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Non-pharmaceutical interventions are crucial to mitigate the COVID-19
pandemic and contain re-emergence phenomena. Targeted measures such
as case isolation and contact tracing can alleviate the societal cost of lock-
downs by containing the spread where and when it occurs. To assess the
relative and combined impact of manual contact tracing (MCT) and digital
(app-based) contact tracing, we feed a compartmental model for COVID-19
with high-resolution datasets describing contacts between individuals in sev-
eral contexts. We show that the benefit (epidemic size reduction) is generically
linear in the fraction of contacts recalled duringMCT and quadratic in the app
adoption, with no threshold effect. The cost (number of quarantines) versus
benefit curve has a characteristic parabolic shape, independent of the type of
tracing, with a potentially high benefit and low cost if app adoption and
MCT efficiency are high enough. Benefits are higher and the cost lower if the
epidemic reproductive number is lower, showing the importance of combining
tracing with additional mitigation measures. The observed phenomenology
is qualitatively robust across datasets and parameters. We moreover obtain
analytically similar results on simplified models.

1. Introduction
The coronavirus disease (COVID-19) epidemic was declared a pandemic by the
World Health Organization on 11 March 2020. As of mid-March 2021, COVID-
19 has reached at least 120 million confirmed cases worldwide and caused at
least 2.6 million deaths [1].

In the first half of 2020, faced with an exponentially growing number of cases
and given the absence of effective pharmaceutical treatment and lack of vaccine,
governments have first had to rely on broad, nationwide measures to reduce
the mobility and number of contacts between individuals, starting with
school closures and eventually lockdowns of whole countries [2–5]. These non-
pharmaceutical interventions (NPIs) have succeeded in limiting contagion [6]
and they have been gradually lifted in many cases after the first wave.
However, the building of population immunity has been slow [7], and new epi-
demic waves have occurred. Overall, the situation appears under control in
only a few countries, and many are experiencing successive ‘waves’ and re-
emerging outbreaks, with a corresponding heavy burden on the healthcare
systems and renewed regional or nationwide lockdowns. Exit strategies after
the end of a lockdown are thus clearly needed to avoid new resurgences until
vaccination has reached sufficient fractions of the population.

General measures to reduce transmission risk have remained in place or
have been lifted and then re-imposed. These include enhanced hand hygiene,
mandatory mask wearing in a number of contexts like public transportation,
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shops or even whole cities and limits to the size of social gath-
erings. These measures are beneficial and very useful
instruments and have in part mitigated the successive
waves of the COVID-19 pandemic [8]. They are also much
easier to enforce than regional or country-wide lockdowns
and they have smaller economic costs. However, these
measures have proven to be insufficient on their own. They
are also still indiscriminate, as they are imposed on infected
and non-infected individuals equally. Targeted measures,
on the other hand, focus on stopping the spread where and
when it occurs. The most common targeted intervention
consists in the isolation of infectious individuals, which pre-
vents the infected individual from further spreading the
disease. This can be fully effective only if all infectious indi-
viduals are identified before they infect others (e.g. through
symptoms or testing). However, in the case of COVID-19 a
large fraction of transmissions occur before symptom onset
[9–13]. Furthermore, many infected people develop only mild
symptoms or no symptoms and are therefore typically not
tested, despite being able to transmit the disease [12,14]. A natu-
ral way to cast a wider net around an identified case is the
so-called contact tracing process, which endeavours to identify
peoplewhohave been in long enough contactwith an infectious
individual [15,16]. The rationale is that those individuals, even
in the absence of symptoms, might be infectious as well and
that quarantining them and monitoring their health can both
protect them and block further transmission.

Contact tracing is traditionally carried out via interviews of
identified cases, followed by phone calls to the identified con-
tacts to warn them and to ask them to go into quarantine
[15,16]. Such ‘manual’ contact tracing (MCT) is labour inten-
sive; it can be slow, and it critically relies on the ability of
individuals to remember and identify their contacts. While
this is easy in some contexts, such as households, our actual
ability to recall and identify close-range proximity contacts is
known to be limited. Retrospective surveys have found that
brief contacts have a lower probability of being recalled and
that contact durations are overestimated [17]. Moreover, in
important contexts such as public transportation, shops or
lifts (elevators), we often find ourselves in the proximity of
unknown persons. In such cases, digital proxies for close-
range proximity are currently viewed as a complementary
and scalable approach, known as digital contact tracing (DCT),
that could overcome the above limitations [18–20].

The broad adoption of smartphones has provided an oppor-
tunity to develop apps that use short-range device-to-device
communication between phones to sense the proximity of
their owners. The exchange of low-power Bluetooth packets
between smartphones can indeed be used to detect proximity
relations between persons whose phones are running the app:
whenever a person who has installed a contact tracing app is
diagnosed as infectious, a warning can be sent to all app users
that the person has been in close proximity with during the pre-
vious few days [18,21,22]. Note that the proximity relations
detected by Bluetooth are approximate and partially depend
on the environment and detection thresholds that need to be
set after calibration [21,23]. The wide dissemination of Blue-
tooth, however, currently makes it the best available proxy for
physical proximity in DCT, and different technical architectures
for DCT have been proposed, including so-called ‘decentra-
lized’ solutions [21] that by design minimize the amount of
information that is collected and shared. Exposed individuals
warned via DCT are asked to contact the responsible health

authorities and to quarantine themselves. Importantly, contact
tracing apps do not rely on individuals recalling or naming
their contacts nor do they require knowledge of their identity.
However, the efficiency of contact tracing apps is obviously
limited by their numbers of users, since both the infectious
person and their contacts need to have installed the app, and
by the compliance of alerted users. Some studies [22,24] have
proposed to further extend the reach of DCT by using infor-
mation on individuals situated two hops away from a
confirmed case, along the digitally sensed proximity network
(so-called ‘recursive’ contact tracing). This might however
have privacy implications, and it is important to note that the
success of app-based contact tracing depends on a complex
interplay of proximity tracing technology, citizens’ trust and
adoption [25], effectiveness of the exposure notification strat-
egy and good integration with traditional contact tracing and
with other public health capabilities and processes.

