareto Distribution (GPD) parameters (i.e., scale and
shape used to the parts of the queue delay distribution that are quite far
away from the mean) to the roadside unit, which is then responsible
for aggregating the models of the different vehicles. Thereafter, Lya-
punov optimization is employed to solve the optimization problem and
determine the appropriate resource allocation strategies. The authors
of [42] employ federated learning to improve the offloading decision-
making in Internet of Things (IoT) environments. A distributed Deep
Reinforcement Learning (DRL) approach is implemented over edge
devices to decide on whether a certain task should be executed
locally on the IoT devices or offloaded to the edge nodes. In the
DRL model, the network states are modeled as a function of task
execution makespan, energy queue length, channel gain between the
IoT device and corresponding edge nodes, and task handover delay.
The reward function is modeled with regards to task queuing delay,
task execution delay, penalty of execution failure and number of failed
tasks. The DRL is implemented based on federated learning, where
at each round, a collection of IoT devices is randomly chosen to
download the DRL model parameters from the edge network. IoT
devices train the model on their own data consisting of local sensing
data, available energy level and channel gain. They then transmit the
updated model back to the edge nodes for global aggregation. In
[43], the authors investigate the effectiveness of federated learning for
image classification in Vehicular Edge Computing (VEC). A selective
model aggregation approach is proposed, where only good-quality
local deep neural network models are chosen to be sent and aggregated
by the central server. Since the server has no a priori knowledge about
the image quality and computation capabilities of the vehicles, the
selection problem is modeled as a two-dimension contract theory
model between the server and vehicle clients. The problem is then
converted into a tractable problem to be solved by a greedy algorithm
through relaxing some of its constraints. In [44], the authors discuss
a communication-efficient hierarchical federated learning approach in
which mobile users with local datasets are grouped around small-cell
base stations to carry out the federated training in a decentralized
fashion. The base stations then periodically communicate with a
macro-cell base station, which aggregates the model updates from
the different base stations to construct a shared global model. In [45],
the authors address the problem of noise that hinders the wireless
communications in the broadcast and aggregation processes of feder-
ated learning. The problem is formulated as a parallel optimization
problem under the worst-case and expectation-based models. The
optimization problem that is modeled under the expectation-based
model has been solved using a loss function approximation algorithm,
whereas the optimization problem that is modeled under the worst-
case model has been solved using a successive convex approximation
algorithm. The authors of [46] propose a novel architecture for the
Internet of Vehicles (IoV) that capitalizes on federated learning to
alleviate the transmission overhead and address the providers’ privacy
concerns. Specifically, a hybrid blockchain model that consists of
a two-stage verification process is advanced to address the privacy
concerns. Moreover, an asynchronous federated learning approach
that uses deep reinforcement learning for vehicle selection is advanced
to improve the efficiency. In [47], the authors investigate the impact of
the random scheduling (RS), round robin (RR), and proportional fair
(PF) scheduling strategies on the performance of federated learning
in large-scale wireless networks. The access points and wireless user
equipment locations are deployed following an independent Poisson
point process. The results suggest that running federated learning with
PF achieves a better performance compared to that of RS and RR
in case the network is running under a high Signal-to-Interference-
Plus-Noise Ratio (SINR) threshold. Conversely, in case the network
operates under a low SINR, the RR scheduling strategy would be more
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preferable.
Recently, federated learning has been studied to address chal-

lenges in Unmanned aerial vehicle (UAV) networks [48], [49]. For
example, in [50], the authors adopt federated learning to enable
privacy-preserving machine learning across a group of autonomous
Drones-as-a-Service (DaaS). The objective is to boost intelligent
transportation systems applications such as car parking management
and traffic prediction. Moreover, the authors put forward a contract
theory-based approach to guarantee that UAVs truthfully report their
types. In [51], the authors combine federated learning with mean
field game theory to achieve the control of large-scale UAVs, while
reducing the inter-UAV communication overhead. In [52], the authors
capitalize on federated learning to design aerial-ground air quality
sensing framework for fine-grained 3D air quality monitoring and
prediction. In [53], the authors address the problem of intermittent
connections among UAV swarms and ground base stations, which
hinders the adoption of centralized machine learning for executing
various tasks (e.g., target recognition, etc.). To do so, a federated
learning approach is proposed where each UAV trains a local federated
learning model based on its collected data and then forwards the
trained model to a leading UAV node, which is responsible for model
aggregation. In [54], the authors propose to capitalize on coalitions
of UAVs as wireless relays to facilitate and reduce the cost of
communications between the Internet of Vehicles (IoV) nodes and
federated learning server. To form coalitions, a joint auction-coalition
formation approach is proposed to assign UAV coalitions to the groups
of IoV components, in such way to maximize the sum of UAVs
individual profits.

In addition to the existing approaches, federated learning can be
employed to address several other aspects of networking, a few of
which are subsequently explained. The first aspect is that of content
caching. The main idea of content caching is to bring the popular
content closer to the edge terminal so that it can be efficiently
accessed locally and delivered to end users. The building block of
this approach is to analyze users’ activities to determine the popular
content. In this regard, federated learning can be used to predict
popular content on mobile devices without having to directly access
users’ data. The second aspect is that of spectrum management.
In this context, federated learning can be used to devise effective
spectrum access decision-making models. This can be done through
representing each radio as a separate client that communicates its local
utilization data to a central entity, which then explores these data to
build global spectrum access prediction models. The third aspect is
that of core networking duties. In this context, federated learning can
be of prime utility to modularize the duties of each network node and
hence minimize the overhead. This can be achieved through assigning
each node a little number of specific (modular) tasks (e.g., session
management, access mobility management, etc.) and then employing
vertical federated learning to aggregate the results and take come up
with efficient decision-making models.

We summarize in Table 5 the main approaches that employ
federated learning to solve networking challenge.

3 STATISTICAL CHALLENGES (CHALLENGE 1)
The statistical challenges in federated learning can be classified into
four essential sub-challenges: (1) non Independent and Identically
Distributed (non-IID) Data; (2) block cycles; (3) model heterogeneity;
and (4) bias mitigation. We discuss each of these sub-challenges in
detail and provide a classification of the techniques that are used to
address each particular sub-challenge. Most of the approaches that
address statistical challenges are interested in solving problems related
to non-IID data. Because of the abundance of approaches that tackle
challenges related to non-IID data and for the reader’s convenience,
we provide a sub-classification of the non-IID challenge based on the

type of imbalance taken into consideration, resulting in three classes,
i.e., class imbalance, distribution imbalance and size imbalance. The
classification scheme of the statistical approaches is schematized in
Fig. 7. Moreover, we provide in Table 6 a summary of the main
approaches that tackle statistical challenges in federated learning and
highlight the criteria (proposed in Section 3.5) that each underlying
approach satisfies.

3.1 Non Independent and Identically Distributed Data
The non-IID data challenge arises because of the inherent hetero-
geneity in the local data generated across clients’ device. Since each
local device records the activities of its owner, data across devices
tend to have different sizes, features, and target classes distribution.
This technically means that the local data of one single client cannot
be considered to be representative of the overall data distribution
[78]. Three scenarios of non-IID data in federated learning can be
encountered, i.e., class imbalance, distribution imbalance and size im-
balance. In the following sections, we explain each of these scenarios
in detail, provide a classification of the techniques used to address
each underlying scenario, and discuss in detail the existing approaches
proposed under each particular technique.

3.1.1 Class Imbalance
This type of imbalance occurs when the total number of instances clas-
sified to fall under a certain target class (e.g., non-attack, non-disease,
etc.) is far higher than those classified to fall under another class
(e.g., is-attack, is-disease, etc.). Although this problem is common in
machine learning, i.e., in single centralized large datasets, it becomes
even more widespread in federated learning due to the geographical
distribution of the clients. For example, consider a mobile keyboard
emoji prediction scenario using the federated learning framework,
where the data is split across a large number of mobile users spread
across the World. In such a scenario, some emojis might be banned
or less used in some geographical areas. For instance, Apple recently
decided to hide Taiwan’s flag emoji for users that are based in Hong
Kong or Macau13. This results in a considerable class imbalance,
where the number of instances associated with Taiwan’s flag emoji is
expected to be much less than other emojis. Two main techniques are
used to address the class imbalance challenge, i.e., data augmentation
and active learning. In the following, we discuss each of these
techniques in detail and shed light on the approaches that employ
these techniques.

Data Augmentation: The main idea of this technique consists in
augmenting clients’ local data with thoughtfully designed additional
data in such a way to make the global distribution of data over the dif-
ferent target classes more balanced. For example, the authors of [55]
propose a self-balancing federated learning framework called Astraea
to address the class imbalance problem. The proposed framework is
composed of two modules, i.e., data augmentation and multi-client
scheduling. In the data augmentation module, the aggregation server
computes the amount of augmentation needed for each class according
to the global distribution of the data. It then assigns the augmentation
tasks to the clients to be done in parallel. The augmentation process
takes as input one sample and outputs the augmentations which
include random rotation, random zoom, random shear and random
shift of the sample. In the multi-client scheduling module, a greedy
technique is employed to allow each mediator (controlling a set of
clients) to go through the data distribution of all unsolicited clients
(i.e., clients that weren’t asked to participate in the federated learning
process) and pick out those clients whose data distributions would
make the mediator’s overall data distribution to be the closest to a
uniform distribution. In [56], the authors first show, using experiments

13. https://www.theverge.com/2019/10/7/20903613/apple-hiding-taiwan-
flag-emoji-hong-kong-macau-china
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TABLE 5: Summary of the federated learning application domains

Approach Application Domain Main Idea

Samarakoon et al. [40], [41] Networking
A distributed maximum likelihood estimation technique based on federated learning
wherein each vehicle constructs and shares a local model with the roadside unit, which
is then responsible for aggregating the models of the different vehicles.

Ren et al. [42] Networking
A federated learning-based deep reinforcement learning approach over edge devices
to decide on whether a certain task should be executed locally on the IoT devices or
offloaded to the edge nodes.

Ye et al. [43] Networking
A federated learning approach for image classification in vehicular edge computing in
which only good-quality local deep neural network models are chosen to be sent and
aggregated by the central server.

Abad et al. [44] Networking
A hierarchical federated learning approach in which mobile users with local datasets
are grouped around small-cell base stations to carry out the federated training in a
decentralized fashion.

Ang et al. [45] Networking
A parallel optimization model to address the problem of noise that perturbates the
wireless communications in the broadcast and aggregation processes of federated
learning.

Lu et al. [46] Networking
A novel architecture for the Internet of Vehicles (IoV) that capitalizes on federated
learning to alleviate the transmission overhead and address the providers’ privacy
concerns.

Yang et al. [47] Networking
A analytical framework to investigate the impact of the random scheduling (RS), round
robin (RR), and proportional fair (PF) scheduling strategies on the performance of
federated learning in large-scale wireless networks.

Lim et al. [50] Networking A federated learning-based approach to enable privacy-preserving machine learning
across a group of autonomous Drones-as-a-Service (DaaS).

Shiri et al. [51] Networking
An approach that combines federated learning with mean field game theory to achieve
effective control of large-scale UAVs, while reducing the inter-UAV communication
overhead.

Liu et al. [52] Networking A federated learning-based aerial-ground air quality sensing framework for fine-grained
3D air quality monitoring and prediction.

Zeng et al. [53] Networking
A federated learning approach to address the limitations of centralized machine learning
in situations where the connections among UAV swarms and ground base stations could
be intermittent.

Ng et al. [54] Networking
Coalition formation scheme of UAVs to serve as wireless relays for facilitating and
reducing the cost of communications between the Internet of Vehicles (IoV) nodes and
federated learning server.

performed on a neural network, that the accuracy of federated learning
decreases by up to 55% on highly skewed non-IID where each client
exclusively trains a single class of data. This decrease is attributed
to the weight divergence, which practically represents the distance
between the probability distributions over classes on each device
and the probability distributions of the population’s distribution. To
overcome this problem, the authors propose to create a small dataset
and share it with all the clients. The local model of each client is
then trained on both that shared data and the private data of that
client. Experimentally, the authors show that with only 5% of globally
shared data, the accuracy of the neural network trained in a federated
fashion increases by approx. 30% using the CIFAR-10 dataset. In
[57], the authors point out the difficulty of finding publicly available
IID large datasets as proposed in [56] and suggest to build a large
IID dataset that is collected from a small number of clients that agree
to share their data. This dataset is used by the server to generate
model updates, which are then aggregated with the model updates
trained on non-IID clients’ data. The authors argue that adding model
updates from an IID dataset helps improve the performance of the
federated training process. The resource constraints on client device
are also taken in consideration in the solution where an optimization
problem that accounts for both data distribution across clients and
channel condition of each client is designed and then solved using

heuristics. In [58], a federated augmentation approach is proposed.
In this approach, each device reports to a high-computing server the
labels that are missing in its data samples and uploads some seed data
samples of these labels. The server then trains a Generative Adver-
sarial Network (GAN) to oversample the uploaded samples. Finally,
each device downloads the trained GAN generator to supplement the
missing labels, until attaining an IID training dataset. To ensure the
privacy of the augmentation process, the authors propose to let each
device to upload supplementary redundant data samples pertaining to
labels other than those that are actually missing.

In what follows, we discuss the existing data augmentation ap-
proaches in federated learning vis-à-vis the conventional data aug-
mentation methods to better position these approaches. The four
common data augmentation methods in the literature can be classified
into four major classes, i.e., data warping, over-sampling, geometric
transformations and Generative Adverserial Networks (GANs). The
main idea of data warping is to create model character deformations
that mimic the distortions that might occur in handwriting or printing.
Distorted character data is used to make the amount of training ex-
amples for each class more balanced, thus reducing the classification
bias. On the other hand, the main purpose of over-sampling is to
address the problem of class imbalance in real-world datasets that
comprise a small percentage of target class samples. Thus, synthetic
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TABLE 6: Summary of the approaches that tackle statistical challenges

Approach Challenge Technique Main Idea Criteria

Duan et al. [55] Class Imbalance and Size Imbalance Data Augmentation Determine the amount of augmentation needed for each class according to
the global distribution of the data. Criteria #5 and #7

Zhao et al. [56] Class Imbalance and Size Imbalance Data Augmentation Create a small dataset and share it with the clients, where each client
performs the training on both the shared data and private data. Criterion #5

Yoshida et al. [57] Class Imbalance and Size Imbalance Data Augmentation

Build a large IID dataset through collecting some data from a small
number of clients. The server uses this dataset to generate model updates,
which are then aggregated with the model updates trained on the clients’
non-IID data.

Criteria #5 and #9

Jeong et al. [58] Class Imbalance Data Augmentation

Each device reports to the server the labels that are missing in its dataset
and uploads some seed data samples of these labels. The server trains a
GAN to oversample the uploaded samples and sends it to each client to
supplement the missing labels.

Criterion #5

Goetz et al. [59] Class Imbalance Active Learning
Evaluate a utility function on each client to quantify the loss of its local
data and then accordingly favor the clients that considerably have higher
loss as the ones having observations associated with minority class data.

Criterion #7

Smith et al. [60] Distribution Imbalance Multi-Task Learning Enable each client to learn many separate but related models using MTL. Criterion #9

Caldas et al. [61] Distribution Imbalance Multi-Task Learning
Embed non-linear mappings into the design of multi-task federated learn-
ing to capture non-linear relationships in the local training models and in
the relationships between them.

Criterion #2 and #9

Sattler et al. [62] Distribution Imbalance Client Clustering Cluster the clients based on the geometric properties of the federated
learning loss surface. Criteria #2 and #8

Ghosh et al. [63] Distribution Imbalance Client Clustering A Lloyd clustering algorithm that employs 2-distance to group clients’
data. Criteria #2 and #8

Briggs et al. [64] Distribution Imbalance Client Clustering A hierarchical clustering mechanism to group the clients based on the
similarity of their local updates to the global joint model. Criteria #2 and #8

Liu et al. [65] Distribution Imbalance Transfer Learning
A federated transfer learning approach in which a model is learned from a
source-domain’s data distribution to be applied on a different (yet related)
target-domain’s data distribution with high accuracy.

Criterion #12

Sharma et al. [66] Distribution Imbalance Transfer Learning A federated transfer learning approach in the presence of malicious parties
that arbitrarily deviate from the federated training process. Criterion #12

Liu et al. [67] Distribution Imbalance Parameter Tuning
A momentum federated learning model that considers the last iteration
along with the current gradient to accelerate the convergence of the
federated training.

Criteria #1 and #6

Jiang et al. [68] Distribution Imbalance Parameter Tuning
A consensus-based distributed momentum SGD method that jointly sat-
isfies the decentralized computation, data parallelization and constrained
communication features.

Criterion #1

Koskela et al. [69] Distribution Imbalance Parameter Tuning
A learning rate adaptation mechanism using the moments accountant
technique in an attempt to make the global model optimal for each client’s
local data.

None

Li et al. [21] Distribution Imbalance Parameter Tuning
Add a proximal term to the local subproblem of each client to restrict the
influence of local updates through forcing them to be closer to the initial
global model.

Criterion #6

Chen et al. [70] Distribution Imbalance Parameter Tuning
A gradient correction approach that perturbs the local gradients with
unimodal and symmetric noise to push the expected median to draw near
the expected mean of the gradients upon aggregation.

None

Wang et al. [24] Distribution Imbalance Parameter Tuning
A layer-wise federated learning model that considers the permutation
invariance of the neurons prior to aggregation, thus allowing for global
model size adaptation.

Criterion #6

Mostafa et al. [71] Distribution Imbalance Parameter Tuning
An adaptive online hyperparameter tuning strategy that relies on reinforce-
ment learning to punish divergent representations across clients using a
regularization term.

None

Ruan et al. [72] Size Imbalance Flexible Client Participation
Relax some of the restrictions on devices’ participation to attract a larger
number of clients having data that match those that are held by clients
having less volumes of data than the rest.

Criterion #9

Wang et al. [73] Size Imbalance Flexible Client Participation
A deep Q-learning mechanism to thoughtfully choose, in each iteration,
the subset of devices that maximizes the reward in terms of size balance
and penalizes having more communication rounds.

Criterion #7

Eichner et al. [74] Block Cycles Plurality A pluralistic solution whose main idea is to train a different
model for each block in the cycle. Criterion #3

Li et al. [75] Model Heterogeneity Knowledge Distillation
A knowledge distillation technique that enables clients to share model
updates in a blackbox manner in terms of class scores on samples from a
public dataset.

Criteria #5 and #10

Mohri et al. [76] Bias Mitigation Weighted Optimization
An agnostic federated learning approach in which the shared learning
model is optimized for any target distribution consisting of a mixture of
client distributions.

Criterion #11

Li et al. [77] Bias Mitigation Weighted Optimization
An optimization problem that boosts the fairness of the accuracy distribu-
tion across devices through assigning higher weights to the devices that
generate higher loss.

Criteria #6 and #11
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Fig. 7: Classification of the statistical approaches in federated learning

data samples are created in the feature-space from randomly selected

pairs of real world feature samples from the minority classes. The

main intuition is that, according to [79], higher level representations

broaden the relative volume of plausible data samples within the

feature space, thus narrowing the space for undesired data samples.

To generate the synthetic data, simple transformations such as noise

injection, interpolation, or extrapolation are applied to feature-space

data. Similar to data warping, the method of over-sampling is based

on modifying the real-world data samples to generate augmented data.

Different from data warping, over-sampling has the advantage of

being application-independent, given that it produces the synthetic

samples in the learned feature-space.

The third data augmentation method is that of geometric transfor-

mations which includes rotation, flips, brightening, clipping, crop-

ping and channel alterations. This type of data augmentation can

only be applied to image datasets and generates data that are mere

transformations of the original ones. The fourth and most recent data

augmentation method is that of GANs. A GAN is composed of two

components that are trained against each other, i.e., the generator
and the discriminator. The generator is trained using a random noise

vector to generate realistic synthetic data, in an attempt to trick the

discriminator and make it unable to recognize that such data are

generated and not real. On the other hand, the discriminator takes both

the real and synthetic data samples as inputs to the training process,

in order to be able to differentiate between the real and generated

data samples. It outputs a probability value that quantifies the degree

that certain samples come from possible data sources. The models are

trained together in a zero-sum spirit, so that the improvements in the

discriminator come at the cost of a reduced capability of the generator,

and vice versa.

