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ARTICLE

Regression plane concept for analysing continuous
cellular processes with machine learning
Abel Szkalisity1,2, Filippo Piccinini 3, Attila Beleon1, Tamas Balassa1, Istvan Gergely Varga 4, Ede Migh1,

Csaba Molnar1, Lassi Paavolainen5, Sanna Timonen5, Indranil Banerjee6, Elina Ikonen 2, Yohei Yamauchi 7,

Istvan Ando4, Jaakko Peltonen8,9, Vilja Pietiäinen 5, Viktor Honti4 & Peter Horvath 1,5,10✉

Biological processes are inherently continuous, and the chance of phenotypic discovery is

significantly restricted by discretising them. Using multi-parametric active regression we

introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phe-

notypic supervised machine learning, to describe and explore biological data in a continuous

manner. First, we compare traditional classification with regression in a simulated experi-

mental setup. Second, we use our framework to identify genes involved in regulating tri-

glyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to

demonstrate that the proposed methodology is capable of modelling complex processes at

infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster

has continuous characteristics.
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Large-scale imaging technologies, such as high-content
screening (HCS) and digital pathology imaging, have
become the de facto tools for discovering drugs and genes

and understanding tissue physiologies and pathologies, including
cancer heterogeneity. This has induced a rapid growth in the
amount of microscopy data, making it essential to elaborate
appropriate bioinformatics tools to analyze them, and thus
improve the current understanding of underlying biological
processes1–3.

Machine learning provides automation for analyzing big data,
such as that acquired in large-scale, image-based experiments,
and it has been successfully utilized for phenotypic analysis
tasks4. Although a great variety of software tools are available for
performing imaging assays in a supervised manner (e.g. Cell-
Profiler Analyst, Ilastik, CellCognition, Advanced Cell
Classifier5), all of them rely on the assumption that the under-
lying biological processes have stable steady states that can be
dissected into discrete phenotypic classes (Fig. 1a). However,
biological processes inherently contain continuous transitions
between these phenotypes, consequently restricting the modelling
to a set of discrete states reduces the potential to fully understand
biological phenomena.

The application of traditional classification models for single-
cell image analysis6–8 is especially unreliable when the cells of
interest change their morphological features gradually in the
course of time (e.g. cell cycle). Annotation of such data is error-
prone and laborious, and even field experts tend to make faulty

decisions (e.g. in the case of samples with interclass properties),
often leading to arbitrary labelling. Additionally, user-defined
classes may obscure the real underlying distribution by inap-
propriate discretization.

Currently, none of the available and widely used software tools
enable single-cell-based image analysis in a continuous, supervised
manner. Instead, unsupervised models, such as Lineage Recon-
struction Techniques (LRT)9 and Dynamic Time Warping (DTW)
prevail. Cycler8 is an LRT and embeds 5 pre-selected image-based
single-cell features to a one-dimensional (1D) continuous space
called the cell-cycle trajectory. Similarly, Cai et al. used DTW to
align mitotic cells into the mitotic standard time based on
6 selected features10. HipDynamics is a software for visualizing cell
population dynamics in live-cell imaging data and it utilizes
unsupervised linear regression to characterize the changes in user-
selected features11. Indeed, these tools provide robust solutions for
their targeted tasks, but the lack of expert interaction significantly
reduces the potential to customize these methods for various
purposes. Therefore, another set of tools known as Visual Ana-
lytics (VA) was developed, offering various techniques for experts
to interactively change the machine learning model through a
visualization interface, which is most often a continuous space
(visualization map)12,13. CellCognition was a pioneer of super-
vised tools, designed with the intent to efficiently analyze biolo-
gical processes, however still using classification7.

