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Abstract: This review is dedicated to versatile silicone rubber composites based on carbon nan-
otube/graphene (CNT/G) hybrid fillers. Due to their unique mechanical, electrical, thermal, and
biological properties, such composites have enormous potential for medical, environmental, and elec-
tronics applications. In the scope of this paper, we have explored CNT/graphene/silicone composites
with a different morphology, analyzed the synergistic effect of hybrid fillers on various properties of
silicone composites, and observed the existing approaches for the fabrication of hybrid composites
with a seamless, assembled, and/or foamed structure. In conclusion, current challenges and future
prospects for silicone composites based on CNTs and graphene have been thoroughly discussed.

Keywords: carbon nanotubes; graphene; hybrid materials; silicone composites

1. Introduction

In the last two decades, carbon nanotubes/graphene (CNT/G) hybrid structures
have been investigated as promising fillers for manufacturing of highly homogeneous
composites with potential applications in diverse fields of research including electronics,
supercapacitors, batteries, solar cells, sensors, and biosensors [1,2]. The idea of creating
CNT/G hybrid structures was first introduced by Matsumoto and Saito in 2002 [3]. Since
then, the number of research works in this area has been steadily growing due to the unique
properties of CNT/G hybrid materials. In particular, many studies demonstrated the syn-
ergistic effect of CNT/G fillers on the mechanical, electrical, thermal, and electromagnetic
properties of polymer composites [4–7]. It was reported that the synergy between graphene
and CNTs facilitates their dispersion in polymer composites, maximizes the contact surface
area of filler particles with polymer matrices, and promotes strong filler-matrix interfacial
interactions. As a result, hybrid polymer composites based on graphene and CNTs exhibit
superior properties compared to composites with either of these fillers alone.

To date, various types of polymers have been used to prepare CNT/G hybrid com-
posites [8–10], and among them, silicone rubber is believed to be one of the most advanta-
geous [11,12]. Silicone rubber (or polydimethylsiloxane, PDMS) is well-known for its high
flexibility, chemical inertness, optical transparency, heat resistance, and good biocompatibil-
ity. The reinforcement of PDMS with CNT/G hybrid fillers enables to obtain highly conduc-
tive and stretchable materials, which could be used for multiple applications in medicine,
environment protection, and wearable electronics. A number of studies were reported so
far on the fabrication of CNT/G hybrid silicone composites comprising different types
of CNTs (single- (SWCNTs), few-, or multi-walled (MWCNTs)) and graphene (graphene
oxide (GO), 2D planar graphene, 3D graphene foam (GF) [13], graphene nanoscrolls [14]).
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All of these studies were thoroughly reviewed in this paper in order to summarize and
introduce the following aspects: (a) the nanoscale architecture of CNT/G hybrid fillers;
(b) strategies for the preparation of CNT/G/PDMS composites; (c) the synergistic effect of
CNT/G hybrid fillers on mechanical, electrical, thermal, and other properties of silicone
composites; (d) current challenges and future prospects of CNT/G/PDMS composites.

2. Architecture and Fabrication of CNT-Graphene Hybrid Fillers

Properties of CNT/G hybrid silicone composites depend on various factors; however,
a key element of their high performance is nanoscale architecture of CNT/G hybrid fillers.
Depending on the architecture type, CNT/G hybrids can be classified into three main groups
(Figure 1): hybrids of graphene with horizontal CNTs (hCNT/G), hybrids of graphene with
vertical CNTs (vCNT/G), and CNTs wrapped with graphene (wCNT/G) [15–19]. To obtain
a hybrid structure of a certain type, two fundamentally different approaches can be used:
assembly and in situ synthesis.
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picture of hCNT/G hybrid. Adapted from ref. [16] with permission from American Chemical Society;
(c) schematic view of vCNT/G hybrid; (d) SEM picture of vCNT/G hybrid. Adapted from ref. [17]
with permission from American Chemical Society; (e) schematic view of wCNT/G hybrid; (f) SEM
picture of wCNT/G hybrid. Adapted from ref. [18] with permission from Elsevier Ltd.