Most of the existing data augmentation techniques in federated

learning [55], [56], [57] adopt the over-sampling approach in the

sense that they are based on the idea of generating synthetic data in

the feature-space from randomly selected pairs of real-world feature

samples belonging to the minority classes. GANs have received less

attention so far with one approach [58] having investigated their

efficiency in minimizing the class and size imbalance in federated

learning. Yet, we argue that GANs have a great potential to improve

the quality of the synthetic augmentation data when applied in a

federated learning environment.

Active Learning: Active learning is a special type of machine

learning that is based on the assumption that the learning algorithm

can perform better if it can choose the data it wants to learn from.

Active learning allows the algorithm to actively query the programmer

or a labeled dataset to learn the correct prediction for a given problem.

Traditionally, passive learning methods are based on collecting large

volumes of data that are randomly sampled from a certain distribution

to be used for prediction. This task, however, is quite time-consuming

especially when it comes to bringing labelled data which often are

hard to obtain. To better clarify the idea of active learning, consider

that you are given the task of predicting the mortality rate among

Coronavirus patients. To do so, unfortunately, you might only have

the chance to give a small number of patients further examinations

to collect features. In other words, every day millions of people die

across the World. Knowing exactly the proportion of people that are

actually infected with Coronavirus out of these millions is almost

impossible, due to the lack of testing facilities and personnel. In this

case, instead of randomly choosing patients, you can choose patients

based on some criteria, e.g., whether the person suffers from a chronic

disease and is aged over 60. Determining such criteria can be done

in a dynamic fashion. For example, if you observe that the model

performs well at predicting the mortality rate for people over 60 but

struggles to accurately predict for those aged between 45 and 60, then

age might be a suitable criteria. This process of choosing instances

based on some criteria is called active learning and is depicted in

Fig. 8. In federated learning, active learning has been used to allow

the federated training algorithm to choose the clients it wants to learn

from in such a way to favor the ones having observations associated

with minority class data. The objective is to make the overall data

across the selected clients more class-balanced.

For example, the authors of [59] propose an active federated

learning approach in which the clients, at each training iteration, are

chosen according to a probability which takes into consideration the

current model and the data available on the client’s device. In more

detail, a valuation function that is assessed on each client’s device

and then returned to the server is proposed. The valuation function

is quantified in terms of loss. This way, drastic class imbalances and

weak separation of classes could be detected as minority class data

observations and will have considerably higher loss than those of

majority class data observations. Consequently, the server would favor

clients having more minority data points. In case all data points are

equally valuable based on the valuation function, clients with higher

volumes of data are given a higher preference.

3.1.2 Distribution Imbalance
This type of imbalance occurs when the feature distribution signif-

icantly varies across clients. In federated learning, different clients

have distinct interests and activities, which means that the features

that are available in one client’s local dataset considerably vary from

those contained in the rest of the clients’ datasets. For example,
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(b) Multi-Task Learning with Soft Parameter Sharing Method

Fig. 9: Multi-Task Learning: Several related tasks are trained together and the representations are sharing among them.

consider a federated training task where the purpose is to predict

the attractiveness of human faces using data from different clients. In

this scenario, clients will have varying tastes on the attractiveness

of certain profiles, e.g., one half of the clients might think that

bald men are attractive while the other half would think that they

are unattractive. In such a scenario, it would be impossible for a

single model to predict the attractiveness of bald men for all clients

at the same time. Technically speaking, distribution imbalance is

problematic since federated learning capitalizes on the stochastic

gradient descent method, the most used method for training deep

neural networks. In fact, due to the small size of each client’s local

data in a federated learning scenario, a stochastic gradient practically

represents the full gradient derived from a client’s data. This breaks

the assumption on the identical gradient’s distribution and makes it

infeasible to carry out the data shuffling and aggregation processes

of clients’ gradients, which are used to avoid local minima [80].

Four main techniques are used to address the distribution imbalance

challenge, i.e., multi-task learning, client clustering, transfer learning
and parameter tuning. In the following, we discuss each of these

techniques in detail and shed light on the approaches that employ

these techniques.

Multi-Task Learning: In traditional machine learning, the ob-

jective is to solve an optimization problem for one particular metric.

To do so, a single model (or sometimes an ensemble of models) is

trained and fine-tuned until reaching a stable performance. While

this approach has proved to yield good performance in a variety

of domains, staying limited to only one task at a time might also

deprive us from valuable information that could better optimize the

original metric. In fact, by training several related tasks and sharing

representations among them, the machine learning model can better

generalize on its original task. This approach is referred to as Multi-

Task Learning (MTL). For example, in the process of training students

to be researchers, in addition to teaching them scientific research

methodologies and techniques, we teach them writing, communication

and presentation skills. Although these appear to be unrelated tasks,

they turn out to equip the researcher with invaluable skills that are

relevant to the original task, i.e., learning research. MTL can be

practically implemented using two main methods, i.e., hard parameter

sharing and soft parameter sharing. In hard parameter sharing which

is mainly used to reduce overfitting, the hidden layers are shared

among all tasks and several task-specific output layers are kept (Figure

9a). On the other hand, in soft parameter sharing, each task has its

own model that keeps its own parameters. The distance between the

different models’ parameters is then regularized (e.g., using �2 norm

regularization) to push them to converge (Figure 9b). In federated

learning, soft parameter sharing MTL has been widely used to deal

with the non-IID data challenge through assigning a different task

model to different clients. Based on the assumption that some sort

of structure considerably exists among different clients’ task models

(e.g., users may have similar behavior when using their mobile

phones), the main idea of federated MTL is to capitalize on the

relatedness (e.g., graph-based relatedness, sparsity, etc.) among the

different tasks in order to capture the relationships among the non-IID

data.

For example, the authors of [60] propose a multi-task learning-

based approach that enables each client to learn a separate model,
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in an attempt to fit separate but related models simultaneously. This
approach is complemented by a resource-aware optimization model
called MOCHA that takes into account the storage, computational,
communication and power capacities of each client. As stated by the
authors, MOCHA can only be applied to convex deep learning models
and cannot be applied to non-convex models. In [61], the authors
improve upon MOCHA [60] through incorporating non-linear map-
pings into the design of multi-task federated learning. This objective
is accomplished through the inclusion of kernels to capture non-linear
relationships in local training models as well as in the relationships
between them.

Client Clustering: The client clustering approach aims to group
clients into clusters that share common characteristics. The ultimate
goal of such an approach is to facilitate the adoption of MTL in the
federated learning framework. Specifically, the objective of federated
MTL is to assign each client with a model that optimally fits its
local data distribution. This, however, contradicts with the federated
learning vision wherein all clients are treated equally and only one
single global model is learned. To bridge this gap, the objective of
client clustering approaches is to group clients into disjoint groups
and hence assign a single task model to each cluster. The clustering is
achieved through assessing the similarity among the clients’ gradient
updates. The main intuition is that clients with similar gradients tend
to have similar data distributions. Consequently, clients that belong
to the same cluster can jointly train a single model, which can be
considered one task of the whole federated MTL.

For example, the authors of [62] depart from the observation that
federated learning yields suboptimal results in case where the data
distributions of the clients’ local data are divergent to propose a
clustering strategy that takes advantage of geometric properties of
the federated learning loss surface to cluster the clients into groups
with jointly trainable data distributions. The idea is that the cosine
similarity among the weight updates of the different clients is a hint
about the similarity in their data distributions. In [63], the authors
propose a statistical model that takes into consideration the cluster
structure of clients’ data. The main component of this model is a
Lloyd clustering algorithm that employs 2-distance to group clients’
data in the presence of adversarial data observations. Based on the
clustering algorithm, a heterogeneous federated learning optimization
problem is designed and solved. The solution indicates that the
proposed model matches the lower bound on the estimation error in
terms of both dimension and number of data observations. In [64],
the authors propose to group the clients based on the similarity of
their local updates to the global joint model using a hierarchical
clustering mechanism. The clusters are independently trained in a
parallel fashion on specialized machine learning models.

Transfer Learning: Transfer learning is a machine learning
approach that, instead of initiating the training process from scratch,
gives the chance to start from patterns that were already learned
through solving a different problem. For example, if you trained a
simple classifier to predict whether an image contains a table, you
could use the knowledge that the model gained during its training
to recognize couches. Transfer learning addresses the problem of
performance degradation in supervised learning when we modify the
domain or task but do not have enough labeled data for that new
domain or task. For instance, suppose that we trained a model to
detect animals on images taken during the daytime. In this scenario,
the task is detecting animals and the domain is that of daytime. Now,
if we want to train another model to detect animals in images taken
during the night-time (a different domain), we would need millions of
labeled images taken during the night-time. The performance of the
model trained on daytime images would considerably degrade when
applied to night-time images since this model does not know how to
generalize to a new domain, i.e., night-time.

In general, the transfer learning vision is achieved through em-

ploying a pre-trained model, i.e., a model that has been trained on a
large dataset to solve a problem that is similar to the one you want
to solve. We first train a base source network on a base dataset and a
base task. Then we re-purpose the learned features (or transfer them)
to a second target network to be trained on a target dataset and task.
Basically, we transfer the weights that the model has learned from
“task A” to a new “task B”. This process is beneficial provided that
the features are general, i.e., appropriate for both the base and target
tasks, rather than being specific to the base task. Technically speaking,
transfer learning benefits from the fact that the features in the lower
levels of the deep network are highly transferable. This is because
these features focus on learning common and low-level features.
Hence, the parameters that are obtained from the source model can be
transferred to the target model so as to learn the personalized features
of that model. The general idea of transfer learning is schematized in
Fig. 10.

Transfer learning is used in the context of federated learning to
address the limited applicability problem of federated learning to only
vertically or horizontally partitioned data. Given that most existing
datasets have a small number of common features and/or population
and a majority of non-overlapping data [81], [82], most of the data
would be under-utilized by the federated learning framework. Transfer
learning is proposed as a potential solution to such a challenge as this
approach does not impose any limitation on the distribution of the data
and can hence provide results for the entire population and feature
space. For example, the authors of [65] propose a privacy-preserving
federated transfer learning approach to deal with the heterogeneity in
the clients’ data distributions. In this approach, a model is learned
from a source-domain’s data distribution to be applied on a different
(yet related) target-domain’s data distribution with high accuracy. The
authors complement the federated transfer learning approach with
a secure transfer cross-validation model which employs additively
Homomorphic Encryption (HE) to protect the performance of the
federated transfer learning approach from the security perspective.
In [66], the authors extend and improve upon [65] in two ways (1)
reducing the overhead of the security model by an order of magnitude
through employing secret sharing instead of homomorphic encryption
and (2) extending the semi-honest secure multi-party computation
model to consider dishonest malicious parties that might arbitrarily
deviate from the federated training process. The SPDZ secure multi-
party computation protocol is investigated in this context.

Parameter Tuning: Parameter tuning approaches generally seek
to improve the convergence of the federated training on non-IID data
through modifying the stochastic gradient descent method to improve
its global convergence time. Two main strategies are adopted for this
purpose. The first one is that of the momentum and the second is that
of parameter correction. The main objective of the momentum strategy
is to push the gradient vectors in the right directions. Momentum is a
method of weighed averaging whose main idea is to denoise a series of
data through moving the average of this series to bring it closer to the
original function (e.g., exponential, linear, etc.). In federated learning,
SGD with momentum consists of using the momentum method to
average over the gradients received from clients at different iterations
in order to help push the gradient vectors to go in the right direction.
For example, the authors of [67] propose Momentum Federated
Learning (MFL), a model that capitalizes on the momentum term
in the local update phase. Instead of relying on the traditional gradient
descent method in which the next iteration takes into consideration
only the current gradient, MFL considers the last iteration along with
the current gradient to accelerate the convergence. At the end of each
iteration, the server performs a weighted averaging over the received
local parameters to derive both the global momentum parameter and
global model parameter and send them back to the clients. In [68],
the authors discuss a consensus-based distributed momentum SGD
model that satisfies decentralized computation, data parallelization
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Fig. 10: Transfer Learning: The machine learning model capitalizes on some patterns that were already learned through solving a previous

problem.

and constrained communication. The convergence of the proposed

model is analyzed for both fixed and diminishing step sizes using a

Lyapunov function construction approach, showing that the proposed

model gives a convergence rate that is similar to a centralized model,

while on the other hand boosting data parallelism and distributed

computation.

The second strategy under the parameter tuning technique is that

of parameter correction and, as you might have guessed, it consists of

“correcting” some of the parameters to achieve some specific goals.

In [69], the parameter subject to correction is the learning rate and

the objective is to try to push the global model to be optimal for

each client’s local data at the beginning of each training iteration.

In [21], the local subproblem of each client is subject to correction

and the objective is to restrict the impact of local updates and force

them to be closer to the initial global model. In [70], the parameter

subject to correction is each client’s local gradient and the objective

is to improve the gradient aggregation process through propelling the

median of gradients to draw near the expected mean. In [24], the

parameter subject to correction is the neurons of the neural network

and the objective is to enable global model size adaptation. In [71],

the hyperparameters are subject to correction and the objective is to

reduce the divergence of the local models. We explain hereafter each

of these approaches in more detail.

In [69], Koskela et al. address the difficulty of carrying out valida-

tion in federated learning. The difficulty stems from the heterogeneity

of the clients’ data, which makes it difficult to generalize the hyper-

parameters across clients. To address this problem, a learning rate

adaptation mechanism is proposed. In this mechanism, the learning

rate is automatically computed using the moments accountant tech-

nique. The main motivation for adapting the learning rate is that the

global model (after averaging over the clients’ local models) may be

far from optimum when it comes to clients’ local data, which demands

some adaptations at the beginning of each iteration. The authors of

[21] propose FedProx, a variation of FedAvg, to tackle the statistical

heterogeneity that stems from the non-identical distribution of data

across devices. To address this problem, FedProx adds a proximal

term to the local subproblem that is to be solved on each client’s

device. The objective is to restrict the influence of local updates

through forcing them to be closer to the initial global model, while

tolerating variable amounts of local work on the devices. In [70], the

authors first investigate the convergence of signSGD and medianSGD
in federated learning environments under clients’ heterogeneous data

distributions. The main idea of signSGD is to update the parameters

according to a majority voting scheme on the sign of the gradients.

On the other hand, medianSGD improves the robustness of signSGD
through employing a coordinate-wise median of the gradients to

estimate the mean of these gradients. The authors first demonstrate

that both methods do not converge in heterogeneous data settings

and then propose a gradient correction approach whose main idea is

to perturb the local gradients with unimodal and symmetric noise,

thus pushing the expected median to draw near the expected mean of

gradients. The authors of [24] address the performance degradation of

the averaged global model in FedAvg that arises from the coordinate-

wise averaging of weights. The problem stems from the permutation

invariance of the neural network parameters (i.e., many variants

that differ only in terms of parameter ordering exist for any neural

network). To address this problem, the authors propose Federated

Matched Averaging (FedMA), a layer-wise federated learning model

that considers the permutation invariance of the neurons prior to

aggregation, thus allowing for global model size adaptation. The

authors of [71] propose two strategies to address the data hetero-

geneity problem, i.e., (1) adaptive online hyperparameter tuning and

(2) punishment for divergent representation learning across clients

using a regularization term. The hyperparameter selection problem

is formulated as an online reinforcement learning problem where,

at each round, learners adopt an action through selecting certain

hyperparameter values and then at the end of the round, each learner

receives a reward which quantifies the reduction in training loss.

3.1.3 Size Imbalance

This type of imbalance is common in federated learning since clients

are expected to have varying sizes of training data. Depending on the

geographical location, gender, frequency and duration of activity and

other factors, some clients might have considerably larger amounts

of training data than other. For example, in an image recognition

scenario, mobile phones owned by female users tend to have a

larger number of photos compared to mobile phones owned by male

users. Two main techniques are used to address the size imbalance

challenge, i.e., data augmentation and flexible client participation. In

the following, we discuss each of these techniques in detail and shed

light on the approaches that employ these techniques.

Data Augmentation: Data augmentation techniques are used to

augment the local data of the clients that considerably have lower

volumes of data than others, to make the overall data more balanced

in terms of size. Nonetheless, the data augmentation cannot be done

in an arbitrary fashion as arbitrarily augmenting data might result in

increasing the class imbalance across clients’ data in case the newly

added data are skewed towards certain classes. Theretofore, a data

augmentation technique that aims to handle size imbalance should also

be tailored to deal with class imbalance to avoid adding unnecessary

or skewed data that might aggravate the class imbalance problem.

Thus, the data augmentation approaches [55], [56], [57], [75] that are

used in the literature to address the class imbalance problem, which
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are described in the context of the class imbalance challenge (Section
3.1.1), are also used to deal with size imbalance.

Flexible Client Participation: The main idea of this approach
is to relax some of the restrictions and constraints on clients’ par-
ticipation to make it easier for more clients to join the federated
training. The objective is to attract a larger number of clients having
data that match those that are held by clients having less volumes
of data than the rest. For example, in [72], the authors propose
to relax some of the restrictions on devices’ participation through
integrating the following four scenarios: (1) in-completeness, where
devices are allowed to deliver partially completed work in a certain
iteration; (2) in-activeness, where devices are allowed not to reply to
the server in a certain iteration; (3) early departures, where devices
can leave the training without completing all the training iterations;
and (4) late arrivals, where new devices are allowed to enter after
the training has already begun. In [73], the authors propose an
experience-based federated learning framework called FAVOR whose
main purpose is to counterbalance the effect of imbalanced data. The
proposed framework intelligently selects the devices that are invited
to contribute in each federated training iteration. To do so, a deep Q-
learning [83] mechanism is proposed to thoughtfully choose, in each
iteration, the subset of devices that maximizes the reward in terms of
size balance and penalizes having more communication rounds.

3.2 Block Cycles

In the SGD method, it is essential for the data samples to be randomly
drawn to preserve the performance. Cycling is a situation in which
a specific permutation of data points occurs in an insufficiently-
random order. An example of this situation includes highly correlated
consecutive frames in a video. Although this situation can occur in
centralized datasets that are hosted on a single device, it becomes
even more complicated in distributed federated learning environments.
This is because, in federated learning, only those client devices that
are charging, idle and on a free wireless connection are chosen by the
server to participate in the training. This creates considerable diurnal
variation in the identity of available devices as these devices tend to
meet the aforementioned participation eligibility criteria at night local
time. This increases the possibility of encountering cyclic patterns in
the data, where, for instance, the devices owned by French speakers
in France and those owned by French speakers in Canada are likely
to be available at different times of the day. The common approach
to fight against block cycles in federated learning is that of plurality,
which we discuss hereafter.

Plurality: Federated learning (as well as ensemble learning)
solutions can be based on either a consensus approach or a pluralistic
approach. A consensus approach strives to derive a consensus decision
that is good for all the involved parties and, more specifically, it aims
at creating one single predictor out of all the local models. On the
other hand, a pluralistic approach embraces heterogeneity and allows
to learn a separate model for each group of participants. Such an
approach is useful in data that follows a block-cyclic structure, where
a separate model can learned for each separate block of data. This, for
example, can be achieved through linking each client with the hour at
which the client is available for training. Then, instead of averaging
over all iterations to get a single final predictor as is the case in
consensus-based solutions, a collection of different pluralistic models
can be created by averaging, for each data distribution associated with
one particular block, over only the iterations that pertain to that block.
Inspired by the idea, the authors of [74] first show that the presence
of block-cyclic data largely deteriorates the training performance in
federated learning. They then propose a pluralistic solution whose
main idea is to train a different model for each block in the cycle,
e.g., one model for daytime data and one model for nighttime data.
Despite the importance of this solution, its efficiency is limited to

convex machine learning optimization models and traditional SGD
algorithms. Further investigations are needed to address this challenge
in non-convex models and under parallel SGDs, which are the most
frequently used in federated learning. In fact, most federated learning
applications employ deep neural networks which rely on non-convex
optimization models. Moreover, federated learning relies on a parallel
SGD scheme (e.g., federated averaging) wherein the local gradients
are aggregated in a parallel fashion.

3.3 Model Heterogeneity

Model heterogeneity refers to a situation in which each client inde-
pendently designs its own training model. Clients in such a situation
may not be willing to share details of their models due to privacy
and intellectual property concerns. This scenario complies with small-
scale federated learning environments (e.g., supply chain, healthcare)
wherein a small number of participants want to design each a separate
model to fulfill distinct unique specifications. The challenge here is to
adapt the federated learning framework to a scenario where each client
trains a different model that is a blackbox to the rest of clients. The
concept of knowledge distillation is used to address this challenge.