Here, we propose a methodology called Regression Plane (RP),
an interface for fully supervised, continuous machine learning
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Fig. 1 Classification vs regression. a Regression plane concept. The classical way to model a biological process includes the phenotypical analysis of cells
(i.e. subdividing cells into classes). However, in a high-content screening scenario, the multitude of different phenotypes makes it extremely challenging to
create a set of representative classes. A possible solution builds on using a regression line, allowing to represent a single effect without the need of
discretization. Nonetheless, biological processes are typically characterized by numerous ongoing effects. Thus, the regression plane represents a good
trade-off between visualization capabilities and annotation complexity. Basically, it allows to represent a biological process with the limits of a planar graph.
b Active regression. The aim of an active regression algorithm is to improve the training set (TS) to achieve better prediction performance. It is an iterative
process where a cell that is difficult to annotate is proposed to the oracle who annotates it, and by doing so moves it to the TS used to train the regression
model. c Synthetic dataset. Image from the synthetic dataset, generated using SIMCEP. d Experimental design. The designed processes overlayed on the
space of perturbations. 6 processes are tracks in the space, and an extra process is formed of uniformly distributed cells (latent process 7). e Designed
processes. The 6 continuous processes are modelled between two fixed endpoints: green cells of highly irregular shape and red, rounded cells. To assign a
colour to the middle point of each process we interpolated between white (process 1) and blue (process 6). f Classification vs regression applied on
synthetic data. Comparison of the performance of regression and classification. Statistics: precision, recall and the number of identified processes. Columns
represent mean, error bars show the standard deviations from n= 5 independent users/experimental setup. Source data are provided as a Source Data file.
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appropriate for image-based single-cell analysis. The idea origi-
nates from a study of an influenza A virus entry in which histone
deacetylase-mediated reorganization of the microtubules led to
various endosomal morphological and trafficking phenotypes that
affected influenza infection14. The scatteredness of late endo-
somes and lysosomes (single output variable) was determined
using regression instead of classification. Restricting the output to
a single dimension prohibited the modelling of branching, cir-
culating, parallel and crossing processes, therefore we extended
the approach to utilize a 2D plane (Fig. 1a). Considering cellular
steady states as graph nodes and gradual changes between the
states as edges, the biological systems that correspond to planar
graphs can be modelled with RP. Further extension of the
modelling to 3D would increase the complexity of labelling and
raise the chance of annotation errors. Additionally, to improve
the quality of the annotated sets and decrease the time required
from experts, we have incorporated active learning methods
appropriate for regression-based phenotyping.

Results
Regression plane. Regression plane is implemented as an open-
source module of Advanced Cell Classifier (ACC)6, and it has
been available since ACC v3.0. RP was incorporated into tradi-
tional phenotypic classification in a hierarchical manner: each
class may be extended with a distinct regression plane, allowing
multiple regression planes to be included in a single project. RP is
easy to use, well documented and supported by video tutorials
(Supplementary Software 1, Supplementary Movies 1, 2). Anno-
tation is performed by assigning continuous labels to repre-
sentative cells via placing them on a 2D plane. After training, RP
predicts the position of every unlabelled cell and outputs versatile
and easy-to-read visual representations at single-cell, population
and treatment levels (for details see the Methods section).

Similarly to classification, a representative Training Set (TS) is
also essential for RP. Active learning algorithms are routinely
used in classification to find the most efficient TS15 but are not
widely used in regression16. In this work, we introduce various
active regression algorithms by extending those used in classical
active learning tasks (Fig. 1b, Supplementary Fig. 1a). These
methods propose cells whose automatic prediction on the
regression plane is uncertain or ambiguous. Details are reported
in the Methods section.

Synthetic experiment: classification vs regression. To analyze
data discovery capabilities of RP, we generated a synthetic HCS
image dataset simulating perturbations of cell shape and protein
expression (Fig. 1c, Supplementary Software 2). We designed
gradual perturbations to enable smooth transition between cell
states and hence facilitating the modelling of biological processes.
We defined 6 processes as continuous changes from one cell state
to another, plus an extra process (latent process 7) formed from
uniformly distributed cells (Fig. 1d, e). Each well in the HCS plate
was associated with an underlying process, and the corresponding
images were generated by sampling cells uniformly from the
process distribution. Based on the associated processes we defined
a partitioning on the wells (those wells were in the same partition
that had the same process associated to them), forming the
ground-truth of our experiment. Details about the modelled
biological processes are reported in the Methods section.

Subsequently, ten microscopy experts were divided into two
groups and asked to identify the distinct underlying processes
in the experiment (Supplementary Note 1), or equivalently to
define a partitioning on the wells. The first group of five experts
used ACC v2.1 (extended with Supplementary Software 3 to
compensate for the advanced clustering features available in RP)

to annotate cells with discrete labels, while the other group used
RP only (ACC v3.0). Despite the great variety of the regression
planes created by the microscopists (Supplementary Fig. 2), the
results obtained using RP significantly outperformed the
classification, both in terms of precision and recall (Fig. 1f).
Specifically, the experts using RP performed better in estimating
the number of ongoing processes, and achieved, on average, an
improvement of approximately 20% in precision and 5% in recall,
upon defining image sets containing cells with similar behaviour.

