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Stochastic Galerkin approximation of the Reynolds

equation with irregular film thickness

Tom Gustafsson1, Harri Hakula2, Matti Leinonen

Aalto University
Department of Mathematics and System Analysis

P.O. Box 11100
FI–00076 Aalto, Finland

Abstract

We consider the approximation of the Reynolds equation with an uncertain
film thickness. The resulting stochastic partial differential equation is solved
numerically by the stochastic Galerkin finite element method with high-order
discretizations both in spatial and stochastic domains. We compute the pres-
sure field of a journal bearing in various numerical examples that demostrate
the effectiveness and versability of the approach. The results suggest that
the stochastic Galerkin method is capable of supporting design when manu-
facturing imperfections are the main sources of uncertainty.

Keywords: Reynolds equation, sGFEM, stochastic surfaces

1. Introduction1

Solving partial differential equations robustly in domains with random2

boundaries is necessary to predict the consequences of, e.g., manufacturing3

faults and wear defects. A universal approach is to transform the random4
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domain into a deterministic reference domain through a mapping that de-1

pends on a set of random variables [1]. The approach will in general modify2

the governing equation, possibly making it more complicated.3

Although this seems to be an unavoidable consequence of introducing4

randomness in the domain of a boundary value problem, there exists a fairly5

large class of models where an alternative approach may suffice from an6

engineering viewpoint, namely the so-called dimension reduced models. It7

is typical for these models to incorporate the length scale in one or more8

dimensions—for example, the thickness of a plate or the width and height9

of a beam—as material parameters. This leads to an intriguing possibil-10

ity of applying stochastic numerical methods that are suitable for the ap-11

proximation of BVPs with random material fields to the solution of these12

dimension reduced models, essentially with random geometries. The focus13

of this work is on the stochastic Galerkin finite element method (sGFEM),14

cf. Bieri–Schwab [2].15

A fairly typical property of the dimension reduced models is that the16

PDE depends on the reduced length parameter in a non-affine or polyno-17

mial manner. This is sometimes the case, e.g., in the theory of plates and18

shells [3], classical beam theories [4], fluid film lubrication [5] and duct acous-19

tics [6]. As the stochastic input is most conveniently given in the form of a20

Karhunen–Loéve (KL) expansion, the resulting PDE with a random mate-21

rial parameter field depends on the random variables of the expansion also22

in a non-affine manner. In the context of sGFEM, this introduces a need to23

efficiently construct the related stochastic moment matrices [7].24

In this study we discuss the approximation of the Reynolds equation with25

a stochastic film thickness. Reynolds equation describes the flow of fluids in26

problems where a thin film of lubricant oil is situated between two almost27

parallel surfaces [8]. The governing equation is a second-order elliptic PDE28

with the diffusion coefficient depending on the third power of the thickness29

of the film. For a physical example problem we have chosen the case of a30

journal bearing (e.g., Szeri [5] or Hamrock et al. [9]) where the film thickness31

is assumed to contain transverse variations due to nonidealities in the manu-32

facturing process or due to fatigue wear. The structure of a journal bearing33

implies that the film thickness and, therefore, the pressure field are peri-34

odic. Thus, we define the variations in the film thickness through a cleverly35

constructed periodic random field. In the stochastic Reynolds equation the36

random film thickness is represented using the Karhunen–Loève expansion.37

Thus, there are many options for model reduction through truncation of the38
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series and its powers.1

The effect of incorporating surface roughness directly into the solution of2

the Reynolds equation has been studied using analytical methods in Tzeng–3

Saibel [10], Christensen [11] and, thereafter, by various other authors [12, 13,4

14, 15]. An alternative modeling approach based on the homogenization of5

the surface roughness has recently gained interest [16, 17, 18]. Nonetheless,6

our work is based on the direct approximation of a stochastic Reynolds equa-7

tion with a belief that this type of approach has the potential to combine8

larger scale variations due to, e.g., manufacturing flaws and smaller scale9

variations due to wear into a single model.10

This paper features a thoroughly verified framework for performing stochas-11

tic Galerkin computations that combine high-order approximation both in12

spatial and stochastic dimensions. For a chosen reduced variant of the model,13

we obtain accurate predictions of the statistics of the hydrodynamic pressure14

field in a journal bearing under the assumption of an uncertain film thick-15

ness. The approach can be ultimately seen as a more complete and robust16

alternative to the traditional sensitivity analysis of journal bearings where17

the uncertainty is taken into account through maximum tolerances in the18

constant film thickness.19

Some numerical work on the approximation of a stochastic lubrication20

model exists in hydrodynamic context. The approach of Turaga et al. [19, 20,21

21] is to solve an approximate differential equation with the expected value22

of the pressure field as an unknown. The variance is then estimated using a23

first-order second-moment method. However, we are not aware of any stud-24

ies employing the recent advances in sGFEM or the related pseudo-spectral25

methods in hydrodynamic problems. Recent studies that consider the ef-26

fects of uncertain geometry in other contexts include, e.g., Xiu–Shen [22] for27

acoustic scattering from rough surfaces, Bierig–Chernov [23] for the random28

obstacle problem and Hyvönen–Mustonen [24] for the thermal tomography29

with uncertain boundary shape.30

The rest of this paper is organized as follows: The necessary compu-31

tational framework is outlined in Section 2; In Section 3 the stochastic32

Reynolds equation is introduced; An extensive set of numerical experiments33

are detailed in Section 4; The conclusions are discussed in Section 5. In34

the Appendix, the construction of periodic covariance is discussed, and the35

conjugate gradient method is outlined.36
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2. Preliminaries1

x1

x1

x2

h(x1)

Figure 1: The geometry of the journal bearing and unraveling of the domain. Here the
channel height h(x1) = 1 + ε cos(x1 + π), x1 ∈ [−π, π], where 0 ≤ ε < 1 is the eccentricity
of the bearing.

