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Figure 1: Our neural network detects parkour spots from street level photographs. The figure shows example visualizations
of the results. Left: map view with dataset images as black and green dots, green ones containing detected spots. The image
closest to the mouse pointer is shown to allow quick browsing of the data. Middle: mouse click expands the image. Right:
visualizing the top-scoring detections.

ABSTRACT
We investigate deep neural networks in recognizing playful physi-
cal activity opportunities of the urban environment. Using transfer
learning with a pre-trained Faster R-CNN network, we are able to
train a parkour training spot detector with only a few thousand
street level photographs. We utilize a simple and efficient annota-
tion scheme that only required a few days of annotation work by
parkour hobbyists, and should be easily applicable in other contexts,
e.g. skateboarding. The technology is tested through parkour spot
exploration and visualization experiments. To inform and motivate
the technology development, we also conducted an interview study
about what makes an interesting parkour spot and how parkour
hobbyists find spots. Our work should be valuable for researchers
and practitioners of fields like urban design and exercise video
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games, e.g., by providing data for a location-based game akin to
Pokémon Go, but with parkour-themed gameplay and challenges.
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1 INTRODUCTION
To help people be physically active, the availability and accessi-
bility of exercise is of high importance [9]. From this perspective,
urban sports like parkour, skateboarding, and street workout are
highly relevant, as they can be practiced almost anywhere with
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Figure 2: An example of parkour practice suitable for both
beginners and more experienced traceurs. Captured at an
open parkour jam in Helsinki, demonstrated by https://
www.instagram.com/taavetsu.

only modest or no cost. However, it can be hard to find training
spots/areas that are both interesting and conveniently located. As
lack of time is one of the perceived barriers to physical activity
[8, 49], it would be desirable to minimize the time spent traveling
to and from exercise. Greater distance to exercise has also been
empirically linked to lower physical activity [42].

In this paper, we tackle the exercise opportunity discovery prob-
lem in the case of parkour. Our aim is to augment the sport with
novel tools that allow locating interesting parkour spots. Although
common urban geometry like railings, lamp posts, and staircases
all provide some parkour affordances, the most interesting and en-
joyable parkour spots are rare. Our focus on parkour is motivated
by the domain expertise of one of the authors, and an active local
parkour community that organized weekly "parkour jams" open to
anyone, allowing us to observe and interview parkour hobbyists.
Parkour is also a highly accessible form of physical activity that
can adapt to different levels of skill and fitness. Extreme videos
where parkour athletes leap and vault between rooftops are not
representative of an average practice session, in the same way as
Olympic gymnastics is not representative of gymnastics practiced
as a hobby. Figure 2 shows an example of typical beginner or inter-
mediate parkour practice, which happens safely near the ground
but nevertheless develops strength, coordination, and spatial un-
derstanding.

This paper investigates the following research questions:
• What kind of training spots do parkour hobbyists or traceurs
find particularly interesting or enjoyable?

• How do traceurs discover training spots?
• To facilitate the discovery of interesting spots, can one com-
bine computer vision and large-scale image databases like
Flickr or Google Street View to automatically recognize and
visualize parkour spots?

• More specifically, can one find a technological approach that
only requires a minimal amount of labeled training data?
This matters because modern computer vision systems are
typically trained with thousands or even millions of images
labeled through crowdsourcing services such as Amazon
Mechanical Turk. For example, the widely used ImageNet
dataset [40, 47] provides over a million images with bound-
ing box object annotations. However, if the labeling requires
expert knowledge such as an understanding of parkour af-
fordances, large-scale crowdsourcing is not feasible.

We answer the first two research question through interviewing
and observing parkour hobbyists. The central findings are that
interesting parkour spots are akin to small playgrounds, offering
high variety of shapes and affordances, and to find good spots, it is
not enough to simply recognize specific types of geometry. Traceurs
find spots through word-of-mouth, social media, exploring the
city, and also through existing community-maintained online maps.
However, such maps are not available for many locations, which
motivates the development of automatic discovery and mapping
tools.

Regarding the last two questions, we propose and evaluate a deep
neural network approach for automatically detecting interesting
parkour spots in street level images. We train the network using
Google Street View images and demonstrate that it generalizes to
test data we captured ourselves. We utilize a simple and fast image
labeling scheme together with a transfer learning approach, only
requiring a few thousand images and a few days of labeling work
by domain experts (parkour hobbyists in our case). Source code is
available at https://github.com/ThetaNord/parkour-detection.