Lipid droplet study. Lipid droplets are storage units for neutral
lipids, including triglycerides, and play a significant role in several
disorders, including e.g. cardiovascular diseases. We evaluated
whether siRNA perturbations of candidate genes, previously
revealed to influence blood triglyceride (TG) levels in humans in
a genome-wide association study17, would affect the morphology
of lipid droplets (LDs) in cultured hepatocytes (Huh7 cell line).
Regarding their continuous changes in localization, number and
size, LDs form a heterogeneous population reflecting different
cellular metabolic states18. Thus, RP was used for the analysis of
lipid droplets labelled with LipidToxGreen (Supplementary
Fig. 3a–c), a probe used for quantitative analysis of neutral lipids.
To train the model, 457 cells were placed on the regression plane
by a cell biology expert (Fig. 2a).

We found that siRNA-mediated knockdown of TM6SF2 (a
gene associated with decreased blood TGs) led to increased
intracellular staining of neutral lipids, as it had been expected
from the earlier evidence of TM6SF2 affecting hepatic lipid
droplet content and TG secretion19. In contrast, the cells
transfected with siRNAs targeting CD300LG (a gene associated
with increased blood TGs17) showed a decreased amount of
intracellular TGs, accompanied by the disappearance of (larger)
LDs. Additional biochemical analysis measuring cellular TG
levels confirmed these findings (Supplementary Fig. 3d). These
data provide functional evidence for the role of CD300LG in
regulating TG metabolism in hepatocytes.

Intriguingly, the knockdown of TM4SF5 (a gene associated
with decreased blood TGs17) which codes for a protein
functioning as an arginine sensor and mTORC1 regulator on
lysosomal membranes20, not shown earlier to affect TG levels in
functional studies, promoted the increase of small LDs (Fig. 2b).
Meta-visualization and clustering of the regression planes (Fig. 2c,
Supplementary Fig. 3e–h) further supplemented the findings
from an earlier study17, and suggest that CD300LG and TM4SF5
may have biological effects on hepatic TG levels and LD
composition, to be further addressed in future studies. Details
are reported in Methods section.

Time-lapse microscopy: cell cycle analysis. We tested the cap-
abilities of RP on 2 different time-resolved datasets. First, RP has
been demonstrated to be capable of reproducing an unsupervised
mitotic time model developed in the MitoCheck project (www.
mitocheck.org).

Cai et al.10 analyzed cell mitosis by performing time-lapse
experiments to establish a canonical model for the morphological
changes appearing during the mitotic progression of human cells.
They reorganized the feature space according to the mitotic
standard time instead of the imaging time (see Fig. 1f in ref. 10),
and by applying an unbiased peak-detection method in the
warped feature space they identified up to 20 mitotic stages. The
model was then used to integrate dynamic concentration data of
several fluorescently labelled mitotic proteins, and to create a
generic dynamic protein atlas of human cell division. Their public
data include 3D images and segmented masks of 31 z-stacks. We
intended to analyze this dataset without using prior feature
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information about the underlying process by exploiting regres-
sion techniques to characterize mitosis.

In our analysis, a field expert created a regression plane
representing the process of mitosis, resulting in a training set of
585 cells (Fig. 3a). After prediction, the cells followed the
designed circular path recalling canonical mitotic phases
(Fig. 3b–d), while they also represented subtle phenotypic
changes and single-cell differences in the regression plane.
Additionally, we investigated whether the fluorescent tags have
effect on the distribution of cells on the regression plane, and in
most cases we did not observe undesired cellular behaviour due to
the perturbations (Supplementary Fig. 4). Finally, we compared
the results of the original methodology presented by Cai et al.
(multi-dimensional dynamic time warping for creating the
standard mitotic time, Fig. 3e) with the results obtained by RP
(Fig. 3f), and we concluded that RP is capable of reproducing a
mitotic time model equivalent to the original one. This indicates
that RP can compete with complex analysis techniques, such as
DTW. Moreover, RP provides the flexibility to customize the
output space, enabling higher resolution analysis of user-defined
sections of the biological process.