This section introduces the building blocks of the stochastic lubrication2

model that will be presented in Section 3. We begin by deriving the classical3

lubrication approximation of the Navier–Stokes equations, often referred to4

as the Reynolds equation. Next we briefly introduce the necessary defini-5

tions related to non-affine random fields. We finish the section by discussing6

the weak formulation of a stochastic diffusion problem and its discretization7

through the Galerkin method.8

2.1. Reynolds Equation9

Consider the equations governing an isothermal flow of an incompressible
viscous fluid,

ρ

(
∂v

∂t
+ (∇v)v

)
= −∇p+ 2µ divD(v) + ρb, (1)

div v = 0, (2)

where v is the unknown velocity field, ρ > 0 is the constant density, µ > 010

is the constant viscosity and b corresponds to the body force. Moreover,11

D(v) = 1
2
(∇v + ∇vT ) denotes the symmetric part of the velocity gradient12
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and p is a scalar field associated with the incompressibility constraint (2)—1

often referred to as the mechanical pressure.2

We consider stationary flows while assuming that the inertial effects and
contribution of the body force can be neglected. This reduces the governing
equations to the following Stokes system:

2µ divD(v)−∇p = 0, (3)

div v = 0. (4)

Next we restrict our attention to two-dimensional plane flows, i.e.3

v = (u(x1, x2), v(x1, x2)), p = p(x1, x2). (5)

The geometry is fixed to be that of a journal bearing, see Figure 1, where the
fluid is situated in a thin cavity between the inner and outer surfaces. We
may consider the relative importance of the different terms in (3) and (4) by
arguing that in this setting the domain length in x2-dimension is noticeably
smaller than the domain length in x1-dimension, see for example Szeri [5].
This will reduce the governing equations (3) and (4) to the following set of
partial differential equations:

µ
∂2u

∂x2
2

=
∂p

∂x1

, (6)

∂p

∂x2

= 0, (7)

∂u

∂x1

+
∂v

∂x2

= 0. (8)

Note that the equation (7) implies p = p(x1). Let the height of the flow4

channel be denoted by h = h(x1) and let U be the x1-velocity of the outer5

surface. Integrating the equation (6) twice with respect to x2 and applying6

the boundary conditions7

u(x1, h(x1)) = 0, u(x1, 0) = U, (9)

gives8

u(x1, x2) =
1

2µ

∂p

∂x1

(x1)(x2
2 − x2h(x1)) +

(
1− x2

h(x1)

)
U. (10)
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Next we integrate (8) with respect to x2 to get1

v(x1, h(x1))− v(x1, 0) = −
∫ h(x1)

0

∂u

∂x1

dx2 (11)

and, after substituting the equation (10) for u, we arrive at the Reynolds2

equation3

∂

∂x1

(
h3

µ

∂p

∂x1

)
= 6U

∂h

∂x1

+ 12(v(x1, h(x1))− v(x1, 0)). (12)

The second term on the right hand side of (12) represents the velocity4

of approach of the bearing surfaces. In a quasi-static framework this would5

normally be zero owing to the fact that the bearing surfaces are in most6

cases assumed to be flat. We instead argue that the velocity of approach is7

proportional to the change in h, that is8

12(v(x1, h(x1))− v(x1, 0)) ∝ ∂h

∂x1

. (13)

This would be exactly the case when one of the surfaces was flat and the9

other necessarily was not. The resulting equation, with normalized material10

parameters and notation x = x1, reads11

∂

∂x

(
h3 ∂p

∂x

)
=
∂h

∂x
. (14)

The irregularity of the channel height will be introduced through a pertur-12

bation of h by a suitable random field.13

2.2. Stochastic Input14

The stochastic input is usually assumed to be given in the following affine15

form, often obtained using the Karhunen–Loève expansion; see, e.g., Adler–16

Taylor [25].17

Definition 1 (Affine diffusion coefficient). The affine diffusion coefficient is
defined as

a(ω, x) = a0(x) +
∑
m≥1

am(x)Ym(ω), (15)

where {am}m≥0 are some suitable spatial functions and {Ym}m≥1 is a family18

of random variables.19
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In our case, the parametric PDE (14) depends on the parameter h in a1

non-affine or polynomial manner. In fact, many relevant parametric PDEs2

are nonlinear and depend on the parameters in a similar way [26].3

Definition 2 (Support of a multi-index). The support of a multi-index η ∈4

N∞0 is defined as supp η = {m ∈ N : ηm 6= 0}.5

Definition 3 (Finitely supported multi-indices). The set of finitely sup-6

ported multi-indices (N∞0 )c is defined by7

(N∞0 )c = {η ∈ N∞0 : | supp η| <∞} ⊂ N∞0 ,

where we use | supp η| to denote the number of elements in supp η.8

Definition 4 (Non-affine diffusion coefficient). The non-affine diffusion co-
efficient is given by

a(ω, x) = a0(x) +
∑
µ∈Ξ

aµ(x)Y µ(ω), (16)

where Ξ ⊂ (N∞0 )c, a0 and {aµ}µ∈Ξ are some suitable spatial functions, and

Y µ(ω) :=
∞∏
m=1

Y µm
m (ω) =

∏
m∈suppµ

Y µm
m (ω).