Knowledge Distillation: Despite the abundance of complex deep
learning models that can solve sophisticated tasks, a crucial challenge
remains how to deploy such enormous models on small devices such
as mobile phones for instant use. Knowledge distillation handles this
challenge and aims to improve the performance of deep learning
models on small devices. In other words, it aims at answering the
following question: “How can we train a small network that can
operate on resource-constrained devices?”. The main idea of knowl-
edge distillation is to train a large complex deep network that can
elicit important features from the data and make accurate predictions.
Thereafter, a small network is trained with the help of the large
model so that this small network can replicate the results of the large
model or at least produce similar results. Based on the hierarchical
abstractions of features in deep networks, the small distilled model
is trained to imitate the output of the large model instead of being
directly trained on the raw data. From a conceptual point of view,
the complex model is seen as a Teacher Model whereas the small
network is considered to be a Student Model. Technically speaking,
the transfer of generalization ability from the Teacher Model to the
Student Model is achieved using the “soft targets” produced by the
Teacher Model. Soft targets are the class probabilities produced by the
output of the final softmax function from the source training model,
whereas hard targets are the final output of the classifier. The soft
target provides richer information for model training and can be used
to restore intra-class variance and inter-class distance. In this way, the
small model can be trained on a considerably less amount of data
than that employed by the large model, while using a quite higher
learning rate. While knowledge distillation may look similar to the
concept of transfer learning explained earlier, they have two different
purposes. In transfer learning, the weights are transferred from a pre-
trained network to a new network whose architecture should exactly
match the pre-trained network’s architecture. This means that the new
network should be as deep and sophisticated as the pre-trained one.
On the other hand, in knowledge distillation, instead of transferring
weights, we transfer the generalizations of the large model to a much
smaller model. The general idea of knowledge distillation is illustrated
in Fig. 11.

The authors of [75] employ knowledge distillation to address the
parameter sharing challenge in heterogeneous local models environ-
ments. First, a data augmentation technique is employed to increase
the volume of private data samples for each participant. This is
done through allowing each participant to fully train its model using
public data, prior to training it on its own private data. Thereafter,
knowledge distillation is used to communicate Blackbox models
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Fig. 11: Knowledge Distillation: A large complex deep network is first trained and then a small network is trained with the help of that large

model to replicate its results on resource-constrained devices.

among participants without sharing neither private data nor model

updates. This is achieved through letting each participant to share its

knowledge in terms of class scores, derived from the public dataset.

Then, the server gathers the class scores from all participants and

computes their average. Based on this average, each participant trains

its model again to approach the consensus (i.e., to make its class

scores closer to the average).

3.4 Bias Mitigation

Bias recently began to attract a great attention in modern machine

learning systems [84], [85]. This problem arises from a machine learn-

ing system whose outcomes (e.g., predictions) discriminate against

some protected groups or visible minorities. For example, a linear

regression model could base its salary predictions on the person’s

gender or ethnic group, leading to predict a lower salary for people

from a certain group (e.g., females, people of color, etc.). Although

many approaches have been lately proposed to fight against bias

in traditional machine learning systems [86], [87], this topic has

received less attention in the context of federated learning. Yet,

bias is particularly challenging in federated learning since the target

distribution based on which the global shared model is learned is

unspecified. Adding to that the fact that the client participation in

the federated training depends on many factors such as the device

being charging, idle and on a free wireless connection. These factors

combined may lead to a situation wherein the data used for training

might not reflect the real data post-training. Let’s better illustrate

the idea with a real-world example. Suppose a federated learning

scenario wherein the learner has access to a wide population of

expensive mobile phones (80%) owned by technical users, and smaller

population of general non-technical users (20%). In this case, the

federated learning model would be mainly trained based on the

uniform distribution of expensive devices, making it not representative

of the general target domain where most of phones are owned by

general non-technical users (e.g., 80% general versus 20% technical).

The weighted optimization technique, explained in what follows, is

used to fight against bias in federated learning.

Weighted Optimization: This method consists of assigning

weights to the local models received by the clients. The weighting

scheme can be done based on several criteria, e.g., giving more

weights to devices with poor performance. The authors of [76] address

the bias that arises from the fact that the central learning model is

trained to minimize the loss function with respect to the uniform

distribution over the union of all samples. The authors put forward

an agnostic federated learning approach in which the shared learning

model is optimized for any target distribution consisting of a mixture

of client distributions. To solve the optimization problem, a fast-

stochastic algorithm whose convergence bounds are proved is further

proposed. In [77], the authors address the problem of fairness among

edge devices model’s accuracy in heterogenous federated learning

environments. To this end, they propose a novel optimization problem

called q-Fair Federated Learning (q-FFL), which boosts the fairness

of the accuracy distribution across devices through assigning higher

weights to the devices that generate higher loss. The idea is to boost

less variance in the accuracy distribution. The q-FFL is solved using

q-FedAvg, whose main idea is to employ a dynamic (instead of static)

step-size stochastic gradient descent.

3.5 Desirable Criteria for Future Solutions

Based on the above classification and discussions, we identify a set

of criteria that we believe are important to consider when designing

future statistical solutions for federated learning. In what follows,

we first present these criteria and then discuss how could they be

practically capitalized on to craft efficient statistical solutions in

federated learning.

• Criterion #1: Consider not only the first-order gradient but

also preceding iterations to the current gradient update to

accelerate the global convergence.

• Criterion #2: Support non-convex optimization models to

avoid local optima in the presence of a large number of clients.

• Criterion #3: Handle block cycles in the training data to

preserve the performance of the SGD method (Approaches

[74]).

• Criterion #4: Decouple the local training from the global

model aggregation to support local learners that use different

machine learning algorithms.

• Criterion #5: Capitalize on data augmentation strategies to

minimize the class, distribution and size imbalances (Ap-

proaches [55], [56], [57], [58]).

• Criterion #6: Design a weighted global aggregation model

that assigns higher weights to learners that allocate higher

computation capacities to the training process.

• Criterion #7: Differentiate between clients according to their

training utility.

• Criterion #8: Capitalize on the similarity among the weight

updates of the clients to detect the degree of similarity of their

data distributions.

• Criterion #9: Investigate the impact of system metrics on the

statistical heterogeniety.

• Criterion #10: Take into consideration the model heteroge-

niety in which each client trains a different machine learning

model.
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Criterion #11: Ensure that the federated training model is not
biased toward or against any client’s data distribution or device
characteristics.
Criterion #12: Capitalize on the strength of transfer learn-
ing to address the limited applicability problem of federated
learning to only vertically or horizontally partitioned data.

The current literature on statistical concerns in federated learning
can be improved in many respects. To begin with, further methods to
accelerate the convergence of the federated training are needed. The
momentum method adopted by many approaches [67], [68] offers a
great potential toward this objective. However, further investigations
are needed on the interdependencies between this method and the
other aspects of federated learning such as communication cost,
security and privacy guarantees. A second aspect of research is to
extend the existing literature that applies only on convex optimization
machine learning models to cover non-convex models as well. In fact,
despite the importance of the existing approaches that tackle statistical
concerns in federated learning, most of them are dedicated to convex
optimization models. Yet, most modern deep learning techniques (e.g.,
deep neural networks), which are the backbone of the federated
learning paradigm, are based on non-convex optimization models.
Therefore, it is of prime importance to adapt the existing solutions
to non-convex scenarios to boost their applicability in modern ma-
chine learning settings. Another aspect to consider in the future is
investigating the impact of system metrics such as amount of avail-
able resources on the non-IID degree of the data. Such information
can be capitalized on to design more intelligent model aggregation
techniques. For example, designing a weighted global aggregation
model that assigns higher weights to clients that dedicate higher local
computation resources to the training process can be quite beneficial
to reduce both the non-IID degree of the data and straggler nodes that
take long times to send their updates. Decoupling the local training
from global model aggregation is another important aspect that needs
careful investigations in the future. This is essential to dissociate
the global aggregation process from the machine learning technique
locally used by the clients and also to support situations wherein each
group of clients prefers to use a different machine learning model.
An additional research direction would be to design a training utility
for each client. Such utility could be designed while taking into
consideration a variety of metrics such as data size on the client’s
device, local computation time history and impact of the client’s
data on the non-IID degree of the overall data distribution. Then,
based on this utility, the server can eliminate some clients from its
selections to reduce the communication and computation overheads.
Another essential research direction to continue to work on is that of
detecting and alleviating the implications of the non-IID nature of the
data. To do so, two interesting approaches need further analyses and
investigations. The first approach is that of data augmentation, where
thoughtfully created artificial data could be added to the clients’ local
data to mitigate the non-IID degree of the overall distribution. The
second approach consists of analyzing the similarity and correlation
between the clients’ model updates to detect the similarity among
their data distributions. Another research direction would be to detect
and handle the problem of block cycles which mainly arises due to
the system heterogeneity and changing client participation rate. Only
one solution [74] has been proposed so far to address this problem.
Despite the importance of this approach, its applicability is limited
to only convex machine learning optimization models and traditional
SGD algorithms. Therefore, further investigations are needed to adapt
this approach to the federated learning settings, i.e., non-convex
optimization models and parallel SGD computation.

4 COMMUNICATION EFFICIENCY (CHALLENGE 2)

Communication efficiency approaches seek to reduce the communi-
cation overhead that arises from the exchange of messages between
the parameter server and the client devices that run the model
training in a distributed fashion. Two types of communications can
be distinguished in this context, i.e., downstream communication and
upstream communication [106], [107], [108]. Downstream commu-
nication refers to the process of clients downloading the current
training model from the server, while upstream communication refers
to the process of clients uploading the updated model to the server.
Technically speaking, as discussed in [89], the number of bits that
each client needs to upload and download during the federated training
process is given in Equation (3):

bitup down O Niter M H Mup down (3)

where Niter is the total number of local training iterations carried
out by each client, is the communication frequency, M is the
size of the training model M, H Mup down is the entropy of the
weight updates exchanged during the upload and download operations
respectively, and is the difference between the true update size and
the minimal update size (given by the entropy). Thus, Niter in
Equation (3) represents the number of updates performed by each
client and M H Mup down quantifies the size of the update
to be uploaded/downloaded by the client. Based on this formula,
we can conclude that the communication overhead can be reduced
in three ways, i.e., (1) reducing the size of the weight updates
M H Mup down ; (2) reducing the communication fre-

quency Niter ; and (3) communication type which affects both the
weight updates size and communication frequency. In the following,
we examine each of these three categories, i.e., model updates size
reduction, communication frequency reduction, and communication
type in detail and discuss the approaches that were proposed in
the literature under each category. The classification scheme of the
statistical approaches is schematized in Fig. 12. Moreover, we provide
in Table 7 a summary of the main approaches that tackle statistical
challenges in federated learning and highlight the criteria (proposed
in Section 4.5) that each underlying approach satisfies.

4.1 Model Updates Size Reduction

The approaches that fall under this category seek to reduce the size
of the model updates that are exchanged between the server and the
involved clients. The common approach for doing so is the use of
compression models. We explain hereafter how compression has been
used in the context of federated learning and discuss in detail the
solutions that were proposed in the literature to apply compression.

Compression: Compression refers to the process of encoding
information using a number of bits that is smaller than that of the
original representation [109]. Compression models can be divided into
two categories, i.e., lossy compression models and lossless compres-
sion models. A lossy compression model is a compression process
wherein some data from the original target (being compressed) is lost
[110]. This process is irreversible in the sense that it would no longer
be possible to go back once the target has been converted using a
lossy compression model. On the other hand, a lossless compression
model is a model in which the size of the target is reduced through
taking out some unnecessary data (e.g., metadata) without entailing
any quality loss. All of the existing compression models proposed
for federated learning employ lossy compression methods to reduce
the size of the weight updates. Specifically, the quantization and
sparsification compression methods have been heavily used toward
this end. Nonetheless, most of the existing approaches are hybrid and
prefer to combine techniques from both quantization and sparsifica-
tion to achieve high-quality compression. We discuss in what follows
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TABLE 7: Summary of the communication efficiency approaches

Approach Challenge Technique Main Idea Criteria

Reisizadeh et al. [22] Model Updates Size Reduction Compression (Quantization)
A quantized message-passing scheme in which clients apply a quantization
operator on the difference between their own updated model and the most
recent model received from the server.

Criterion #2

Agarwal et al. [88] Model Updates Size Reduction Compression (Quantization)
A quantization method whereby clients quantize their locally computed
gradients and send an efficient representation of the quantized gradient to
the parameter server.

None

Sattler et al. [89] Model Updates Size Reduction Compression (Sparsification)
A sparse ternary compression model that extends the top-k gradient spar-
sification compression method to support both upstream and downstream
communications.

Criterion #1

Amiri et al. [90] Model Updates Size Reduction Compression (Hybrid)
Compress the local gradients to a finite number of bits and then sparsify them
into a low-dimensional vector using the superposition property of the wireless
MAC.

Criterion #2

Konevcny et al. [9] Model Updates Size Reduction Compression (Hybrid)

Proposing two types of model updates: (1) structured updates which force the
model update to follow a pre-specified structure and (2) sketched updates
in which the full model is learned and then compressed using a mix of
subsampling, quantization and random rotation.

Criterion #2

Caldas et al. [91] Model Updates Size Reduction Compression (Hybrid)
Employ techniques from basis transform, subsampling and probabilistic quan-
tization to achieve lossy compression on the training model while maintaining
its quality.

Criterion #2

Yurochkin et al. [92] Communication Frequency Reduction Parameter Number Reduction
A probabilistic nonparametric approach which identifies the subsets of neu-
rons in each local model that match with the neurons in other clients’ local
models.

Criterion #3

Zhu et al. [93] Communication Frequency Reduction Parameter Number Reduction

A sparse evolutionary training model that determines and encodes the connec-
tivity between every two neighboring layers of the neural network, with the
purpose of decreasing the number of model parameters that need to be shared
with the server.

Criteria #2 and #3

Niu et al. [94] Communication Frequency Reduction Parameter Number Reduction A federated submodel learning framework in which clients need to download
and upload only some relevant parts of the full model. Criteria #2 and #3

Caldas et al. [91] Communication Frequency Reduction Parameter Number Reduction

Enable client devices to perform the local training on smaller subsets of the
global model through setting to zero a steady number of activations at each
fully-connected layers, which leads the weight matrices to be multiplied by a
reduced number of activations.

Criteria #2 and #3

Liu et al. [25] Communication Frequency Reduction Periodic Aggregation
A client-edge-cloud aggregation model which enables each edge server to ag-
gregate its own clients’ model updates, and then periodically send aggregated
models to the cloud server for global aggregation across all edge servers.

Criteria #4

Jeong et al. [58] Communication Frequency Reduction Periodic Aggregation

An online federated distillation technique in which each local device obtains
the mean model output of all other devices and then periodically computes
the difference between its model output and the obtained mean model output
the using a cross entropy method.

Criteria #2 and #4

Guha et al. [95] Communication Frequency Reduction Periodic Aggregation
A one-shot federating learning approach that lets client devices to train
local models to completion and then uses ensemble learning techniques to
aggregates models across clients, instead of computing incremental updates.

Criteria #4

Liu et al. [96] Communication Frequency Reduction Periodic Aggregation
A federated stochastic block coordinate descent approach wherein clients
constantly perform their local model updates and only occasionally share the
updates with the server is proposed.

Criteria #2 and #4

Kamp et al. [97] Communication Frequency Reduction Periodic Aggregation A selective communication scheme only in cases where the training model
averaged over local learners suffers from loss. Criteria #2 and #4

Reisizadeh et al. [22] Communication Frequency Reduction Periodic Aggregation Periodic averaging where clients perform several local updates and only
periodically synchronize their updates with the server. Criteria #2 and #4

So et al. [23] Communication Frequency Reduction Periodic Aggregation

A multi-group circular strategy that divides clients into several groups and
then at each aggregation iteration, the clients residing in one group forward
the aggregated model updates of all clients in the previous groups and the
local model updates of the current group to the clients of the next group.

Criterion #4

Wang et al. [98] Communication Frequency Reduction Periodic Aggregation
An in-edge federated learning framework that capitalizes on deep reinforce-
ment to design a cooperation scheme among edge devices to exchange the
learning parameters.

Criterion #4

Feng et al. [99] Communication Frequency Reduction Periodic Aggregation A collaborative relay network scheme wherein only relay nodes connect to
the access point of the server to forward the model updates. Criterion #4

Sun et al. [100] Communication Frequency Reduction Over-The-Air Computation An analog transmission scheme in which the summation of the local gradients
is carried out over-the-air, instead of being performed on the parameter server. Criterion #2 and #7

Yang et al. [101] Communication Frequency Reduction Over-The-Air Computation A beamforming strategy that directs a wireless signal toward a specific
receiving device, rather than broadcasting it in all directions. Criterion #2 and #7

Amiri et al. [102] Communication Frequency Reduction Over-The-Air Computation
A distributed SGD method whereby only one device is selected at each
iteration to compute its gradient and the average gradient is computed over-
the-air.

Criterion #2 and #7

Wu et al. [103] Communication Type Asynchronicity
A semi-asynchronous federated averaging protocol that allows stragglers to
remain asynchronous with the server so as to benefit from their progress in
later iterations.

Criterion #2 and #6

Chen et al. [104] Communication Type Asynchronicity
An asynchronous online federated learning solution that adds a relatedness
parameter to the global loss minimization function to measure the distribution
similarity among clients which continuously receive new data during training.

Criterion #2 and #6

Pinyoanuntapong et al.
[105] Routing Scheme Model-Free Reinforcement Learning A model-free reinforcement learning approach that seeks to minimize the

convergence time of federated learning in multi-hop environments. Criterion #2 and #9
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Fig. 12: Classification of the communication efficiency approaches in federated learning

the quantization, sparsification and hybrid techniques while shedding

light on the associated approaches proposed in the literature.

Quantization: Quantization consists of applying a lossy compres-

sion on the gradient vectors through quantizing each of their entries

to a finite-bit low precision value [111]. In general, quantization

operates through compressing a set of values to a single quantum

value. Thus, when the number of discrete symbols in a certain

stream is decreased, the stream becomes more lightweight. As an

example, decreasing the number of colors needed to represent a digital

image would contribute in reducing its file size. The authors of [22]

propose a quantized message-passing scheme in which clients apply

a quantization operator on the difference between their own updated

model and the most recent model received from the server and then

submit then quantized vector to the server. The authors of [88] adopt a

quantization method whereby clients quantize their locally computed

gradients and send an efficient representation of the quantized gradient

to the parameter server.

Sparsification: A sparse matrix is a matrix whose number of zero

elements is higher than that of non-zero elements [112]. Sparsification

is the process of making a matrix more sparse. The main advantage of

having a sparse matrix is that, by using a matrix that is fundamentally

composed by zero values, we can save space by storing only the non-

zero elements [113]. In federated learning, sparsification is proposed

to filter out the gradient vectors outputted by the clients according

to their magnitude and select only a subset of them to be commu-

nicated with the server. For example, the authors of [89] propose

a compression solution called Sparse Ternary Compression (STC)

for both downstream and upstream communications. STC extends

the top-k gradient sparsification compression technique to support

both upstream and downstream communications using ternarization,

sparsification, error accumulation and optimal Golomb encoding tech-

niques.

Hybrid: Most compression-based solutions decide to embrace

both the quantization and sparsification approaches and design hybrid

compression models that involve both methods. The authors of [90]

propose to compress the computed gradient to a finite number of

bits and communicate these bits to the parameter server. Thereafter,

they propose an analog communication scheme, called Compressed

Analog - Distributed Stochastic Gradient Descent (CA-DSGD), that

takes advantage of the superposition property of the wireless Multiple

Access Channel (MAC) to enable devices to sparsify their gradient

values and project these sparse values into a low-dimensional vector.

The authors of [9] propose two types of model updates. The first is

that of structured updates which forces the model update to follow a

pre-specified structure. Two types of structures are discussed in this

work, i.e., (1) low rank structure in which every local model update

is forced to be a matrix of rank of at most k and (2) random mask in

which the update is forced to be a sparse matrix that follows a pre-

defined random sparsity pattern. The second type of model updates is

that of sketched updates in which the full model is learned and then

compressed using a mix of subsampling, quantization and random

rotation, prior to transmitting it to the parameter server. The authors

of [91] employ the techniques of basis transform, subsampling and

probabilistic quantization to achieve lossy compression on the training

model, while maintaining its quality.

4.2 Communication Frequency Reduction

The solutions that are proposed to reduce the communication fre-

quency in federated learning can be classified into three major

categories, i.e., parameter number reduction, periodic aggregation,

and over-the-air computation. We discuss hereafter each of these

categories in detail and explain the approaches that were proposed

under each category.