Time-lapse microscopy: blood cell differentiation. The fruit fly,
Drosophila melanogaster, serves as a popular model system to
study innate immune functions, such as phagocytosis, wound
healing and capsule formation21. In the larva, these functions are
executed by hemocytes, which are categorized into three main cell
types: (1) phagocytic plasmatocytes, accounting for the majority
of circulating hemocytes, (2) crystal cells, which play a role in
melanization and wound healing, and (3) lamellocytes, which are
large flat cells that appear only in certain tumorous genetic
backgrounds or following immune induction22. Such an immune
induction appears in nature as a result of egg-laying by a para-
sitoid wasp, Leptopilina boulardi. Following infestation, newly
differentiating lamellocytes, together with plasmatocytes, elim-
inate the invader by forming a multilayer capsule around the
wasp egg23–25. Lamellocytes are also produced when larvae are
wounded with an insect pin26 (Supplementary Fig. 5).

Cell lineage-tracing studies revealed that plasmatocytes, which
had previously been considered as terminally differentiated
phagocytic cells, show plasticity, and are capable of differentiating
into encapsulating lamellocytes upon immune induction22,27–29.

This transdifferentiation process has been underlined by recent
single-cell RNA sequencing studies30,31. However, the cellular
intermediates of the plasmatocyte-lamellocyte transition process
have not been characterized morphologically in detail so far, and
the routes of differentiation are still controversial32. A study by
Anderl et al.33 described two types of lamellocytes, and suggested
that only the smaller type II lamellocytes (Supplementary
Movie 3) differentiate from plasmatocytes, while the regular,
flattened type I lamellocytes (Supplementary Movie 4) originate
from dedicated precursors.

To clarify the potential routes of differentiation, we developed an
ex vivo method for culturing Drosophila hemocytes, appropriate
for monitoring their differentiation with time-lapse microscopy.
Blood cell types can be characterized by their morphologies and
in vivo transgenic reporter expression pattern33. The regression
plane was manually trained using 109 cells based on their
morphology and reporter gene expression (Fig. 4a).

The analysis revealed that 5.6% of the plasmatocytes
transdifferentiated into lamellocytes upon immune induction
(wounding) of the larvae (the threshold line is indicated in
Fig. 4c), which is well reflected by the expression of cell type
specific transgenes (Supplementary Movies 5, 6). After the
formation of lamellocytes, no significant alterations in their cell
size were observed, indicating that all types of lamellocytes are
terminally differentiated cells. Most of the plasmatocytes (94.4%),
however, did not differentiate into lamellocytes, but either spread
out, increasing their cell size, or kept their size and morphology
during the experiment, which is in line with the results of in vivo
studies on blood cell differentiation in Drosophila.

However, in the case of lamellocytes instead of identifying 2
clearly separated subtypes I and II, we have observed that the
differentiation processes are evenly distributed on the regression
plane, as reflected by specific features (Fig. 4b, c, f). This finding
suggests that type I and type II lamellocytes, both differentiating
from plasmatocytes, are not definitely distinguishable cell types,
but rather they are two extreme stages of a size continuum
(Fig. 4e). Details are reported in the Methods section.

Discussion
Regression plane increases the resolution of classification to
represent subtle phenotypic differences by exploiting regression
techniques, extended by active learning. First, using artificial
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datasets we have demonstrated its capability to outperform the
available classification tools in phenotypic discovery. Second, we
have applied RP to analyze lipid droplets in hepatocytes during
siRNA-mediated gene silencing, serving as a model of a hetero-
geneous population that reflects different cellular metabolic states.
We have revealed genes playing a crucial role in regulating tri-
glyceride levels in hepatocytes. Finally, we have identified the
previously undiscovered continuous characteristics of hemocyte
differentiation in Drosophila melanogaster. Our findings indicate
that RP is a promising tool to explore biological data in a con-
tinuous manner, reflecting the non-discrete nature of biological
processes.

Methods
Synthetic dataset. To generate the dataset we used a customized version of
SIMCEP34, provided as Supplementary Software 2. Synthetic microscopy images
were organized into a 24-well plate format, and the dataset was composed of 9
images/well, for a total of 216 images and 8117 cells. The images of each well were
generated by considering a predominant process mixed with other ones. To model
the continuous processes we fixed two endpoints: green cells of highly irregular
shape, and red, rounded cells (Fig. 1e). The degree of cell shape deformation
decreases from the green to the red endpoint. Next, for each process we selected a

middle point, and assigned a colour to that, ranging from white (process 1) to blue
(process 6). The colour of the cells in each process was then defined by linear
interpolation between the colour of the middle point and one of the two endpoints.
The generated dataset was deposited to the Broad Bioimage Benchmark Collection
(BBBC), and it is freely available at: https://data.broadinstitute.org/bbbc/
image_sets.html (dataset ID: BBBC031).