As expected, the non-affine case includes the affine case; by selecting Ξ =9

{µ ∈ (N∞0 )c |µ = en for some n ∈ N}, where en denotes the nth Euclidean10

basis vector of R∞, the non-affine case reduces to the affine case.11

2.3. Model Problem12

Let D ⊂ Rd, d ∈ N, be a bounded domain with a smooth enough bound-
ary. Consider the following model elliptic diffusion problem: Let (Ω,Σ, P )
be a probability space. Find a random field u ∈ L2

P (Ω, H1
0 (D)) such that{

−∇ · (a(ω, x)∇u(ω, x)) = f(x), in D,
u(ω, x) = 0, on ∂D,

(17)

holds P -almost surely for a load f ∈ L2(D) and a given strictly positive
diffusion coefficient a ∈ L∞(Ω×D) with lower and upper bounds amin, amax

such that

P

(
ω ∈ Ω : 0 < amin ≤ ess inf

x∈D
a(ω, x) ≤ ess sup

x∈D
a(ω, x) ≤ amax

)
= 1. (18)
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Here L2
P (Ω, H1

0 (D)) is a Bochner space with the norm1

‖w‖2
L2
P (Ω,H1

0 (D)) =

∫
Ω

‖w(ω)‖2
H1

0 (D) dP (ω).

See, e.g., Schwab–Gittelson [27] and the references therein for more informa-2

tion.3

A standard approach is to transform the model problem (17) into a para-4

metric deterministic form by first assuming the family {Ym}m≥1 : Ω → R5

to be mutually independent with ranges Γm and associating each Ym with a6

complete probability space (Ωm,Σm, Pm), where the probability measure Pm7

admits a probability density function ρm : Γm → [0,∞) such that8

dPm(ω) = ρm(ym) dym, ym ∈ Γm,

and the σ-algebra Σm is assumed to be a subset of the Borel sets of Γm.9

Finally, it is assumed that the stochastic input is finite, i.e., in the affine10

case we assume that there exists M <∞ such that Ym = 0, when m >M,11

which essentially truncates the series in (15) afterM terms, and in the non-12

affine case (16) we assume that the set Ξ has a finite number of elements13

andM as in the affine case exists. Notice, that instead of assuming that the14

parameters Ym are mutually in- dependent, independence can be ensured for15

instance through a suitable isoprobabilistic transformation.16

After these assumptions the parametric deterministic weak formulation17

of (17) is to find u ∈ L2
ρ(Γ, H

1
0 (D)) that satisfies18 ∫

Γ

∫
D

a(y, x)∇u(y, x) · ∇v(y, x)ρ(y) dx dy =

∫
Γ

∫
D

f(x)v(y, x)ρ(y) dx dy,

(19)
for all v ∈ L2

ρ(Γ, H
1
0 (D)), where y := (y1, y2, · · · ) ∈ Γ := Γ1 × Γ2 × · · · and19

ρ(y) dy :=
∏

m≥1 ρm(ym) dym. There exists a unique solution to (19) which is20

a consequence of the Lax–Milgram lemma.21

By discretization, the weak formulation (19) reduces to the following lin-
ear system of equations in the affine case (15):(

G0 ⊗ A0 +
M∑
m=1

Gm ⊗ Am

)
u = g0 ⊗ f0, (20)

where {Am}Mm=0 are standard FEM matrices, f0 is a standard load vector,22

{Gm}Mm=0 are stochastic moment matrices, and g0 is a stochastic load vector;23

see Bieri–Schwab [2] for details.24

8



For the stochastic load vector and moment matrices, we recall that each1

multi-index η ∈ (N∞0 )c determines a multivariate polynomial Φη(y).2

Definition 5 (Multivariate polynomial). Let η ∈ (N∞0 )c. The multivariate
polynomial Φη(y), also called chaos polynomial, is defined as

Φη(y) =
∞∏
m=1

φηm(ym) =
∏

m∈supp η

φηm(ym), (21)

where {φm}m≥0 is a suitably orthonormalized (univariate) polynomial se-3

quence with φ0 = 1.4

Let Λ ⊂ (N∞0 )c be finite and consist of suitably chosen finitely sup-
ported multi-indices; see Schwab–Gittelson [27] and the references therein
for more information. In order to enumerate the set Λ we use the function
γΛ : {1, · · · , |Λ|} → Λ which is defined so that it is bijective. In the affine
case, the stochastic load vector g0 is given by[

g0

]
i

:=

∫
Γ

ΦγΛ(i)(y)ρ(y) dy (22)

and the elements of the stochastic moment matrices are[
G0

]
i,j

:=

∫
Γ

ΦγΛ(i)(y)ΦγΛ(j)(y)ρ(y) dy and (23)[
Gm

]
i,j

:=

∫
Γ

ymΦγΛ(i)(y)ΦγΛ(j)(y)ρ(y) dy, m ≥ 1, (24)

where i, j ∈ {1, · · · , |Λ|}. In an ideal case, the index set Λ is chosen so that
the linear combination ∑

