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Abstract. Named entities are heavily used in the field of spoken language under-
standing, which uses speech as an input. The standard way of doing named entity
recognition from speech involves a pipeline of two systems, where first the au-
tomatic speech recognition system generates the transcripts, and then the named
entity recognition system produces the named entity tags from the transcripts. In
such cases, automatic speech recognition and named entity recognition systems
are trained independently, resulting in the automatic speech recognition branch
not being optimized for named entity recognition and vice versa. In this paper,
we propose two attention-based approaches for extracting named entities from
speech in an end-to-end manner, that show promising results. We compare both
attention-based approaches on Finnish, Swedish, and English data sets, underlin-
ing their strengths and weaknesses.

Keywords: Named entity recognition, Automatic speech recognition, End-to-
end, Encoder-decoder

1 Introduction

Named entity recognition (NER) is one of the main natural language processing (NLP)
tasks. The goal of this task is to find entities and classify them into predefined cate-
gories. These categories can vary depending on the application area, but the most com-
mon ones include person, location, organization, and date.

Named entities are heavily used in spoken language understanding (SLU) [4] [16]
[10], where the goal is to understand what has been spoken. For example, SLU is an
essential part of personal assistants in home automation and smartphone devices. These
personal assistants usually take speech as input, in which case the named entities need
to be recognized from spoken data.

Doing NER from speech imposes several challenges for the system. There are far
fewer annotated training data for spoken language than for textual data. The speech can
be informal, not following the conventional syntax of the language, which can cause
difficulties in detecting the entities. The generated transcripts from an automatic speech
recognition (ASR) system usually do not contain capitalization and punctuation, which
can cause the system to miss the entities.

The most common approach for doing named entity recognition from speech is
through a pipeline approach. In this approach, the ASR system generates transcripts,
and the NER system detects the entities in those transcripts. The output of the ASR
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system is usually lower-cased and noisy, in the sense that the word order can be mixed,
words might be missing or misspelled, etc. When developing a NER system for speech
data, these factors need to be taken into account.

It is possible to try to restore the capitalization and the punctuation from the tran-
scribed speech as explored in [7]. A maximum entropy model was used for NER on
transcripts generated by a speech recognition system for Chinese, utilizing n-best lists
[23]. These approaches improve the performance of the system on noisy speech data
but they are still sensitive to the speech recognition output and error propagation. To
deal with that, an end-to-end (E2E) approach was proposed that directly extracts named
entities from French speech [6]. The authors used an architecture similar to the Deep
Speech 2 [1], which was trained using the CTC algorithm [8]. A similar approach of
E2E named entity recognition using the Deep Speech 2 architecture for the English
language was explored in [22]. This is different from our proposed models, which use
either attention-based encoder-decoder (AED) or a hybrid CTC/AED architecture.

In this paper, we propose two approaches for doing E2E NER from speech. To the
best of our knowledge, this is the first attempt at NER using AED architecture in an E2E
manner. The first approach is called augmented labels (AL) and it is either a standard
AED or a hybrid CTC/AED architecture, where the transcripts are augmented with
named entity tags during training. The second is a multi-task (MT) approach, where
there are two decoder branches. One branch for doing automatic speech recognition
and another one for doing named entity recognition.

2 Data

For the Finnish experiments, we used the Finnish parliament data set [15], consisting of
about 1500 hours of recordings from the Finnish parliament. Since we do not have true
named entity labels for this data set, we used a separate NER system to annotate it. The
NER system is a bidirectional LSTM (BLSTM) neural network [9] with a Conditional
random field (CRF) [12] layer on top, that utilizes morph, character and word embed-
dings. The architecture is explained in more detail in [18]. The number of tokens and
named entity tags in the data set are presented in Table 1.

Table 1. Data distribution for the Finnish parliament data set.

Parameters Count
Audio length 1500 h
Total tokens 7.3 M
Unique tokens 337423
PER tags 44984
LOC tags 73860
ORG tags 65463

For the Swedish experiments, we used the Sprakbanken corpus, which is a public
domain corpus hosted by the National Library of Norway. It consists of 259 hours of



Attention-Based E2E NER From Speech 3

recordings. Since the corpus does not contain ground truth named entities, we used the
Swedish BERT model [14] to obtain the annotations. The number of tokens and named
entity tags are presented in Table 2.