Several theoretical studies have investigated the potential
effectiveness of proximity tracing apps in the fight against
COVID-19 [15,16,18–20,22,26–30]. The studies that have most
influenced the public discussion around contact tracing apps
are based on a simplified, macro-level mathematical model
that assumes homogeneous mixing of the population [18,31].
However, real social and contact networks are highly non-
homogeneous and exhibit many non-trivial structural and
temporal features, such as heterogeneous distributions of con-
tact durations [17,32,33], sets of ties with correlated activities
[34] and intermittent communities and dynamical social struc-
tures onmultiple time scales [35,36]. Heterogeneities in contact
structure and durations are known to be highly relevant for epi-
demic spreading processes, as well as group structures [37,38].
In particular, they have been shown to influence the estimation
of the epidemic size for simplified models of infectious disease
dynamics [39,40]. However, it is at this stage unclear whether
the estimation of an intervention’s efficiency is impacted
by these complex structural and temporal properties of real
contact patterns: in particular, the dependence of an inter-
vention’s effect on its parameters (here, for instance, the
efficiency and speed of contact tracing or the adoption rate of
the digital tracing app) might a priori differ in simple contact
models and in real contact networks. Therefore, to go beyond
homogeneous mixing results, some studies have considered
artificial static network structures to study at a theoretical
level the effect of heterogeneous structures [24], and other
approaches have used large-scale agent-based models [27,30]
or GPS data [20] to recreate synthetic daily aggregated
networks of contacts and to evaluate the effectiveness of
app-based contact tracing in more realistic settings.

Using high-quality empirical data on close-range proximity
between individuals is thus an additional crucial step to deepen
our theoretical understanding of contact tracing, understand
the phenomenology of contact tracing efficiency in real-world
settings and thus improve the grounding of the discussion on
the relative and combined efficiency of MCT and DCT. State-
of-the-art datasets of this kind were collected and made
public over the years by several research efforts, in particular
by two independent collaborations [33,41] who have used
proximity sensors and smartphones in specific communities
(such as among university students) and in highly relevant
social contexts such as workplaces, schools and hospitals.
These empirical data are temporally resolved and exhibit the
complex structural and temporal complex features mentioned
above [32,33,35,36,42]. They represent thus an important
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benchmark for realistic simulations of epidemic processes and
interventions. We note here that these datasets were collected
in non-pandemic situations. No such data are currently avail-
able to investigate how contact patterns have changed owing
to restrictions and individual risk perception [43], and this
has thus typically been modelled by effectively reduced trans-
mission rates [4,29,30]. We consider here post-lockdown
scenarios in which contact patterns and, behaviours could
return to (almost) normal, and for completeness, we will also
consider both reduced effective transmission rates as well as
other ways to take such potential changes into account, such
as random reduction of contacts or suppression of fleeting con-
tacts. We also note that these data have been recently used [29]
to derive parameters for the approach described in [18], and to
determine—within that approach—which app-based contact
tracing policies might be most effective.

Here, we use such empirical high-resolution contact net-
work data to inform a compartmental model for COVID-19
[4] and to simulate directly the targeted measures described
above in realistic, albeit circumscribed, contexts. In particular,
we study the combination of app-based contact tracing and
MCT, taking into account specific limitations of both
approaches. We quantify the impact of interventions by
measuring the reduction of the final size of the simulated epi-
demic. Moreover, we study the number of quarantines and the
fraction of quarantined individuals who were not infected.
We find that the mere isolation of symptomatic cases is not
sufficient to substantially reduce the epidemic size, while inter-
ventions guided by contact tracing can have a strong impact. In
particular, MCT, evenwhen imperfect (i.e. limited recall of past
contacts, delays in alerting contacts), yields a potentially strong
reduction in epidemic size that grows linearly with the fraction
of contacts correctly recalled. The effect of DCT, in turn, grows
only quadratically with the fraction of app adopters, as
expected from the constraint that both the case and the contact
need to be running the app for a contact to be detected by their
phones. Therefore, if DCT is used in isolation, a large fraction of
adopters is required to obtain a large impact, although no
threshold effects are observed: no specific adoption threshold
exists that would lead the app to have no impact at a low
level of adoption but suddenly become efficient if a certain
level of adoption is reached. On the contrary, any degree of
adoption yields a positive contribution. While the specific
values of the epidemic size reduction due to contact tracing
efforts depend on the parameters and contexts, the overall
functional shapes are similar in all cases. In fact, we recover
the overall qualitative behaviour of the epidemic size reduction
in a simplified analytical model of propagation, showing the
generality of this phenomenology.