Parameter Number Reduction: The commonly used approach

for reducing the number of exchanged parameters is to tune the

underlying deep neural network to decrease the connections among

its layers. For example, the authors of [92] put forward a probabilistic

nonparametric federated learning framework for neural networks.

In this framework, the neurons of the clients’ neural networks are

matched prior to aggregation. The matching seeks to identify the

subsets of neurons in each local model that match with the neurons

in other clients’ local models. The matching is achieved using the

Beta-Bernoulli process (BBP) Bayesian nonparametric model, which

allows local parameters to either be aggregated with existing global

parameters or for new global parameters to get created in case the ex-

isting ones give poor matching. In [93], the authors seek to minimize

the communication cost in federated learning without increasing the

global model test error. This objective is modeled as a bi-objective

optimization problem and solved using a multi-objective evolutionary

algorithm. In more detail, a Sparse Evolutionary Training (SET)

model is designed to determine and encode the connectivity between

every two neighboring layers of the neural network. The purpose is to

decrease the number of model parameters that need to be shared with

the parameter server. The authors of [94] address the communication

overhead caused by the fact that clients need to download and upload

the full model learning at each federated learning iteration. To counter

this problem, a federated submodel learning framework is devised,

where clients need to download and upload only some relevant parts of

the full model (referred to as submodels). In more detail, each client’s

submodel consists of the embedding parameters and parameters of the
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network layers of the client’s activities. In [91], the authors seek to
enable client devices to perform the local training on smaller subsets
of the global model. This is done through setting to zero a steady
number of activations at each fully-connected layers, which implies
that the weight matrices will be multiplied by a reduced number of
activations.

Periodic Aggregation: This approach aims to reduce the number
of times the clients need to communicate with the server through
enabling these clients to perform multiple local iterations prior to
sending their updated parameters to the server. For example, the
authors of [25] investigate a client-edge-cloud federated learning
aggregation model which enables partial model aggregation at the
level of edge servers. The main idea is to enable each edge server to
aggregate its own clients’ model updates after every fixed number of
clients’ training iterations. Then, after every fixed number of edge
model aggregation, the cloud server aggregates the models of all
edge servers. Compared to a traditional cloud-based federated learning
model, a client-edge-cloud model reduces the cost of communication
with the cloud server and leads to decreasing the number of local
iterations and overall runtime. In [58], an online federated distillation
technique is discussed. According to this technique, each local device
obtains the mean model output (a series of logit values normalized
via a softmax function) of all other devices and periodically computes
the difference between its model output and the obtained mean model
output the using a cross entropy method. The authors of [95] leverage
a one-shot federated learning approach which enables the server to
learn a global model over a set of clients in one single communication
iteration. The main intuition behind this approach is to let client
devices to train local models to completion, instead of computing
incremental updates. Consequently, ensemble learning models are
implemented to seize global information across the device-specific
models. The authors of [96] address the communication overhead
in vertical federated learning that arises from applying privacy-
preserving algorithms (e.g., Homomorphic Encryption, Multi-party
Computation) on the communicated data. To attack this problem,
a federated stochastic Block Coordinate Descent (BCD) approach
wherein clients constantly perform their local model updates and
only occasionally share the updates with the server is proposed.
The authors of [97] propose to assess the need of communication
based on the performance of the averaging model, aiming to decrease
the communication overhead by an order of magnitude compared
to periodic communication. In more detail, if the training model
averaged over local learners suffers from loss, then communication is
necessary; otherwise, communication should be avoided. The authors
of [22] propose FedPAQ whose main idea is to perform periodic
averaging, where instead of letting clients to synchronize their updated
models with the parameter server at each iteration, these clients
perform several local updates and then periodically synchronize their
updates with the server. FedPAQ applies a partial device participation
scheme as well, where only a subset of clients is selected to contribute
in each training iteration based on several factors such as being idle,
reachable to the base station, and connected to a free wireless network.
In [23], the authors seek to reduce the overhead of applying the secure
aggregation model in large-scale federated learning environments that
may consist of billions of clients. To this end, a solution called
Turbo-Aggregate is proposed. The first component consists of a multi-
group circular strategy for model updates aggregation. The main
idea here is to divide clients into several groups and then at each
aggregation iteration, the clients residing in one group forward the
aggregated model updates of all clients in the previous groups and
the local model updates of the current group to the clients of the next
group. The authors prove that such an aggregation strategy reduces
the aggregation overhead from O N2 to O N logN . In [98], the
authors design an in-edge federated learning framework that integrates
together deep reinforcement, federated learning and mobile edge

computing. The objective is to capitalize on the cooperation among
edge devices to exchange the learning parameters, to both improve
the training performance and reduce the unnecessary communications.
The authors of [99] employ a relay network approach to reduce the
number of clients communicating with the server. Mobile devices
collaboratively provide relaying service to each other, where only
relay nodes connect to the access point of the server to forward model
updates. This leads in sub-centralizing the communications among the
server and clients.

Over-The-Air Computation: Over-the-air [114] is an approach
in which the whole or parts of the aggregation are carried out over-the-
air by local devices to reduce the size of the messages communicated
with the server. Traditionally, in federated learning, the summation
of the gradients is carried out over-the-air in a distributed fashion
among each group of clients and then only the sums (instead of all
the gradients) are transmitted to the server to compute the average
of the sums. For example, the authors of [100] propose an analog
transmission scheme via multiple access channel, where the local
gradient of each client is evenly partitioned into a set of segments.
The summation of the local gradients is then carried out over-the-
air (instead of being performed on the parameter server), under the
assumption that all clients transmit their gradients synchronously.
Moreover, an energy-aware client scheduling scheme is proposed with
the objective of minimizing the average number of clients scheduled
to submit gradient updates at each learning iteration under a long-term
energy budget. The authors of [101] propose an over-the-air approach
for efficient global parameters aggregation. The proposed technique
takes advantage of the superposition property of a MAC to advocate
a joint device selection model along with a beamforming strategy
that directs a wireless signal toward a specific receiving device, rather
than broadcasting it in all directions. These objectives are modeled as
an intractable combinatorial optimization problem with non-convex
quadratic constraints. The problem is solved using a Difference of
Convex functions. The authors of [102] discuss a federated learning
approach at the wireless network edge over a bandwidth-constrained
fading Multiple Access Channel (MAC) path from limited power
wireless devices to a remote parameter server. A distributed stochastic
gradient descent technique is proposed, whereby only one device is
selected at each iteration (based on channel conditions) to compute its
gradient. The proposed solution takes advantage of the superposition
property of the wireless channel to enable an over-the-air computation
of the average gradient.

4.3 Communication Type

A communication type refers to the manner in which the server
and clients communicate the training model and model updates.
In federated learning, the communication between the server and
clients can be either synchronous or asynchronous [115], [116]. In
synchronous federated learning, the server needs to wait until all the
local model updates from all clients are received prior to deriving an
aggregate global model. On the other hand, in asynchronous federated
learning, the aggregate model can be derived even if not all the
local model updates have been received. The default communication
type in federated learning is synchronous, since it complies well
with the default aggregation model, i.e., Federated Averaging. The
approaches proposed under this category attempt to craft an asyn-
chronous communication model for the federated learning paradigm
without violating this emerging paradigm’s constraints. We discuss
hereafter this technique which we refer to as asynchronicity and
explain the approaches that are proposed under within its scope.

Asynchronicity: The approaches proposed under this category
aim at overcoming the problems that arise from the synchronous
communication model, which are the: (1) overhead caused by the
need to distribute the latest global model over the entire set of clients;
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(2) waste of progress in case some clients start the local training
but fail to complete it; and (3) long waiting time in the presence of
stragglers that take long time to report their local updates. Therefore,
asynchronicity approaches aim to overcome the above-mentioned lim-
itations through relaxing some of the synchronous federated learning
assumptions. For example, the authors of [103] propose a Semi-
Asynchronous Federated Averaging (SAFA) protocol that extends the
FedAvg model. The solution capitalizes on asynchronous machine
learning to reduce the impact of clients that drop offline (due to some
power outage or low battery level) or are late in submitting the updated
models (i.e., stragglers). To do so, the progress of the clients that are
late in submitting their model updates on time is conserved to be used
in later iterations. Thereafter, a discriminative aggregation technique
that takes advantage of a cache structure is proposed to evade a
portion of the clients’ update and discriminatively combine some
local models into a global model based on some criteria to accelerate
the federated learning process. The authors of [104] address two
essential challenges caused by the synchronous setting of federated
learning. The first challenge relates to the volatile nature of each
local edge device’s training data, which allows for additional data to
continuously come during the training process. The second challenge
stems from a poor communication bandwidth on edge devices that
might slow down the synchronized federated learning and waste the
resources on the clients that need to wait until all other clients submit
their model updates. To address these challenges, an asynchronous
online federated learning solution is proposed, where updates from
different clients with continuously arriving data can be combined in
an asynchronous fashion. Technically speaking, the main idea is to
add a relatedness parameter to the global loss minimization function
to measure, in an online fashion, the distribution similarity among
clients which continuously receive new data during training. Finally,
to control the inconsistencies that arise from the asynchronous training
model, the authors propose to enforce a dynamic learning step size on
each client to control how often each client has to offer updates to
the global model. Thus, edge devices with lower volumes of data and
enjoying a stable communication bandwidth will be assigned a smaller
dynamic learning step and hence a higher rate of contribution to the
global model update process.

4.4 Routing Scheme
Traditional federated learning solutions capitalize on single-hop cel-
lular links to convey the local updates from client devices to edge
routers, which in their turn, connect to the remote cloud server via
high-speed Internet core seeking for global model aggregation. Such
a single-hop wireless communication architecture has the advantage
of enabling edge devices to readily reach the cloud servers that are co-
located with the cellular base stations. However, the main downside
of such an architecture stems from the considerable deployment and
operational costs that are required to create and maintain this type of
networks. A wireless multi-hop communication architecture provides
a more affordable and less complicated alternative to single-hop rout-
ing. A wireless multi-hop network architecture consists of a mesh of
interconnected wireless routers, which are wirelessly connected using
a mesh-like backbone structure. Adopting such a wireless multi-hop
architecture in federated learning can bring many advantages. First, it
improves the machine learning experience for mobile users in urban
areas that are crowded with tall buildings, through reducing the line-
of-sight problem14. Second, it helps democratize the machine learning
experience through making it accessible to a larger mass of individuals
at a lower cost, even those that are located in under-developed and
disastrous regions. In the literature, few approaches have tried so
far to adapt the multi-hop routing scheme to the federated learning

14. Line-of-sight is a term used to depict an object that prohibits a person’s
sight path of their target destination.

design using the concept of model-free reinforcement learning which
we discuss hereafter.

Model-free Reinforcement Learning: A model-based reinforce-
ment learning algorithm is an algorithm in which an agent attempts
to understand the environment and generate a model to represent it.
This is done using two functions, the transition function (from one
state to another) and the reward function. Thus, the agent has a clear
reference which it uses to take decisions. In contrary, in model-free
reinforcement learning, the agent does not make use of the transition
and reward functions, but instead it follows a process of trial-and-
error. The most widespread example of model-free reinforcement
learning is that of Q-learning [83]. In federated learning, model-free
reinforcement learning is used to replace closed-form mathematical
models whose application is impractical in multi-hop settings. In fact,
the existing efforts on wireless optimization in federated learning
systems consider only single-hop federated learning scenarios over
cellular edge computing systems. To do so, closed-form mathematical
models are formulated to study the impact of wireless communication
control parameters such as transmission power on the performance
of the federated learning solution (e.g., in terms of update transmis-
sion delay). But alas, these mathematical models cannot be directly
applied to multi-hop federated learning settings, where the federated
learning performance metrics (e.g., convergence time) can no longer
be represented as a closed-form function of the communication control
parameters. Yet, optimization models are crucial in this emerging
multi-hop architecture of federated learning to study the impacts of
multi-hop routing on the local training time and global convergence
processes. In fact, most federated learning aggregation techniques
(e.g., FedAvg, FedProx) are synchronous in the sense that the server
must wait for and collect all (or at least a minimum number of)
local updates from the client devices prior to executing the global
aggregation and moving to the next iteration. In such a scenario,
a long and random multi-hop delay can drastically augment the
number of stragglers, leading to longer training time per iteration.
Moreover, applying a multi-hop communication scheme in such a fat
federated learning architecture brings the risk of making the routing
paths toward the cloud server to be readily saturated, resulting in a
slower convergence speed. In this context, the authors of [105] seek to
minimize the convergence time needed to achieve the required training
accuracy. To do so and due to the difficulty of applying closed-
form functions in multi-hop environments, a model-free reinforcement
learning approach is proposed. In this approach, the distributed routers
capitalize on their instant local experiences to cooperatively and on-
the-fly tune the networking parameters.

4.5 Desirable Criteria for Future Solutions

Based on the above classification and discussions, we identify a set
of criteria that we believe are important to consider when designing
future communication efficiency solutions for federated learning. In
what follows, we first present these criteria and then discuss how can
they be practically capitalized on to craft efficient statistical solutions
in federated learning.

Criterion #1: Consider both upstream and downstream com-
munications in the design of the solution.
Criterion #2: Reduce the size of the model updates without
sacrificing the model’s accuracy.
Criterion #3: Design efficient solutions that detect and de-
crease the connections among the deep network’s layers to
reduce the number of model updates that need to be shared
with the server.
Criterion #4: Support periodic aggregation where clients are
allowed to perform several iterations prior to uploading their
updates to the server.
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Criterion #5: Support dynamic aggregation where the aggre-
gation at the level of the server is performed only when judged
necessary.
Criterion #6: Be resilient to large numbers of clients and
unstable client participation.
Criterion #7: Support over-the-air computation to enable
partial aggregation (e.g., summation of local gradients) to be
done locally.
Criterion #8: Investigate device-oriented event-triggered
communication schemes to adapt clients’ devices to the train-
ing workload.
Criterion #9: Investigate multi-hop routing schemes to help
democratize the federated learning experience and enable
federated learning process in crowded urban areas.

The current literature on communication efficiency in federated
learning can be improved in many aspects. First, it is important to
investigate dynamic aggregation schemes where the aggregation at the
level of the server would be performed only when judged necessary.
The adoption of such a scheme needs however a comprehensive and
systematic analysis on the trade-off between accuracy and commu-
nication. Specifically, we need communication techniques that can
prove improvements at the Pareto frontier, thus giving an accuracy
that is larger than any other approach under the same communication
budget and across a large domain of communication/accuracy profiles
[13], [117]. The communication schemes should also be robust to
both large and unstable client participation. In fact, the main premise
of federated learning is to allow the largest possible number of
clients to participate in the federated training to enrich the model
with a variety of data and hence improve its generalizability in
the testing phase. Moreover, the participation of the clients in the
federated learning paradigm is not always guaranteed. As discussed
earlier in the paper, this participation depends on several factors (e.g.,
the device being plugged in, connected to WiFi, etc.). Moreover,
this participation varies from one training iteration to another. For
example, the participation in the first iteration might reach 90% of
the invited clients while in the second iteration it might go down to
45%. Therefore, the communication scheme should be resilient to this
variation from one task to another and also from one training iteration
to another. One more research direction is to think of more advanced
communication models. In fact, different from traditional worker
nodes that are deployed in data centers which are workload-dedicated,
the client devices in federated learning are neither workload-dedicated
nor workload-ready. In more detail, worker nodes in data centers are
programmed to always be ready to take their next job from the central
node directly after delivering the results of their current job. On the
other hand, in federated learning scenarios, the devices are general-
purpose devices on which the server has not control. Therefore, it
would be interesting to investigate device-oriented communication
schemes that enable each device to take the decision on when to
get activated and start interacting with the server in an event-triggered
fashion.

5 CLIENT SELECTION AND SCHEDULING (CHALLENGE
3)
The objective of client selection and scheduling approaches is to
enable federated learning model owner (i.e., parameter server) to
make thoughtful decision as to which clients to select and how to
distribute the training tasks among them in such a way to improve the
performance of the collaborative training and minimize the conver-
gence time. Four main sub-challenges are addressed in this context,
i.e., (1) resource management; (2) client number maximization; (3)
client dropout and (4) reliable client selection. In the following, we
examine each of these challenges in detail, explain the techniques
that are used to address each particular challenge, and discuss the

approaches that were proposed in the literature under each technique.
The classification scheme of the client selection and scheduling
approaches is schematized in Fig. 13. Moreover, we provide in Table
8 a summary of the main approaches that tackle challenges related
to client selection and scheduling in federated learning and highlight
the criteria (proposed in Section 5.5) that each underlying approach
satisfies.

5.1 Resource Management

A major challenge that plays a critical role in the client selection
and scheduling process is how to efficiently administer the limited
resources on client devices to maximize the federated training perfor-
mance [128]. Specifically, the amount of resources available on the
client devices is a key factor for deciding which clients to select and
the amount of work that should be assigned to each single client. The
challenge here stems from both the large size and growing number
of model parameters and the system heterogeneity and bandwidth
limitations on the client devices. In fact, in the current deep neural
networks, every model update can be in the range of gigabytes [57]
and millions of parameters might need to be exchanged at each
federated learning iteration. Moreover, the computation capacity and
wireless link quality vary across clients. This raises the importance
of designing resource management approaches to derive appropriate
decisions as to how minimize resource consumption on the clients
while at the same time improving the training accuracy. Even though
plenty of resource management approaches have been proposed in the
contexts of fog, edge and mobile cloud computing, these approaches
cannot be directly applied in federated learning because of this
emerging paradigm’s unique characteristics. Specifically, not only the
computation and communication capacity and data size on the clients
should be considered, but also the distribution of the data across
clients. Thus, the current resource management approaches seek to
reduce the resource consumption in terms of energy and bandwidth
on the participating client devices without significantly scarifying
the training quality and convergence time. Energy consumption is
caused by the process of computing model updates on the client
devices, while bandwidth consumption is caused by the processes of
downloading the learning model and uploading the updated model
parameters from/to the server. The existing resource management
approaches formulate the resource utilization minimization challenge
as an optimization problem and employ techniques from heuristics
and reinforcement learning to solve it. In the following, we discuss
each of these techniques in detail and explain the approaches that were
proposed under each particular technique.

Heuristics: A heuristic approach is problem-solving approach
which uses a practical method that is not guaranteed to be optimal,
but which is adequate for attaining an immediate short-term goal
[129]. Heuristic methods are widely used to accelerate the process
of deriving a satisfactory solution in cases where finding an optimal
solution is infeasible or impractical [130]. In federated learning,
heuristic methods are used to solve NP-hard resource management
problems formulated as optimization problems. For example, the
authors of [118] investigate the implementation of federated learning
algorithms over practical wireless networks while jointly taking into
consideration parameters from both federated learning and wireless
networks. The main contribution of this work is studying the impact
of wireless network conditions on the performance of federated
learning. The problem is formulated as an optimization model in
which the central server (base station in this work) seeks to optimize
its resource allocation (in terms of bandwidth uplink) and clients
seek to optimize their transmit power allocation. This optimization
problem is then simplified to a mixed-integer nonlinear programming
problem through deriving a closed-form expression for the expected
convergence rate of the federated learning algorithm. The simplified



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 29

TABLE 8: Summary of the client selection and scheduling approaches

Approach Challenge Technique Main Idea Criteria

Chen et al. [118] Resource Management Heuristics
An optimization model in which the central server seeks to optimize
its bandwidth uplink and clients seek to optimize their transmit power
allocation.

Criteria #1 and #2

Wang et al. [4] Resource Management Heuristics
A control algorithm to derive a balance between minimizing the loss
function while at the same time respecting a given budget of resources
on the edge nodes.

Criteria #2 and #4

Hu et al. [119] Resource Management Heuristics A segmentation approach in which the learning model is split into subsets,
each consisting of the same number of non-overlapping model parameters. Criteria #2 and #5

Li et al. [21] Resource Management Heuristics A resource mapping mechanism that links the amount of work to be carried
out on each device with the amount of available resources on that device. Criteria #2 and #4

Zhou et al. [120] Resource Management Heuristics
A cost-efficient federated learning framework to reduce the computation
cost on resource-constrained edge nodes using a coordination scheme
between the edge and cloud layers.

Criterion #2

Nguyen et al. [121] Resource Management Reinforcement Learning

A Double Deep Q-Network approach that helps the model owner derive
optimal decisions in terms of (1) amounts of energy to be recharged for
clients and (2) appropriate channels for the global model transmissions so
as to maximize the number of successful transmissions while at the same
time minimizing the energy and channel costs.