The assembly approach can be realized through various methods, including solution
processing, layer-by-layer deposition, vacuum filtration, electrophoretic deposition, sol-gel
synthesis, etc., [2,15,20]. Due to the simplicity and scalability of these methods, they are
widely used to assemble hCNT/G and wCNT/G hybrids via non-covalent interactions
(van der Waals, π–π stacking, electrostatic, etc.), or covalent interactions involving comple-
mentary functional groups introduced in the sp2 lattice of CNTs and graphene. However,
despite the widespread use of assembly methods for CNT/G hybrid manufacturing, they
have some considerable limitations including multi-step processing and poor controllability
in terms of morphology, density, and orientation of hybrid structures.
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To address the limitations of assembly-based methods, in situ methods (chemical
vapor deposition (CVD), templated CVD, chemical unzipping, etc.) have been effectively
implemented in the past decade [21–23]. These methods involve less processing steps, guar-
antee a uniform distribution of carbon allotropes, and provide an opportunity to control the
nanoscale architecture of hybrid materials by adjusting the fabrication conditions. In situ
methods enable the production of highly ordered vCNT/G, hCNT/G, and wCNT/G hybrid
structures (so-called seamless hybrid structures [21]), where covalently bonded graphene
and CNTs form a single, total-carbon framework with seamless C–C junctions [24,25].
Meanwhile, even though in situ methods are very effective for the fabrication of uniform
hybrid materials, the required use of high processing temperatures, explosives, or toxic
chemicals (B2H6, Ni (CO)4, etc. [26]) limits their practical application at industrial scale, so
further improvements are still required.

Overall, the assembly and in situ approaches, with their pros and cons, have been
successfully used to obtain CNT/G hybrid fillers designed for manufacturing of hybrid
silicone composites, which are comprehensively discussed in the next section.

3. Fabrication and Properties of CNT/G/PDMS Composites

Depending on a macro-scale structure of CNT/G hybrid silicone composites, they can
be divided into three groups: (1) non-foamed composites, (2) composites with a foamed
matrix, and (3) composites with foamed fillers (Figure 2). In the following subsections, we
presented fabrication strategies for manufacturing hybrid composites of these three groups,
subdividing them according to the type of hybridization (assembly or seamless junctions).
For comparison purposes, we also summarized data on CNT/G/PDMS composites of
different types and their fabrication techniques in Table A1 (Appendix A).
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fillers and non-foamed matrix. Adapted from ref. [27] (a), [28] (b), [29] (c), and [30] (d) with permission from Elsevier Ltd.
and WILEY-VCH Verlag GmbH & Co.

3.1. Non-Foamed CNT/G Hybrid Silicone Composites with Assembled Structure

In general, non-foamed silicone composites with assembled CNT/G hybrids can
be produced by solution blending in various solvents [31] or/and mechanical blending
methods (ultrasonication, calendering, stirring, extrusion, high shear mixing, etc.) [32,33].
So far, the combination of solution and mechanical blending approaches is the most popular
strategy for the fabrication of CNT/G/PDMS composites (Figure 3).
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In particular, numerous research teams applied sonication, stirring, and solution
blending in various solvents (tetrahydrofuran (THF) (Hu et al. [34], Pradhan et al. [35],
Oh et al. [36]), hexane (Yang et al. [37], Kantarak et al. [38]), isopropyl alcohol (IPA) +
Stoddard solvent (Lee et al. [39]), acetate (Yan et al. [40]), and toluene (Shafiei et al. [41])
to produce hybrid silicone composites with a variety of filler concentrations and CNT/G
mass ratios (see Table A1). The as-prepared composites possessed the π–π stacked struc-
ture of hCNT/G type and demonstrated the synergistic improvement of their electrical,
mechanical, and thermal properties. For instance, according to Pradhan et al. [35] and Yan
et al. [40], the synergistic improvement of tensile strength, elongation at break, electrical
conductivity, and electric heating performance in CNT/G/PDMS composites could reach
65, 100, 236, and 26%, respectively (see Supplementary Materials).

