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Projective Preferential Bayesian Optimization 

Petrus Mikkola 1 Milica Todorović 2 arvi 2 Patrick Rinke 2 Samuel Kaski 1 3 Jari J¨ 

Abstract 
Bayesian optimization is an effective method for 
fnding extrema of a black-box function. We 
propose a new type of Bayesian optimization 
for learning user preferences in high-dimensional 
spaces. The central assumption is that the under-
lying objective function cannot be evaluated di-
rectly, but instead a minimizer along a projection 
can be queried, which we call a projective pref-
erential query. The form of the query allows for 
feedback that is natural for a human to give, and 
which enables interaction. This is demonstrated 
in a user experiment in which the user feedback 
comes in the form of optimal position and orien-
tation of a molecule adsorbing to a surface. We 
demonstrate that our framework is able to fnd a 
global minimum of a high-dimensional black-box 
function, which is an infeasible task for existing 
preferential Bayesian optimization frameworks 
that are based on pairwise comparisons. 

1. Introduction 

Let f : X → R be a black-box function defned on aQDhypercube X = [ad, bd] where D ≥ 2. Without loss d=1 
of generality we assume that 0 ∈ X . The objective is to fnd 
a global minimizer 

∗ x = argmin f(x). (1) 
x∈X 

We assume, as in Preferential Bayesian Optimization (PBO, 
González et al., 2017), that f is not directly accessible. In 

0PBO, queries to f can done in pairs of points x, x ∈ X , 
and the binary feedback indicates whether f(x) > f(x0). In 
contrast, in our work we assume that queries to f are be done 
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Figure 1. An illustration of a projective preferential query on 
molecular properties: in which rotation is the molecule most likely 
to bind to the surface. Here, x ∈ X describes the location and 
orientation of a molecule as a vector x = (X, Y, Z, a, b, c). In the 
fgure, the projective preferential query (ξ, x) fnds the optimal 
rotation along the horizontal plane, defned by the coordinate b. 
This corresponds to setting ξi = 0 to all coordinates i except the 
one corresponding to b, and by rotating the molecule the expert 
then gives the optimal value α ∗ that corresponds to the optimal 
value for coordinate b. The other coordinates are kept fxed (these 
are determined by x). 

over the projection onto a projection vector ξ ∈ Ξ ⊂ X . 
The feedback is the optimal scalar projection, that is, the 
length α∗ of the projection in the direction ξ. We assume 
that there are zero coordinates in ξ, and these coordinates 
are set to fxed values described by a reference vector x ∈ X . 
Formally, given a query (ξ, x), the feedback is obtained as 
a minimizer over the possible scalar projections, 

α ∗ = argmin f(αξ + x), (2) 
α∈Iξ 

where Iξ ≡ {α ∈ R|αξ + x ∈ X}. 

What are then natural use cases for such projective prefer-
ential queries? The main motivation comes from humans 
serving as the oracles. The form of the query enables eff-
cient learning of user preferences over choice sets in which 
each choice has multiple attributes, and in particular over 
continuous choice sets. An important application is knowl-
edge elicitation from trained professionals (doctors, physi-

mailto:samuel.kaski@aalto.fi
mailto:petrus.mikkola@aalto.fi


Projective Preferential Bayesian Optimization 

cists, etc.). For example, we may learn a material scientists 
preferences, that is, insight based on prior knowledge and 
experience, over molecular translations and orientations as 
a molecule adsorbs to a surface. In this case, a projective 
preferential query could correspond to fnding an optimal 
rotation (see Figure 1), which the scientists can easily give 
by rotating the molecule in a visual interface. 