Lipid droplet dataset. Huh7 hepatocellular carcinoma cell line (from Prof. Ilkka
Julkunen, THL, Finland35) was authenticated using Promega StemEliteTM ID
System at Genomics Unit of Technology Centre, Institute for Molecular Medicine
Finland (FIMM), University of Helsinki. The cells were cultured in Minimum
Essential Medium (MEM, Gibco® Life Technologies) supplemented with 10% FBS
(fetal bovine serum, Gibco® Life Technologies), 100 IU/ml Penicillin and 100 µg/ml
Streptomycin (Penicillin/Streptomycin combination, Gibco® Life Technologies) at
37 °C incubator with 5% CO2. siRNAs (Supplementary Data 1) were transferred
from source plates (Echo Qualified 384-Well Low Dead Volume Microplate,
384LDV, Labcyte) to the assay plates (384 -Well Flat Clear Bottom Black Poly-
styrene TC-Treated Microplates, Corning®, USA) in a final concentration of 10 nM
with Echo® 550 Liquid Handler (Labcyte, UK) and Echo Cherry Pick software
(version 1.4.4). 25 nl/well of transfection reagent Lipofectamine RNAiMAX
(Invitrogen, Life Technologies, USA) in 5 µl of Opti-MEM (Gibco® Life Tech-
nologies) was added to the assay plate with Multidrop Combi nL Reagent Dis-
penser (Thermo Fisher Scientific Oy, Finland). The cells (750 cells in 20 µl of
complete medium/well) were delivered to the wells with Multidrop Combi Reagent
Dispenser (Thermo Fisher Scientific Oy, Finland) using a standard cassette
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(Thermo Fisher Scientific Oy). After 72 h of siRNA transfection the cells were fixed
with 4% paraformaldehyde, quenched with 50 mM NH4Cl and stained with
Lipidtox Green (HCS LipidTox Green Neutral Lipid Stain, Invitrogen) and 300 nM
DAPI (Sigma-Aldrich) for 30 min at RT. Nine images/well were acquired per
channel for duplicate plates with an automated epifluorescence ScanR microscope
(Olympus) equipped with a 150W Mercury-Xenon mixed gas arc burner, a 20×
long working distance objective (UIS2) and a digital monochrome CCD camera
(Hamamatsu). The image resolution was 1344 × 1024 pixel and 16 bit per channel.
The 2 identical plates contained a total of 3956 images of 232,084 cells (>2200 cells
per siRNA). The generated dataset was deposited to FigShare36.

To validate our findings, additional biochemical analysis was performed to
siRNA-transfected Huh-7 cells. The cells were collected in 0.2 N NaOH, followed
by lipid extraction. TGs and CEs were resolved on TLC plates using hexane/diethyl
ether/acetic acid (80:20:1) as the mobile phase. Lipids were visualized by charring,
the plates were scanned and the intensities were quantified by ImageJ.

Blood cell differentiation dataset. Early third instar Me larvae (eaterGFP as a
marker of plasmatocytes, MSNF9MOmCherry as a marker of lamellocytes33) were
immune induced by wounding the cuticle with an Austerlitz Insect Pin® of 0.2 mm
in diameter. Wounded larvae were kept on standard Drosophila food at 25°C.
Circulating blood cells were isolated 12 h after wounding. Blood samples of 10
larvae were collected, pooled in 300 µl Schneider’s medium (Lonza, Cat: 04-351 Q)
supplemented with 10% fetal bovine serum (FBS; Gibco®, Cat: 10270) plus 0.01
mg/ml gentamicin (Sigma, Cat: G3632), 0.065 mg/ml penicillin (Sigma, Cat: P7794)
and 0.1 mg/ml streptomycin (Sigma, Cat: S6501). Next it was spread into a well
chamber of an 8-well µ-slide (Ibidi, Cat: 80826). Both sample storage and micro-
scopic analysis were carried out at 25 °C.