Another research team (Yang et al. [27]) proposed a study similar to the above studies
but modified the strategy for manufacturing of CNT/G/PDMS composites. They used a
combination of solution blending (in THF) and sonication processes assisted by the mixture
of cetyltrimethylammonium bromide (CTAB), p-octyl polyethylene glycol phenyl ether
(OP-10) compound dispersant, and sodium dodecyl sulfate (SDS) anionic surfactant. The
use of CTAB, OP-10 and SDS enabled to produce hybrid composites of hCNT/G type
with electrostatically bonded graphene and CNTs. The study reported that due to the
electrostatic self-assembly, the obtained CNT/G/PDMS composites possessed a superior
homogeneity and decreased percolation threshold (0.92 wt%) as compared to composites
with π–π stacked CNT/G hybrid fillers (2 wt% [36] and 5 wt% [38]).

Kumpika et al. [42] also applied the modified strategy to prepare silicone composites
with assembled hCNT/G fillers. Their two-step fabrication route involved: (1) production
of CNT/G hybrid thin films through ethanol solution blending, sonication, and stirring;
(2) infiltration of dried CNT/G thin films with silicone. The main advantage of this strategy
over the previous ones [34–41] is the elimination of hazardous solvents that can deteriorate
mechanical properties of CNT/G/PDMS composites and increase their toxicity. So the
proposed technique is highly promising for the fabrication of biocompatible and durable
silicone materials reinforced with graphene and CNTs.

Another eco-friendly and completely solvent-free technique was proposed by
Kim et al. [43]. They used a planetary mixer to fabricate hCNT/G hybrid silicone com-
posites by mechanical blending. The study of electrical and mechanical performance of
as-prepared composites demonstrated their high stretchability (>100%) and prominent
electrical conductivity (1 S/m) which is comparable with that of most conductive
CNT/G/PDMS composites obtained through solution blending [36,40].
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Our research team (Barshutina et al. [44]) also developed non-toxic, cost-effective,
easy handling, and scalable technique to produce hybrid silicone composites based on
few-layer graphene and MWCNTs. The proposed technique involves the fabrication of
CNT/G hybrid fillers by water solution blending and manufacturing of CNT/G/PDMS
composites through calendering in a three-roll mill. This strategy enables to obtain hybrid
composites with a prominent electrical conductivity (up to 1 S/m), high stretchability (up
to 100%), good durability (>1000 strain cycles), and prominent electrical stability under a
cyclic loading at 30% strain. Besides, our studies demonstrated a good biocompatibility
of as-prepared CNT/G/PDMS composites, which is highly promising for biosensors and
bioelectronics applications.

Overall, due to their unique properties, silicone composites with assembled CNT/G
hybrid fillers are considered as promising materials to produce strain sensors for health
monitoring [27,37–39,42–44], flexible electric heating elements [40], selective membranes [41],
electromagnetic interference (EMI) shielding coatings [34,35], etc.

3.2. Non-Foamed CNT/G Hybrid Silicone Composites with Seamless Structure

The seamless CNT/G hybrids obtained typically by CVD or heat treatment techniques
have a highly ordered or even aligned structure that can be significantly disrupted by
conventional mechanical and solution blending methods. For this reason, the fabrication of
non-foamed silicone composites with seamlessly bonded CNTs and graphene is mainly
performed by various infiltration methods (dip-coating, drop casting, vacuum impregna-
tion, etc.), which enable the infusion of silicone into CNT/G hybrid structures without
affecting their order and alignment.

For instance, Lee et al. [28] used a combination of in situ CVD and infiltration processes
to prepare thin films of silicone composites based on seamlessly bonded graphene and few-
walled CNTs. In the fabrication route (Figure 4), vertically aligned CNTs were grown from
the iron catalyst on GO surfaces via plasma-enhanced CVD process, which also promoted
the thermal reduction of graphene oxide to a highly conductive graphene. Subsequently,
the as-prepared CNT/graphene hybrid structures were infiltrated with silicone by drop
casting, while the infiltration thickness was precisely controlled to leave the top ends
of CNTs exposed. The obtained composites exhibited prominent mechanical and field-
emission properties. In particular, the values of field-enhancement factor (14,500) and
turn-on voltage (0.4 V/µm) are among the best results reported for carbon-based field
emitters [45].