Criteria #2 and #6

Anh et al. [122] Resource Management Reinforcement Learning
A Deep Q-Learning approach that enables the server to derive optimal
resource management decisions without a priori knowledge of the resource
status on the client devices.

Criteria #2 and #4

Nishio et al. [123] Client Number Maximization Multi-Objective Optimization
A multi-objective optimization approach that aims to find a tradeoff
between increasing the number of participating clients and the inherent
waiting time for local model updates to arrive.

Criteria #11 and #12

So et al. [23] Client Dropout Redundancy A redundancy mechanism that employs Lagrange coding to allow clients
to reconstruct the aggregate model in case of dropout. None

Wu et al. [103] Client Dropout Asynchronicity
A lag-tolerant distributed algorithm that allows some clients to remain
asynchronous with the central server to benefit from stragglers in later
iterations even if they can’t submit their updates on time.

Criteria #4 and #8

Kang et al. [124] Reliable Client Selection Trust and Reputation
A reputation mechanism that relies on direct opinions from the concerned
model owner and indirect opinions from other model owners to derive a
reputation score for each client device.

Criteria #8 and #10

Kang et al. [125] Reliable Client Selection Trust and Reputation
A reputation mechanism that maps the computation time on each client
device to the size of the data on that device to identify the lazy clients that
give poor performance.

Criteria #8 and #10

He et al. [126] Reliable Client Selection Trust and Reputation
A server-free decentralized federated learning approach that considers
unidirectional trust relationships among clients, which are represented as
a social network.

Criteria #8 and #9

Wang et al. [127] Reliable Client Selection Trust and Reputation
A mechanism that employs training instance omission in the case of
horizontal learning and Shapley value in the case of vertical learning to
measure the contribution of each client.

Criterion #7

problem is converted again into a bipartite matching problem and
accordingly solved using a Hungarian algorithm [131]. The authors of
[4] tackle the problem of efficiently exploiting the limited resources
available on the edge networks to maximize the learning efficiency
in federated learning scenarios. They propose a control algorithm
to derive the best balance between the local update and global
aggregation processes of gradient-descent based federated learning
algorithms. The objective is to minimize the loss function while at
the same time respecting a given budget of resources on the edge
nodes. In [119], the authors aim to improve the network bandwidth
utilization in federated learning without sacrificing accuracy. To do
so, a segmentation approach is introduced, where the learning model
is split into subsets, each consisting of the same number of non-
overlapping model parameters. Clients then perform a segmentation-
level model update by aggregating their local segments with those
of k other clients. The authors indicate that the value of k should
be less than the number of all clients to achieve good convergence.
Additionally, a gossip-based protocol is proposed, where each client
stochastically picks out a number of clients to which the local model
segment is to be transferred. The authors of [21] propose FedProx, a
variation of FedAvg, to tackle the system heterogeneity, which arises
from the variability of system characteristics on the devices running
the federated training. To overcome this challenge, FedProx links the

amount of work to be carried out on each device with the amount of
available resources on that device. In [120], the authors aim to reduce
the computation cost on resource-constrained edge nodes through
proposing a coordination scheme between the edge and cloud layers
to optimize the system-wide cost-efficiency. Technically speaking, a
Cost-Efficient Federated Learning (CEFL) framework that leverages
Lyapunov optimization theory is proposed to generate online near-
optimal decisions in terms of data scheduling, admission control,
accuracy tuning and load balancing for dynamically arriving training
observations.

Reinforcement Learning: Reinforcement learning is a machine
learning subfield which is interested in teaching a software agent on
what actions to take in a certain environment so as to maximize
the cumulative reward [132], [133]. It has been used in federated
learning as an alternative to heuristics in solving optimization prob-
lems. The main advantage of reinforcement learning compared to
heuristics is that the former includes a learning component which
allows for continuous improvement in the quality of decisions over
time. Moreover, the fact that the server does not have complete
knowledge about the resource status on the client devices makes it
hard for heuristic solution to derive effective decisions. Therefore,
reinforcement learning is used as an alternative approach to model
this uncertainty. For example, the authors of [121] tackle two resource
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Fig. 13: Classification of the client selection and scheduling approaches in federated learning

management challenges in federated learning. The first challenge is

related to the energy limitations on the mobile clients, which raises

the problem of deciding on the appropriate amounts of energy that

need to be allocated by the model owner to recharge the participating

clients. The second challenge concerns the bandwidth cost entailed by

the large number of global model transmission messages that needs

to be exchanged among the clients and model owner. To answer these

challenges, a Deep Q-Network approach [83] is proposed to help

the model owner derive optimal decisions in terms of (1) amounts

of energy to be recharged for clients and (2) appropriate channels

for the global model transmissions so as to maximize the number of

successful transmissions while at the same time minimizing the energy

and channel costs. Technically speaking, the aforementioned problem

is formulated as a stochastic optimization problem and then a Deep

Q-Network algorithm with Double deep Q networks is designed to

derive the optimal resource allocation policy. The resource limitation

problem on client devices in terms of CPU, energy and bandwidth

has been considered in [122]. The main challenge addressed in this

work is the lack of complete knowledge about the resource status

on the client devices, which prevents the server from selecting the

appropriate clients to participate in the training process. This problem

has been addressed using a Deep Q-Learning approach that enables

the server to derive optimal resource management strategies without

a priori knowledge of the resource status. This problem has been

modeled as a stochastic optimization problem and solved using a

Double Deep Q-Network technique.

5.2 Client Number Maximization

Intuitively, increasing the number of clients that participate in each

training iteration contributes in reducing the time required for the

global model to reach a desired performance. In fact, having more

clients that participate in each round decreases the number of rounds

that the parameter server has to launch to attain the required accuracy.

Inspired by this idea, the objective of the approaches that fall under

this category is to study the problem of maximizing the number

of clients that participate in each training iteration in a thoughtful

manner. This is however surrounded by several challenges that need

to be taken into consideration such as the (1) impact of increasing the

number of clients on the non-IID degree of the overall data; (2) impact

of increasing the number of clients on the local model updates waiting

delay; and (3) the reliability of the clients being added to the process.

Although there is currently no approach that accounts for all these

factors simultaneously, multi-objective optimization has been used in

an attempt to simultaneously optimize some of these factors as will

be discussed hereafter.

Multi-Objective Optimization: Multi-objective optimization is

a decision-making approach that seeks to optimize more than one

objective function for a given problem in a simultaneous fashion. It is

often employed to derive trade-offs between two or more conflicting

objectives [134]. An intuitive example of multi-objective optimization

includes minimizing cost while maximizing quality in a car purchase

scenario. In the client number maximization problem, multi-objective

optimization has been used to optimize for more than one metric at

the same time. For example, the approach proposed in [123] aims to

derive a tradeoff between increasing the number of clients and the

inherent waiting time for local model updates to arrive using multi-

objective optimization. In more detail, the objective is to maximize

the number of model updates received by as many clients as possible

while improving the performance of the federated learning. The main

idea is to fix a certain deadline for clients to download the parameters

of a trainable model, update the model after training on their own

data, and send the updated model parameters to the central server.

Consequently, the server tries to maximize the number of clients to be

selected to share their model updates within the specified time frame,

while considering their computation and communication resource

constraints.

5.3 Client Dropout

Client dropout refers to the problem of clients withdrawing from the

federated training [135]. Dropout can occur at any moment of the

training and can be due to several reasons such as low battery, poor

connectivity, need to make phone calls, etc. A client that drops from

the federated training near completion is referred to as a straggler and

can cause a significant waiting time and resource wastage on both

the server and rest of clients. The two common techniques to fight

against client dropout are redundancy and asynchronicity. We explain

these two techniques in detail and discuss the approaches that were

proposed in the literature under each technique.

Redundancy: The main idea of this approach is to add redun-

dancy to the model updates to be capitalized on for reconstructing the

aggregated model in case some client dropout cases take place. Using

this redundancy, clients in the later training stages can retrieve the

information needed to cancel out the effect of dropped clients at the

earlier stages without the need to carry out any extra communication.

For example, the authors of [23] propose to add redundancy in the

model updates using Lagrange coding [136]. The purpose is to fight

against client dropout through exploiting the injected redundancy to

reconstruct the aggregate model in the case of dropout.

Asynchronicity: The main idea of this approach is to embrace

client dropout instead of fighting against it. This is done through re-

laxing the synchronicity assumption of the model aggregation process

and hence allowing some clients to remain asynchronous with the

server. In this way, stragglers can still contribute in future iterations

of the federated training. The authors of [103] advocate a lag-tolerant
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distributed algorithm that allows some clients to remain asynchronous
with the central server. The objective is to benefit from stragglers in
later iterations even if they can’t submit their updates on time.

5.4 Reliable Client Selection

In federated learning, the training is divided over a large set of
geographically distributed client devices. Since the model owner has
no control over these devices, encountering unreliable clients in this
machine learning paradigm becomes inevitable. Such clients would
have catastrophic impacts on the federated learning process where, for
example, unreliable clients might train their local models on unreliable
data, leading to fraudulent learning models. Therefore, designing
solutions to select reliable clients becomes crucial to guarantee the
success of the federated training. Trust and reputation is the commonly
used technique to address this challenge. We discuss hereafter this
technique and highlight the approaches that rely on this technique to
improve the selection of reliable clients.

Trust and Reputation: A trust and reputation model is a model
that enables decision makers to distinguish good options from bad
ones based on current interactions and historical experience [137],
[138]. The importance of trust and reputation models in federated
learning stems from its ability to enable the parameter server to differ-
entiate between reliable clients and unreliable ones [139]. This helps
the server make thoughtful selections so as avoid random choices in
such an open environment which might expose the training process
to quality, communication, and security problems. For example, the
problem of selecting reliable mobile devices is tackled in [124]. First,
a reputation mechanism is proposed to assess the reliability of the
mobile devices. The reputation is computed using a subjective logic
model wherein direct opinions from the underlying task publisher
(central server) along with indirect opinions from other task publishers
are combined to derive a reputation score for each device. The
reputation management is achieved in a decentralized manner using
the blockchain concept so as to ensure tamper-resistance and non-
repudiation. The authors of [125] propose a reputation-based approach
that relies on consortium blockchain to satisfy the non-repudiation and
non-tampering properties is leveraged. In the first phase, federated
learning model owners broadcast the tasks along with their specific
requirements. Interested clients send joining requests to the owners
along with relevant information about their identity and resources.
In the second phase, the model owner computes a reputation score
for each of these clients. The reputation is computed based on direct
observations from past interactions as well as recommendations from
other model owners stored on an open-access consortium blockchain.
Finally, following the distributed training process, the model owner
updates the reputation scores of the clients through mapping the
computation time on each client device to the size of the data on
that device to identify those “lazy” ones that gave poor performance.
In [126], the authors propose a server-free decentralized federated
learning approach based on an online Push-Sum algorithm. The
proposed approach considers unidirectional trust relationships among
clients which are represented as a social network (i.e., client X trusts
client Y but client Y may not trust client X). As a first step, each
client applies the current local model to derive the loss function, and
subsequently computes an intermediate local model. Then, in the push
step, a weighted variable of the intermediate model is forwarded to
clients’ out neighbors. Finally, in the sum step, all received weighted
intermediate models are normalized and summed to derive the new
local model. In [127], the authors design a mechanism to assess
the contribution of each client in the federated training. The mech-
anism distinguishes between horizontal federated learning scenarios
in which each client participates through providing a subset of the
training instances and vertical federated learning wherein each client
contributes a subset of the feature space. In the case of horizontal

federated learning, the authors propose to omit the training instances
from a particular client and then measure and compare the accuracy
with and without these instances to get an idea of the actual amount of
contribution of that client. In the case of vertical federated learning,
the concept of Shapley value [140] from coalitional game theory is
employed to compute the grouped feature importance, based on which
the contribution of each client is then inferred.

5.5 Desirable Criteria for Future Solutions

Based on the above classification and discussions, we identify a set
of criteria that we believe are important to consider when designing
future client selection and scheduling solutions for federated learning.
In what follows, we first present these criteria and then discuss how
can they be practically capitalized on to craft efficient client selection
and scheduling solutions in federated learning.

Criterion #1: Study the impact of wireless network conditions
on the accuracy of the federated training.
Criterion #2: Derive optimal methods to efficiently utilize the
limited computation and communication resource budget of
client devices to maximize the training performance.
Criterion #3: Learn and dynamically adapt the frequency of
performing global model aggregation to minimize the resource
consumption on the client devices.
Criterion #4: Take into account the resource heterogeneity
across client devices and make efficient use of this hetero-
geneity to optimize the training performance.
Criterion #5: Allow for partial peer-to-peer model updates
sharing, where clients synchronize the model updates with
only a part of other workers without sacrificing the perfor-
mance.
Criterion #6: Account for the uncertainty and absence of a
priori knowledge of the clients’ resource status and network
dynamics.
Criterion #7: Evaluate the contribution of each single client
to the federated training to both improve future selections and
help designing efficient pricing schemes.
Criterion #8: Assess the reliability of the participating clients
to avoid undesirable behaviors and conditions.
Criterion #9: Investigate the mutual trust relationships among
clients to foster distributed local model updates sharing.
Criterion #10: Protect the trust establishment process against
malicious attackers that try to sway the trust results.
Criterion #11: Investigate a tradeoff between increasing the
number of participating clients and both the overall distribu-
tion of the data and resulting waiting delay for model updates.
Criterion #12: Consider a variety of factors such as non-IID
degree of data, data size, computational and network resource
capacilities, and reliability in the client selection process.

The literature on client scheduling can be extended in many directions.
The first direction would be to design optimal resource management
solutions to efficiently utilize the limited computation and commu-
nication resources of the client devices in such a way to maximize
the training performance. Despite the importance of the optimization
solutions proposed in the literature to address this challenge, these
approaches cannot model the interdependencies between the strategies
of the server and those of the clients and hence cannot capture the
whole picture of the problem. Yet, the strategies adopted by the
clients (e.g., amount of resources dedicated to the local training)
have significant influence on the profits (e.g., training accuracy) of
the server and vice versa. Game theory offers plenty of models and
techniques (e.g., maxmin, Stackelberg, etc.) [141], [142], [143] that
can help overcome this limitation. The advantage of game theory over
the traditional optimization techniques in such a scenario stems from
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its ability to model this situation as a two-player game wherein one
player (model owner) seeks to maximize the training accuracy and
the other player (clients) seek to minimize the resource utilization.
A second research direction would be to thoughtfully reduce the
frequency of carrying out global model aggregation to decrease
the resource utilization on the clients’ devices. This can be done
through learning and dynamically adapting this frequency based on
the obtained and desired accuracy. One additional research direction
is to embrace the resource heterogeneity across client devices to
design intelligent resource management strategies that link the training
load to be assigned to each client with the amounts of available
resources on that client’s device. This however necessitates designing
solutions to motivate clients to truthfully reveal their actual resource
capacities, where mechanism design (discussed later in the context
of service pricing) offers interesting techniques toward this purpose.
Another interesting research direction that needs to be taken into
consideration is the uncertainty that the model owner faces in terms
of absence of a priori knowledge of the current resource status of the
clients’ devices. This deprives the model owner from having exact
and accurate information and hence negatively affects the precision
of the resource management strategies. To tackle this problem, deep
reinforcement learning has been lately investigated [121], [122] to
model this uncertainty, where promising results have been obtained.
Other approaches such as Double and Duel Deep Q-Learning and
Bayesian game theory could also be used to improve upon these ap-
proaches. Another research direction to consider is the investigation of
partial peer-to-peer model updates sharing, where clients synchronize
the model updates with only a part of other workers instead of sharing
them with the whole set of clients or repeatedly with the server. This
can be accomplished using the concept of clustering from machine
learning which can help uncover those groups of client devices that
sharing the model updates among their members would have the best
impact on the model’s accuracy.

From the perspective of client selection, several aspects need
to be considered in the future. To begin with, the literature needs
approaches for deriving the optimal number of clients that need to
participate in each federated learning iterations. Only one work [123]
has addressed this challenge so far. Therefore, we need more compre-
hensive solutions that take into considerations several constraints of
the federated learning paradigm in the design of the solution. These
constraints include the impact of the number of clients on the non-IID
degree of the overall data, the reliability of the clients being invited
to join, and the impact of adding more clients on the waiting delay
for model updates. Multi-objective optimization and game theory are
good candidates to formulate this problem while considering these
constraints in a simultaneous fashion. Another interesting research di-
rection would be to propose novel methods to evaluate the contribution
of each single client in the training process. This is important to both
improve future selections and help designing efficient service pricing
schemes. Last but not least, it is of prime importance to propose trust
and reputation models to evaluate the reliability of the participating
clients. Although some trust and reputation models already exist in
this context, more comprehensive models are needed to cover a wider
set of scenarios and constraints. In fact, it is important to consider
the trust relationships not only between the server and clients but also
among the clients themselves. Having such trust relationships would
help design distributed model updates sharing models wherein clients
share the model updates with each other for several iterations (e.g.,
periodic aggregation, over-the-air-computation, etc.) before sending
them to the server to reduce the communication overhead. Moreover, it
is also important to design solutions to protect the trust establishment
process from malicious attacks that try to sway the trust decisions such
as camouflage, whitewashing, promoting and slandering [144]. This
is of prime importance to prevent unreliable clients from benefiting
from bogus high trust scores to sneak into the system and launch

security and privacy attacks against the federated training process or
other clients’ data.

6 SECURITY CONCERNS (CHALLENGE 4)
As a new machine learning approach, federated learning is target to
a variety of attacks that aim to manipulate the collaborative learning
process [153]. These attacks can be classified into two categories,
i.e., targeted attacks and untargeted attacks. Untargeted attacks (often
referred to as Byzantine15) aim to deteriorate the model’s performance
or to cause some failure in the training process in general without
targeting any particular client or data samples. On the other hand,
targeted attacks have clear malicious objectives and employ some
sophisticated techniques to attain them. In the following, we shed
light on each of these categories of attacks and discuss the existing
techniques that are proposed to counter each of them. The classifi-
cation scheme of the security approaches is schematized in Fig. 14.
Moreover, we provide in Table 9 a summary of the main approaches
that tackle security challenges in federated learning and highlight
the criteria (proposed in Section 6.3) that each underlying approach
satisfies.

6.1 Untargeted (Byzantine) Attacks
As mentioned earlier, Byzantine attacks are those attacks that seek to
degrade the performance of the training model as a whole without
having any specific client or data instance as a target. Byzantine
attacks have been widely investigated in the context of federated
learning where a variety of approaches have been proposed to analyze
them and propose appropriate defense mechanisms. These approaches
can be classified under three major techniques, i.e., security analysis,
statistics and autoencoders. We explain hereafter each of these tech-
niques and discuss the approaches that were proposed under each
technique.

Security Analysis: The approaches that fall under this category
seek to analyze the behavior of Byzantine attackers, discuss their
impacts and examine the efficiency of some of the existing defense
strategies against them. For example, in [154], the authors discuss the
vulnerability of federated learning towards a class of poisoning attacks
referred to as model poisoning. This attack can be performed using
model replacement in which one or a group of colluding attackers
attempt to substitute the global shared model with a malicious model,
causing the model to misclassify future inputs. The authors discuss
as well the potential defense strategies against such attacks and argue
that they can be easily broken by attackers. Specifically, the authors
argue that, using secure aggregation by the central server to filter out
anomalous contributions, contradicts with the main idea of federated
learning, which consists of capitalizing on the diversity of the clients
in terms of non-iid training data including uncommon or low-quality
data. Therefore, discarding the local model updates that diverge from
those of the global model would not be logical. The difference
between model poisoning and adversarial transformation attacks is
also explained. While adversarial transformations take advantage of
the boundaries between the model representations and those of the
different classes to generate input data that tend to be misclassified,
model poisoning seeks to maliciously manipulate and alter these
boundaries to cause certain input data to be misclassified. Thus,
the severity of model poisoning attackers stems from their ability
to cause the model to misclassify certain inputs without having to
modify these inputs. In [145], the authors explore Byzantine attacks
on distributed machine learning. They first demonstrate that a single
Byzantine attacker can compel the aggregation server to choose any
arbitrary parameter vector, even one that is quite far in direction from

15. In the rest of the paper, the terms untargeted attacks and Byzantine
attacks are used interchangeably.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 33

TABLE 9: Summary of the approaches that address security concerns

Approach Challenge Technique Main Idea Criteria

Chen et al. [118] Untargeted Attacks Security Analysis

Analyze the vulnerability of federated learning towards model poisoning
attacks that are performed using model replacement and demonstrate that
some potential defense strategies against such attacks can be easily broken
by attackers.