µ∈Λ

uµ(x)Φµ(y),

where uµ :=
∫

Γ
u(y, ·)Φµ(y)ρ(y) dy ∈ H1

0 (D), gives a good approximation5

to the solution of (19). It is known that the stochastic moment matrices6

{Gm}Mm=1 exhibit a nontrivial sparsity pattern [2].7

In the non-affine case (16), the resulting linear system is (cf. (20))(
G0 ⊗ A0 +

∑
µ∈Ξ

Gµ ⊗ Aµ

)
u = g0 ⊗ f0, (25)

9



where A0 and {Aµ}µ∈Ξ are standard FEM matrices and the stochastic mo-
ment matrices {Gµ}µ∈Ξ are given by

[
Gµ
]
i,j

:=

∫
Γ

(
∞∏
m=1

yµmm

)
ΦγΛ(i)(y)ΦγΛ(j)(y)ρ(y) dy (26)

with i and j as above. Using this notation the matrix Gm, m ∈ N, is given by1

Gem and G0 is given with µ = (0, 0, · · · ). As above, these moment matrices2

employ a nontrivial sparsity pattern.3

In the case of an uncertain load, i.e. f = f(ω, x) in (17), the right hand4

side of the systems (20) and (25) is5

g0 ⊗ f0 +
∑
µ∈Ξ

gµ ⊗ fµ, (27)

where the vectors gµ are natural basis vectors (assuming normalization), and6

fµ are the corresponding FEM load vectors.7

2.4. Convergence of Jacobi coefficients8

Let P (α, β)ν , ν ∈ N0, denote the Jacobi polynomials that are scaled to be9

orthonormal with respect to the weighted inner product (·, · w(x))L2([−1,1]),10

where the weight w(x) is the probability density function of the beta distri-11

bution12

ρ(x;α, β) =
(1 + x)α(1− x)β

2α+β+1 B(α + 1, β + 1)
,

where α > −1, β > −1, and the beta function B is defined in terms of
gamma functions as B(a, b) = Γ(a)Γ(b)

Γ(a+b)
. The multivariate Jacobi polynomials

P (α, β)λ := P (α, β)λ1P (α, β)λ2 · · · , λ ∈ (N∞0 )c, (28)

form a complete orthonormal basis for the Lebesgue space L2
ρ(Γ). The

discretization in the parameter domain Γ will be achieved by expanding
u ∈ L2

ρ(Γ;H1
0 (D)) into this basis,

u =
∑

λ∈(N∞
0 )c

P (α, β)λuλ (29)

with Jacobi coefficients uλ ∈ H1
0 (D). Parseval’s theorem states that

u ∈ L2
ρ(Γ;H1

0 (D)) ⇐⇒ z :=
(
‖uλ‖H1

0 (D)

)
λ∈(N∞

0 )c
∈ `2

(
(N∞0 )c

)
. (30)

10



For any collection Λ ⊂ (N∞0 )c we define the truncation operator TΛ on
L2
ρ(Γ;H1

0 (D)) by truncating the Jacobi expansion (29) as

TΛ : u 7→ TΛu :=
∑
λ∈Λ

P (α, β)λuλ, (31)

which in the case of trivial Λ evaluates to zero.1

In the following, the set Λ is always an isotropic total degree index set.2

Definition 6 (Isotropic total degree index set). Let N ∈ N and K ∈ N0.3

The isotropic total degree index set is given as4

Λ(N,K) =

{
η ∈ (N∞0 )c :

N∑
n=1

ηn ≤ K; ηn = 0, n > N

}
. (32)

By quantifying the domain of analytic dependence of the exact solution5

u ∈ L2
ρ(Γ;H1

0 (D)) of the model problem on the vector of parameters y ∈ Γ,6

an estimate on the convergence rate of the expansion (29) was obtained by7

Cohen, DeVore and Schwab in [28, Theorem 4.1] for Legendre polynomials,8

that is, the choice of P (0, 0).9

Theorem 1. Assume that the diffusion coefficient a satisfies the positivity10

condition (18) and that the sequence
(
‖am‖L∞(D)

)
m≥1

is in `τ (N) for some11

τ ∈ (0, 1). Let u be the exact solution to the variational formulation (19),12

and let z denote the sequence of H1
0 (D) norms of its Legendre coefficients,13

see (30). Then z ∈ `τ
(
(N∞0 )c

)
.14

Moreover, if Λ ⊂ (N∞0 )c are the multi-indices of |Λ| largest zλ then

‖u− TΛu‖L2
ρ(Γ;H1

0 (D)) ≤ |Λ|
−r ‖z‖`τ ((N∞

0 )c)
, r =

1

τ
− 1

2
, (33)

where TΛ is the truncation operator corresponding to (31).15

Extension of the theorem to cover all Jacobi polynomials remains an16

open problem. However, there is a growing body of evidence supporting the17

following conjecture.18

Conjecture 2 (Convergence of Jacobi Coefficients). The rate predicted by19

Theorem 1 holds for all Jacobi polynomials P (α, β).20

11



The rate given in (33) provides a benchmark for any computational ap-
proach based on the tensor product expansion (29). The preeminent com-
putational issue is the identification of these sets Λ ⊂ (N∞0 )c that collect
|Λ| largest contributions of ‖uλ‖H1

0 (D), thus minimizing the expression on the

left in (33). For this discussion, we define the non-increasing rearrangement
z̄ ∈ `2(N) of the H1