In summary, we make the following contributions:
• We present a novel application of machine learning, in the
form of a system for detecting and visualizing interesting
parkour spots from street level imagery. Our work demon-
strates howmodernmachine learning tools may be leveraged
to open one’s eyes to new playful properties of the urban
environment.

• We advance the understanding of what makes an interesting
parkour spot and how traceurs find them.

Our findings and the data generated by our system could en-
able novel location-based games akin to Pokémon Go [32], but
with parkour-themed gameplay and challenges. Our technologi-
cal approach should be easily applicable to other contexts such
as skateboarding. Beyond games and play, automatic collection of
geographic exercise opportunity information should be useful for
urban design and research that investigates how the built environ-
ment affects physical activity. For example, the study of Estabrooks
et al. [9] operationalized exercise availability as the presence of ex-
ercise resources within a given neighborhood; our approach allows
collecting such data about a wider palette of physical activities.
Previous analyses have focused on traditional measures such as
neighborhood walkability and the presence of parks and recreation
facilities [4].

2 BACKGROUND AND RELATEDWORK
2.1 Understanding Parkour
Parkour is an activity revolving aroundmoving through and around
obstacles, often in urban spaces, with speed and efficiency. Parkour
practitioners — so-called "traceurs" — chain together movements
(i.e., leaping, vaulting, balancing over obstacles) to achieve a "flow
path" through the environment [35]. Despite its emphasis on effi-
ciency, parkour has been described as a "form of unscripted creative
play" that reinterprets the city as "a terrain of playful possibility"
([5], p. 393), as well as "a declaration of the creative ludic potential
and the playing spirit of mankind" ([37], p. 21). For the traceurs
interviewed by Ameel & Tani [2], parkour seemed to be a way of
continuing to use public space in a childlike manner, and Leone [22]
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goes as far as describing parkour as a desire to turn the entire city
into an entertainment park. Thibault [50] elaborates this through
a threefold playful characterization: playing in the city, playing
with the city, and also playing the city by escaping and opposing
its logic.

While some texts like Leone [22] and Thibault [50] view parkour
through a polemic and political lens, e.g., as resistance to top-down
urban planning, others note a trend towards parkour becoming
mainstream and institutionalized with national associations, paid
classes, and instructor training [2]. As an example of the latter,
the last author of this paper and his children have taken parent-
child parkour classes at a local parkour school, and view parkour
simply as a form of exercise that provides a particularly interesting
combination of variety, creativity, physical intensity, and everyday
practical applicability.

Related to the parkour spot discovery problem solved in this
paper, traceurs are willing to go far out of their way to frequent
spaces that are known to be well-suited to their parkour practice [1].
On the other hand, parkour novices and non-practitioners do not
perceive urban spaces as traceurs do; through practicing parkour,
traceurs learn to re-interpret and perceive which environments
are most safe, interesting and even aesthetic [1]. This notion is
sometimes described as gaining "parkour vision" [43] or "parkour
eyes" [1], which reveals new dimensions in one’s surroundings [1],
turns limitations into opportunities [2], and allows more playful
options to emerge [43].

In light of the above, teaching computers "parkour vision" seems
a worthwhile and interesting challenge, furthering and disseminat-
ing the understanding of how traceurs perceive their surroundings.
This paper takes the first steps towards this goal, and our interview
study about parkour spots also adds detail to previous work on
what traceurs find interesting [1, 2, 37, 43].

2.2 HCI of Physical Exercise and Play
Our work is about developing novel technology tools for playful
physical activity. In the HCI literature, there exists a large body
of related work on experimental exercise systems and movement-
based games [16–18, 28, 30]. Beyond systems and case studies, the
field has been pushed forward in the form of conceptual frameworks
for sport and exercise design [12, 25, 29], and through increasing
the understanding of movement-based game user experience [7, 15]
and embodied playful activity beyond games [24, 52].

A portion of the HCI literature expands the discussion to non-
digital physical play [12, 26], or physical exercise with relatively
subtle technological augmentation, such as electrically assisted
bicycling [3] or designing services for communities such as traceurs
[51]. In this vein, we also augment the exercise experience with
technology, focusing on the pre-exercise phase of deciding what to
practice and where. Our results could be integrated with an existing
parkour community service or developed into a dedicated app akin
to the ones used by climbers to find climbing routes1.