We acquired 15-frame image sequences/field (141 fields) on 3 channels:
brightfield, mCherry, and EGFP, with 2-hour-gaps between the subsequent frames.
Images were acquired with a high-content screening microscope (Operetta, Perkin
Elmer) equipped with a 60× high-numeric-aperture objective and a digital high
resolution 14-bit CCD camera, yielding a total of 4230 images (2 plates, 2115
images in each). The image size was 1360 × 1024 pixels and 8-bit per channel, in
TIFF format. The generated dataset was deposited to FigShare37.

Image segmentation and feature extraction. In order to classify the cells in an
image, ACC requires the position and features of each cell to be analyzed. For this
purpose, we first flattened illumination distortions of the acquired images by using
CIDRE38. Then, we used CellProfiler39 and the NucleAIzer deep learning
framework40 to segment the cells and extract the standard features describing
morphology, intensity and texture characteristics. Details of the image analysis and
the regression models used in each experiment are reported in Supplementary
Note 2.

Regression models. Regression methods, a subgroup of supervised machine
learning techniques, are aiming at approximating continuous target variables. Alike
for classification, various models have been proposed for regression, ranging from
linear regression to neural networks and random forests41.

The diverse set of regression models raise the problem of model selection for
RP. As the RP is completely user-defined, it is impossible to have any prior
assumptions on the function to be learnt, hence model selection should be data-
driven. RP provides cross-validation assessment of model performance by root
mean squared error measure (RMSE) and relative RMSE42. Additionally, two
important aspects are to be considered when selecting the model.
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First, the two-dimensional output format of RP requires the use of multi-target
regression, as we require a 2D position (expressed by 2 coordinates) to be
predicted. Traditionally, regression models aim at predicting a single continuous
variable, which may be naturally extended for multiple dimensions by considering
the outputs as independent variables, also called the single-target (ST) method43.
On the contrary, it has been reported several times that multi-target models that
exploit the possible correlation between the output variables may yield significantly
better results than the ST methods44,45. Consequently, when a strong relationship
between the output variables is evident, choosing a multi-target regression model is
more appropriate.

Secondly, models that are capable of providing a probabilistic output (i.e. those
that provide not only the predictive mean, but also some sort of uncertainty) are
less wide-spread for regression than for classification. However, uncertainties
provide valuable information to assess the model’s performance, and most of the
active learning strategies essentially rely on them.

Gaussian processes (GPs) can be used as non-parametric regression models
with a probabilistic output46. Instead of providing a single prediction for each cell,
GP returns a normal distribution whose mean can be used as the predicted value.
More importantly, its variance is an estimate for the uncertainty of the given cell.
GP is originally considered as a single-target method, however, its multi-target
extensions also exist and are known as co-kriging44,47. Although GP is a non-
parametric method (hence training is not required in principle), it still has
hyperparameters (mean, covariance, likelihood, inference functions and their
parameters) that can be optimized for enhanced performance. The most frequently
applied iterative optimization methods (gradient descents) require initial
hyperparameter settings which significantly affect the quality of the ultimate
hyperparameter set. Consequently, we have designed heuristic hyperparameter
initialization methods for several mean and covariance functions as described in
Supplementary Note 3. Due to the broad selection of implementable models, RP
provides an interface (via Object Oriented Programming) to facilitate the extension
of implemented regression methods. By default, the package contains bridges to
several models from Weka48, Mulan49 and Matlab’s Deep Learning Toolbox. The
full list and instructions on how to include new models are provided in
Supplementary Note 4.

Active regression. Usually, the most time-consuming part of statistical learning
for biomedical applications (including shallow and deep learning) is the pro-
cedure of annotation, and – as transfer learning is rarely used – it is often
repeated for new experiments. Active learning50 aims at reducing the number of
training samples needed to achieve the most representative training set by
automatically proposing cells for annotation. It has previously been shown by
Smith and Horvath51 that active learning reduces the time cost of annotation in
HCS compared to classical labelling. Most of the active classification methods
are based solely on the predicted class labels, enabling the underlying model to
be freely modified. However, these methods are not directly applicable for
regression, as they assume that the predicted label is discrete. Active regression
methods were developed by Cohn et al.52, based on variance reduction for
Neural Networks, Mixture of Gaussians and Locally Weighted Regression. Here
we present active regression methods inspired by the general active classification
approaches, and a specific method for Gaussian Processes utilizing its properties
(Supplementary Fig. 1).