Table 2. Data distribution for the Swedish data set.

Parameters Count
Audio length 259 h
Total tokens 1.4 M
Unique tokens 69310
PER tags 23258
LOC tags 7585
ORG tags 2231

Even though the goal of this paper is mainly focused on low-resource languages like
Finnish and Swedish, we additionally wanted to verify the performance of the models
on a well-known language, like English.

For the English experiments, we used the whole LibriSpeech data set [17], consist-
ing of about 1000 hours of recordings. The named entities for this data set were obtained
using the large uncased BERT model [5], fine-tuned on the CoNLL 2003 data set [19],
which we lower-cased before training. For testing the model with gold-standard named
entity tags, we used a data set which is a subset of a combination of multiple speech
recognition data sets, such as CommonVoice, LibriSpeech, and Voxforge. We will call
this data set English-Gold. The data set is annotated and provided by [22]. The number
of tokens and named entity tags in the English data sets are presented in Table 3.

Table 3. Data distribution for the English LibriSpeech and English-Gold data sets.

Parameters LibriSpeech English-Gold
Audio length 1000 h 148 h
Total tokens 9.6 M 1.3 M
Unique tokens 87600 41379
PER tags 194172 50552
LOC tags 66618 23976
ORG tags 11415 5025

3 Methods

To do E2E named entity recognition from spoken data, we will explore two approaches.
In the first approach, we will build an attention-based encoder-decoder model for ASR
by augmenting the labels with NER tags. In the second approach, we will explore multi-
task learning where the model simultaneously learns to transcribe speech and annotate
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it with named entity tags. Additionally, for the English and Swedish experiments, we
utilize the CTC loss, as explored in [21].

Generally, the E2E ASR models can benefit from an external language model [20]
but in our experiments we exclude it. The reason for that is because the augmented
labels approach produces an output where each word is followed by a named entity
tag. In such a case, adding an external language model trained on text will not benefit
us. On the other hand, the baseline ASR models can benefit from an external language
model but the goal of this paper is to explore an alternative way of doing named entity
recognition from speech, as opposed to the standard pipeline approach.

3.1 Pipeline NER Systems

To see how our proposed models perform in comparison to the pipeline approach, where
an ASR system generates the transcripts and then a NER system annotates them, we
trained BLSTM-CRF models for each of the data sets. The architecture of these models
is identical to the NER branch in the multi-task approach, described later in the paper.
The models are trained on the original transcripts for each of the data sets. Since the
English-Gold data set is small, we used the LibriSpeech model to initialize the weights
and then fine-tune it on that particular data.

3.2 Baseline ASR System

The baseline ASR architecture is the same as the augmented labels approach, which is
explained later in the paper. The only difference is that for the training of the baseline
models, we used the original transcripts, whereas for the augmented labels approach we
used the original transcripts augmented with named entity tags. We choose the archi-
tectures to be identical so that we can give a fair comparison between them.

3.3 Augmented Labels Approach

For this approach, we developed an attention-based encoder-decoder architecture that
takes audio features as input and produces transcripts with named entity tags. Let
X = (x1, x2, ..., xT ) be the audio features, where each feature is represented as xi
and i is the order of the feature. Additionally, we define the output character set Y =
(y1, y2, ..., yT ), where y consists of all the characters plus the special tokens: <UNK>,
<sos>, <eos>, O, PER, LOC, and ORG . The goal is to model the conditional proba-
bility:

P (Y |X) =
∏
i

P (yi|Y<i, X) (1)

In simpler terms, it predicts the i-th output character, given the previous characters and
the input features X . It does this using an encoder and a decoder.