Probabilistic preference learning is a relatively new topic 
in machine learning research but has a longer history in 
econometrics and psychometrics (McFadden, 1981; 2001; 
Stern, 1990; Thurstone, 1927). A wide range of applications 
of these models exists, for instance in computer graphics 
(Brochu et al., 2010), expert knowledge elicitation (Souf-
ani et al., 2013), revenue management systems of airlines 
(Carrier & Weatherford, 2015), rating systems, and almost 
any application that contains users’ preference modeling. 
An established probabilistic model is Thurstone-Mosteller 
(TM) model that measures a process of pairwise compar-
isons (Thurstone, 1927; Mosteller, 1951). In the preference 
learning context, the models based on the TM-model can be 
applied to learning preferences from pairwise comparison 
feedback (e.g. Chu & Ghahramani, 2005). An extension of 
this research into the interactive learning setting is studied 
by, among others, Brochu et al. (2008) and González et al. 
(2017). All these approaches resort to pairwise feedbacks. 
Koyama et al. (2017) proposed an extension of Bayesian op-
timization for learning optimal parameter values for visual 
design tasks by letting a user give feedback as a slider manip-
ulation. They considered only two pairwise comparisons per 
slider since they tested to “included more sampling points” 
but they “did not observe any signifcant improvement in 
the optimization behavior”. 

A drawback of most preference learning frameworks is their 
incapability to handle high-dimensional input spaces. The 
underlying reason is a combinatorial explosion in the num-
ber of possible comparisons with respect to the number of 
dimensions D, O(K2D), given K grid-points per dimen-
sion. This implies that a single pairwise comparison has low 
information content in high-dimensional spaces. This prob-
lem was mitigated by González et al. (2017) by capturing 
the correlations among pairs of queries (duels). However, 
it is still diffcult to scale that method to high-dimensional 
spaces, say higher than 2-dimensional (see Section 4). Fur-
thermore, the numerical computations become infeasible in 
a high-dimensional setting, especially the optimization of 
an acquisition function or fnding a Condorcet winner. 

In this paper, we introduce a Bayesian framework, which we 
call Projective Preferential Bayesian Optimization (PPBO), 
that scales to high-dimensional input spaces. A main rea-
son is that the information content of a projective prefer-
ential query is much higher than that of a pairwise pref-
erential query. A projective preferential query is equiv-

alent to infnite pairwise comparisons along a projection. 
An important consequence is that with projective preferen-
tial queries, the user’s workload in answering the queries 
will be considerably reduced. Source code is available at 
https://github.com/AaltoPML/PPBO. 

2. Learning preferences from projective 
preferential feedback 

In this section we introduce a Bayesian framework capable 
of dealing with projective preferential data. A central idea 
is to model the user’s utility function, that is f , as a Gaus-
sian process as frst proposed by Chu & Ghahramani (2005). 
We extend this line of study to allow projective preferen-
tial queries, by deriving a tractable likelihood, proposing a 
method to approximate it, and introducing four acquisition 
criteria for enabling interactive learning in this setting. 

In this paper, for convenience, we will formulate the method 
for maximization instead of minimization as in (2), without 
loss of generality. 

2.1. Likelihood 

Our probabilistic model of user preferences is built upon 
the Thurstone’s law of comparative judgement (Thurstone, 
1927). A straightforward way to formalize this would be 
to assume pairwise comparisons are corrupted by Gaussian 
noise: x � x0, if and only if f(x) + ε > f(x0) + ε0, where 
the latent function f is a utility function that characterizes 
user preferences described by the preference relation �. 
The standard assumption is that ε and ε0 are identically 
and independently distributed Gaussians. Here, we deviate 
slightly from this assumption: Given two alternatives (αξ + 
x), (βξ + x) ∈ X , we assume that αξ + x � βξ + x, if and 
only if f(αξ + x) + W (α) > f(βξ + x) + W (β), where 
W is a Gaussian white noise process with zeromean and 
autocorrelation E(W (t)W (t + τ )) = σ2 if τ = 0, and zero 
otherwise. 

We would like to fnd the likelihood for an observation 
(α, (ξ, x)) that corresponds to uncountably infnite pairwise 
comparisons: αξ+x � βξ+x for β 6= α. For each compar-
ison we condition on W (α) (more details in Supplementary 
material), 

P (αξ + x � βξ + x | W (α) = w)� � 
f(βξ + x) − f(αξ + x) − w 

= 1 − Φ ,
σ 

where Φ is the cumulative distribution function of the stan-
dard normal distribution. For a single comparison we have 

P (αξ + x � βξ + x)� � 
f(βξ + x) − f(αξ + x) 

= 1 − [Φ ∗ φ] ,
σ 

https://github.com/AaltoPML/PPBO
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where φ is the probability density of the standard normal 
distribution and ∗ is the convolution operator. For infnite 
comparisons, we frst consider a fnite number of compar-
isons m. By their independence, we have 

P (αξ + x � β1ξ + x, ..., αξ + x � βmξ + x) 
m � � ��Y f(βj ξ + x) − f(αξ + x) 

= 1 − [Φ ∗ φ] . 
σ 

j=1 

integral � Z �� �f(βξ + x) − f(αξ + x) 
exp − [Φ ∗ φ] dβ . 