A similar but reverse strategy was proposed by Shi et al. [46]. They first synthesized
ultrathin CNTs films by floating CVD, and then used them as porous templates for CVD
growth of graphene. The obtained hybrid fillers with a seamless structure of hCNT/G
type were further infiltrated with silicone to produce CNT/G/PDMS composite films. The
authors demonstrated the effectiveness of their approach for manufacturing strain sensing
materials with linear and reliable resistance response to strain, which is due to the strong
interaction and effective load transfer within CNT/G hybrid silicone films.

An alternative fabrication approach was used by Zhao et al. [47] to produce CNT/G/
PDMS composites with seamlessly bonded graphene and CNTs. At the first stage, they
applied solution blending and ultrasonication methods for manufacturing of assembled
hCNT/G hybrid fillers, which were then converted into seamless ones by annealing at
1050 ◦C. Subsequently, CNT/G hybrid silicone composites were prepared by ethyl acetate
solution blending and magnetic stirring. The proposed strategy enabled to obtain seam-
lessly hybridized and thermally conductive silicone composites without using complicated
CVD process; however, it provides poor fabrication control in terms of morphology, density,
and orientation of hybrid structures.
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Overall, according to the above studies, non-foamed CNT/G/PDMS composites
with a seamless structure are highly potential materials for various high-technological
applications including field-emission, strain sensing, and thermal electronics. However, the
number of scientific papers in this area is still limited, so further comprehensive research is
highly required.

3.3. Silicone Composites with a Foamed Matrix and Assembled CNT/G Hybrid Fillers

According to reviewed literature, all CNT/G hybrid composites with a foamed sili-
cone matrix are based on assembled CNT/G hybrid fillers, which is probably due to the
complexity of combining in situ and silicone foaming processes in the one strategy. In
general, silicone foaming can be performed (1) by using a foaming agent, (2) through a
chemical reaction leading to gas evolution, or (3) by means of template techniques.

The first approach was used by Zhang et al. [29] to prepare CNT/G hybrid silicone
composites with a foamed matrix. At the first stage, they produced functionalized CNT/G
hybrids via aqueous solution blending in the presence of vinyltriethoxysilane, and then
foamed CNT/G/PDMS composites were fabricated by mechanical blending of obtained
hybrid fillers with silicone rubber and a foaming agent (polyhydroxysiloxane) (Figure 5).
The authors demonstrated that the joint use of a foaming agent and CNT/G hybrid fillers
functionalized with vinyl groups promoted the formation of highly homogeneous foamed
silicone composites with improved tensile strength (by 70%) and thermal conductivity (by
204%) as compared to pure silicone foam.
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The second approach based on a chemical reaction leading to gas evolution was used
by Valentini et al. [48]. They prepared foamed CNT/G/PDMS composites by using the
simultaneous reactions of beer yeast fermentation and silicone gelation. To initiate the
fermentation process, an aqueous solution of beer yeast and sugar was added to a magnetically
stirred mixture of multi-walled CNTs, graphene, and PDMS. As a result, the porous composite
structure was formed by CO2 bubbles accumulated in the gelling silicone matrix. The
proposed strategy enabled to obtain multifunctional CNT/G/PDMS composites with unique
biological properties and auxetic behavior, which are the key characteristics for several specific
applications (fasteners, plast damping, medical implants, etc., [49]).

Another research team (Chen et al. [50]) applied a template-based approach to produce
hCNT/G hybrid silicone composites with a foamed matrix. Their fabrication strategy
involved: (a) manufacturing of CNT/G hybrid fillers via aqueous solution blending and
ultrasonication; (b) forming a 3D porous silicone scaffold by replicating the structure of
a sacrificial nickel foam template; (c) assembly of CNT/G hybrid fillers on the silicone
scaffold using the solution impregnation technique. The as-prepared composites exhibited
the synergistically improved electrical conductivity by up to 284% (see Supplementary
Material), low percolation threshold (0.2 wt%), and superior electro-mechanical stability
under cyclic bending and stretching. In order to clarify the superior properties of foamed
CNT/G/PDMS composites, the authors also developed and verified a theoretical model
simulating the deformation modes of a porous composite structure under tensile loads.