Criteria #3 and #5

Blanchard et al. [145] Untargeted Attacks Security Analysis

Demonstrate that a single Byzantine attacker can compel the aggregation
server to choose any arbitrary parameter vector and show that a squared-
distance-based aggregation rule is not efficient when more than one
Byzantine attacker collude together.

Criterion #3

Fang et al. [146] Untargeted Attacks Security Analysis

Discuss a new type of model poisoning attacks in which the attacker
takes advantage of the optimization problem to tune the local models on
compromised clients in such a way to make the aggregate global model to
maximally go in the direction that is opposite to the direction toward which
the global model would have converged in case no attack took place.

Criterion #5

Munoz et al. [147] Untargeted Attacks Statistics
A Hidden Markov Model that assesses the similarity between the indi-
vidual updates and the aggregate global model to identify and discard the
malicious model updates at each training iteration.

Criterion #4

Blanchard et al. [145] Untargeted Attacks Statistics
A Byzantine-resilient federated learning approach that forces the vector
output selected by the server to point, on average, to the same direction as
the gradient.

Criterion #4

Li et al. [148] Untargeted Attacks Statistics
An SGD variant method that is resilient to Byzantine clients that arbitrarily
alter the messages (generated by themselves) prior to sending them to the
central server.

Criteria #4 and #7

Li et al. [149] Untargeted Attacks Autoencoders A pre-trained autoencoder model that runs at the server’s level to recognize
anomalous model weight updates and identify their issuers. Criterion #5

Bhagoji et al. [150] Targeted Attacks Security Analysis

Analyze a set of strategies that enable to carry out and counter targeted
model poisoning attacks on federated learning and design an alternating
minimization problem that takes into account both model poisoning and
stealth metrics to enable attackers to escape detection.

Criterion #5

Fung et al. [151] Targeted Attacks Statistics
A defense system against Sybil-based poisoning attacks that adapts the
learning rates of the clients based on the similarity of their gradient
updates.

Criteria #3 and #4

Li et al. [152] Targeted Attacks Statistics
A spectral anomaly detection technique that capitalizes on the low-
dimensional embeddings of the model updates to identify and eliminate
the malicious ones.

Criterion #4

the other vectors. Thereafter, they show that a squared-distance-based
aggregation rule, which selects the parameter vector that minimizes
the sum of the squared distances to every other vector, is efficient in
dealing with only one Byzantine attacker but becomes inefficient when
two or more attackers collude together. In [146], the authors propose
a new type of model poisoning attacks in which the attacker employs
an optimization model to tune the local models that are supposed to
be solved on the compromised clients. The objective is to make the
aggregate global model to go in an opposite direction toward which
it would have went in case no attack took place. The authors prove
that the existing defense systems against model poisoning attacks in
federated learning show limited performance in the presence of such
a type of attacks.

Statistics: Statistics consists of a set of methodologies and tech-
niques to collect, examine, analyze and come up with conclusions
from data. In the context of federated learning security, statistical
methods have been employed to examine the model updates generated
by the clients, analyze their similarity/dissimilarity and draw appropri-
ate conclusions on the existing/inexistence of Byzantine attacks. For
example, the authors of [147] propose a Byzantine-robust federated
learning approach called Adaptive Federated Averaging. The proposed
solution leverages a Hidden Markov Model to identify and discard
malicious model updates at each iteration. This is accomplished
through assessing the similarity between the individual updates and
the result yielded by the aggregate model. Malicious clients are
then blocked from the federated learning system to improve future
iterations. The authors of [145] design Krum, a Byzantine-resilient

distributed machine learning approach. The main idea of Krum is to
force the vector output selected by the server to (1) point, on average,
to the same direction as the gradient and (2) have statistical moments
bounded above by a homogeneous polynomial in the moments of a
correct estimator of the gradient. The authors of [148] study a scenario
in which in which Byzantine clients arbitrarily alter the messages
(generated by themselves) prior to sending them to the central server.
They then propose a method called Representational Similarity Analy-
sis (RSA), which is a variant of the stochastic gradient descent method
that is resilient to the considered Byzantine attack. The authors prove
that the proposed method converges to a near-optimal solution at an
O 1 k convergence rate.

Autoencoders: An autoencoder is a special class of neural net-
works which reproduces the input values into the output values. The
primary interest of autoencoders are the hidden core layers rather
than the output layers. It hence belongs to unsupervised learning and
requires no target variables. In autoencoders, a number of neurons in
the hidden layers that is lower than that of the input layers means
that the hidden layers will elicit the essential information of the
input values, learn most of the patterns of the data and disregard
the noises. The main applications of autoencoders are dimensionality
and noise reduction. Compared to the conventional dimensionality
reduction approach of Principal Component Analysis (PCA) [155]
which employs linear algebra to achieve its purpose, autoencoders
excel at dealing with situations wherein data problems are non-linear
and complex. In simple words, the mission of an autoencoder is to
encode the data into a smaller version (compression) and then decode
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Fig. 14: Classification of the security-oriented approaches in federated learning

it back to regenerate the input (uncompression). While doing so,

the autoencoder learns the features of normal data, compresses them

into smaller-sized features and finally decodes them back into the

input with a small error. Thus, when fed with anomalous data, an

autoencoder fails to reproduce them and generates a large error, given

that it is trained to reproduce normal data solely. Thus, in order to

employ autoencoders for anomaly detection, it is sufficient to compute

the error (mostly the Mean Square Error) of the output compared to

that of the input and compare this error to a predefined threshold.

Inspired by this idea, the authors of [149] propose a detection method

for Byzantine attackers that capitalizes on a pre-trained anomaly

detection model. In more detail, a pre-trained autoencoder model that

runs at the server’s level is employed to recognize anomalous model

weight updates and identify their issuers. Accordingly, a credit score

is assigned to each client based on its anomaly level. This score is used

to weigh the contributions of each client when deriving the aggregate

global model.

6.2 Targeted Attacks

Unlike Byzantine attacks which aim to deteriorate the overall perfor-

mance of federated training, targeted attackers have specific malicious

objectives and employ more sophisticated techniques to accomplish

them. Technically speaking, they seek to modify the behavior of he

training model on some particular data instances, while keeping the

performance on the rest of instances uninfluenced. Targeted attacks

on federated learning can be classified into two types: data poisoning
attacks and model poisoning attacks. Data poisoning attackers aim to

inject malicious data into the training dataset before the beginning

of the learning process. The learning process is deemed to stay

sound in the case of data poisoning attack. In federated learning,

since an attacker has control over only its own device’s data, data

poisoning attacks have limited success and consequently received

less attention from security community. On the other hand, model

poisoning attackers aim to sway the learning model itself instead of

compromising the data. Specifically, such attackers seek to make the

collaboratively trained global model to misclassify a collection of

chosen inputs with high confidence, while ensuring a high-quality

convergence of the global model on the validation and test sets to

avoid being detected. Technically speaking, such attackers produce

their updates through optimizing for a malicious objective that aims

at producing targeted misclassification, while also trying to negate

the combined effect of the honest updates provided by the benign

clients. Several techniques have been proposed in the literature to

counter targeted attacks in federated learning, where these techniques

can be classified into two major categories, i.e., security analysis and

statistics. In the following, we explain each of these techniques in

detail and discuss the approaches that have been proposed under each

technique.

Security Analysis: The approaches that fall under this category

seek to analyze the behavior of the attackers, discuss their conse-

quences and examine the efficiency of some of the existing defense

strategies in countering them. For example, the authors of [150]

analyze a set of strategies that enable to carry out and counter targeted

model poisoning attacks on federated learning. First, the explicit

boosting strategy in which malicious participants try to negate the

combined effect of benign clients is investigated. Thereafter, stealth

notions, of which attackers can take advantage to improve their attack

success chances such as weight update statistics, are investigated.

An alternating minimization formulation problem that takes into

account both model poisoning and stealth metrics is then proposed to

enable attackers to escape detection. Finally, the authors empirically

demonstrate that standard dirty-label data poisoning attacks, in which

input data are manipulated to include adversarial examples, are not

effective in federated learning, even when the number of adversarial

examples is equal to that of local training data on each participating

client.

Statistics: As is the case in the context of Byzantine attacks, in

targeted attacks, statistical methods are used to analyze the model up-

dates generated by the clients and study their similarity/dissimilarity

to detect potential attacks. For example, in [151], the authors discuss

a Sybil-based poisoning attack on federated learning and propose a

defense system called FoolsGold. The considered attack can take two

forms. The first is through label-flipping, where the labels of training

examples pertaining to a particular class are flipped while keeping the

data features unmodified. The second is through backdooring, where

single features or small regions of the training data are augmented

with an undercover pattern and accordingly relabeled. The main

idea of FoolsGold stems from the observation that a set of Sybil

attackers tampering a shared learning model will submit updates

towards a single specific malicious objective, thus showing a similar

behavior that is usually different from that of honest clients. Inspired

by this perception, the authors propose to adapt the learning rates

of the clients on the basis of their contribution similarity. More

specifically, the learning rate of clients submitting unique gradient

updates is maintained, while that of clients constantly submitting

similar-looking updates is reduced. The authors of [152] are interested

in detecting targeted attacks whose objective is to change the behavior

of the model on some data instances. To do so, they put forward a

spectral anomaly detection technique which capitalizes on the low-

dimensional embeddings of the model updates to identify and elim-

inate the malicious ones. The intuition is that, in a low-dimensional

latent feature space, the primary features of abnormal model updates

would be radically different from those of the normal ones.
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6.3 Desirable Criteria for Future Solutions
Based on the above classification and discussions, we identify a set
of criteria that we believe are important to consider when designing
future security solutions for federated learning. In what follows, we
first present these criteria and then discuss how they can be practically
capitalized on to craft efficient security solutions in federated learning.

Criterion #1: Make sure that the clients are honestly using
their own data and not bogus data to train their local models.
Criterion #2: Account for Sybil-based attacks in which ma-
licious clients can join the training process under multiple
distinct identities to increase the impacts of their attacks.
Criterion #3: Account for collusion attacks in which two or
more clients join forces to cause more significant damage to
the training performance.
Criterion #4: Fight against intelligent attackers that adaptively
limit their poisoned updates and intelligently add noise to their
updates to escape detection.
Criterion #5: Fight against intelligent attackers that arbitrarily
alter the weights of their local models and/or embed some
defense avoidance models into their loss function during
training.
Criterion #6: Decouple the security solution from the ability
to access clients’ training data or their submitted model
updates.
Criterion #7: Be designed to operate in a non-IID data setting.

Several additional aspects need to be taken into consideration
while designing prospective security solutions in federated learning.
First, there is a need to come up with techniques to verify whether
clients are honestly using their own data and not some fraudulent data
to train their local models. Blockchain (explained later in the context
of privacy concerns) offers a great potential to address this challenge.
A second research direction would be to consider attacks that are
performed in a colluding fashion. Most existing approaches consider
attacks that are performed in an individual fashion. However, it is no
secret that attackers can collaborate together to perform more painful
attacks. Therefore, approaches that are tailored for collusion-based
attacks need to be designed. Another interesting research direction
would be to design security solutions that take into account intel-
ligent attackers that try to trick the security countermeasures. Such
attackers might, for example, adaptively limit their poisoned updates
and/or incorporate defense avoidance models into their loss function
optimization model to escape detection. Therefore, the design of the
security solutions should account for such types of tricky behaviors.
Another important prospective aspect would be to design the security
solutions in such a way to align with the privacy requirements on
the clients’ data and model updates. More specifically, a large part of
the existing security solutions require access to either clients’ training
data or their submitted model updates to detect the malicious behavior.
This latter, although might be effective from the security perspective,
contradicts with the privacy premises that the whole idea of federated
learning relies on. Therefore, it would be of prime importance to come
up with a trade-off between having an efficient security solution and
preserving the privacy of the clients.

7 PRIVACY CONCERNS (CHALLENGE 5)
In this section, we discuss the privacy concerns in federated learning,
where we first classify the existing approaches based on the privacy
challenge that they tackle, resulting in two categories: (1) differential
privacy and (2) secure aggregation. Thereafter, under each of these
categories, we provide a fine-tuned classification of the existing
approaches based on the technique used to address the underlying
challenge. It is worth noting that the adversary model considered
in most of the existing privacy-oriented approaches assumes that all

parties are honest-but-curious in the sense that they: (i) fully follow the
protocol without manipulating it; (ii) do not engage in any collusion
scenario with one another; but (iii) try to infer as much sensitive
information as possible from the other participants. The classification
scheme of the privacy-oriented approaches is schematized in Fig. 15.
Moreover, we provide in Table 10 a summary of the main approaches
that tackle privacy challenges in federated learning and highlight
the criteria (proposed in Section 7.3) that each underlying approach
satisfies.

7.1 Differential Privacy

Differential privacy is a mathematical concept that is used in the scope
of statistical machine learning to fight against differential attacks and
ensure that the processes of collecting, aggregating and analyzing data
do not expose sensitive information on individual users [170], [171],
[172]. Numerous techniques have been proposed in the literature
to address differential privacy-related issues in federated learning.
These techniques can be classified into three major categories, i.e.,
privacy analysis, noise injection and data-driven solutions. In the
following, we explain each of these techniques in detail and discuss
the approaches that were proposed under each technique.

Privacy Analysis: The approaches that fall under this category
are proposed to analyze the privacy vulnerabilities of the federated
learning paradigm and examine the efficiency of some existing de-
fense strategies. For example, the authors of [156] investigate sensitive
data leakage in federated learning with focus on logistic regression
models. Two training approaches are considered in the analysis, i.e.,
synchronous and asynchronous. In the synchronous approach, the
client computes gradients based on its own data in current batch.
In the asynchronous approach, the client employs several batches to
compute the gradients. The authors mathematically show that honest-
but-curious clients can readily deduce the whole training data of other
clients if the synchronized approach is adopted. On the other hand,
the authors show that honest-but-curious clients can deduce nothing
but some constraints of other clients’ training data if the asynchronous
approach is adopted. The authors of [157] examine several inference
attacks on federated learning. The obtained results suggest that the
leakage of unintended features through sharing the model updates
exposes the federated learning paradigm to serious active and passive
inference attacks. Such attacks enable malicious clients to infer both
memberships (i.e., the presence of some data points in other clients’
training data) and properties that depict some subsets of the training
data (which are independent from the properties that the joint model
seeks to determine). Additionally, further experiments reveal that
common defense strategies such as dimensionality reduction, selective
gradient sharing and dropout cannot prevent such inference attacks.

Noise Injection: The main idea of noise injection approaches is
to allow the clients to add some noise to their gradient updates to
prevent the server from using the actual gradients to infer sensitive
information from the training data. Inspired by this idea, the authors
of [158] propose an approach to counter differential attacks that
seek to infer a client’s contribution to the training process through
analyzing the distributed training model. Thus, a differential privacy-
preserving framework is proposed to prevent a learned model from
exposing information leading to uncover whether or not a certain
client participated in the distributed training of the model. The solution
involves two principal steps, i.e., random sub-sampling and distortion.
In the random sub-sampling step, a subset of the available clients
is sampled and selected to receive the central model parameters
and compute the model parameter updates on their local data. The
distorting step consists of adding some noise to the sum of all scaled
updates to prevent clients’ crucial information from being leaked.
The authors of [88] propose to enable clients to add some noise to
their gradients prior to sending them to the server. Consequently, the
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TABLE 10: Summary of the approaches that address privacy concerns

Approach Challenge Technique Main Idea Criteria

Li et al. [156] Differential Privacy Privacy Analysis

Demonstrate that an asynchronous communication approach in which
the client computes the gradients over several batches is better in terms
of clients’ training data privacy in the presence of honest-but-curious
participants.

Criterion #6

Melis et al. [157] Differential Privacy Privacy Analysis

Prove that sharing model updates enables malicious clients to infer both
memberships (i.e., the presence of some data points in other clients’
training data) and properties that depict some subsets of the training data
(which are independent from the properties that the joint model seeks to
determine).

Criteria #2, #3, #4
and #5

Geyer et al. [158] Differential Privacy Noise Injection A distorting mechanism that adds some noise to the sum of updates to
prevent inferring each client’s contribution to the training process. Criterion #3

Agarwal et al. [88] Differential Privacy Noise Injection
A Binomial mechanism that enables clients to add some noise to their
gradients prior to sending them to the server and the server to estimate the
noise in the model aggregation phase.

Criterion #7

Peterson et al. [159] Differential Privacy Noise Injection

A privacy-preserving federated learning framework that enables each
client to train both a general model (with noise) and a private domain
model and uses the mixture of experts technique to combine the outputs
of both models.

Criterion #3

Liu et al. [160] Differential Privacy Noise Injection A sketching method that is applied on the updates exchanged between the
clients and the server to protect the clients’ identities from being exposed. Criterion #10

Triastcyn et al. [161] Differential Privacy Machine Learning Train a GAN in a federated fashion on each client’s data to generate
artificial data that can replace the client’s original data. Criteria #5 and #12

Han et al. [162] Differential Privacy Machine Learning

A transfer learning framework that aims to improve the robustness of the
federated training against the noise used as part of the differential privacy
through enabling the clients to elect the most informative subset of their
training data as trusted instances and train the model on these instances to
compel the model to agree with the trusted instances.

Criterion #10

Hardy et al. [163] Differential Privacy Homomorphic Encryption A three-party federated logistic regression model over messages encrypted
with an additively homomorphic scheme. Criterion #3

Mandal et al. [164] Differential Privacy Homomorphic Encryption
An additive homomorphic encryption mechanism that enables the server
and clients to run a shared local gradient computation model and compute
two additive shares of the local gradient on clients’ data.

Criteria #1 and #13

Feng et al. [165] Differential Privacy Homomorphic Encryption
A bilateral privacy-preserving federated learning model that protects the
privacy of not only client’s raw training data but also model iterations and
final model parameters using encryption.

Criteria #1 and #13

Bonawitz et al. [166] Secure Aggregation Secure Multiparty Computation

An SMC protocol that aims to protect the federated learning framework
from honest-but-curious attackers through solely revealing the sum of
model parameter updates to the server, only after a certain number of
updates has been carried out.

Criterion #1

Bonawitz et al. [167] Secure Aggregation Secure Multiparty Computation

A double-masking strategy that enables each client to sample an additional
random value to mask its model updates in order to prevent honest-but-
curious servers from gaining access to these updates even in cases where
the server can reconstruct the client’s perturbations.

Criterion #1

Niu et al. [94] Secure Aggregation Secure Multiparty Computation

A secure federated submodel mechanism that relies on the concepts of
secure aggregation, randomized response and Bloom filter to provide each
client with a customized plausible deniability against the position of its
submodel.

Criteria #8 and #10

So et al. [23] Secure Aggregation Secure Multiparty Computation
An additive secret sharing mechanism that adds some randomness into
each local model, where this randomness is designed in such a way to
vanish once the models are aggregated.

Criterion #13

Truex et al. [168] Secure Aggregation Secure Multiparty Computation Integrate SMC into differential privacy to decrease the expansion of noise
injection when the number of clients increases. Criteria #10 and #15

Kim et al. [169] Secure Aggregation Blockchain
A blockchained federated learning architecture in which the aggregation
is done in a decentralized fashion and the model updates get verified by
specialized devices enjoying high energy levels.

Criterion #10
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Fig. 15: Classification of the privacy-oriented approaches in federated learning

gradients’ aggregation at the server would generate an estimate with

noise that is equal to the sum of the noise added by each client.

The main purpose of this approach is to tackle cases wherein clients

do not trust the server to add the noise itself. From the technical

perspective, the authors investigate a Binomial mechanism and show

that such a mechanism attains almost the same utility as the Gaussian

mechanism, while necessitating less representation bits. In [159], the

authors propose a privacy-preserving federated learning framework,

wherein each client trains both a general model and a private domain

model. Differentially private (with noise) stochastic gradient descents

are designed for the general shared model, while ordinary stochastic

gradient descents are employed for each private domain model. Then,

the Mixture of Experts (MoE) neural networks technique is employed

by each client to combine the outputs of both models, in such a way

to make each of the general and private models differently influence

the predictions on each individual data instance. The authors of [160]

aim to achieve a trade-off between the privacy and accuracy of the

federated learning process using sketching algorithms. Specifically,

the authors propose to apply sketching on the updates exchanged

between clients and parameter server to protect the identities of private

users from being exposed. The objective is to achieve local privacy

when raw user information are not shared and only model updates are

shared with a third-party after being protected, while at the same time

maintaining the accuracy of traditional federated learning models.