We also observe that MCT and app-based contact tracing
lead to similar numbers of quarantined individuals (which
can be interpreted as the cost of the intervention) and frac-
tions of non-infected quarantined individuals, for a given
relative reduction in epidemic size (benefit of the interven-
tion). In addition, even if the specific values obtained
depend on parameters and contexts, this cost–benefit curve
has a robust parabolic shape and exhibits a maximum: if con-
tact tracing is effective enough, it might contain an outbreak
early on, leading to few quarantine events, i.e. high benefit
with low cost. We also provide analytical arguments to
understand theoretically this robust parabolic shape.

Finally, we show that, for fixed app adoption andMCT par-
ameters, recursive contact tracing further reduces epidemic

size, at the cost however of a higher fraction of non-infected
individuals among quarantined individuals. In fact, even at
given benefit (epidemic size reduction), the cost in terms of
number of quarantines and non-infected quarantined individ-
uals is higher for recursive tracing than for standard tracing.
While the data we use are limited to specific contexts, the
robustness of the observed qualitative behaviour in various
contexts and with respect to parameter changes, together
with the fact that we can understand them using analytical
approaches, hints at the generality of our results. We conclude
that DCT and MCT complement each other, and their combi-
nation can help reach an optimal regime of high efficiency
where the spread is suppressed at low cost in terms of quaran-
tines. Importantly, DCT compensates for the inherent
limitations in recall and scalability of MCT, but improvements
in MCT efficiency can yield particularly strong effects and
should thus be prioritized. Moreover, app adoption should
clearly be as large as possible, but there is no specific level of
adoption that must be achieved, as any improvement in
adoption has a positive impact.

2. Results
We model an outbreak of COVID-19 by means of a compart-
mental model [4] in which individuals can be in a series of
discrete states describing the unfolding of the disease (see
figure 1a and Methods for details and parameter values).
Susceptible (healthy) individuals (S), upon contact with infec-
tious ones, can contract the disease and first enter the exposed
(non-infectious) state (E) and then a pre-symptomatic infectious
state (Ip). Pre-symptomatic individuals can remain asympto-
matic during the whole infectious phase (Ia), with probability
a, or they can develop either mild or severe symptoms (Im or
Is), with respective probabilities m and s = 1− a−m. The infec-
tious state leads to recovery R (or death) after a typical time.

We simulate the model on empirical data describing time-
resolved, close-range proximity interactions of individuals in
two relevant settings: a community of students (SD, in the fol-
lowing) and an office (OD, in the following). The SD dataset
describes the network of physical proximity among a popu-
lation of more than 700 university students over a period of
four weeks. The dataset was collected as part of the larger
Copenhagen Networks Study [23,33], in which each partici-
pant was equipped with a smartphone and required to install
data collection software. These devices were set to be perma-
nently discoverable by Bluetooth and scanned for nearby
Bluetooth devices at 5 min intervals (hence, the detected con-
tacts have durations which are multiples of 5min). Proximity
was assessed by measuring the received signal strength
(RSSI) of Bluetooth signals from nearby devices: a high RSSI
means that the two devices are expected to be physically
close, a low measure indicates that devices are further apart
or that there are obstacles in between, although no precise
relation between RSSI and distance can be assessed in general
[44]. The OD dataset was collected in an office workplace
staffed with about 200 people who agreed to wear proximity
sensors for several days while in the workplace [41,42]; these
sensors used low-power radio communication as a proxy for
the close-range face-to-face proximity of individuals wearing
the devices with a temporal resolution of 20 s [32]. Both the
SD and OD datasets represent proximity interactions as a tem-
porally ordered sequence of contact networks, where nodes are
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individuals and an edge between nodes indicates a proximity
relation. The two datasets share both similarities and differ-
ences (see also Methods): owing to the face-to-face condition,
the closer range and the smaller population size for the OD,
the number of contacts registered per individual is much smal-
ler; moreover, the 5min temporal resolution of the SD means
that the shortest possible contact lasts 5min (20 s for OD), so
that the contact times are larger for the SD than for the OD
data. Despite these differences, similar complex temporal and
structural features are observed [35].Moreover, the different defi-
nitions of contacts inOD and SD could correspond to simulating
different spatial ranges of disease transmissions and at-risk con-
tacts for droplet-transmitted pathogens such as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2).

We run simulations starting from one initially infectious
individual chosen at random, letting the epidemic evolve
until no infectious individuals are present in the population.
We first calibrate the rate of disease transmission from an infec-
tious person to a susceptible person (see Methods) for each
dataset to obtain a reproduction number R0≈ 3 in the absence
of any containment measures [4,45]. Note that, because of the
difference in the definition of a contact and in the temporal res-
olution of the two datasets, the transmission rate cannot be
considered as the same for both datasets, but we instead fix
R0 as the parameter defining the effective epidemic spreading
capacity. We also considered simulations with lower R0

values, corresponding, for example, to re-emerging outbreaks
during which a number of public health measures such as
enhanced hygiene and mask-wearing are enforced to limit
the spread, thus yielding an effectively lower R0: such
measures are simulated by changing the transmission rate.
Moreover, we considered as a possible result of behavioural
change the removal of a fraction (25%) of contacts at random.
As a baseline intervention, used as a reference to assess the rela-
tive improvement of contact tracing, we then considered a
simple strategy that does not rely on any contact information:
isolation (Q) of all cases with severe symptoms as well as iso-
lation of a fraction pmd of the mildly symptomatic cases, until

they recover. For pmd ¼ 50%, this intervention yields a relative
decrease in the average epidemic size of, respectively, 14% for
the OD data and 26% for the SD data (lowering the average
final epidemic size from 73% to 63% of the population in the
OD and from 55% to 41% in the SD).