The encoder is a BLSTM neural network, that uses audio features as input and
compresses them in a single hidden representation. This hidden representation is used
to initialize the decoder.
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The decoder is an LSTM neural network that takes the hidden vector, produced by
the encoder and generates the transcripts using an attention mechanism. As an attention
mechanism, we used Luong attention [13]. The scoring function for the attention is
hybrid + location-aware, as described in [3]. It is defined as:

score(henc, hdec) = v ∗ tanh(W e ∗ henc +W d ∗ hdec +W c ∗ conv + b) (2)

where, henc and hdec are the hidden states of the encoder and the decoder, tanh is a
hyperbolic tangent non-linearity, v and b are learnable weights, together with the W
matrices. The location-aware element conv is a convolution defined as:

conv = F ∗ αt (3)

where, F is a learnable matrix and αt is the alignment vector.
For the experiments where we additionally used the CTC loss, the final ASR loss is

calculated as:

Lasr = λLctc + (1− λ)Laed (4)

where, Lctc is the CTC loss, Laed is the decoder loss and λ is the weighting factor that
determines the contribution of the separate loss functions to the final loss.

As true labels, we used the transcripts, augmented with named entity tags, in a way
that each word is followed by its tag. This way, the model will jointly produce ASR
transcripts and NER tags.

3.4 Multi-Task Approach

The multi-task approach is an attention-based encoder-decoder architecture, similar to
the augmented labels approach. The difference between them is that this approach has
two separate decoder branches. The first branch does the automatic speech recognition
and is like the one in the augmented labels. The second one does the named entity
tagging and it consists of BLSTM with a CRF layer on top. This approach uses hard
parameter sharing, where the encoder is shared between both branches. Since it is a
multi-task learning approach, we have two separate loss functions that need to be jointly
optimized. The final loss function is calculated as:

L = βLasr + (1− β)Lner (5)

where Lasr is the loss from the ASR decoder, Lner is the loss from the NER decoder,
and β is a weighting factor that determines the contribution of both loss functions.

Similar to the augmented labels approach, in the experiments where we utilized the
CTC loss, the ASR loss Lasr is calculated as in Equation 4.

4 Experiments

In all the experiments, we used logarithmic filter banks with 40 filters and Adam op-
timizer [11]. For the multi-task approach, after the models converged, we additionally
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froze the encoder and the ASR decoder and trained only the NER branch, which im-
proved the multi-task NER results on most of the data sets. We will refer to this model
as MT*. The code was developed using Pytorch and is publicly available. 1

Speech features consist of a large number of timesteps, so processing them using
a standard BLSTM network is computationally expensive. To deal with that we used a
pyramidal BLSTM network. The pyramidal structure reduces the computational time
by concatenating every two consecutive timesteps in each layer.

In the Finnish and English experiments, the encoder consists of 5 pyramidal BLSTM
layers, whereas in the Swedish experiments we used 3 normal and 2 pyramidal BLSTM
layers. The reason for that is because the Swedish data set consists of short utterances,
so there are not many timesteps to be processed. The hidden size of the BLSTM net-
works is 450 in all the experiments, except for the Finnish, where we used a hidden size
of 300. After the last BLSTM layer, a dropout of 0.1 is applied.

In the augmented labels approach, the decoder consists of a character embedding
layer with a size of 150 and a single layer LSTM network. For the English and Swedish
experiments, the LSTM has a size of 450, whereas for the Finnish experiments, it has a
size of 300. The location-aware element in the attention has 150 filters for the English
and Swedish, and 100 filters for the Finnish experiments. A dropout of 0.1 is applied
after the attention mechanism.

In the multi-task approach, the ASR decoder is identical to the one in the augmented
labels, for all the experiments. The NER decoder uses pre-trained 300 dimensional
fastText word embeddings [2] as an input to the one-layer BLSTM. The size of the
BLSTM layer is 450 for the English and Swedish experiments, and 300 for the Finnish
ones. The BLSTM is followed by a fully connected layer with the same size and a
dropout layer with a probability of 0.1. In the end, the output is passed through a CRF
layer that produces the tag probabilities.

Since the English-Gold data is relatively small with only 148 hours, we used the
LibriSpeech data to pre-train the model and then fine-tune it on the English-Gold data
set.

In all the experiments, we allocated data for testing, which was not used during
training. As a loss function, we used the negative log-likelihood. For combining the
ASR and NER losses, as in Equation 5, we used β weighting factor of 0.8. For the
Swedish and English experiments, we additionally utilized the CTC loss, together with
negative log-likelihood, like in the Equation 4, with a λ weighting factor of 0.2.