The same fabrication route was used by Duan et al. [51] for manufacturing foamed
silicone composites with hCNT/G hybrid fillers. However, instead of nickel foam templates,
the authors used 3D printed split-level and aligned scaffolds made of polylactic acid (PLA)
that is known for its biocompatibility and ease of removal with organic solvents. The study
demonstrated the superior efficiency of split-level PLA templates over the aligned ones
to produce CNT/G/PDMS composites with stable electrical performance under cyclic
bending and stretching deformations. Besides, due to the unique porous structure, these
composites exhibited an excellent stretchability of up to 340%, which is the best result
reported so far for CNT/G hybrid silicone composites.

Summing up the above studies, we can conclude that CNT/G/PDMS composites
with a foamed matrix can exhibit prominent electrical conductivity and versatile mechani-
cal properties (e.g., lightness, flexibility, elasticity, negative Poisson’s ratio, and damage
resistance), which are highly promising for next-generation stretchable electronics, such as
E-skins, bioimplants, wearable electronics, etc.
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3.4. Silicone Composites with Foamed and Seamlessly Bonded CNT/G Hybrid Fillers

The foamed CNT-graphene hybrid fillers can be obtained through various methods
including hydro/solvothermal reduction, sol-gel synthesis, microfluidic technique, direct
freeze-drying, template-directed CVD synthesis, template directed electron deposition,
etc., [52,53]. The application of these methods enables the formation of highly ordered and
3D interconnected porous structures with covalently or non-covalently bonded CNTs and
graphene. When used as fillers for silicone composites, these porous structures function as
a supporting skeleton that is filled with liquid silicone by one of the infiltration methods
(dip-coating, spin-coating, bar-coating, drop casting, vacuum impregnation, etc., [54,55]).

For instance, Jia et al. [30] applied a combination of ethanol solution blending, freeze-
drying, and annealing (at >1200 ◦C) to prepare hCNT/G hybrid scaffolds with a seamless
structure, which were subsequently used for manufacturing of hybrid silicone composites
by a vacuum-infiltration method (Figure 6a). The authors noted that the non-covalent bonds
between graphene and multi-walled CNTs were converted to the seamless covalent bonds
after the annealing process, which significantly contributed to the synergistic improvement
of hybrid composite performance. In particular, the obtained composites demonstrated a
prominent electrical conductivity (>100 S/m) and high specific EMI shielding effectiveness
(87.86 dB·cm3/g), which was improved by 141% compared to that of G/PDMS composites.
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A similar but modified strategy was used by Zhao et al. [56] to produce silicone
composites with foamed hybrid fillers based on graphene and single-walled CNTs. Their
fabrication route involved sol-gel self-assembly (assisted by L-ascorbic acid), freeze-drying,
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annealing (at 800 ◦C), and vacuum-infiltration processes (Figure 6b). The study reported
that as-prepared CNT/G/PDMS composites even at ultra-low filler loading (0.25–0.35 wt%)
outperformed single-filler composites prepared by conventional blending methods with
high concentrations (10–15 wt%) of carbon fillers. In particular, the most significant
improvement (by several orders of magnitude) was achieved for electrical conductiv-
ity (120 S/m) and specific EMI shielding effectiveness (110 dB·cm3/g) over the X-band
frequency range.

Chen et al. [58] applied almost the same strategy based on sol-gel synthesis (assisted
by resorcinol and formaldehyde precursors), freeze-drying, pyrolysis (at 1000 ◦C), and
vacuum-infiltration techniques. The study reported that electrical conductivity (280 S/m) of
as-prepared composites was improved by more than four orders of magnitude compared
to that of identical composites prepared by solution blending. Besides, the electrical
conductivity retention rate of CNT/G/PDMS films was nearly 2.5 and 6.8 times higher
than that of CNT/PDMS and G/PDMS films at 30% strain.

A different approach was used by Kong et al. [59] for the manufacturing of hybrid
silicone composites with foamed fillers of vCNT/G type. They used water solution blend-
ing, freeze-drying, and heat-reduction processes to prepare a foamed graphene skeleton,
which was subsequently used as a template for the in situ growth of multi-walled CNTs
by a low-temperature CVD. Further, the as-prepared CNT/G hybrids were purified and
incorporated into silicone by a simple mechanical stirring method. The authors reported
that their fabrication route is highly effective to produce light weight and high-performance
EMI shielding composites with a prominent electromagnetic reflection coefficient (−55 dB)
and wide absorption bandwidth (3.5 GHz).