We then simulate MCT for all detected infectious cases (i.e.
all severe cases Is and a fraction pmd of the mild cases Im): for
each case, an interview is assumed to be performed to identify
all individuals who have been in contact with the case for an
interval longer than θct over the 48 h before detection. To take
into account the limitations ofMCT, we assume that only a frac-
tion pct of the contacts are identified, and that a delay of
tct ¼ 2 days takes place between the detection of a case and
the quarantining of a recalled contact. In addition to MCT, we
consider the possibility of DCT: if the identified case has a
smartphone with a contact tracing app installed, a warning is
sent to other app userswho have been in proximity (as assessed
by the contact datawith the case for an interval longer than θapp
over the 48 h prior to detection). Since we assume that all such
contacts are identified by the app, the key parameter for DCT is
the fraction papp of the population who has adopted the app.
While we will mainly consider the value of θapp set in the
actual apps, we explore also larger values, which can be inter-
preted as what happens if a fraction of the actual contacts is
not detected by the app, e.g. because of Bluetooth limitations.
Moreover, we take into account potential delays due to possible
app limitations (e.g. a limited number of exposure queries per
day by the app) or to the time needed for an individual to
self-isolate by introducing a delay τdct between warning and
quarantine (τdct varying between 0 and 2 days).

The reduction in the average final epidemic size
obtained by MCT and DCT, with respect to the situation of
only case isolation, depends on the contact tracing parameters
and efficiency. For simplicity we assume θct = θapp as these
values are fixed by public health guidelines, and we vary the
fraction pct of contacts identified by MCT and the fraction of
app adopters papp in the population. Note that, even if papp in
the general population is limited by the smartphone
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Figure 1. Model and impact of contact tracing on the epidemic size. (a) Schematic illustration of the investigated epidemic model. (b) Relative reduction in the
average epidemic size as a function of MCT probability pct and app adoption rate papp, with respect to the situation of only case isolation, with pmd = 0.5, for OD,
with θct = θapp = 15 min. Here tct ¼ 2 days, τdct = 0. (c) The same for SD (threshold θct = θapp = 15 min). (d ) Same as (c), for three slices: along the pct axis
with papp = 0, along the papp axis with pct = 0 and along the diagonal pct = papp. (e) Relative reduction as a function of the testing and diagnosis rate of mildly
symptomatic pmd, for the SD with various values of pct = papp.
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penetration, we consider here specific contexts where this pen-
etration could be as high as 100% and we therefore explore the
whole range of papp values between 0 and 1.

Figure 1b–d shows how the reduction in epidemic size
depends on these parameters. In particular, the effect is pro-
portional to pct in the absence of DCT, while it grows
quadratically with the fraction of app adopters in the absence
of MCT. It is thus rather small at low app adoption and
improving MCT leads to stronger effects. However, even in
the hypothetical scenario of perfect MCT, DCT still improves
the results owing to the shorter delay between detection and
quarantine made possible by DCT, and the combination of
DCT and MCT makes it possible to reach strong epidemic
suppression effects even at intermediate parameter values.

A larger epidemic size reduction is observed for the SD
case: this can be ascribed to the fact that the fraction of con-
tacts lasting more than 15min over 2 days (i.e. which can
be traced by contact tracing) is much larger for SD (on aver-
age 59% of the individuals with whom a person has been in
contact, corresponding to 96% of all the contact times) than
for OD (on average 6% of the individuals with whom one
has been in contact, corresponding to 45% of all the contact
times). However, the qualitative behaviour of the epidemic
size reduction is similar for both datasets, despite the
differences in contexts and data collection methods. In the
electronic supplementary material, we show that this
behaviour is robust for other datasets and other parameter
values (electronic supplementary material, figures S2–S8).
To mimic a behavioural change, we consider in particular
several reduced values of R0 obtained by a reduction in the
transmission rate. Interestingly, we observe that the relative
effect is larger for smaller values of R0 (electronic supplemen-
tary material, figure S5). Moreover, as the final epidemic size
even without interventions is smaller for lower R0 (and the
epidemic is also slower), the number of cases to which contact
tracing needs to be applied is smaller, and thus the cost in
terms of quarantines is also smaller. We also show in the elec-
tronic supplementary material the results obtained with
datasets in which a fraction of contacts has been removed
(electronic supplementary material, figure S6). We moreover
investigate the sensitivity with respect to an increased value
of the fraction of asymptomatics (electronic supplementary
material, figure S7), and to reduced compliance of the users
(electronic supplementary material, figures S2–S4).

Figure 1e illustrates the crucial role of detecting cases with
mild symptoms. Even in the absence of tracing (papp = pct = 0),
increasing the probability of case detection increases linearly
the reduction in the average epidemic size. This effect becomes
even stronger when contact tracing is implemented and the
combination of a large probability of detection and of contact
tracing can make a strong suppression of the epidemic
reachable. Finally, as shown in the electronic supplementary
material, delays in the warning and quarantining of individ-
uals using the app, as modelled by τdct, slightly decreases the
efficiency of the contact tracing (electronic supplementary
material, figure S8), and different values of the thresholds θct
and θapp lead to qualitatively robust results (electronic
supplementary material, figures S2–S4).