0 (D)-norms of the Jacobi coefficients of the exact solution
to the variational formulation (19) as the sequence

z̄k := max
|Λ|≤k

min
λ∈Λ
‖uλ‖H1

0 (D) , k ≥ 1. (34)

One of our goals is to numerically confirm the rate r given in (33).1

2.5. Computation of mean and variance2

The expectation operator E [·] is defined as

E [·] :=

∫
Γ

(·) ρ(y) dy. (35)

For a function u ∈ L2
ρ(Γ;H1

0 (D)) its variance Var [u] is defined by

Var [u] := E
[
u2
]
− E [u]2 . (36)

The expansion (29) and orthonormality of the multivariate Jacobi polyno-
mials in L2

ρ(Γ) imply that the expectation (35) and variance (36) of any
u ∈ L2

ρ(Γ;H1
0 (D)) can be written as

E [u] = u0 and Var [u] =
∑

λ∈(N∞
0 )c\{0}

u2
λ, (37)

where the subscript in u0 refers to the all-zero multi-index.3

Clearly, E [u] ∈ H1
0 (D). Further, the Sobolev embedding H1

0 (D) ↪→
L2q(D) yields

∀q ≥ 1 : ∃C > 0 :
∥∥u2

λ

∥∥
Lq(D)

= ‖uλ‖2
L2q(D) ≤ C ‖uλ‖2

H1
0 (D) . (38)

Thus, (u2
λ)λ∈(N∞

0 )c is a Cauchy sequence in Lq(D), and Var [u] ∈ Lq(D) for4

any q ≥ 1.5

In the context of the p-finite element method, it is easy to compute
the variance using the representation (37). Suppose uλ|T =

∑p
i=0 ciϕi on

12



a geometric element T ⊂ Rd, with ci being the coefficients and ϕk, k ∈
{0, 1, · · · , 2p}, being linearly independent element shape functions. Assume
there are coefficients tij,k ∈ R such that ϕiϕj =

∑2p
k=0 tij,kϕk on T for all

0 ≤ i ≤ j ≤ p. Then

u2
λ|T =

p∑
i,j=0

cicjϕiϕj =

2p∑
k=0

dkϕk with dk =

p∑
i,j=0

cicjtij,k. (39)

3. Stochastic Reynolds Equation1

xh(x) xh(ω, x)

Figure 2: An illustration of the difference in the standard and stochastic film thicknesses.
The depiction on the right represents one realization of the possible outcomes.

3.1. Journal Bearing Model2

The geometric configuration is depicted in Figures 1 and 2. In the fol-3

lowing two eccentricities are used throughout experiments: ε = 2/5 and4

ε = 9/10. The film thicknesses are shown in Figure 3 and the pressure5

profiles in the deterministic case in Figure 4.6
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(a) ε = 2/5.
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(b) ε = 9/10.

Figure 3: Standard film thicknesses: h(x) = 1 + ε cos(x+ π).
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(b) ε = 9/10.

Figure 4: Deterministic solution p(x): h(x) = 1 + ε cos(x+ π).

3.2. Stochastic Model1

In the stochastic model the input is the film thickness which is assumed2

to be random. It is introduced as a non-affine diffusion coefficient (cf. (16))3

h(ω, x) = 1 + ε cos(x+ π) +

(
M∑
m=1

λmψm(x)Ym(ω)

)2

, (40)

where the deterministic functions ψm(x) are the periodic covariance basis4

functions defined in Appendix A, and λm is a sequence decaying with some5

rate σ > 1, for instance, λm = (1 + m)−σ. This construction automatically6

guarantees the positivity of the variation in h(x).7

The spatial resolution of (40) is determined by the stochastic dimension8

M and the covariance length s (see Appendix A). Two sets of realizations9

are given in Figures 5 and 6. The former is a model of typical manufacturing10

imperfections and the latter describes wear and damage over the operation11

time of the bearing.12

In the solutions of Figure 7 the effect of the perturbations is clearly visible.13

In contrast to the deterministic model (see Figure 4) the point of zero pressure14

can deviate from the origin. In the numerical experiments this will manifest15

itself as variance in the stochastic pressure field.16

Formally the stochastic Reynolds equations becomes: Let (Ω,Σ, P ) be a
probability space. Find a random pressure field p ∈ L2

P (Ω, H1
0 (D)) such that

∂

∂x

([
h(ω, x)

]3∂p(ω, x)

∂x

)
=
∂h(ω, x)

∂x
, in D, (41)

p(ω, x) = 0, on ∂D. (42)
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Figure 5: Realizations of h(x): ε = 2/5, M = 10, σ = 1.05, s = 1/5, α = β = 1/2.
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Figure 6: Realizations of h(x): ε = 2/5, M = 100, C = 1/8, s = 1/100, α = β = 1/2.
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Figure 7: Realizations of p(x): ε = 9/10, M = 10, σ = 1.05, s = 1/5, α = β = 1/2.
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Expanding the term
[
h(ω, x)

]3
we end up with a sum with four terms. In1

this paper this sum is approximated with a reduced model2

[
h(ω, x)

]3 ≈ (1 + ε cos(x+ π))3 +

(
M∑
m=1

λmψm(x)Ym(ω)

)6

. (43)