σIξ 

The joint log-likelihood of a dataset D, denoted as L(D|f), 
takes the form 

N ZX � f(βξi i) − f(αiξi i) �+ x + x − [Φ ∗ φ] dβ. 
σIi=1 ξi 

2.2. Prior 

First, we introduce notation. Assume that N projective 
preferential queries have been performed and gathered into 
a dataset D = {(αi , (ξi , xi))}N For every data in-i=1. 
stance (αi , (ξi , xi)), we also consider a sequence of pseudo-
observations {(βi ξi , xi)}m Technically, the pseudo-j j=1. 
observations are Monte-Carlo samples needed for integrat-
ing the likelihood. The latent function values evaluated on 
those points are gathered into a vector, � � 

f (i) ≡ f(αiξi i), {f(βj
i ξi i)}m+ x + x .j=1 

The latent function vector over all points is formed by con-
catenating over f ≡ (f (i))N 

i=1. 

The user’s utility function f is modelled as a Gaussian pro-
cess (Rasmussen & Williams, 2005). GP model fts ideally 
to this objective, since it is fexible (non-parametric) and can 
conveniently handle uncertainty (predictive distributions can 
be derived analytically). In particular, it allows us to have 
insight into those regions of the space X in which either we 
are uncertain about user preferences due to lack of data, or 
because the user gives inconsistent feedback. A possible 
reason for the latter is that one of the preference axioms, 
transitivity or completeness, is violated in those regions. A 
weak preference relation � is complete if for all x, y ∈ X , 
either x � y or y � x holds. That is, a user is able to 
reveal their preferences over all possible pairwise compar-
isons. Similarly, � is transitive if for any x, y, z ∈ X the 
following holds: (x � y and y � z) implies that x � z. 
That is, a user has consistent preferences. This together 

with the continuity of � guarantees the existence of a real-
valued continuous utility function that represents � (Debreu, 
1954). 

Thus, we assume as Chu & Ghahramani (2005), that the 
prior of the utility function follows a zero-mean Gaussian 
process, 

1 1 
f>Σ−1f),p(f) = N 1 exp(− 

(2π) 2 |Σ| 2 2 

By letting the number of points m in an increasing sequence 
β1, ..., βm of the partition of the interval Iξ\{α} to ap-
proach infnity, we can interpret this as a Volterra (product) 

where the ijth-element of the covariance matrix is de-
itermined by a kernel k as Σij = k(x , xj ). Through-

out the paper, we assume the squared exponential kernel 
21k(x, x) = σ2 exp( kx − x0k ), where the σf and l aref −2l 

hyperparameters. 

2.3. Posterior 

For the sake of simplicity, we use the Laplace approxima-
tion for the posterior distribution. A maximum a posteriori 
(MAP) estimate is needed for that, 

argmax P(f |D) = argmax(P(f)L(D|f)) = argmax T (f), 
f f f 

where we denote the functional (log-scaled posterior) 

T (f ) ≡ − 
1 
f>Σ−1f 
2 

N ZX � i) �f(βξi + xi) − f(αiξi + x − [Φ ∗ φ] dβ. 
σIi=1 ξi 

The convolution Φ ∗ φ can be effciently approximated by 
Gauss-Hermite quadrature. The outer integral is approxi-
mated as a Monte-Carlo integral, Z � �f(βξ + x) − f(αξ + x)

[Φ ∗ φ] dβ 
σIξ Xm � �`(Iξ) f(βj ξ + x) − f(αξ + x)≈ [Φ ∗ φ] , 

m σ 
j=1 

where the pseudo-observations (βj ξ)
m
j for j = 1, ..., m are 

sampled from a suitable distribution. Our choice is to use a 
family of truncated generalized normal (TGN) distributions, 
since it provides a continuous transformation from the uni-
form distribution to the truncated normal distribution, such 
that the locations of distributions can be specifed. The idea 
is to concentrate pseudo-observations more densely around 
the optimal value αξ as the number of queries increases. 
For more details, see Supplementary material. 