Contact tracing brings clear benefits as explored above,
but also has a cost that can be quantified by the number of
quarantine events in the population (note that a given indi-
vidual might potentially be quarantined more than once).
Moreover, a fraction of these quarantines are unnecessary, as

some of the quarantined individuals are, in fact, healthy.
Figure 2a–c explores this issue. The number of quarantine
events, i.e. the cost of the intervention, initially grows with
papp and pct, as expected. However, in some cases, this cost
goes through a maximum and decreases for large enough
DCT app adoption or MCT efficiency. This corresponds to
the fact that a very efficient contact tracing procedure can actu-
ally stop an outbreak early on, so that the epidemic does not
spread and few quarantines are necessary (this is indeed the
case for large papp and pct in the SD case, as seen in figure 1c).
In fact, figure 2c shows cost–benefit curves of the contact tra-
cing interventions, at fixed tracing parameters, i.e. the
normalized number of quarantine events as a function of
the reduction in average epidemic size. These curves all exhibit
a typical parabolic shape, with a cost first increasing as a func-
tion of the benefit, reaching a maximum and then decreasing.
Note that each curve puts together results obtained either by
MCT, by DCT or by a combination of both: in other words,
the cost depends on the benefit and not on the way (MCT or
DCT) this epidemic size reduction was obtained. We also
note on the other hand that the cost depends on the specific
value of the threshold θct = θapp used to define at-risk contacts
in the contact tracing procedure: lower thresholdsmake it poss-
ible to obtain higher benefit at large adoption orMCTefficiency
(large pct), but the maximal value of the cost, reached at inter-
mediate adoption or MCT efficiency, is then larger. Finally,
increased delays in contact tracing lead to slightly increased
costs for a given epidemic size reduction (see electronic sup-
plementary material, figure S9). This can be expected as
delays mean that some of the individuals who have been in
contact have time to become infectious and transmit the disease
further, leading to a larger number of quarantines. On the other
hand, very large values of case detection probability pmd yield
both higher benefits (figure 1e) and lower costs (see electronic
supplementary material, figure S10).

Figure 2d shows also the behaviour of the fraction of non-
infected quarantined individuals. While this fraction depends
only slightly on app adoption and MCT efficiency, it increases
slightly overall as the epidemic reduction increases. This frac-
tion also increases if the delay between case detection and
contact quarantining increases, and decreases if the detection
probability of mild cases pmd increases.

Our results are obtained with simulations of a compart-
mental model performed on state-of-the-art datasets
describing human interactions, which include many complex
features of such interactions, such as heterogeneities of contact
durations, intermittent formation of groups, etc. Interestingly,
we can actually obtain a very similar phenomenology using
analytical arguments on simplified models. To this end, we
consider a Susceptible–Infectious–Recovered (SIR) model on
a static random network. Using a well-known mapping of
SIR models to percolation problems [46], it is indeed possible
to obtain an equation for the final epidemic size of such a pro-
cess. In the electronic supplementary material, we show that it
is possible to extend the percolation arguments to introduce
both DCT and MCT, and we show in figure 3a that the
resulting shape of the epidemic size reduction as a function
of the tracing parameters pct and papp closely reflects the
phenomenology observed in our numerical simulations.

Moreover, the parabolic shape of the cost–benefit curves
shown in figure 2c can also be explained by a simple argu-
ment involving two competing effects. (i) The more we
want to reduce the epidemic size, the more we need to
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quarantine, and (ii) the more the epidemic size is reduced, the
fewer quarantines are actually needed. In the absence of tra-
cing, the epidemic size is not reduced but also no quarantines
are being implemented (zero benefit and zero cost); at the
other extreme the quarantines are done so aggressively that
the disease can only infect a very small fraction of the popu-
lation and the total number of quarantines (contacts of
infected individuals) remains low as well. At the peak the
quarantine rate is still low so that the disease spreads to a sig-
nificant part of the population, but it is large enough so that
many of the connections of the infected individuals are
placed under quarantine.

The above argument can be formalized as follows.
We denote the epidemic size reduction owing to contact
tracing as r = 1− Ir/I0, where I0 is the epidemic size without
quarantine measures and Ir is the epidemic size with the
measures in place. First, as a mean-field assumption, we
express the number of quarantines q as simply the product of
the average number of contacts of a person during the infec-
tious period k, the total number of infected people Ir and the
quarantine probability qr, i.e. the probability that any contact
with an infectious person leads to a quarantine: q = qr kIr. Quar-
antines, however, yield a decrease in the epidemic size so that
the number of infectious people is itself a decreasing function
of the quarantining probability: Ir = f(qr)I0, with f a decreasing
function. In other terms r = 1− Ir/I0 is an increasing function
of qr. Figure 1b,c shows that the reduction in the epidemic

size, r, is roughly linear with the fraction of people asked to
quarantine owing to MCT, pct. As the probability of a contact
being quarantined qr increases as well linearly on average
whenwe askmore people to quarantine, this linearity is carried
over to yield r∝ qr. Inserting this as well as Ir = (1− r)I0 into the
above expression for q leads to q∝ r− r2, i.e. a downwards
opening parabola very similar to figure 2c, as shown in figure
3b. More details and examples are provided in the electronic
supplementary material.