This reduction is motivated by computational concerns only. The remaining3

two terms are representative of those appearing in stochastic Galerkin com-4

putations. Yet, from the point of view of implementation complexity, the5

reduced model has the highest power of the series. The curse of dimension6

enters at this point in the number of terms in the expanded polynomial.7

4. Numerical Experiments8

The numerical experiments have been divided into two parts. In all ex-9

periments the stochastic dimension is fixed, M = 10, resulting in 5005 terms10

in the expanded polynomial, and the set of multi-indices Λ is chosen using11

the total degree strategy (see Definition 6) where the degree K is even. In12

fact, as a consequence of (43), only multi-indices of even degree are included13

in Λ. In the first part the effects and interdependence of the degree K, rate14

σ, and eccentricity ε are studied. One of the cases is also validated using a15

Monte Carlo approach. In the second part some individual parameters such16

as the deterministic polynomial order p, or the choice of stochastic parameter17

distribution are examined.18

4.1. Experimental Setup19

In the basic setup the mesh is fixed with the mesh parameter 2π/100 and20

p = 4 (uniform). The covariance length is s = 1/5 and the periodic covariance21

functions are computed as in the Appendix A. The stochastic parameters22

are assumed to be distributed as ∼ 2
√

2 Beta(α+1, β+1)−1 ∈ [−1, 1], with23

α = β = −1/2 and thus, the chaos polynomials are the normalized Jacobi24

polynomials P (−1/2,−1/2). The sequence λm in (40) is λm = (1 +m)−σ. In25

all cases the linear systems of equations are solved using the preconditioned26

conjugate gradient algorithm outlined in Appendix B. The right-hand-side of27

(41) can either be ∂E[h(ω, x)]/∂x (deterministic) or ∂h(ω, x)/∂x (stochastic).28

Notice, that in the deterministic case only a first-order approximation of the29

mean is used. All computations are carried out with Mathematica 11 [29].30

16



Case K ε σ |Λ| ‖E(u)‖L2 |E(u)|H1 ‖Var(u)‖L2

1 2 2/5 2 56 0.753854 0.872351 2.30321× 10−13

2 6 2/5 2 5776 0.753854 0.872351 3.07196× 10−13

3 2 2/5 1.05 56 0.753761 0.872210 3.56805× 10−8

4 6 2/5 1.05 5776 0.753761 0.872210 5.4521× 10−8

5 2 9/10 2 56 5.411410 18.54060 7.44175× 10−7

6 6 9/10 2 5776 5.411410 18.54060 9.72236× 10−7

7 2 9/10 1.05 56 5.340150 18.08820 0.0511959
8 6 9/10 1.05 5776 5.342960 18.10700 0.0519018

(a) Deterministic RHS.

Case K ε σ |Λ| ‖E(u)‖L2 |E(u)|H1 ‖Var(u)‖L2

9 2 2/5 2 56 0.753854 0.872351 0.000177478
10 2 9/10 1.05 56 5.311790 17.93820 6.182000

(b) Stochastic RHS.

Table 1: Summary of basic numerical experiments: M = 10, p = 4, s = 1/5, mesh
parameter is 2π/100.

4.2. Cases1

The different cases are summarized in Table 1. In order to avoid confusion2

with the polynomial degree p, the computed solution is referred to as u.3

Notice that in Figure 7 the three realizations differ in the vicinity of the origin.4

Therefore it is to be expected that the maximal variance is centered around5

the origin. This feature is illustrated in the variance plots for deterministic6

and stochastic RHS’s in Figures 8 and 9, respectively.7

Let us next consider the effects of different parameters. For fixed (ε, σ)-8

pairs, the increase in the total degree K leads to higher variance. Similarly,9

larger eccentricity ε and lower rate σ have the same effect. It is also notable10

that the support of the variance is larger for a lower value of ε.11

Including uncertainty also in the RHS increases the variance significantly,12

in fact over two orders of magnitude. This is again intuitively clear since the13

derivatives of the film thickness include stronger oscillations. Considering the14

maximal variance in Figure 9b one can interpret the corresponding maximal15

standard deviation as the shift in the location of the maximal pressure drop16

away from the origin. This has been illustrated in Figure 10 where both the17

expected pressure field and one standard deviation are shown together.18

In Figure 11 the convergence of Jacobi coefficients is illustrated with19
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(d) Cases 7 and 8: ε = 9/10, σ = 1.05.

Figure 8: Variance: Deterministic RHS; In all cases larger K leads to higher variance.
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(a) Case 9: ε = 2/5, σ = 2.
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(b) Case 10: ε = 9/10, σ = 1.05.

Figure 9: Variance: Stochastic RHS.
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Figure 10: Stochastic pressure fields: Expectation and one standard deviation (dashed).

asymptotic z̄k convergence plots. In all subfigures two overlapping graphs1

representing degrees K = 2 and K = 6 give an indication of the relative2

success of the multi-index selection scheme. Since the two sets of multi-3

indices are hierarchic, one can find the approximate positions of the elements4

of the smaller set within the larger one by comparing Jacobi coefficients. For5

instance, in Figure 11c the “branching point” occurs already after the first6

five multi-indices, whereas in Figure 11d in a more challenging case (smaller7

σ) branching occurs later. This means that for ε = 9/10, σ = 2 it is likely8

that a more efficient scheme for selecting the optimal Λ could be devised.9

The preconditioner used in the conjugate gradient algorithm performed10

remarkably well. The cases with K = 6 had 7,260,432 degrees of freedom,11

and the number of steps varied from 3 to 13 iterations steps in Case 8, with12

tolerance 10−6. On Apple Mac Pro 2009 Edition 2.26 GHz one step took 1213

minutes without parallelization.14

4.3. Monte Carlo Validation15

The Case 8 has also been solved using standard Monte Carlo (MC) ap-16

proach using exactly the same experimental setup per realization. In Fig-17

ure 12 the MC L2-convergence graphs for both the expected solution and18

variance are shown. In both cases the graphs convergence as O(N−1/2),19

when the reference values are the respective Galerkin solutions. This result20

strengthens our confidence that the Galerkin results are correct.21

4.4. Special Cases22

Unless otherwise specified, in this section the baseline experiment is the23

Case 8 above.24
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(a) Cases 1 and 2: ε = 2/5, σ = 2.
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(d) Cases 7 and 8: ε = 9/10, σ = 1.05.