For notational convenience, defne 

f(βj
i ξi + xi) − f(αiξi + xi)

Δi,j (f) ≡ . 
σ 



����

Projective Preferential Bayesian Optimization QDIf the domain is normalized to X = [0, 1], and the d=1 
ξprojections are normalized to ξ = , then `(Iξ) = 1.kξk∞ 

Hence, under this normalization, the functional T can be 
approximated as 

N mXX1 1 � � 
T (f) ≈ − f>Σ−1f − [Φ ∗ φ] Δi,j (f) . 

2 m 
i=1 j=1 

The MAP estimate can be effciently solved by a second-
order iterative optimization algorithm, since the gradient 
and the Hessian can be easily derived for T . 

The Laplace approximation of the posterior amounts to 
the second-order Taylor approximation of the log posterior 
around the MAP estimate. In the ordinary (non-log) scale, 
this reads � 1 � 
P(f |D) ≈ P(fMAP|D) exp − (f − fMAP)

>H(f − fMAP) ,
2 

where the matrix H is the negative Hessian of 
the log-posterior at the MAP estimate, H ≡ 
−rr log P(f |D)|f = Σ−1 + Λ.1 In other words, the =fMAP 

posterior distribution is approximated as a multivariate 
normal distribution with mean fMAP and the covariance 
matrix (Σ−1 + Λ)−1 . 

2.4. Predictive distribution 

Based on the well-known properties of the multivariate 
Gaussian distribution, the predictive distribution of f is also 
Gaussian. Given test locations (y(1), ..., y(M )), consider 
the N by M matrix K ≡ [k(y(j), x(i))]ij . The predictive 
mean and the predictive covariance at test locations are (for 
more details see (Rasmussen & Williams, 2005) or (Chu & 
Ghahramani, 2005)) 

µpred = K>Σ−1fMAP 

Σpred = Σ
0 − K>(Σ + Λ−1)−1K, 

where Σ0 is the covariance matrix of the test locations. 

3. Sequential learning by projective 
preferential query 

In this section, we discuss how to select the next projective 
preferential query (ξ, x). We will choose the next query 
as a maximizer of an acquisition function α(ξ, x), for in-
stance, we will consider a modifed version of the expected 

1We denote the partial derivatives matrix evaluated at MAP 
estimate as 

N m 
∂2 1 XX � � 

Λ ≡ [Φ ∗ φ] Δi,j (f) . 
∂f∂f> m 

i=1 j=1 f =fMAP 

improvement acquisition function (Jones et al., 1998). The 
optimization (ξ, x)next = argmax(ξ,x) α(ξ, x) is carried 
out by using Bayesian optimization (more details in Supple-
mentary material). 

If the oracle is a human, this allows us to learn user prefer-
ences in an iterative loop, making PPBO interactive. How-
ever, this interesting special case, where f is a utility func-
tion of a human, also brings forth issues due to bounded 
rationality. We apply here the following narrow defnition 
of this more general concept (see Simon, 1990): Bounded 
rationality is the idea that users give feedback that refects 
their preferences, but within the limits of the information 
available to them and their mental capabilities. 

3.1. The effects of bounded rationality on the optimal 
next query 

If the oracle is a human, it is important to realize that the 
optimal next (ξ, x) is not solely the one which optimally 
balances the exploration-exploitation trade-off – as it is 
for a perfect oracle – but the optimal (ξ, x) takes also into 
account human cognitive capabilities and limitations. For 
instance, the more there are non-zero coordinates in ξ, the 
greater the “cognitive burden” to a human user, and the 
harder it becomes to give useful feedback. Thus, if there is a 
human in the loop, the choice of ξ should take into account 
both the optimization needs and what types of queries are 
convenient for the user. 