We finally show—in figure 4— the impact of a recursive
DCT. At fixed θapp and app adoption, the obtained reduction
in the epidemic size is larger than with the normal app. The
difference relative to the usual DCT is however quadratic in
papp, meaning that this effect remains small unless app adoption
is very high. Moreover, the resulting number of quarantine
events is larger and depends more on the other parameters of
the contact tracing. In fact, figure 4b,c shows that, at a given
value of the epidemic size reduction, the number of quarantines
is typically larger for the recursive DCT than for the usual DCT,
and that the fraction of unnecessary quarantines becomes larger
aswell. Inotherwords, thecost toobtainagivenbenefit ishigher.

3. Discussion
In the fight against the COVID-19 pandemic, non-
pharmaceutical interventions play a crucial role [19]. Moreover,
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Figure 2. Number of quarantine events normalized by the population size. We show this number as a function of papp and pct, for (a) the OD data and (b) the SD
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in order to limit societal costs, targeted measures such as iso-
lation of cases, contact tracing and quarantining of contacts
are considered as essential in containingpotential re-emergence
of outbreaks [8,13,14,16]. As traditionalMCT is labour intensive
and limited by people’s ability to correctly remember contacts,
app-based DCT is seen as a potentially useful complement and
has been deployed in several countries [18,21,47]. Its actual effi-
ciency, however, has been debated, in particular with respect to
the level of adoption needed for it to make a difference
[18,29,30,47,48].

In this study, we have provided new theoretical and quali-
tative understanding of the relative and combined efficiency
of MCT and DCT by leveraging state-of-the-art datasets
describing contacts between individuals in different settings,
namely among officeworkers and among students of a univer-
sity. Indeed, most previous works have considered either a
homogeneous mixing hypothesis or model networks of

interactions, while real contacts are known to display a
wealth of structural and temporal heterogeneities having an
impact on epidemic propagation. Even if the available contact
network datasets correspond to limited contexts and popu-
lations, they do encompass all these heterogeneities. Their
use in simulations is therefore a crucial step to consolidate
our theoretical and practical understanding of the mechanisms
of various interventions and, here in particular, to understand
how their impact depends on the contact tracing parameters.
Here, we have considered a compartmental model drawn
from the recent literature on the propagation of the SARS-
CoV-2 pathogen and simulated several mitigation measures,
focusing on the reduction in the final average epidemic size
in the population. The isolation of severe cases and of a fraction
of mildly symptomatic cases, although beneficial, is not
enough to contain the spread as pre-symptomatic individuals
are known to be infectious, and as a fraction of infectious are
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moreover asymptomatic. We have then simulated contact tra-
cing, both manual (MCT) and digital (DCT), and shown that
both can yield a strong decrease in the final epidemic size.
The relative impact of contact tracing is actually larger for
lower reproduction numbers, and its cost lower: lower R0

means indeed a slower epidemic reaching fewer individuals
even without interventions, so that contact tracing needs to
be applied to fewer cases, and fewer people need to be quaran-
tined to mitigate the epidemic (this is in agreement with the
results of [30]). Contact tracing thus becomes more efficient
in a situation where the epidemic is already partially mitigated
by other measures that keep R0 as low as possible, showing the
importance of combining contact tracing with other measures
such as masks or hand hygiene, and that contact tracing
might lose efficiency at too large R0. The epidemic size
reduction moreover depends on the efficiency of the manual
tracing, quantified by the fraction of contacts recorded for
each detected infectious individual, and on the app adoption
in the case of DCT. We find that this reduction grows linearly
with the efficiency of MCT but only quadratically with the
app adoption, as both case and contact need to have the app
installed for a contact to be detected. We have shown that, at
a qualitative level, this overall behaviour can be recovered ana-
lytically in a simplified epidemic model. We note that, as our
study focuses on specific contexts (offices and university),
the app adoption could potentially reach 100% in the corre-
sponding populations, leading in that case to a very strong
suppression of the epidemic. We have also shown that the
cost of the intervention, as quantified by the number of quaran-
tines, initially grows as the MCT efficiency and app adoption
increase, but can become smaller if these parameters are high
enough so that the epidemic is very efficiently contained. The
cost–benefit curves show a typical parabola shape that can be
understood using simple arguments: for low efficiencies of
contact tracing, the cost increases with the reduction of epi-
demic size, but if the efficiency becomes large enough, the
strong suppression of the outbreak leads to fewer cases, thus
fewer contacts and fewer quarantines. We have directly
shown how a simple analytical argument recovers this
parabolic shape of the cost–benefit curves.

We also note that the DCT we have simulated does not
imply knowledge of the contact network of infectious individ-
uals, but simply that their contacts receive a warning and
quarantine accordingly. This confirms that it is possible to
develop strongly privacy-preserving protocols [21] that might
reach large app adoption levels and thus yield a strong
impact. Furthermore, we have shown that recursive DCT
yields an increased impact, which, however, also grows only
quadratically with app adoption. The added benefit thus
remains small except at very high adoption, and comes at an
increased cost in terms both of quarantine events and of non-
infected quarantined individuals. Moreover, it is important to
remark that recursing the contact tracing process over contacts
of an index case entails building an explicit representation of
the two-step networks of confirmed cases, exposing signifi-
cantly more network information about those individuals
than regular contact tracing. This additional network infor-
mation dramatically increases privacy risks, as it can be more
readily used to match the contact graph around a given user
to social network data fromother sources (e.g. online social net-
works, mobile call networks, organizational networks, etc.),
increasing the probability of re-identification. The resulting
privacy concerns might lead to lower app adoption in the

public, and thus potentially to an actual loss of efficiency of
the DCT efforts.