Figure 11: Convergence of Jacobi coefficients: z̄k-plots; Two overlapping graphs repre-
senting degrees K = 2 and K = 6; The dashed line is the best upper bound with the rate
σ − 1/2.
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Figure 12: Monte Carlo: Configuration of Case 8; Convergence in L2-norm over 10000
trials; The dashed line is the best upper bound with the rate r = 1/2, error ≤ C N−r.
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Figure 13: p-Version: Convergence of the p-version; Norm as a function of p; log-plot.

4.4.1. p-Version1

In the experiments above, the discretization of the deterministic part2

is kept fixed. In this experiment the mesh is refined around the origin3

with the ratio of 1/100. The polynomial order is uniform over the mesh,4

p ∈ {2, · · · , 8}. The convergence graphs in different norms are given in Fig-5

ure 13. With the reference results obtained from an overkill solution, the6

convergence rates are exponential almost over the whole range of p. In the7

H1-seminorm there is a clear odd/even-effect in the convergence graph with8

corresponding oscillations in the convergence of the variance. This oscillation9

is an indication of the least squares -type convergence of the higher statistical10

moments.11

Although the theoretical foundation of the preconditioner is based on h-12

type FEM analysis, our results suggest that it is also p-robust. The iteration13

count over the range of experiments, p ∈ {2, · · · , 8}, was constant.14

4.4.2. Short Covariance Length15

If the covariance length is changed from s = 1/5 to s = 1/20, the covari-16

ance function will have a smaller maximal amplitude. Hence, in the numerical17

experiment the computed variance should be smaller. This is indeed the case,18

with ‖Var(u)‖L2 = 5.6964× 10−5.19

4.4.3. Nonsymmetric Beta Distribution20

Conjecture 2 suggests that the choice of α and β should not affect the z̄k21

convergence rate. The results given in Table 2 support this. The experiments22

have been repeated with three nonsymmetric (α, β)-pairs. The quantities of23

interest are not constant, yet the z̄k-convergence rates are the same, at least24

with the relatively modest stochastic dimension M = 10.25
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Case α β ‖E(u)‖L2 |E(u)|H1 ‖Var(u)‖L2

A 1 2 5.40449 18.4949 8.98886× 10−4

B -2/3 -1/3 5.40949 18.5278 5.57219× 10−5

C -4/5 -1/6 5.23418 17.4062 0.0517587
D -1/4 -3/4 5.27461 17.6657 0.0563149

(a) Quantities of interest.

5 50 500 5000
10-9

10-6

0.001

1

A

B

C D

(b) Asymptotic z̄k-convergence graphs.
The graphs of C and D are essentially
overlapping, and those of A and B share
the same characteristics.

Table 2: Convergence of Jacobi coefficients: Configuration of Case 8.
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(a) Convergence of Jacobi coefficients:
z̄k-plot.
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Figure 14: Case 10: Characteristics of Jacobi coefficients: The Jacobi coefficients can be
illustrated as FEM-solutions. Since the coefficients in the group A have higher z̄k values
it is clear why the variance graph of Figure 9b has a strong resemblance. The higher
oscillations present in coefficients in the group C have smaller z̄k values.

4.4.4. Multi-Indices: z̄k1

Finally, let us examine in detail the connection between the multi-indices2

and their respective z̄k values. In Figure 14a the z̄k-plot of the Case 10 is3

shown. Three groups of multi-indices can be identified, and their represen-4

tative examples are shown in other subfigures of Figure 14. The variance5

graph of Figure 9b is a linear combination of the Jacobi coefficients modulo6

the first one, the expected value. Simply by comparing the shapes of the7

Jacobi coefficients with the variance it is clear that in this case the higher8

oscillations must have smaller z̄k values.9
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5. Conclusions and Discussion1

In this paper the approximation of the Reynolds equation with a stochas-2

tic film thickness has been discussed. The necessary computational frame-3

work has been outlined and its performance has been demonstrated over a4

series of numerical experiments. The framework provides practicing engineers5

and modelers additional flexibility for incorporating random variables with6

a wide variety of distributions within the same stochastic Galerkin method.7

The numerical results also indicate further theoretical research directions.8

The preconditioned conjugate gradient method performs well and could be9

shown to be p-robust. Within the range of practical polynomial orders our10

results support this. Similarly, it remains open theoretically whether the11

results on the asymptotics of the Legendre polynomials can be generalized12

for all Jacobi polynomials.13

The results suggest that the stochastic Galerkin method is capable of14

supporting design when the manufacturing imperfections (larger scale varia-15

tions) are the main sources of uncertainty. It remains a challenge to include16

wear and damage (smaller scale variations) to practical numerical simula-17

tions. In order to introduce the different characteristic length scales one has18

to either increase the stochastic dimension M or achieve a similar effect with19

an additional multiplicative factor. In either case the curse of dimensional-20

ity will increase the computational requirements significantly. Also, in more21

realistic scenarios with 2D surfaces, say, the same constraints are met even22

earlier.23

Appendix A. On the Construction of Periodic covariance24

Appendix A.1. Fourier transform of periodic function25

Assume f(x) is a periodic function with period 2L. Any periodic function
can be expressed as the sum of a series of sines and cosines:

f(x) =
a0

2
+
∞∑
n=1

an cos
(nπx
L

)
+ bn sin

(nπx
L

)
,

where

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, n = 0, 1, 2, . . .