Another effective strategy was applied by Cai et al. [57] to prepare silicone composites
with foamed vCNT/G hybrid fillers. They used the Ni template-directed CVD method
for the manufacturing of graphene foams, which were then seamlessly hybridized with
CNTs by another CVD process (Figure 6c). Subsequently, CNT/G hybrid foams were infil-
trated with silicone and used to fabricate flexible and reversible strain sensors. The study
investigated the performance of as-prepared hybrid sensors under different deformations
(stretching, bending, torsion, etc.) and revealed its remarkable improvement (up to 70%)
compared to G/PDMS sensors.

Overall, according to the reviewed studies, silicone composites with foamed and seam-
less CNT/G hybrid fillers demonstrate prominent electro-mechanical and electromagnetic
properties, which are highly beneficial for wearable electronics [57,58] and EMI shielding
applications [30,56,59].

3.5. Silicone Composites with Foamed and Assembled CNT/G Hybrid Fillers

There are only a few studies on CNT/G/PDMS composites with foamed and as-
sembled hybrid fillers; however, they reported highly outstanding results. For instance,
Sun et al. [60] proposed an effective strategy to produce hybrid silicone composites with
remarkable electrical and electromagnetic properties. Their fabrication route involved (a)
the preparation of graphene foam via Ni template-directed CVD, (b) producing a mixture
of ethyl acetate-diluted PDMS and CNTs by solution blending and ultrasonication, (c) man-
ufacturing of hybrid silicone composites through infiltration of CNT/PDMS mixture into
graphene foam. The study reported that electrical conductivity of as-prepared composites
was synergistically improved by 322% (see Supplementary Material) and attained the value
of 3150 S/m, which is so far the best result for CNT/G/PDMS composites. Besides, the
specific EMI shielding effectiveness of these composites reached 833 dB·cm3/g, which is
among the highest for carbon-based EMI shielding composites [61].
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A similar fabrication strategy was used by (Wu et al. [62]) to fabricate sound
absorbing materials based on CNT/G/PDMS composites (Figure 7). The study demon-
strated that a sound absorption coefficient of these materials can reach 0.3 in an
expanded frequency range from 100 to 1000 Hz, which is promising for low-frequency
noise shielding applications.
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4. Summary and Perspectives

The analysis of numerous studies on CNT/G hybrid silicone composites indicated
that significant progress has been made in this field over the past 10 years. The existing
fabrication techniques enable to obtain various configurations of CNT/G/PDMS compos-
ites distinguished by (a) the nanoscale architecture of hybrid filler (vCNT/G, hCNT/G, or
wCNT/G), (b) type of hybridization (assembled or seamless hybrids); (c) macroscale struc-
ture of filler (foamed or non-foamed); (d) and macroscale structure of matrix (foamed or
non-foamed). According to the reviewed literature, CNT/G/PDMS composites of different
configurations exhibited prominent electrical, mechanical, electromagnetic, and thermal
properties, which are promising for multiple applications.

However, the widespread use of these materials is hindered by following ma-
jor challenges. First one is the need to conduct thorough research on hybridization
and synergistic mechanisms in CNT/G hybrid materials obtained by different tech-
niques. A better understanding of the nature of these mechanisms is crucial for the
development of computational models that can predict the structural parameters and
functional properties of the hybrid composites, depending on the fabrication strategy
and processing conditions.

A second major challenge is the development of effective, scalable, and safe techniques
for the fabrication of seamless and highly ordered CNT/G hybrid fillers, which have a
more pronounced synergistic effect on silicone composite properties than assembled hybrid
fillers. Currently, seamless CNT/G hybrids are produced by methods that require the use
of high processing temperatures, explosive gases, and toxic chemicals, so a shift toward
environmentally friendly and safe technologies is highly needed. Besides, the elimination
of toxic and hazardous chemicals in the fabrication process is essential for hybrid materials
of biomedical applications.
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Another important challenge is increasing the electrical conductivity of CNT/G/PDMS
composites to a level required for advanced microelectronics. Even though the conductivity
of hybrid silicone composites is synergistically improved as compared to single-filler com-
posites, its values are still not sufficient enough. To overcome this challenge, the following
approaches could be used: (a) doping of CNT/G hybrid fillers with heteroatoms such as
nitrogen to improve their intrinsic conductivity; (b) the development of new techniques
that enable to introduce high concentrations (>10 wt%) of CNT/G hybrid fillers in silicone
matrices without the agglomeration effect; (c) the improvement of existing techniques
for the fabrication of CNT/G/PDMS composites with an aligned and 3D interconnected
conductive network structure.