Our study has a number of limitations which are important
to make explicit. In particular, the data we use correspond to
limited social environments (a university campus and a work-
place) and we do not provide an overall general study that
includes all possible multiple and differentiated contexts and
their mutual interplay. These data moreover do not include
interactions between the individuals participating in those
studies and the general population. Nor do they include infor-
mation on the precise location of the contacts, for instance
whether these contacts occurred indoors or outdoors, which
is known to be important in the COVID-19 context. In addition,
the data were collected in pre-pandemic situations, and aware-
ness of the spread aswell as imposed restrictions have changed
the behaviour of individuals in ways difficult to apprehend.
Nevertheless, these datasets correspond to the current state-
of-the-art in terms of data describing human interactions,
and we have also considered several ways of taking into
account in an effectiveway behavioural changes, from reduced
reproduction numbers to filtering of a fraction of contacts.
Moreover, one could expect that post-lockdown scenarios
would rapidly lead to a return to pre-pandemic behaviour in
terms of contact patterns. Overall, the datasets, even with
these limitations, include complex features of real contact pat-
terns, and itwas thus important to understand the behaviour of
contact tracing interventions in simulations on such data, and
not only on simplified models of interactions. The results
show a robust qualitative behaviour for data obtained in differ-
ent contexts with different data collection infrastructures
(inducing different spatial and temporal resolutions), in
terms of both the epidemic size reduction and the dependency
of the cost of the intervention on theMCTefficiency and on the
app adoption. Moreover, our analytical approach gives us a
theoretical understanding of the mechanisms behind this be-
haviour and shows its generality. A detailed quantification
and prediction of the size of the effects would require more
detailed models of specific (possibly large-scale) populations
taking into account age stratification and other socio-economic
factors, but important insights have already been gained byour
theoretical approach.

For instance, an important point to emphasize is that,
although the effect of DCT is only quadratic in the app
adoption, there is no threshold effect: any increase in adoption
leads to an improvement in the epidemic spread mitigation.
This is actually also true for MCT, showing that the quality of
interviews and any improvement in the ability to correctly
find contacts of infectious cases brings an important benefit.
Overall, DCT, which is also able to trace contacts between indi-
viduals who do not know each other, yields an interesting
complement to MCT, and the combination of MCT and
DCT is able to suppress outbreaks at limited cost if the app
adoption and MCT efficiency are sufficiently high.

As the app adoption in the general population is necess-
arily limited by smartphone penetration, it is finally
interesting to emphasize that this limitation does not necess-
arily hold in a specific context such as a workplace or a
university. In fact, one could expect assortativity or group
effects to induce a very high adoption in such specific contexts
or populations. This couldmake it possible to very rapidly sup-
press outbreaks in these specific populations, at minor costs in
terms of quarantines. A full investigation of such assortativity
effects is an interesting direction for future work, and could
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lead to policy indications on how to best focus testing andMCT
resources towards populationswhere app adoption is expected
to be lower.

4. Material and methods
4.1. Data
We use state-of-the-art publicly available datasets describing con-
tacts between individuals in different settings, with high spatial
and temporal resolution.

— The SD dataset [23,33] describes the interactions of 706 stu-
dents, as registered by the exchange of Bluetooth signals
between smartphones, for a period of one month. Each partici-
pant in the study was equipped with a Google Nexus 4
smartphone (used as the primary phone) and required to
install study-designed data collection software. For Bluetooth
measurement, all devices in the experiment were configured
to be permanently discoverable, and to scan for nearby
Bluetooth devices at 5 min intervals. The devices measured
and recorded the RSSI: a high RSSI means that the two devices
are physically close; a low measure indicates that devices are
further apart or that there are obstacles in between [44].

— The OD dataset was collected by the SocioPatterns collabor-
ation, using an infrastructure based on wearable sensors
that exchange radio packets, detecting close proximity
(less than or equal to 1.5 m) of individuals wearing the devices
[32]. The temporal resolution of the data was 20 s. The data
were collected among 232 individuals in offices during two
weeks in 2015 [42]. If the epidemic simulated on the data
lasts more than the dataset duration, we simply replicate it
[49] by restarting from the beginning of the dataset.

— We show in addition in the electronic supplementary
material results obtained using data collected among more
than 300 students in a French High School during one
week by the SocioPatterns collaboration, i.e. with the same
infrastructure as the OD data [17].

In the SD case, the average number of distinct individuals
contacted by a random individual during 1 day (average
degree in the daily aggregated network) varies between 4 and
47, with strong variations between weekdays and weekends.

In the OD case, the average daily degree does not reach such
large values, being between 8 and 10 depending on the day.

Moreover, the fraction of links with weight above 15min over
a period of 48 h is 59% for SD, corresponding to 96% of the total
contact duration, while it is only 6%, corresponding to 45% of the
total contact duration, in the OD case.

We refer to [33,42,50] for a detailed description of the datasets.

4.2. Epidemic model
We consider the compartmental epidemic model described
in [4], which was designed to describe the various stages of the
COVID-19 disease.

Susceptible individuals (S) can become infected upon contact
with an infectious one, and then enter a latent phase (E) of duration
τe. They then become pre-symptomatic (Ip) during τp. Pre-sympto-
matic individuals can then become either asymptomatic (Ia) or
develop mild or severe symptoms, entering, respectively, the com-
partments Im or Is. This happens with probabilities a, m, s = 1− a−
m. Recovery occurs with rate μ.