24



and

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx, n = 1, 2, . . .

If the function f(x) is even, bn = 0. We recall the following identity that will
be useful later on:

cos(x2 − x1) = cos(x1) cos(x2) + sin(x1) sin(x2).

Appendix A.2. KL-expansion1

KL-expansion is typically written as

a(ω, x) = Ψ0(x) +
∞∑
k=1

Ψk(x)Yk(ω),

where {Ψk}∞k=1 are some suitable functions, E [Yk] = 0, and E [YkYl] = δkl.
The idea is to choose {Ψk}∞k=1 so that a(ω, x) has some desired structure.
The expectation of a(ω, x) is given by

E [a(ω, x)] = Ψ0(x)

and the covariance of a(ω, x) equals

ca(x1, x2) = E [(a(ω, x1)− E [a(ω, x1)])(a(ω, x2)− E [a(ω, x2)])]

= E

[(
∞∑
k=1

Ψk(x1)Yk(ω)

)(
∞∑
k=1

Ψk(x2)Yk(ω)

)]

=
∞∑
k=1

Ψk(x1)Ψk(x2).

Appendix A.3. Periodic covariance2

Let

c(λ, s) = exp

(
− λ2

2s2

)
be the covariance that we use to construct a 2L-periodic covariance denoted
by ca(λ, s, L). By defining

ca(λ, s, L) =
∞∑

k=−∞

c(λ+ 2Lk, s),

25



the covariance ca is periodic with period 2L and even. Now the Fourier
coefficients an(s, L) are

an(s, L) =
1

L

∫ L

−L
ca(λ, s, L) cos

(
nπλ

L

)
dλ

=
1

L

∞∑
k=−∞

∫ L

−L
exp

(
−(λ+ 2Lk)2

2s2

)
cos

(
nπλ

L

)
dλ

=
1

L

∞∑
k=−∞

∫ (2k+1)L

(2k−1)L

exp

(
− y2

2s2

)
cos

(
nπy

L
− 2Lknπ

L

)
dy

=
1

L

∞∑
k=−∞

∫ (2k+1)L

(2k−1)L

exp

(
− y2

2s2

)
cos
(nπy
L

)
dy

=
1

L

∫
R

exp

(
− y2

2s2

)
cos
(nπy
L

)
dy

=

√
2πs

L
exp

(
−n

2s2π2

2L2

)
and we have

ca(λ, s, L) =
a0(s, L)

2
+
∞∑
n=1

an(s, L) cos

(
nπλ

L

)
.

By defining ca(x1, x2, s, L) = ca(x2 − x1, s, L), we have

ca(x1, x2, s, L) =
a0(s, L)

2
+
∞∑
n=1

an(s, L) cos
(nπ
L
x1

)
cos
(nπ
L
x2

)
+
∞∑
n=1

an(s, L) sin
(nπ
L
x1

)
sin
(nπ
L
x2

)
.

By defining

Ψ1(x, s, L) =

√
a0(s, L)

2
, (A.1)

Ψ2j(x, s, L) =
√
aj(s, L) cos

(
jπ

L
x

)
, and (A.2)

Ψ2j+1(x, s, L) =
√
aj(s, L) sin

(
jπ

L
x

)
, (A.3)
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where j ≥ 1, the KL-expansion

a(ω, x) = Ψ0(x) +
∞∑
k=1

Ψk(x)Yk(ω),

has the covariance ca(x1, x2, s, L). Notice that we can choose Ψ0 as we like.1

Appendix B. Conjugate Gradients2

The linear systems of the type (25) lend themselves naturally to iterative3

methods. There are two advantages: the action of the operator (matrix-4

vector multiply) can be written in a matrix-free fashion and, more impor-5

tantly, block-diagonal preconditioner of the form I ⊗ A−1
0 is highly effective6

[30].7

In practice, the implementation of the preconditioned conjugate gradients8

is straightforward. Although the linear systems (25) are inherently sparse,9

by judiciously folding and unfolding the temporary vectors and matrices,10

respectively, many computations can in fact be computed using full matrix-11

matrix routines. One such implementation is outlined in Figure B.15.12
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Preconditioner M(·)
Require: Matrix A0, vector b.

1: Solve A0X = Folded column-wise b
2: return Unfolded X

Matrix-vector multiply A(·)
Require: Matrices Ai, Gi, i = 1, . . ., vector x. G0 is assumed to be an

identity matrix.
1: U := Folded column-wise x
2: V := A0 U +

∑
iGi U

T ATi
3: return Unfolded V

Algorithm

Require: Matrix-vector multiply: A(·); Preconditioner: M(·).
1: Compute r0 := b− A(x0), z0 := M(r0), p0 := z0,
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Figure B.15: The preconditioned conjugate gradient algorithm.
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