The projective preferential feedback (2) may not be single-
valued or even well-defned for all ξ ∈ Ξ, if the oracle is a 
human. For instance, the user may not be able to explicate 
their preferences with respect to the dth attribute, that is, the 
preferences do not satisfy the completeness axiom. Formally, 
this means that if ξ = ed (the dth-standard unit vector), 
then for some x ∈ X it holds that argmaxα∈Iξ 

f(αξ + x) 
is multi-valued, a random variable or not well-defned – de-
pending on how we interpret the scenario in which the user 
should say “I do not know” but instead gives an arbitrary 
feedback. Fortunately, this incompleteness can be easily 
handled when a GP is used for modelling f ; it just implies 
that the posterior variance is high along the dimension d. 

A possible solution would be to allow the answer “I do 
not know”, and to design an acquisition function that is 
capable of discovering and avoiding those regions in the 
space X where the user gives inconsistent feedback due to 
any source of bounded rationality. This challenge is left for 
future research. It is noteworthy that the acquisition function 
we introduce next, performed well in the user experiment 
covered in Section 5. 
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3.2. Expected improvement by projective preferential 
query 

We defne the expected improvement by projective preferen-
tial query at the nth-iteration by � �� ∗EIn(ξ, x) ≡ En max max f(αξ + x) − µ , 0 , (3)

α∈Iξ 
n 

∗where µ denotes the highest value of the predictive poste-n 
rior mean, and the expectation is conditioned on the data 
up to the nth-iteration. The maximum over α models the 
anticipated feedback. 

EIn can be approximated as a Monte-Carlo integral (up to a 
multiplicative constant that does not depend on (ξ, x)), 

KX1 � ∗ max max f̃  
k(αξ + x) − µ , 0 , (4)nK α∈Iξ 

k=1 

where maxα∈Iξ f̃
 
k(αξ + x) is approximated by using dis-

crete2 Thompson sampling as described in (Hernández-
Lobato et al., 2014). Discrete Thompson sampling draws a 
fnite sample from the GP posterior distribution, and then 
returns the maximum over the sample. The steps needed to 
approximate EIn are summarized in Algorithm 1. 

Algorithm 1 Approximate EIn(ξ, x) 
input (ξ, x) and K ≥ 1, J ≥ 1 

1. Compute (Σ + Λ−1)−1 

for k = 1, 2, ..., K do 
2. Draw (βj )

J
j=1 �J

3. Draw f̃(βj ξ + x) from the predictive distribu-
j=1� � 

tion N µpred, Σpred�� �J
4. zk ← maxj f̃(βj ξ + x) 

j=1 
end for PK � 

1 ∗output k=1 max zk − µ , 0K n 

The bottlenecks are the frst and the third steps. In the third 
step, a predictive covariance matrix of size J ×J needs to be 
computed, and then a sample from the multivariate normal 
distribution needs to be drawn. Hence, the time complex-

3ity of Algorithm 1 is O(N3m + KN2m2J + KNmJ2 + 
KJ3), where the terms come from a matrix inversion (the 
frst step), two matrix multiplications, and a Cholesky de-
composition, respectively. Recall that N, m, K and J refer 
to the number of observations, pseudo-observations, Monte-
Carlo samples, and grid points, respectively. 

2Another alternative is to consider continuous Thompson sam-
pling to draw a continuous sample path from the GP model, and 
then maximize it. The method is based on Bochner’s theorem and 
the equivalence between a Bayesian linear model with random 
features and a Gaussian process. For more details see (Hernández-
Lobato et al., 2014). 

3.3. Pure exploitation and exploration 

In the experiments we use pure exploration and exploitation 
as baselines. A natural interpretation of pure exploitation 
in our context is to select the next query (ξ, x) such that 

∗ξ + x = x ≡ argmaxx0 ∈X µn(x
0), where µn(x

0) is the 
posterior mean of the GP model at location x0, given all the 
data so far Dn. 

We interpret pure exploration as maximization of the GP 
variance on a query (ξ, x) given the anticipated feedback. 
That is, the pure explorative acquisition strategy maximizes 
the following acquisition function � � 

Explore(ξ, x) ≡ Vn max f(αξ + x) . (5)
α∈Iξ 

In practice, (5) is approximated by Monte-Carlo integration 
and discrete Thompson sampling in the same vein as in 
Algorithm 1. 