The probability per unit time of a susceptible becoming infec-
tious upon contact with an infectious with severe symptoms is β.
On contact with a pre-symptomatic who later on develops severe
symptoms, the probability per unit time becomes rpβ, and it is rββ
upon contact with an asymptomatic or an infectious with mild

symptoms, or with a pre-symptomatic who then develops mild
or no symptoms.

The parameter values are given in table 1. The value of β is
adjusted in order to fix the basic reproduction number to a
desired value in the absence of interventions. More precisely,
we define R0 as the average number of secondary infections
from an initially infectious seed taken at random. We perform
4 × 103 simulations for each value of β, adjusting it until the
desired value of R0 is obtained. For R0 = 3, this yields β = 1.37 ×
10−3 s−1 for OD and β = 2.1 × 10−5 s−1 for SD. We have also
considered other values of β in order to obtain lower values
of R0 corresponding to the effect of restrictions such as mask
wearing or enhanced hand hygiene.

We have also considered the case a = 0.4, m = 0.52.

4.3. Interventions
We consider here a series of targeted interventions, i.e. that aim
at preventing further transmissions from infected individuals.

4.3.1. Isolation
The first intervention consists simply in isolating infectious indi-
viduals once they are identified. This happens with all infected
developing severe symptoms, as they will reach out to health ser-
vices. Moreover, it can also happen for a fraction of infected
developing mild symptoms. The probability that an individual
with mild symptoms is identified as infectious is pmd. Moreover,
we take into account that the reaction to symptoms is not instan-
taneous by introducing a delay τto isol between the appearance of
symptoms and the isolation. Upon isolation, an infectious stops
having contacts and becomes unable to transmit the disease.

Pre-symptomatics and asymptomatics cannot be identified
and therefore are not isolated.

4.3.2. Manual contact tracing
When an infected individual (a ‘case’) is identified, they are inter-
viewed by healthcare workers and asked to remember their
contacts of the last nkeep days. The persons who have been in con-
tactwith the case for a cumulative time longer than θct during these
days are then warned and asked to quarantine for τq = 14 days.

The imperfection of MCT is taken into account by the
following parameters:

— only a fraction pct of the contacts longer than θct are recalled;
— only a fraction pc of the contacts agree to quarantine; the

others do not act;
— there is a delay τct between the detection of the case and the

quarantine of their identified contacts.

The health of the quarantined individual is monitored. There-
fore, if a quarantined person develops symptoms (even mild),

Table 1. Parameters of the compartmental model, taken from [4].

parameter value

τe 3.7 days

τp 1.5 days

1/μ 2.3 days

R0 3

a 0.2

m 0.72

rβ 0.5

rp 1
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they are interviewed to trace their recent contacts, with the same
procedure as the initial case. The parameter values are given in
table 2.

4.3.3. Digital contact tracing
We consider, either by itself or in addition to MCT, the possibility
that individuals have installed a privacy-preserving proximity-
tracing app. The app registers proximity events with other
individuals equipped with the app.

Whenever an app-adopter is diagnosed as infected (the
case), the anonymous random identifiers used by their app in
the last nkeep days are uploaded to the central server (see [21]
for details).

All app-adopters regularly check the central server and their
app compares the list of identifiers of infected individuals with
the list of identifiers received in the previous days. If the app
detects that the cumulated time in contact with (one or several)
infected app-adopters in the last nkeep days exceeds θapp, it triggers
a warning to contact health authorities and go into quarantine.

We assume that the transmission of information is instan-
taneous, but a delay τdct can take place between the warning of
an individual by the app and the start of their quarantine. The
other parameters are the fraction of app-adopters in the popu-
lation, papp, and the probability pc that an individual receiving
a warning goes into quarantine. Non-compliant individuals do
not change their behaviour. If a quarantined app-adopter devel-
ops symptoms (even mild), the process is iterated, i.e. their
identifiers are uploaded. The parameter values are given in
table 2.

4.3.4. Recursive contact tracing
We finally implement recursive (two-step) warnings for app-
adopters: in this case, we assume that a protocol is in place so
that app-adopters can compute the cumulative contact time
during the previous nkeep both with app-adopting infected
individuals and with app-adopting contacts of app-adopting
infected individuals who have received a warning by the app.
If this cumulative time exceeds θapp, it triggers a warning to
contact health authorities and go into quarantine.

The parameters are the same as for the DCT: the fraction of
app-adopters papp, and the probability pc that an individual
receiving a warning goes into quarantine. Non-compliant indi-
viduals do not change their behaviour.

4.4. Quantification of the impact of interventions
For each scenario, defined by a given set of interventions with a
given set of parameter values, we perform 10 000 numerical
simulations with a single, randomly chosen individual in the
latent phase at the initial time. Simulations are run until no
infected individuals are present in the population, i.e. all individ-
uals are either susceptible or recovered.

In order to quantify the impact of the spread on the popu-
lation, and the effect of the various interventions, we measure:

— the average final epidemic size, i.e. the fraction of individuals
who are recovered at the end of the simulation;

— the fraction of population going through quarantine;
— the fraction of the quarantined individuals who were in fact

susceptible.

In particular, we quantify the effect of interventions by the
relative reduction in the epidemic size, defined as I0�Ir

I0
, where I0

is the average final epidemic size without interventions and Ir
is the average final size in the presence of interventions.
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