The last but not least challenge is decreasing the production cost of CNT/G hybrid
fillers and their polymer composites. The non-availability of high quality CNTs and
graphene in large volumes and at low prices is a key factor preventing the widespread
use of their composites in industry, medicine, and daily life. To address this issue, the
development of cost-effective, scalable, and facile manufacturing methods is required.

Overall, we hope that our review will help to build a complete picture of existing
approaches for the manufacturing of CNT/G hybrid silicone composites, take a deeper look
at current challenges and achievements, and inspire some scientists to make breakthrough
research in this field.
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Appendix A

Table A1. Summary on CNT/G/PDMS composites.

Filler * Matrix CNT/G Ratio * Filler Loads *, (wt%) Fabrication Techniques Key Properties Applications Ref.

non-foamed
assembled

hMWCNT/G

non-
foamed
PDMS

2:1
2.5:1
3:1

3.0
3.5
4.0

THF solution blending/
sonication

σe = 1.25 mS/m
∆ = 0.123 m2/s

electrostatic discharge,
EMI shielding. [34]

1:1

0.375
0.5

0.75
1.0
1.5

THF solution blending/
sonication

σts = 0.67 MPa
ε = 194%

T0 = 441 ◦C
q800 = 56%

EMI shielding,
flame retarding [35]

1:1
7:3
9:1

0.4
0.6
1.0

THF solution blending/
sonication

σe = 0.617 S/m
ε = 215%
εr = 60%

stretchable electronics [36]

3:1

0.5
1.0
1.5
2.0
3.0
4.0

THF solution blending/
sonication

pc = 0.92 wt%
GF = 19.2
εr = 30%

strain sensing for health
monitoring [27]

2:1

1.0
2.0
3.0
4.0
5.0

n-hexane solution
blending/sonication/

stirring

pc = 2.0 wt%
GF = 11.6
εr = 30%

strain sensing for health
monitoring [37]

1:1 9.0 hexane solution blending/stirring
GF = ~4.4
ε = ~70%
εr = 33%

strain sensing for
tremor detection [38]

3.5:1.5 5.0
IPA + Stoddard solvent solution

blending/
sonication

pc = 5.0 wt%
GF = > 100
εr = 40%

strain sensing for health
monitoring [39]

1:9
3:7
1:1
7:3
9:1

1.0 acetate solution
blending/ultrasonication

σe = 1.37 S/m
hrc = 7.46 mW/◦C

T10 = 488 ◦C
q800 = 56%

flexible electric heating
elements [40]

1:3
0.25
0.5

0.75
1.0

toluene solution
blending/ultrasonication/stirring k = 22.5

selective membranes for
ethanol-water

separation
[41]
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Table A1. Cont.

Filler * Matrix CNT/G Ratio * Filler Loads *, (wt%) Fabrication Techniques Key Properties Applications Ref.

1:3
1:1
3:1

n/a
ethanol solution

blending/sonication/
stirring/infiltration

GF = 10.9
ε = 71%
εr = 33%

strain sensing for gait
monitoring [42]

6:4
7:3
8:2
9:1

1.0 planetary mixing
σe = 1 S/m
ε = ~100%
εr = 30%

conductive dry
adhesives for ECG

monitoring
[43]