3.4. Preferential coordinate descent (PCD) 

The fourth acquisition strategy corresponds to the inter-
esting special case where ξ = ed (the dth-standard unit 
vector), and the coordinates d are rotated in a cycli-
cal order for each query. The reference vector x = 
(x1, ..., xd−1, 0, xd+1, ..., xD) can be chosen in several 
ways, but it is natural to consider an exploitative strategy 

∗in which x is set to x except for the dth-coordinate which 
is set to zero. We call this acquisition strategy Preferential 
Coordinate Descent (PCD), since PPBO with PCD acquisi-
tion is closely related to a coordinate descent algorithm that 
successively minimizes an objective function along coordi-
nate directions. The PPBO method with PCD acquisition 
(PPBO-PCD) differs from the classical coordinate descent 
in two ways: First, PPBO-PCD assumes that direct function 
evaluations are not possible but instead projective preferen-
tial queries are. Second, it models the black-box function 
f (as a GP) whereas the classical coordinate descent does 
not. This makes PPBO-PCD able to take advantage of past 
queries from every one-dimensional optimization. 

When comparing to other acquisition strategies, we show 
that PCD performs well in numerical experiments (when f 
is not a utility function but a numerical test function). This 
agrees with the results in the optimization literature; for 
instance: if f is pseudoconvex with continuous gradient, 
and X is compact and convex with “nice boundary”, then 
the coordinate descent algorithm converges to a global min-
imum (Spall, 2012, Corollary 3.1). However, PCD may not 
perform so well in high-dimensional spaces, since it cannot 
query in between the dimensions. For instance, the expected 
improvement by projective preferential query outperformed 
PCD on a 20D test function (see Section 4), since it allows 
to query arbitrary projections. 
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4. Numerical experiments 

In this section we demonstrate the effciency of the PPBO 
method in high-dimensional spaces, and experiment with 
various acquisition strategies in numerical experiments on 
simulated functions. 

The goal is to fnd a global minimum of a black-box function 
f by querying it either through (i) pairwise comparisons or 
(ii) projective preferential queries. For (i) we use the PBO 
method of González et al. (2017), which is state of the art 
among Gaussian process preference learning frameworks 
that are based on pairwise comparisons. For (ii) we use 
the PPBO method as introduced in this paper. The four 
different acquisition strategies introduced in Section 3 are 
compared against the baseline that samples a random (ξ, x). 
For the PBO method, we consider a random and a dueling-
Thompson sampling acquisition strategies. In total seven 
different methods are compared: the expected improvement 
by projective preferential query (PPBO-EI), pure exploita-
tion (PPBO-EXT), pure exploration (PPBO-EXR), preferen-
tial coordinate descent (PPBO-PCD), random (PPBO-RAND), 
and for the PBO; random (PBO-RAND) and a variant of 
dueling-Thompson sampling (PBO-DTS). For more details, 
see Supplementary material. 

For f we consider four different test functions: Six-hump-
camel2D, Hartmann6D, Levy10D and Ackley20D.3 We add 
a small Gaussian error term to the test function outputs. 
There are as many initial queries as there are dimensions in 
a test function. The ith-initial query corresponds to ξ = ei, 
that is, to the ith-coordinate projection, and the reference 
vector x is uniformly random. We consider a total budget 
of 100 queries. The results are depicted in Figure 2.4 

PPBO-PCD obtained the best performance on three of the 
four test functions. On the high-dimensional test function 
Ackley20D, PPBO-EI performed best. Unsurprisingly, all 
PPBO variants clearly outperformed all PBO variants. Since 
the performance gap between PPBO-RAND and PBO-RAND 
is so high, we conclude that from the optimization perspec-
tive; whenever a projective preferential query is possible, a 
PPBO-type of approach should be preferred to an approach 
that is based on pairwise comparisons. However, we note 
that it is better to think of PPBO as a complement, not as 
a substitute for PBO. In the applications, pairwise com-
parisons may be preferred, for instance, if they are more 
convenient to a user, and the underlying choice space is 
low-dimensional. 

To illustrate the low information content of pairwise com-
parisons, we ran a test on the Six-hump-camel2D function. 