5 Results

In this section we present the results obtained on Finnish, Swedish, and English data
sets, comparing both the augmented labels and multi-task approaches. For the evalua-
tion of the ASR results, we used the word error rate (WER) metric, and for the evalua-
tion of the named entity recognition results, we used the micro average F1 score.

1 https://github.com/Tetrix/E2E-NER-for-spoken-Finnish
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5.1 Finnish Results

In Table 4, we can see how both the augmented labels and multi-task approaches com-
pare against the baseline ASR model in terms of WER when evaluated on the Finnish
parliament data. From the results, we can notice that both approaches perform in pair
with the baseline ASR model, falling slightly behind. We can also see that the multi-
task approach performs slightly better than the augmented labels approach in terms of
WER. In Table 5, we can see how both approaches perform in terms of precision, re-
call, and F1 score. Additionally, we evaluated our models on the original transcripts and
on the transcripts that were generated by the models. We used the multi-task and the
fine-tuned multi-task models to do the evaluation on the original transcripts. From the
results, we can see that the fine-tuned multi-task model performs slightly better than
the standard multi-task model. On the transcripts generated by the model, which is a
harder task, we compared both multi-task approaches, along with the augmented labels
and the pipeline approach. The ASR transcripts for the pipeline approach were gen-
erated using the multi-task model, for all the data sets. From the results, we can see
that the fine-tuned multi-task approach achieved the best F1 score. We can also notice
that both multi-task approaches perform better than the pipeline approach, whereas the
augmented labels approach falls behind.

Table 4. WER on the Finnish test set.

Model WER
Baseline ASR 34.95
AL 36.06
MT 35.80

Table 5. Precision, recall and F1 score for the Finnish test set.

Transcripts Model Prec Rec F1

Original
MT 93.70 92.88 93.29
MT* 93.75 93.69 93.72

Generated

Pipeline 93.63 85.64 89.46
AL 92.65 81.61 86.78
MT 93.35 87.80 90.49
MT* 93.17 88.80 90.93

5.2 Swedish Results

Next, we present the Swedish results. In Table 6, we can see how both approaches per-
form in terms of WER, in comparison to the baseline model. Similar to the Finnish
experiments, we can see that both models fall slightly behind the baseline ASR model.
Additionally, we can observe that the augmented labels approach performs better than
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the multi-task approach. From Table 7, we can see how our models perform on the NER
task when evaluated on the original and the generated transcripts. When evaluated on
the original transcripts, the fine-tuned multi-task model performs better than the stan-
dard multi-task model, similar to the Finnish experiments. On the transcripts generated
by the models, we can observe that the augmented labels approach achieves the high-
est F1 score. We can also observe that both the augmented labels and the fine-tuned
multi-task approaches outperform the pipeline approach.

Table 6. WER on the Swedish test set.

Model WER
Baseline ASR 33.44
AL 33.82
MT 34.58

Table 7. Precision, recall and F1 score for the Swedish test set.

Transcripts Model Prec Rec F1

Original
MT 97.76 91.27 94.40
MT* 98.32 93.48 95.84

Generated

Pipeline 69.35 79.37 74.02
AL 74.96 78.13 76.51
MT 70.14 77.94 73.83
MT* 74.19 76.67 75.41

5.3 English Results

Next, we present the results obtained on the English data sets. In Table 8, we can see
how our models perform in terms of WER when evaluated on the LibriSpeech and
the English-Gold test sets. From the table, we can see that both approaches perform
slightly better than the baseline ASR model trained on the LibriSpeech data. On the
English-Gold, on the other hand, the multi-task model performs slightly better than the
baseline, whereas the augmented labels yields worse results. On the Libri clean test set,
both approaches perform really close, whereas on the Libri other test set, the multi-task
approach performs slightly better. Additionally, the multi-task approach performs better
than the augmented labels on the English-Gold test set as well.