1:9
2:8
4:6
6:4
8:2

10.0
15.0
20.0

aqueous solution
blending/stirring/

ultrasonication/
calendering in a three-roll mill

σe = 0.6 . . . 1 S/m
ε = 60 . . . 100%
εr = 30%

biosensors and
bioelectronics [44]

non-foamed
seamless

v(2, 3, or 6)
WCNT/G

n/a n/a plasma-enhanced CVD/
infiltration

β = 14500
Eto = 0.4 V/ µm

εr = 45%
field-emission

stretchable electronics [28]

non-foamed
seamless
hCNT/G

n/a n/a CVD/
infiltration

GF = ~0.36
εr = 20%

strain sensing for
wearable electronics [46]

non-foamed
seamless

hMWCNT/G
1:4

0.25
0.5

0.75
1.0
2.0
3.0

aqueous solution blend-
ing/ultrasonication/annealing/acetate

solution blending/
magnetic stirring

σe = 2 mS/m
λ = 0.29 W/m·K

T0 = 419 ◦C

conductive and thermal
management elastomer

materials
[47]

non-foamed
assembled

hMWCNT/G
foamed PDMS

1:4
1:1
4:1

~2.0
aqueous solution

blending/stirring/
foaming

σe = 0.12 mS/m
λ = 0.548 W/m·K
σts = 0.6 MPa
ε = 110%

stretchable and soft
electronics [29]

1:3
1:1
3:1

1.0
aqueous solution

blending/stirring/
fermentation

σe = 1.4 nS/m
ε = 96%

σts = 0.17 MPa
biomedical

stretchable electronics [48]

1:1 2.0

aqueous solution
blending/ultrasonication/Ni

template replication/
forced infiltration

σe = 27 S/m
pc = 0.2 wt%
εr = 50%

next-generation
stretchable electronics [50]

1:1 1.0
aqueous solution

blending/ultrasonication/PLA
template replication/infiltration

σe = 5.12 S/m
ε = 340%
εr = 50%

next-generation
stretchable electronics [51]
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Table A1. Cont.

Filler * Matrix CNT/G Ratio * Filler Loads *, (wt%) Fabrication Techniques Key Properties Applications Ref.

foamed
seamless

hSWCNT/G

non-
foamed
PDMS

1:6
1:5
1:3
1:1

0.25
0.27
0.28
0.35

sol-gel self-assembly/
ultrasonication/stirring/
freeze-drying/annealing/

vacuum backfilling

σe = 120 S/m
SE = 31 dB

SSE = 110 dB·cm3/g
RS = 7.94 MPa

EMI shielding [56]

foamed
seamless

hMWCNT/G

1:3

0.95
0.96
0.97
0.98
1.03
1.05

ethanol solution
blending/ultrasonication/freeze-

drying/annealing/
vacuum infiltration

σe = 100.99 S/m
SE = 54.43 dB

SSE = 87.86 dB·cm3/g
RS = 3.34 MPa
λ = 0.29 W/m·K

EMI shielding [30]

1:1 1.3

sol-gel synthesis/
ultrasonication/freeze-

drying/pyrolysis/
vacuum infiltration

σe = 280 S/m
εr = 20%

electronic textiles and
smart clothing [58]

foamed
seamless

vMWCNT/G

n/a
2.5
5.0

10.0

aqueous solution blending/
freeze-drying/CVD/stirring

Γ = −55 dB
SE = 10 dB EMI shielding [59]

n/a n/a Ni template-directed
CVD/CVD/infiltration

GF = 35
εr = 85%

strain sensing for
wearable electronics,

health monitoring, etc.
[57]

foamed
assembled

hMWCNT/G

2:2.7 4.7

Ni template-directed CVD/ethyl
acetate solution blending/

ultrasonication/
infiltration

σe = 3150 S/m
SE = 75 dB

SSE = 833 dB·cm3/g
EMI shielding [60]

1:1 2.0

Ni template-directed CVD/ethyl
acetate solution blending/

sonication/
stirring/infiltration

α = 0.3 low-frequency noise
shielding [62]

*—optimal values are highlighted in bold; σe—electrical conductivity; pc—percolation threshold; ∆—thermal diffusivity; λ—thermal conductivity; ε—elongation at break; εr—reliable strain; σts—tensile
strength; RS—compressive strength; GF—gauge factor; hrc—heat transferred by radiation and convection (electric heating performance); T0—initial degradation temperature; T10—temperature corresponding to
10% weight loss; q800—char residue at 800 ◦C; k—separation factor; β—field-enhancement factor; Eto—turn-on voltage; Γ—electromagnetic reflection coefficient; SE—electromagnetic interference shielding
effectiveness; SSE—specific EMI shielding effectiveness; α—sound absorption coefficient.
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