3https://www.sfu.ca/∼ssurjano/optimization.html 
4All experiments of each test function were run on a computing 

infrastructure of 24x Xeon Gold 6148 2.40GHz cores and 72GB 
RAM. The longest experiment (Ackley20D) took in total 24h. 

We trained a GP classifer with 2000 random queries (du-
els), and found a Condorcet winner (see González et al., 
2017) by maximizing the soft-Copeland score (33 × 33 
MC-samples used for the integration) by using Bayesian 
optimization (500 iterations with 10 optimization restarts). 
This took 41 minutes on the 8th-gen Intel i5-CPU, and the 
distance to a true global minimizer was kxc − xtruek = 
k(0.1770, −0.0488) − (0.0898, −0.7126)k ≈ 0.67, and 
the corresponding function value was 0.1052 compared to 
a true global minimum value −1.0316. In contrast, PPBO-
RAND reached this level of accuracy at the frst queries, as 
seen from Figure 2. 

5. User experiment 
In this section we demonstrate the capability of PPBO to 
correctly and effciently encode user preferences from pro-
jective preferential feedback. 

We consider a material science problem of a single organic 
molecule adsorbing to an inorganic surface. This is a key 
step in understanding the structure at the interface between 
organic and inorganic flms inside electronic devices, coat-
ings, solar cells and other materials of technological rele-
vance. The molecule can bind in different adsorption con-
fgurations, altering the electronic properties at the interface 
and affecting device performance. Exploring the structure 
and property phase space of materials with accurate but 
costly computer simulations is a diffcult task. Our objective 
is to fnd the most stable surface adsorption confguration 
through human intuition and subsequent computer simula-
tions. The optimal confguration is the one that minimises 
the computed adsorption energy. 

Our test case is the adsorption of a non-symmetric, bulky 
molecule camphor on the fat surface of (111)-plane termi-
nated Cu slab. Some understanding of chemical bonding is 
required to infer correct adsorption confgurations. The user 
is asked to consider the adsorption structure as a function 
of molecular orientation and translation near the surface. 
These are represented with 6 physical variables: angles α, 
β, γ of molecular rotation around the X, Y, Z Cartesian 
axes (in the range [0, 360] deg.), and distances x, y, z of 
translation above the surface (with lattice vectors following 
the translational symmetry of the surface). The internal 
structures of the molecule and surface were kept fxed since 
little structural deformation is expected with adsorption. A 
similar organic/inorganic model system and experiment sce-
nario was previously employed to detect the most stable 
surface structures with autonomous BO, given the energies 
of sampled confgurations (Todorović et al., 2019). 

In this interactive experiment, the users encode their 
preferred adsorption geometry as a location in the 6-
dimensional phase space. We employ the quantum-
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Figure 2. Convergence of different methods across 4 objective functions. The results are averaged over 25 different random initializations 
(for PBO we run 100 seeds). The vertical axis represent the value of the true objective function at the best guess: xopt = argmaxx µn(x) 
in PPBO, and xopt = ”Condorcet winner” in PBO. The horizontal axis represents the number of projective preferential queries in 
PPBO, and the number of pairwise comparisons in PBO. The black horizontal dashed line indicates the global minimum of the objective 
function (a small Gaussian noise is added to the function values). The standard deviations are depicted by the vertical lines. 

mechanical atomistic simulation code FHI-aims (Blum et al., 
2009) to i) compute the adsorption energy E of this preferred 
choice, and ii) optimise the structure from this initial po-
sition to fnd the nearest local energy minimum in phase 
space, E*. We also consider the number of optimization 
steps N needed to reach the nearest minimum as a measure 
of quality of the initial location. 

There are four different test users: two materials science ex-
perts (human: a PhD student and an experienced researcher, 
both of them know the optimal solution), a non-expert (hu-
man), and a random bot (computer). The hypothesis is that: 
the materials science experts should obtain structures as-
sociated with lower energy minimum points. We consider 
only coordinate projections, that is ξ ∈ {e1, ..., e6}. In 
other words, we let the user choose the optimal value for 
one dimension at a time. 