Committee members. The Committee Members approach is inspired by the
QueryByCommittee active classification method. Similarly to cross-validation, a set
of models (committee) is built up from the available training samples, and a
measure of disagreement is defined for the committee. In case of regression, the
classical measures cannot be applied directly for two reasons: (1) they rely on the
fact that the output is discrete, and (2) they require a probabilistic model. Thus, we
propose using the quadratic mean of the Euclidean distance between the committee
consensus and the single committee predictions. Hence, the next cell to be labelled
by the expert is defined by the following formula:

x* ¼ argmax
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑C
i¼1

dðŷi; �yÞ2
C

s

ð1Þ

where C is the size of the committee, ŷi is the predicted position for x (a sample not
taken from the TS) by the ith committee member, �y is the mean of ŷ, and d is the
Euclidean distance.

Empty regions. The Empty regions method targets the cells which were predicted to
the least dense region of the regression plane in terms of training samples. This
heuristic is supposed to explore those cell types that are not presented in the TS.

Out of bounds. By design, the regression plane is represented by a unit-square, and
has limits in each direction. However, this limitation was not incorporated into the
regression models, consequently it is possible that cells are predicted outside of the
regression plane’s boundaries. Therefore, we propose a strategy that selects these
cells for annotation, ranked by their distance from the edges of the
regression plane.

Uncertainty sampling. When a probabilistic regression model (such as GP) is
available, then, instead of plain predictions, a posterior distribution is defined for
each cell, enabling the application of active learning methods aiming at decreasing
the variance of this posterior. Our proposed method targets the cell with the
highest posterior variance, where the final value for the selection is determined by
taking either the mean, the sum, the product, the minimum or the maximum of the
2 separate variances, calculated for each output dimension of the regression plane.

Overall uncertainty sampling. GP has an intriguing property, namely that the
posterior distribution is independent of the actual TS positions; it only depends on
the input features and the hyperparameters of the GP. In consequence, given fixed
hyperparameters, it is possible to exactly calculate how the posterior variance
changes, assuming that a new cell is included in the TS even without knowing its
position on the regression plane. Executing this calculation for all possible can-
didates, the resulting cell proposed for annotation is the one that decreases overall
variance the most. This approach is formulated by:

x* ¼ argmin
x

∑
N

i¼1
f xσ ðxiÞ ð2Þ

where N is the size of the full dataset (including the training dataset) and f xσ ðxiÞ is
the variance for xi, supposing that the GP was trained on the available training set
extended with x. The predictive variances for individual samples are calculated
from the diagonal elements of the predictive variance matrix according to ref. 46 by
the following formula:

K X*;X*

� �� KðX*;XÞK X;Xð Þ�1KðX;X*Þ ð3Þ

where K is the kernel (covariance) function, X is the feature matrix of samples not
yet predicted and X is the feature matrix of the training set’s elements.

We assessed the performance of the proposed active learning methods with 4
regression models: Random Forest, Gaussian Process, Neural Network and Support
Vector Machine; on 2 of our datasets: Lipid droplets and MitoCheck containing
457 and 585 annotated cells, respectively. In each scenario the experiment started
with randomly isolating 1/3 of the available samples to a test set, leaving the
remaining 2/3 in a pool. Then, 10 cells were randomly selected from the pool for
initializing the training set, followed by iteratively extending it with 290 cells
according to the active query strategy. In each iteration a regression model was
trained, and the relative root mean square error (RRMSE) was calculated on the
test set.

The results from 50 independent runs are displayed in Supplementary Fig. 1b, c.
In all but one (Gaussian Process in the MitoCheck dataset) scenario there was at
least one active learning technique that outperformed random sampling, despite
the high variance of error values among different regression models. The Random
Forest and Gaussian Process models achieved smaller RRMSE values than the other
two methods inhibiting the active strategies’ ability to significantly improve the
performance in these cases. Still, the CommitteeMembers strategy resulted in the
lowest average area under the curve value in 5 out of the 8 cases. We also note that
although mean prediction error is the most widespread measure of active learning,
other aspects of the model performance (e.g. model coverage) might be equally
interesting for the users.

Regression plane output. RP provides output in various formats to satisfy the
diverse needs of field experts (Supplementary Movie 2). The simplest output can be
obtained by predicting an image in the main window of ACC, by clicking on a cell
to see its raw regression plane position. Alternatively, in the regression plane one
can select an arbitrary number of images, so that all cells in those images are going
to be visualized on the regression plane with their icon at their predicted position.
Importantly, these predictions can easily be added to the TS as well.