On the NER task, presented in Table 9, when evaluated on the original transcripts,
the fine-tuned multi-task approach outperforms the normal multi-task approach on all
the English data sets. On the transcripts generated by the models, we can see that the
pipeline approach is better than our proposed E2E models on the LibriSpeech test sets.
On the manually annotated English Gold test set, on the other hand, the multi-task ap-
proach achieves the best F1 score. Additionally, both the multi-task and the augmented
labels approaches perform better than the pipeline approach.
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Table 8. WER on the LibriSpeech and English-Gold test sets.

Model Libri clean Libri other English-Gold
Baseline ASR 12.74 31.61 23.26
AL 12.34 30.88 23.51
MT 12.35 30.56 23.07

Table 9. Precision, recall and F1 score for the English test sets.

Libri clean Libri other English Gold
Transcripts Model Prec Rec F1 Prec Rec F1 Prec Rec F1

Original
MT 87.82 86.01 86.90 86.95 86.23 86.59 64.44 77.09 70.20
MT* 88.41 86.46 87.43 87.55 86.13 86.83 81.86 68.02 74.30

Generated

Pipeline 76.43 79.09 77.74 64.07 74.40 68.85 79.24 71.28 75.05
AL 79.77 63.47 70.69 70.21 52.15 59.85 82.60 69.30 75.21
MT 74.63 76.77 75.68 60.90 73.44 66.59 77.04 84.89 80.78
MT* 76.33 77.10 76.72 63.33 71.75 67.29 81.86 68.02 74.30

6 Analysis of the Results

To further investigate the NER performance of the models, we plotted confusion ma-
trices. In Figure 1, we can see how the augmented labels and fine-tuned multi-task
approaches perform on individual named entity classes on the Finnish data set. We can
notice from the confusion matrices that both approaches are doing a pretty good job at
detecting the entities, especially the location. On the other hand, they sometimes con-
fuse non-entities with entities. This is especially visible in the person and organization
classes, where some non-entities are tagged with either of them.

Fig. 1. Confusion matrices for the AL and MT* models, evaluated on the transcripts generated
by the models, using the Finnish parliament test set.
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Similar to the Finnish results, in Figure 2, we can observe that on the Swedish
data set, the models do not have difficulties recognizing the entities. Furthermore, we
can see that in a small number of cases, the models confuse the person entity with a
location. Additionally, we can see that most of the mistakes that the models make are
by confusing non-entities with entities, just like in the Finnish results.

Fig. 2. Confusion matrices for the AL and MT* models, evaluated on the transcripts generated
by the models, using the Swedish test set.

On the English-Gold test set, as shown in Figure 3, we can observe that the models
make more mistakes than on the other data sets. That is especially the case with the or-
ganization entity. The reason for that could be because there are far fewer organization
entities in the LibriSpeech and English-Gold data sets, in comparison to the other enti-
ties. To ensure that the bad recognition score for the organization entity is expected, we
additionally compared the score to the one obtained by the pipeline model. When eval-
uated on the test data, the pipeline approach also got a low score for the organization
entity. Generally, since the English-Gold data set is a combination of many different
data sets, it is expected that the domain mismatch negatively impacts the NER.

Fig. 3. Confusion matrices for the AL and MT* models, evaluated on the transcripts generated
by the models, using the English-Gold test set.
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7 Conclusion

In this paper, we presented two approaches for end-to-end named entity recognition and
evaluated them on Finnish, Swedish, and English data sets. We showed that both ap-
proaches perform similarly in terms of WER, against the baseline models. Even though
the WER results are not in pair with the current state of the art, the goal of this paper
is to show that named entities can be learned in an E2E manner, without sacrificing
too much of the ASR performance. This allows the ASR part to be optimized for the
NER task and vice versa. In terms of the F1 score, both approaches achieve promising
results. When comparing both systems, the multi-task approach outperforms the aug-
mented labels approach on the NER task by a significant margin, in all the experiments,
except the Swedish, when evaluated on the transcripts generated by the models. When
compared against the standard pipeline approach, our proposed models achieve better
results on most of the experiments. Generally, we can say that the multi-task approach
is more flexible, allowing us to additionally fine-tune the NER branch, which gives an
improvement in almost all the experiments. In the future, we plan to replace the models
with a Transformer architecture and see how it performs in comparison to the BLSTMs.
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