Machine Learning: Machine learning solutions are proposed to

provide an alternative to the complex mathematical privacy-preserving

solutions that often entail high computation and communication

cost to be implemented. A variety of machine learning solutions

such as GANs, clustering and transfer learning have been employed

for privacy-preserving purposes. For example, the authors of [161]

propose FedGP, a federated learning approach that capitalizes on

GANs to improve the privacy of the training process. The main idea

is to train a GAN on each client’s data to generate artificial data

that can replace the client’s original data. The GAN is trained in

a federated fashion, where at the beginning of each iteration, the

server transmits an (updated) common generator to all clients. Clients,

at each iteration, update their models and submit generator updates

to the server. Differential average-case privacy is then applied to

protect the model against model inversion attacks. In such attacks,

attackers examine the output probabilities of a target model for a

particular class and then carry out the gradient descent method on

an input reconstruction in an attempt to infer typical representations

of a specific target. The authors of [162] aim to propose a federated

learning model that is robust to systematically corrupted noisy data

that are distributed across multiple agents as part of the differential

privacy process. To do so, a collaborative privacy-preserving transfer

learning framework is advocated. In this framework, clients serve

as teachers for the central server (the student of the framework)

whose role is to passively receive updates from the teachers. Teachers

elect the most informative subset of their training data as trusted

instances and train the model on these instances based on a consensus

optimization method to compel the model to agree with the trusted

instances. In this way, the clients learn to add changes of limited

magnitudes into the data, which helps improve the performance of the

federated model in the presence of noisy data.

7.2 Secure Aggregation

Secure aggregation refers to the problem of computing a multiparty

sum of values without having any party reveal its individual value.

In federated learning, secure aggregation refers to the problem of

computing the sum of the local gradient updates of the clients without

revealing the contribution of each client to any other party. Three main

techniques have been employed in the literature to perform secure

aggregation in federated learning, namely Homomorphic Encryption,

Secure Multiparty Computation and Blockchain. In the following, we

discuss each of these techniques and shed light on the approaches that

capitalize on each particular technique.

Homomorphic Encryption: Homomorphic Encryption (HE) is a

type of encryption that enjoys a supplementary evaluation ability to

perform computation over encrypted data without having to access the

secret keys. It enables computation functions to be executed directly

on encrypted data while achieving the same (encrypted) results as

if the functions were run on plaintext. To better clarify the idea,

let’s take the example of a medical research institution that wishes

to conduct descriptive statistics on a population of Covid-19 patients

at a certain hospital. The challenge in this scenario stems from the

fact that the hospital cannot share its private medical records with

the research institution due to the Health Insurance Portability and

Accountability Act (HIPAA) privacy regulations. To overcome this

challenge, the hospital can use HE to encrypt its medical records

prior to sending them to the research institution. In this way, the

medical records will be fully private and protected. The research

institution then carries out its analytical operations on the encrypted

data, downloads the encrypted output and decrypts it to uncover

the plaintext answer. From the technical perspective, similar to the

other encryption forms, HE employs a public key to encrypt data

and permits only the parties that have the matching private key to

have access to the unencrypted data. The main difference between

HE and the other encryption methods is that HE capitalizes on an

algebraic system to enable computations to be done on the encrypted

data. Three types of homomorphic encryption can be distinguished,

i.e., (1) partial homomorphic encryption which keeps sensitive data

secure by only allowing selected mathematical functions to be applied
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on the encrypted data; (2) somewhat homomorphic encryption which
upholds limited operations that can be carried out only a pre-defined
number of times; and (3) full homomorphic encryption which keeps
information both secure and accessible. In the context of federated
learning, HE is used to encrypt the messages exchanged between the
server and the clients to prevent honest-but-curious participants from
exploiting these message to infer sensitive information from clients’
local data. For example, the authors of [163] address the challenge
of private federated learning wherein (1) data are vertically divided
across clients by features; (2) target variable is known by only one
party; and (3) entities’ data are not linked across clients. To this
end, a three-party federated logistic regression model over messages
encrypted with an additively homomorphic scheme is proposed. The
authors show that the proposed model is secure against honest-
but-curious clients and provide a formal analysis on the impact of
entity resolution which results from joining together vertically split
datasets using unique identifiers on the federated training accuracy. In
[164], the authors aim at guaranteeing both data and model privacy
in federated learning. Toward this end, they propose two privacy-
preserving protocols for multi-party regression training. The first
protocol is tailored for linear regression while the second is deigned
for logistic regression. First, the server and clients run a shared local
gradient computation model, allowing them to compute two additive
shares of the local gradient on the clients’ data following an additive
homomorphic encryption. The objective is to prevent input leakage,
even in extreme scenarios in which the user has only one data point.
The server and active clients then apply an aggregation protocol to
build one share of the global gradient. Thereafter, the server derives
a second share of the global gradient using its local gradient shares.
The authors of [165] propose a bilateral privacy-preserving federated
learning model that protects the privacy of not only client’s raw
training data but also model iterations and final model parameters.
Specifically, the authors propose to encrypt intermediate and final
model parameters, thus allowing clients to train over a noisy global
model, while ensuring that the sever obtains the exact updated model.
The authors theoretically prove that their solution prevents honest-
but-curious clients from getting local training data and local model
updates from other clients even under collusion scenarios.

Secure Multiparty Computation: Secure Multiparty Compu-
tation (SMPC) is a subfield of cryptography that is interested in
designing methods for entities to jointly compute a function over
their inputs while keeping these inputs private. Different from the
traditional cryptographic jobs which aim to ensure the integrity and
security of the storage and communication in situations wherein the
adversary does not belong to the network of participants, SMPC aims
to protect the participants’ privacy from each other. In federated
learning, SMPC is used to allow the server to compute the sum
of model updates coming from a large number of client devices
without learning each client’s individual contribution. For example,
the authors of [166] propose an SMC protocol for the federated
learning framework called Secure Aggregation. Secure Aggregation
capitalizes on encryption to keep clients’ local updates secret from
the parameter server. The proposed protocol is intended to protect
the federated learning framework from honest-but-curious attackers
through solely revealing the sum of model parameter updates to
the server, only after a certain number of updates has been carried
out. The protocol consists of four rounds, where at each round the
server collects messages from all clients and computes, out of these
messages, an independent response to be sent to each client. In the
first two rounds (Prepare phase), shared secrets are initiated. In the
third round (Commit phase), each client submits encrypted masked
model updates to the server, which piles them up. In the last round
(Finalization phase), clients expose cryptographic secrets to enable
the server to disclose the aggregated model updates. In [167], the
authors propose a secure aggregation scheme to protect the privacy

of each client’s model gradient while embedding a collection of
robustness and efficiency metrics into the design of the solution. The
main component is a double-masking strategy that enables users to
sample an additional random value to mask its model updates. The
purpose is to prevent honest-but-curious servers from gaining access
to the clients’ updates even in harsh scenarios wherein the server is
able to reconstruct the client’s perturbations. The authors of [94] first
propose a federated submodel learning framework in which clients
need to download and upload only some relevant parts of the full
model. They then address the privacy concerns that arise from such
an approach, where the client needs to inform the server about the
position of her submodel. To tackle this concern, a secure federated
submodel mechanism is advanced. The secure mechanism relies on
the concepts of secure aggregation, randomized response and Bloom
filter to provide each client with a customized plausible deniability
against the position of her submodel. In [23], the authors propose
an additive secret sharing mechanism which adds some randomness
into each local model to protect clients’ privacy. This randomness is
designed in such a way to vanish once the models are aggregated. The
authors of [168] argue that the approaches that use differential privacy
only end up with low accuracy in the presence of a large number of
clients, each of which holding a small amount of data. To address
these problems, they propose to integrate SMC into the differential
privacy to decrease the expansion of noise injection when the number
of clients increase while maintaining a certain level of reliability.

Blockchain: A blockchain is a time-stamped series of immutable
data blocks that is managed by a cluster of computers which are not
owned by any single entity. Each of these blocks of data (i.e., block)
is secured and bound to each other using cryptographic principles
(i.e., chain) [173]. The blockchain is a democratized system in the
sense that it does not rely on any central authority. Technically
speaking, the blockchain is a simple yet smart way of communicating
information from one party to another in a fully automated and secure
fashion [174]. One party of a transaction starts the process through
creating a block, where this block get verified by a large number (i.e.,
millions) of computers distributed around the World. The verified
block then gets added to a chain, creating a unique record with a
unique history [175]. In such a system, falsifying a single record
would mean falsifying the entire chain in millions of instances, which
would be virtually impossible. In the context of federated learning,
blockchain is used to decentralize the global aggregation process
through enabling the blockchain network to exchange client’ local
model updates while verifying them. Blockchain is useful to both
protect the individual local model updates from being exposed and
verify the legitimacy of these updates. For example, the authors of
[169] propose a blockchained federated learning architecture, which
consists of miner and normal devices. Miners are selected devices
which enjoy high levels of energy. Each normal device computes its
local model update and forwards it to its corresponding miner in the
blockchain network. Miners exchange and verify all the local model
updates. They then run the Proof-of-Work (PoW), which allows them
to create a block that stores the verified local model updates. This
block is then added to a blockchain entity called distributed ledger
to be downloaded by the different devices. This would enable each
device to derive the global model update from the new block.

7.3 Desirable Criteria for Future Solutions
Based on the above classification and discussions, we identify a set
of criteria that we believe are important to consider when designing
future privacy solutions for federated learning. In what follows, we
first present these criteria and then discuss how can they be practically
capitalized on to craft efficient security solutions in federated learning.

Criterion #1: Prevent honest-but-curious participants from
deriving the gradients of the other participants through com-
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puting the difference between two consecutive global joint
models.
Criterion #2: Prevent attacks that aim to infer properties that
only hold for a subset of the training inputs but not for the class
as a whole, i.e., properties that are independent of the class’s
features (e.g., inferring that Alice appears in some of John’s
photos when we are using John’s photos to train a gender
classifier).
Criterion #3: Prevent inference attacks that aim to know
whether or not a certain client has participated in a certain
training iteration.
Criterion #4: Consider passive attacks wherein attackers ex-
amine the updates and carry out inference without performing
any changes to the local and global training processes.
Criterion #5: Consider active attacks that carry out additional
local computations and submit the resulting values to the
global model to perform their inference attacks.
Criterion #6: Investigate the impact of the model’s hyper-
parameters, batch size, number of participant and commu-
nication mode (i.e., synchronous or asynchronous) on the
likelihood of leaking sensitive information.
Criterion #7: Account for situations wherein the clients do
not trust the server to apply the differential privacy measures
(e.g., adding noises to the local gradients).
Criterion #8: Derive a trade-off between privacy-preserving
techniques (i.e., noise injection and cryptography) and com-
mununication efficiency.
Criterion #9: Derive optimal bounds in terms of noise ratio to
be added to the individual gradients based on metrics such as
communication overhead, data representativeness and inter-
client data variance to avoid adding too much or too little
noise.
Criterion #10: Find a trade-off between noise injection and
training model’s accuracy.
Criterion #11: Design adaptive privacy-preserving solutions
that take into account the software and hardware heterogeneity
of the client devices (e.g., some devices might afford compu-
tation with noise while others might not).
Criterion #12: Capitalize on the strength of GANs to generate
and operate on artificial data that replace the client’s actual
data.
Criterion #13: Consider not only clients’ data privacy but
also training model’s privacy to prevent competing businesses
from learning other businesses’ models and using them to gain
competitive advantages.
Criterion #14: Tailor the privacy-preserving solution to be in-
dependent from the machine learning model used for training.
Criterion #15: Design hybrid solutions that combine the
strengths of both differential privacy and secure aggregation
to achieve a trade-off between inference privacy and training
model accuracy.

The current literature on privacy in federated learning can be
improved in many aspects. First, the privacy preservation solution
should account for both active and passive inference attacks. Most
of the existing approaches have focused on countering the passive
inference attackers that carry out their attacks without entailing any
change to the local and global training processes. On the other
hand, active attackers might be harder to detect and fight against
since they carry out additional computations and submit fabricated
values to the global model to push it to reveal sensitive information.
Therefore, more elaborate solutions need to be designed to deal
with such attackers. A second research direction that needs further
investigation is the protection of the training model’s privacy. Most
of the existing approaches focus on protecting clients’ local data

from being leaked to other clients or to the server, while ignoring
the privacy of the training model itself. Yet, breaching the privacy of
the training model might lead to painful consequences since it could
enable clients working for some businesses to learn other businesses’
(better) training models in order to use them on their own data to
gain competitive superiority. A third research perspective would be
to conduct methodological investigations on the impacts of several
factors such learning hyperparameters, batch size, number of partic-
ipants and communication mode (i.e., synchronous or asynchronous)
on the probability of leaking sensitive information. Such investigations
could lead to more advanced privacy solutions that can optimize many
metrics in a simultaneous fashion.

Another research direction that is specific to the differential pri-
vacy would be to derive optimal bounds in terms of the noise ratio that
needs to be added to the individual gradients. Deriving such bounds
might be based on metrics such as communication overhead, data
representativeness and inter-client data variance. This is important to
derive adequate amounts of noise, thus avoiding to adding too much
(which results in high communication overhead) or too little (which
might make the privacy solution ineffective). One additional perspec-
tive to be considered in the future would be to adapt the privacy
preserving solutions to the software and hardware heterogeneity of
the client devices. This heterogeneity could enrich the privacy solution
with valuable information and offer it a higher flexibility. For example,
the devices that enjoy high hardware and software specifications could
be assigned the heavy privacy solutions (e.g., noise injection) while
the devices that enjoy lower hardware and software specifications
could be assigned lightweight privacy solutions. An additional aspect
that is worth investigating would be to capitalize on the strengths of
data-driven solutions such as GANs, transfer learning and multi-task
learning to design more lightweight privacy preserving approaches.
In fact, data-driven solutions have shown great efficiency and have
the potential to reduce the computation and communication overhead
compared to the traditional privacy preservation solutions such as
noise injection, SMPC and homomorphic encryption. Finally, it would
be of prime importance to design granular privacy solutions at the
levels of specific users or even data samples. In practice, the privacy
constraints differ across devices and across data samples on a client’s
device. Therefore, designing granular device and sample-level rather
than local or global model-level privacy preservation solutions would
be an interesting future direction.

8 SERVICE PRICING (CHALLENGE 6)
Service pricing approaches are introduced to analyze the interactions
between the server and client devices from an economical point of
view. In fact, clients are usually mobile devices that are owned by
rational users that tend not to accept to spend the resources of their
devices running local training for a model that is owned by the
server. Therefore, economic models are needed to incentivize clients
to participate in the federated learning process. Toward this end, the
existing approaches that are proposed under this category capitalize
on game theory and mechanism design to model the economical
interactions among clients (referred to as service providers) and server
(referred to as the model owner). In the following, we discuss each of
these techniques, i.e., game theory and mechanism design in detail and
explain the approaches that were proposed in the literature under each
technique. The classification scheme of the service pricing approaches
is schematized in Fig. 7. Moreover, we provide in Table 7 a summary
of the main approaches that tackle service pricing challenges in
federated learning and highlight the criteria (proposed in Section 8.1)
that each underlying approach satisfies.

Game Theory: Game theory is a formal study of conflict and
cooperation in a multilateral interactive environment [182]. It offers
mathematical tools for designing automated decision-making models
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Fig. 16: Classification of the service pricing approaches in federated learning

TABLE 11: Summary of the service pricing approaches

Approach Challenge Technique Main Idea Criteria

Feng et al. [99] Service Pricing Game Theory

A Stackelberg game model in which the clients determines the price of

their training data in such a way to convince the server to acquire more

data from them.

Criteria #1, #2 and #5

Sarikaya et al. [176] Service Pricing Game Theory

A Stackelberg game model in which the model owner, at each gradient

update iteration, offers clients an incentive in such a way to motivate them

to assign larger computation power to their local training tasks.

Criteria #1 and #3

Song et al. [177] Service Pricing Game Theory

A Shapley value-based approach that assesses the contribution of each

client through reconstructing the model on different combinations of the

datasets using the intermediate results of the training.

Criteria #1 and #4

Zhan et al. [178] Service Pricing Game Theory

An Stackelberg game in which the server seeks to minimize the total

reward given to the edge nodes and edge nodes aim to maximize their

individual revenues.

Criteria #1 and #5

Pandey et al. [179] Service Pricing Game Theory

An incentive mechanism that relies on a two-stage Stackelberg game

model which aims to jointly maximize the utility of the edge server and

clients that interact via a third-party application platform.

Criteria #1 and #2

Jiao et al. [180] Service Pricing Mechanism Design

An auction mechanism that takes into consideration a variety of metrics

such as clients’ data sizes, non-IID degree of their data and their limited

wireless spectrum resources to design and solve a social welfare maxi-

mization problem.

Criteria #1 and #2

Kang et al. [181] Service Pricing Mechanism Design

A contract theory approach that maps the amount of resources contributed

by each client into some equivalent reward amount to incentivize clients

to participate in the federated learning paradigm.

Criteria #1, #3 and #4

for rational agents in strategic scenarios. Such agents may represent

individuals, machines, firms, software, or any combination of them.

In other words, game theory aims at mathematically discovering the

actions that a certain party (called player in game theory) should take

in order to maximize its success chances. In federated learning, game

theory is used to help the model owner and service providers derive

pricing schemes for the training service on the basis of several criteria

in such a way to maximize the profits of parties. For example, the

authors of [99] address the challenges of motivating the participation

of clients in the learning process. To do so, a service pricing scheme

whereby clients decide on the price of one unit of their training data.

Based on the decided prices, the server determines the size of training

data that will be acquired from each client. Using this information,

clients then adjust their prices in an attempt to convince the server

to acquire larger training data sizes. This scenario is model as a

Stackelberg game theoretical model. In [176], the authors propose

an incentive mechanism that aims to motivate clients to assign larger

computation power to their local training tasks. The ultimate objective

is to accelerate the convergence through reducing the chances of

encountering stragglers that take long time to submit their updates.

The solution is modeled as a Stackelberg game in which the model

owner (the leader of the game), at each gradient update iteration, offers

clients a certain amount as an incentive. Based on the offered incen-

tive, clients (followers of the game) determine the amount of Central

Processing Unit (CPU) power that will be allocated to compute the

gradient update. The equilibrium of the game is derived through

deducing the average time needed to complete a single stochastic

gradient descent iteration. The authors of [177] propose to employ

Shapley value from coalitional game theory to assess the contribution

of each client in the federated training. The goal is to come up with

profit sharing strategies that take into consideration the contribution

of each client to the joint model. The main intuition of the proposed

solution is to reconstruct the model on different combinations of the

datasets using the intermediate results of the training in such a way

not to entail any extra training on the client devices. In [178], the

authors design an incentive mechanism to motivate edge nodes to

participate in the federated training. The problem has been formulated

as a Stackelberg game in which the server seeks to minimize the total

reward given to the edge nodes and each edge node aims to maximize

its individual revenue. A deep reinforcement learning algorithm is also

proposed to model the ambiguity of contribution evaluation through

learning system states from historical training records. The authors

of [179] propose an incentive mechanism that employs a two-stage

Stackelberg game model which aims to jointly maximize the utility of

the edge server and clients that interact via a third-party application

platform.

Mechanism Design: Mechanism design is a branch of economic

theory that aims to explore the mechanisms wherein a certain outcome

can be achieved [183]. It helps understand how businesses may attain

optimal outcomes when individual self-interest and incomplete infor-
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mation comes into the picture. Similar to game theory, mechanism
design is employed in federated learning to help the model owner and
service providers derive pricing strategies for the training service. For
example, the authors of [180] design an auction mechanism to model
the interactions between clients and the federated learning platform.
The pricing scheme takes into consideration clients’ data sizes, the
non-IID degree of their data (quantified using the earth mover’s
distance measure) and their limited wireless spectrum resources.
Based on these metrics, a data quality function is designed using real-
world datasets. Thereafter, a social welfare maximization problem is
formulated based on the data quality function. To solve this problem
efficiently, the authors put forward a deep reinforcement learning-
based auction mechanism. The authors of [181] study the problem of
incentivizing mobile devices to participate in the federated learning
paradigm by the model owner. To do so, an approach that capitalizes
on contract theory, a subfield of mechanism design wherein agree-
ments are enforceable, is proposed to map the amount of resources
contributed by each mobile device into some corresponding rewards.
The profit function of the task publisher is defined in terms of total
time of one global iteration of collaborative training minus the total
amount of monetary rewards that should be given to mobile devices
in recognition to their contributions. On the other hand, the profit
function of each mobile device is defined in terms of rewards received
from the task publisher minus the computation and communication
costs entailed by the training process.