For well-based analysis, a multi-component report can be generated for each
plate. The first component of the report is a pdf file containing a heatmap (simple
cell count in a discretized regression plane) and a kernel density estimation (KDE)
visualizing the distribution of cells on the regression plane in the particular well
(Fig. 2b, c). Besides, the difference and the most dense position shift between single
wells, and the average of user-defined control wells are also included.

Secondly, RP provides standard visualization tools (PCA, t-SNE53 and NeRV54)
for assessing the relationships among the wells. Each of these methods can generate
the figure of Plot of plots (PoP; Fig. 2c, Supplementary Fig. 4a–c). In PoP each well
is represented by its KDE/heatmap, and the distance between these representations
corresponds to the difference between the wells’ regression plane distributions (i.e.
similar wells are close in PoP, whilst differing ones are farther from each other). In
case of plates with higher well-numbers (e.g. 96 or 384) this may result in an
overwhelmingly dense diagram, so the PoPs can be re-loaded to RP where they can
be examined interactively. Importantly, in the RP-PoP, wells of similar
perturbations (replicates) can be highlighted with colours. In addition to these tools
for visualization, a clustergram can also be generated, providing a way to compare
the perturbations by performing hierarchical clustering (Supplementary Fig. 3e–h,
Supplementary Fig. 4d). The matrix in the middle of the clustergram visualizes
pairwise Kullback–Leibler divergence (KLD) between the cell-number weighted
average of the replicate wells. Clustering is performed on the pairwise KLD matrix
with correlation as distance, and average linkage.
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Additionally, RP enables the analysis of underlying image features by the
Colour Frame (CF) module. CF works by visualizing the feature distribution of
cells from the regression plane, using an artificial colour scale. In particular, the
user selects a specific feature and adjusts the visualization settings to define a colour
for each cell icon’s frame in the regression plane. (Figs. 3d and 4b). Notably, CF can
be used either for fine tuning of the TS, or for assessing features of interest after
prediction.

Finally, the Trajectory Plot (TP) facilitates the assessment of live-cell data
composed of time-resolved image sequences of the same fields. Organizing the
corresponding single-cells into trajectories using the predicted coordinates of the
regression plane enables the visualization of the dynamics of underlying processes
(Fig. 4c–f). TP is a multifunctional visualization tool that facilitates a better
understanding of the continuous aspect of biological processes and offers several
possibilities to investigate cell fates or to compare the development of particular
cells as a function of time. Filtering functions help to find subgroups of phenotypes
with different behaviours. Interestingly, the dynamics of the process can be
perceived by animating the evolution of trajectories (Supplementary Movies 7, 8).
We note that the observed distances and the derived speed of motion in trajectories
are completely user-defined, hence they should be interpreted relative to the
designed training set. This is a general property of supervised methods and
represents a trade-off between customizability and fully unbiased approaches.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Synthetic dataset: https://data.broadinstitute.org/bbbc/image_sets.html (dataset ID:
BBBC031). Lipid droplet dataset: https://doi.org/10.6084/m9.figshare.c.5067638.v136.
Mitocheck dataset: http://www.mitocheck.org/mitotic_cell_atlas/downloads/v1.0.1/
mitotic_cell_atlas_v1.0.1_fulldata.zip. The training set for the Mitocheck data generated
in this study is available as Supplementary Data 2. Drosophila dataset: https://doi.org/
10.6084/m9.figshare.c.5075093.v137. Source data are provided with this paper.

Code availability
RP is a new module of ACC (current version 3.1). ACC is written in MATLAB (The
MathWorks, Inc., USA). ACC supports the most common image formats (e.g. tif, bmp,
png) and it works under Windows 64-bit, Linux, and OS X environments. Source code
and standalone versions (which do not require a MATLAB license), video tutorials, and
help documentation files are publicly available at: www.cellclassifier.org. All the ACC
materials are copyright protected and distributed under GNU General Public License
version 3 (GPLv3). Further software involved in this study: CellProfiler v1 is available
freely at: https://cellprofiler.org/previous-releases. The CIDRE framework is freely
available at: https://github.com/smithk/cidre. The nucleAIzer pipeline source code is
available at: https://github.com/spreka/biomagdsb. The experiments involving Matlab
were conducted with Matlab v9.5.0.1298439 (R2018b). The data analysis involving
ImageJ was conducted with version 1.49b.
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