The total number of queries was 24, of which 6 were initial 
queries. The ith-initial query corresponded to ξ = ei, that 
is, to the ith-coordinate projection. The initial values for 
the reference coordinate vector x were fxed to the same 
value across all user sessions. For acquisition, we used 
the expected improvement by projective preferential query. 
Since we allowed only coordinate projections for ξ, weR 
frst selected ξ = argmaxξ∈{e1,...,e6} EIn(ξ, x)dx,n+1 

and then, either xn+1 = argmax µn(x) (EI-EXT), or thex 
next xn+1 was drawn uniformly at random (EI-RAND). The 
computer bot gave random values to the queries; to provide 
some consistency to the bot, xn+1 was selected by maxi-
mizing a standard expected improvement function (EI-EI). 
The results are summarized in Table 1. 

Our frst observation is that PPBO can distinguish between 
the choices made by a human and a computer bot. Hu-
man choices pinpoint atomic arrangements that are close 
to nearby local minima (small N), while the random bot’s 
choices are far less reasonable and require much subsequent 
computation to optimise structures. For all human users, 
the preferred molecular structures were placed somewhat 
high above the surface, which led to relatively high E values. 
With this query arrangement, it appears the z variable was 
the most diffcult one to estimate visually. Human-preferred 
molecular orientations were favourable, so the structures 
were optimised quickly (few N steps). 

The quality of user preference is best judged by the depth 
of the nearest energy basin, denoted by E*. It describes the 
energy of the structure preferred by a user. Here, there is 
a marked divide by expertise. The structures refned from 
the choices of the bot and non-expert are local minima of 
adsorption, characterised by weak dispersive interactions. 
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Table 1. Results of the user experiment. The absorption energies 
were computed by using density functional theory (DFT) meth-
ods. The energies represent the absorption energies of the relaxed 
structures corresponding to the most preferred confgurations. 

User Acq. of (ξ, x) E (eV) E* (eV) N 

Expert 1 EI-RAND -0.454 -1.023 62 
Expert 1 EI-EXT -0.371 -1.029 39 
Expert 2 EI-RAND -0.611 -1.007 37 
Expert 2 EI-EXT -0.564 -1.030 45 
Non-expert EI-RAND -0.481 -0.771 32 
Non-expert EI-EXT -0.511 -0.762 56 
Bot EI-EI -0.365 -0.643 70 
Bot EI-EI -0.612 -0.753 63 
Bot EI-EI 2.231 -0.959 127 
Bot EI-EI -0.216 -0.783 88 

The expert’s choice led to two low-energy structure types 
that compete for the global minimum, and feature strong 
chemical bonding of the O atom to the Cu surface. Thus, 
the data (Table 1, column E*: rows 1-4 versus rows 5-10) 
supports our hypothesis: the materials science experts do 
obtain structures associated with lower energy minimum 
points. 

The fndings above demonstrate that the PPBO framework 
was able to encode the expert knowledge described via 
preferences. However, since there are only 10 samples, 
further work will be needed to validate the results. 

6. Conclusions 

In this paper we have introduced a new Bayesian framework, 
PPBO, for learning user preferences from a special kind of 
feedback, which we call projective preferential feedback. 
The feedback is equivalent to a minimizer along a projection. 
Its form is especially applicable in a human-in-the-loop con-
text. We demonstrated this in a user experiment in which the 
user gives the feedback as an optimal position or orientation 
of a molecule adsorbing to a surface. PPBO was capable of 
encoding user preferences in this case. 

We demonstrated that PPBO can deal with high-dimensional 
spaces where existing preferential Bayesian optimization 
frameworks that are based on pairwise comparisons, such as 
IBO (Brochu, 2010) or PBO (González et al., 2017), have 
diffculties to operate. In the numerical experiments, the 
performance gap between PPBO and PBO was so high that 
we conclude: whenever a projective preferential query is 
possible, a PPBO-type of approach is preferable from the 
optimization perspective. However, we note that it is better 
to think of PPBO as a complement, not as a substitute for 

PBO. In the applications, pairwise comparisons may be 
preferred, for instance, if they are more convenient to a user. 

In summary, if it is possible to query a projective preferential 
query, then PPBO provides an effcient way for preference 
learning in high-dimensional problems. In particular, PPBO 
can be used for effcient expert knowledge elicitation in high-
dimensional settings which are important in many felds. 
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