8.1 Desirable Criteria for Future Solutions

Based on the above classification and discussions, we identify a set
of criteria that we believe are important to consider when designing
future service pricing solutions for federated learning. In what follows,
we first present these criteria and then discuss how can they be
practically capitalized on to craft efficient service pricing solutions
in federated learning.

Criterion #1: Provide incentives for clients to motivate them
to participate in the training process.
Criterion #2: Investigate the impact of the training data size
and quality on both the client devices’ profits and training
model’s accuracy .
Criterion #3: Motivate clients to assign more computation
power to the local training to improve the accuracy and avoid
the problem of stragglers.
Criterion #4: Link the rewards given to the client devices with
the degree of their contributions to the training and the quality
of their model updates.
Criterion #5: Derive the payments to be given to the clients in
such a way to satisfy their individual rationality (i.e., no loss
to data owners from trading) without forcing model owners to
make too much payment.
Criterion #6: Motivate data owners to truthfully reveal the
size of their data and their computation capabilities.
Criterion #7: Attract more data owners with high-quality local
training data to ensure efficient federated learning.
Criterion #8: Investigate open market approaches to reduce
the aggressiveness of the competition among service providers
and model owners.

The literature on service pricing in federated learning is still in
its infancy, where many interesting aspects need to be explored and
investigated. To begin with, we need comprehensive pricing schemes
that take into consideration a variety of metrics such as the impact of
the training data size and quality on both the client devices’ profits
and training model’s accuracy. The pricing model should also account
for the degree and quality of contribution of each single client on the
training quality. In addition, the pricing scheme should be designed

in such a way to incentivize clients to assign larger portions of com-
putation power to the local training. This is important to ensure the
continuity and stability of the federated training and hence reduce the
chances of encountering stragglers. Furthermore, the current literature
approaches employ non-cooperative game theory (e.g., Stackelberg
games) to formulate and solve the service pricing problem. The
shortcoming of this approach in federated learning arises from the
nature of the data which can be shared and resold by clients to
more than one model owner. This situation results in an extremely
aggressive competition among service providers (i.e., clients) to sell
their services even at lower prices and also among model owners
themselves to acquire high-quality data from clients even at higher
prices. To deal with such a situation, open market approaches that rely
on a third-party platform to regulate the interactions among model
owners and service providers are worth being investigated. For this
purpose, approaches such as two-sided market theory and cooperative
game theory would be interesting to explore.

9 FUTURE RESEARCH DIRECTIONS

We discuss in this section some future research directions that we
believe are interesting to work on and investigate in the future. The
research directions are classified based on the high-level challenges
that they are intended to tackle.

9.1 Statistical perspective
We discuss in the following the future research directions that are
related to the statistical challenges of federated learning.

9.1.1 Utility-based Federated Training
Most existing federated learning aggregation models treat clients’
contributions equally. This results in unnecessary computation and
communication overhead and might also degrade the quality and
accuracy of the resulting global learning model in case of unreliable
local data or poor local training models. Therefore, we believe that it
would be interesting to design utility-based federated training models
so as to assign a training utility value to each participating client.
This utility would be used to quantify the appropriateness of the
contributions provided by each client and could be based on a variety
of criteria such as data size on the client’s device, local computation
time history and impact of the client’s data on the non-IID degree
of the overall data distribution. On important factor to consider here
is that the utility model should be designed to be dynamic in the
sense that it should change over the time to capture the changes that
happen at the level of each client in terms of data quality, local device
characteristics and client behavior.

9.1.2 Proactive Pre-training Data Heterogeneity Detection
The challenge of detecting data heterogeneity across client devices
has been extensively studied in the context of federated learning.
Nonetheless, most of the proposed solutions rely on metrics such as
local dissimilarity, which can only be computed after the federated
training has terminated. This makes these solutions less effective
in improving the accuracy of the global learning model. Therefore,
we urge the need to design proactive data heterogeneity detection
solutions that could warn the server a priori about the degree of
heterogeneity across the selected participant devices. Such solutions
could be capitalized on to enable the server to revise its choices of
clients, which is essential for reducing the number training iterations
toward reaching the desired accuracy. To design such proactive so-
lutions, we believe that system-level metrics of client devices such
as storage, computational, and communication capabilities along with
the training history of the device, which could be known before the
start of the federated learning process, are worth capitalizing on to
have an idea about the degree of heterogeneity across devices.
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9.1.3 Model heterogeneity
Despite the unprecedented data privacy guarantees that federated
learning promises to its participants, model privacy preoccupations
might be the main stumbling-block preventing some businesses from
adopting this emerging learning approach. More specifically, during
the federated training, some participants might try to learn other com-
peting participants’ models and parameters in order to apply them to
their internal prediction/classification tasks, and potentially gain some
competitive advantages. One possible solution to such a case would
be to foster model heterogeneity, where each client independently de-
signs its own training model. Yet, the main challenge toward adopting
model heterogeneity would be the difficulty of sharing information in
a blackbox fashion among clients adopting different training models.
Knowledge distillation might be an interesting solution to this problem
as highlighted in [75].

9.2 Communication perspective
We discuss in the following the future research directions that are
related to the communication efficiency challenges of federated learn-
ing.

9.2.1 Device-Oriented Event-Triggered Communication
Apart from the synchronous and asynchronous communication
schemes that are widely adopted in federated learning, the workload-
free nature of client devices makes it more realistic to think of event-
triggered communication schemes. Unlike traditional worker nodes
that are workload-dedicated and workload-ready, client devices in
federated learning are general-purpose devices over which the server
has no control. They also are not supposed to be running heavy
computations. Indeed, traditional worker nodes in data centers are
designed to always be ready to take their next job from the central
node, directly after delivering the results of their current job. On the
other hand, client devices do not have this property and might not be
necessarily active at any given iteration of federated learning. That
being said, it would be of prime importance to investigate device-
oriented and event-triggered communication schemes. Such schemes
should be designed in such a way to enable each device to take the
decision on when to get activated and start interacting with the server
in an event-triggered fashion.

9.2.2 Communication Reduction at the Pareto frontier
Several approaches have been proposed to improve the communica-
tion efficiency in federated learning. These approaches are mainly
based on decreasing either the size of the exchanged model updates
or frequency of communicating these updates. However, the benefits
of applying such solutions often come at the price of loosing some of
the prediction/classification’s accuracy. Therefore, profound analysis
on the trade-off between accuracy preservation and communication
efficiency should be carried out to come out with effective and effi-
cient communication models for federated learning. More specifically,
we need new communication approaches that can prove to be efficient
at the Pareto frontier, i.e., that can give an accuracy level that is larger
than any other approach under the same communication budget and
across a large domain of communication/accuracy profiles.

9.2.3 Partial Peer-to-Peer Updates Sharing
Sharing the whole set of (heavy) model updates with the server at each
and every iteration, for a large number of iterations, is the main reason
for communication bottlenecks in federated learning. Periodic and
dynamic aggregation approaches [25], [58], [22] have been proposed
in an attempt to decrease the communication overhead and avoid these
bottlenecks. According to the periodic aggregation approach, clients
are allowed to carry out several local iterations prior to uploading
their updates to the server. In dynamic aggregation, the aggregation

at the level of the server is performed only when judged necessary
and some criteria are met. Despite the effectiveness of these ideas
in terms of minimizing the communication rounds, applying them in
practical federated learning scenarios might still result in bottlenecks
at the level of the server per communication round, where the server
is still supposed to receive a large number of heavy model weight
updates during some iterations. Therefore, we believe that it would be
interesting to investigate partial peer-to-peer model updates sharing
schemes in which the clients synchronize the model updates with
only a part of other workers instead of repeatedly sharing them with
the server. Such a peer-to-peer communication approach can improve
the communication efficiency and help avoid bottlenecks at the level
of the server. This can be achieved by using the concept of clustering
from machine learning, which can help uncover those groups of client
devices that sharing the model updates among their members would
have the best impact on the model’s accuracy. The clustering might be
done based on a variety of criteria such as devices’ location, resource
characteristics and trust relationships among the devices.

9.2.4 Multi-Hop Routing
Compared to single wireless links, multi-hop wireless networks can
provide a wide range of benefits to the federated learning experience.
First, it can increase the coverage of the network, thus bringing the
federated training to a wider set of users in a wider set of areas
and regions. Second, multi-hop networks allow for transmission over
several short links instead of a long single link, which demands less
transport energy and power. Third, with multi-hop networks, multiple
paths are available where alternative paths can be used to improve
the robustness and resilience of the network in case of any failure.
Finally, multi-hop networks allow for higher data rates in the network
which results in higher throughout. Despite all these advantages that
multi-hop networks can bring to the federated learning, it has been
quite under-investigated in the current literature. Specifically, we need
to design approaches that can boost multi-hop federated learning
over wireless communications, enabling several groups of clients
to collaboratively participate in the federated training. Moreover,
different from single-hop federated learning frameworks, the model
updates in multi-hop federated learning have to pass through several
noisy and interference-prone wireless links, thus leading to slower
updates. Thus, it would be interesting as well to address this challenge
and design innovative wireless multi-hop federated learning systems
with high accuracy, warranted stability and fast convergence speed.

9.3 Client Selection and Scheduling
We discuss in the following the future research directions that are
related to the client Selection and Scheduling challenges of federated
learning.

9.3.1 Optimization of Interdependent Server-Client Strategies
Despite the abundance of optimization models that try to optimize the
resource management at the client devices participating in the feder-
ated learning process, these models treat the strategies of the server
and clients as being independent. Nonetheless, the strategies adopted
by each of these parties strongly influence the welfare of the other
party. For example, the amount of resources that the client decides
to dedicate to the local training strongly influences the accuracy of
the generated global model. Similarly, the decision of the server in
terms of reward to be given to the clients versus their training service
strongly influences the welfare of the clients. Therefore, considering
the strategies of the server and clients independently would generate
less thoughtful decisions. Thus, we argue that the strategies of the
server and clients should be modeled in an interdependent fashion so
as to enable each of these parties to make more informed decisions
that consider the strategies of the other party as well as the best
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responses to them. In this context, we believe that game theory is
a perfect candidate to model the interdependencies between the server
and clients’ strategies. It offers a variety of tools and techniques that
help model and analyze the interdependecy in the strategies such
as best response, Nash equilibrium, maxmin, minmax, Stackelberg,
hedonic and matching games.

9.3.2 Determining the Optimal Number of Clients Per Iteration
Determining the appropriate number of clients that need to participate
in every federated learning iteration is crucial for the success of
this emerging learning approach [123]. In fact, selecting a large
number of clients might result in unnecessary communication over-
head without bringing any improvement to the model’s accuracy.
Similarly, selecting a little number of clients might make the model
to need more training iterations and thus to take longer time to
converge. Therefore, we highlight the importance of designing models
to determine the optimal number of clients that need to participate in
each training iteration. Such models might take several constraints of
into consideration such as the impact of the number of clients on the
non-IID degree of the overall data, the reliability of the clients being
invited to join and the impact of adding more clients on the waiting
delay for model updates.

9.3.3 Client-to-Client Trust Establishment
The whole idea of federated learning presumes that the different
involved parties, i.e., server and clients are trustworthy and willing
to honestly do their assigned tasks. Nonetheless, in such an open
and distributed environment in which the server has no control over
the clients, and the clients act independently from one another, trust
can no longer be assumed; it must be investigated. Although some
trust (and reputation) models have been proposed in the context of
federated learning, these models focus only on the trust relationships
between the server and clients. Yet, we argue that it would be of prime
importance to investigate the trust relationships among the clients
themselves. Establishing client-to-client trust relationships would be
a key enabler for many distributed communication architectures
that have been or to be proposed to improve the communication
efficiency such as periodic aggregation, dynamic aggregation, over-
the-air-computation and partial peer-to-peer updates sharing.

9.4 Security Perspective
We discuss in the following the future research directions that are
related to the security challenges of federated learning.

9.4.1 Fighting Against Collusion-based Attacks
Most of the security solutions that are proposed in the context of
federated learning only consider attacks that are performed in an
individual fashion. Yet, attackers are becoming smart enough to think
of more sophisticated attack scenarios in which one single attack can
be carried out by involving many client devices. The objective is
to complicate the detection and prevention processes. Unfortunately,
the existing security solutions that are tailored for individual attacks
cannot be directly mapped nor easily adapted to collusion-based
attacks. For example, a profound security analysis presented in [145]
showed that squared-distance-based aggregation rules, which are used
in many security solutions in federated learning, are not efficient when
more than one attacker collude together.

9.4.2 Privacy-Preserving Security Assurance
A vast majority of the existing security solutions demand access
to either clients’ training data or to their submitted model updates
to analyze and detect and fight against any suspicious behavior.
This, however, contradicts with the privacy premises that the whole
idea of federated learning is based on and threatens to break the

confidentiality of clients’ private data. Therefore, it would be of prime
importance to decouple the future security solutions from the ability to
access clients’ training data or their submitted model updates. There
should be a trade-off between having an efficient security solution and
preserving the privacy of the clients’ data.

9.4.3 Zero Trust Security
In a federated learning scenario, the edge servers come into contact
with a huge number of client devices, which entails an unlimited
number of security risks. There is plenty of devices of different sizes
and types, from wearable devices to refrigeration and heating systems.
This heterogeneity, along with the communication channels between
the edge servers and client devices, gives attackers a non-negligible
number of attack opportunities, most of which is not covered by
the conventional security defenses. Traditionally, security adminis-
trators concentrate their security measures at the level of edge nodes,
equipping the access points (e.g., routers and switches) with firewalls
to filter the access to these nodes on the basis of some predefined
protocols. Such a perimeter-based security approach cannot counter
lateral threat movement, a set of techniques that attackers make use
of, after acquiring initial access, to proceed deeper into the network
to sneak into sensitive data and other invaluable assets. Traditional
security solutions consider all the parties within the network to be
trusted. Yet, if a federated learning system involves devices with
minimal security measures, they could be used as weak points to
acquire access to the central cloud servers. Therefore, a zero trust
architecture would be preferable in such a case. More specifically, a
zero trust architecture departs from the assumption that every node
inside a network could be at some point hostile or compromised by
external attackers and admits that the initial point of contact midst a
cyberattack is often not the intended target. Zero trust puts in place
a micro-segmentation process of the network (based on users, data
types and applications) through dividing this network into smaller
logic components in such a way that only authorized end-points
could have access to the data and applications that are hosted in
these components. This is advantageous over perimeter-based security
in that smaller segments exhibit decreased attack surface and are
easier to protect and manage. Thus, instead of investing all the
defense mechanism at the main entry points, the zero trust architecture
converts the whole federated learning network into a defense system
that raises an alarm whenever an unauthorized party tries to perform
an action. Consequently, even if the security measures of the outer
edge/end device get breached, the chances that attackers will move
far laterally across the network to acquire access to valuable assets
would be minimal.

9.5 Privacy Perspective
We discuss in the following the future research directions that are
related to the privacy challenges of federated learning.

9.5.1 Defining Optimal Bounds of Noise Ratio
Differential privacy is an indispensable component of most mod-
ern machine learning solutions to guarantee that the processes of
collecting, aggregating and analyzing data do not expose sensitive
information on individual users. One main component of differential
privacy is noise injection, where clients add some noise to their
model updates to prevent the server from revealing some sensitive
information through analyzing their gradient updates. Nonetheless,
in the current noise injection solutions, it is not clear how much
noise should be added to the model updates. In fact, adding too
much might result in high communication overhead, whereas adding
too little noise might make the privacy solution ineffective in terms
of privacy preservation. Therefore, we believe that it would be of
prime importance to design models that can derive optimal bounds
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in terms of noise ratio to be added to the individual gradients.
Such solutions might take into consideration several criteria such as
data representativeness, communication overhead and inter-client data
variance.

9.5.2 Granular Privacy Solutions

The current privacy preservation solutions in federated learning are
designed to be generic over all the client devices and data samples.
However, in practice, the privacy requirements and constraints may
largely vary between devices and even between the data samples on
one single device. Therefore, it would be interesting to replace the
current local or global model-level privacy solutions with granular
device-level and even data sample-level ones. Nevertheless, we recog-
nize and note the complexity of developing such granular solutions,
owing to the huge number of client devices and gigantic volumes of
data samples on these devices. Therefore, we believe that designing
granular privacy solutions can be done in conjunction with some
clustering solutions that group the devices and data samples according
to some common characteristics. Consequently, granular solutions at
the level of each cluster would be a good and more realistic alternative
to the current generic privacy solutions.

9.5.3 Adaptive Privacy Solutions

One of the main requirements for successfully designing and applying
granular privacy solutions is first to make the privacy model adaptive.
Such adaptive models should provide a comprehensive analysis on the
impacts of several factors related to federated learning such as data
batch size, model’s hyperparameters, number of participating clients,
and communication mode on the likelihood of leaking sensitive
information. It is also important for the prospective adaptive privacy
solutions to take into account the software and hardware heterogeneity
across the client devices. For instance, some devices are able to
support heavy computation with noise, while others might not be
able to afford heavy noise injection. Having such an analysis would
help better understand the privacy requirements and constraints for
each particular device (or a cluster of devices) and/or data sample (or
a cluster of data samples) and would hence facilitate the design of
granular privacy solutions.

9.6 Service Pricing

We discuss in the following the future research directions that are
related to the service pricing challenges of federated learning.

9.6.1 Open Market-based Federated Learning

Service pricing is essential to guarantee the success and continuity of
the federated learning approach. In fact, it is undeniably important to
incentivize the clients to participate in the federated learning process
through offering them some monetary rewards. The current literature
on service pricing in federated learning capitalize on non-cooperative
game theory to formulate the pricing problem. The disadvantage of
this approach in federated learning stems from the nature of the
data which can be shared and resold by clients to more than one
federated learning model owner. This creates an extremely aggressive
competition among clients to sell their training services even at lower
prices and also among model owners themselves to acquire high-
quality training from clients even at higher prices. To avoid these
situations, we propose to study open market approaches such as two-
sided market theory and cooperative game theory that capitalize on a
third-party platform to regulate the interactions among model owners
and clients to organize the interactions among them.

9.6.2 Multi-Objective Pricing
Federated learning is a completely open environment wherein partic-
ipants are non-technical users who often do not have any interest in
the success of the federated training process. Therefore, we argue that
the pricing scheme should designed not only to motivate clients to
participate in the training, but also to guarantee that providing high-
quality data and training is the best option for the clients. In fact,
the pricing scheme should be designed in such a way to incentivize
the clients to assign larger portions of computation power to the local
training. This is necessary to guarantee the continuity and stability of
the federated training, thus decreasing the chances of encountering
stragglers. The pricing scheme should also take into account the
quality and size of the data at the clients’ side and thus should be
designed in such a way to attract more data owners with high-quality
local training data.

10 CONCLUSION

In this survey, we propose a three-level classification scheme that
categorizes the federated learning approaches, respectively, based on
the high-level challenge they address, the sub-challenges within each
high-level challenge category, and technique used to address each
corresponding sub-challenge. In particular, we survey the statistical,
communication efficiency, client selection and scheduling, security,
privacy and service pricing challenges and break down each of these
challenges into a set of fine-grained sub-challenges. Then, we explain
and demystify the main techniques that are used to address each
underlying sub-challenge. These techniques include, among others,
data augmentation, active learning, multi-task learning, transfer learn-
ing, parameter tuning, knowledge distillation, weighted optimization,
compression, periodic aggregation, over-the-air-communication, game
theory, mechanism design, trust and reputation, multi-objective opti-
mization, heuristics, reinforcement learning, statistics, autoencoders,
noise injection, homomorphic encryption, secure multiparty compu-
tation and blockchain. For each category of high-level challenges, we
provide a set desirable criteria that are aimed to help the research
community design innovative and efficient future solutions. Finally,
we survey and discuss the application of federated learning in the
communication and networking field and shed light on potential future
applications.

In all, we believe that our survey is the most comprehensive in
terms of challenges and techniques it covers and the most fine-grained
in terms of the multi-level classification scheme it presents. Moreover,
it is the first survey that provides a set desirable criteria for each
specific challenge of federated learning.
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