2.3 Urban Design and Play
Parkour has been framed as urban play, exemplifying how playful
activity can contribute to the image of a city physically, socially
1e.g., https://27crags.com/

and culturally [37]. Various urban gamification solutions demon-
strate how game-like experiences can kindle new urban joy [27].
Urban games and gamification case studies are too numerous to
review here; instead, we refer the reader to the more general arti-
cles by Thibault [50] and Nijholt [33, 34]. Using the terminology
of Thibault’s typology of urban gamification [50], we regard ma-
chine learning as a tool for supporting bottom-up "urban writing":
We model traceurs’ playful perceptions and interpretations of the
urban fabric, and disseminate them through digital means. Consid-
ering Nijholt’s discussion of playable cities and various sensors and
actuators for implementing playful digital smartness [33, 34], our
work repurposes street level imagery as the sensing technology, and
reveals emergent, non-designed potential for Third Places, where
people can meet in a playful mood outside home or work, in our
case for parkour jams and practice.

The Sustainable Development Goals (SDGs) of the United Na-
tions [31] are challenging architects and urban planners to extend
their knowledge and design practices, e.g., in relation to the topics
of ensuring healthy lives and promoting well-being for everyone
(SDG 3) and making cities and human settlements inclusive, safe, re-
silient and sustainable (SDG 11). At the same time, enabling people
to understand the potentials of built and unbuilt environments leads
to a new form of user engagement [45]. This calls for new methods
for spatial and social analysis of complex urban environments, e.g.,
the development of novel Geographic Information Systems (GIS)
[48]. From this perspective, our work provides a novel case study of
using technology to unveil the play and physical activity potential
of the built environment, extending the consideration of physical
activity affordances like walkability [4] to the domain of "parkoura-
bility". Our system provides a new type of data that could be used
by various GIS tools and models.

2.4 Analyzing Urban Imagery
With modern deep convolutional neural networks, basic image
classification is fairly straightforward [11, 21]. Recognizing indi-
vidual objects from images is somewhat more complicated, but
nevertheless accessible thanks to open source packages like the
Detectron [10]. We use a pre-trained Detectron network fine-tuned
with our custom data; hence, our technical contribution is not on
deep learning methods as such but in demonstrating that our novel
use case is feasible with our chosen network architecture, dataset,
and annotation approach.

There exists previous work that has used street level photographs
as an information source for geographical information analysis,
with either automated or crowdsourced data, to identify accessibil-
ity problems [13], landmarks for pedestrian navigation [20], curb
ramps [14], and scenic driving routes [39], but we know of no pre-
vious work on recognizing parkourability or other physical activity
opportunities.

3 INTERESTING PARKOUR SPOTS
Although the existing literature provides rich ethnographic ac-
counts of how parkour practitioners experience their surroundings
[1, 2, 37, 43], more specific information is lacking about what kinds
of training spots are particularly interesting or enjoyable. To ad-
dress this knowledge gap, we conducted a brief interview study
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with parkour hobbyists in Helsinki, Finland. The data informed
our choice of machine learning and data annotation approach and
provides validation for the need and usefulness of parkour spot
maps.

3.1 Procedure and Method
We interviewed the participants about their favorite spots, querying
for the following:

• What makes your favorite spots interesting or enjoyable?
• How do you find parkour spots (friends, spot maps, exploring
the city, other)?

• Why do you like parkour?
Three traceurs answered the questions online, recruited through

posting the questions to a local parkour Facebook group. Addition-
ally, one of the authors — himself a parkour hobbyist — recruited
participants via attending two parkour jams, i.e., open free-form
practice sessions. The interview structure followed the online form
with the above questions, and respondents received a choice of
sports drink. In total, we received 9 responses. The mean age of
the respondents was 26 years and they had 6 years of parkour ex-
perience, on average. Online recruitment turned out particularly
difficult, and it was easier to approach people in person in the park-
our jams. However, the number of active jammers turned out to
be fairly small. In the first jam, we interviewed all 5 participants.
The second jam only had 3 participants, out of which only one had
not already answered the questionnaire. Nevertheless, even the 9
responses reveal clear patterns, as discussed below, and recruiting
at parkour jams allowed us to observe traceurs in action and collect
image material.

3.2 Results
We conducted an open coding [41] of participants’ responses with
regards to the questions. Note that overall responses were rather
short, as it was impossible to inquire further via the online survey,
and also because participants at the parkour jams wished to spend
most of their time practicing.

3.2.1 Favorite Parkour SpotQualities . A clear result was that while
many urban shapes like rails, stairs, and lamp posts all provide some
parkour opportunities, traceurs prefer spots with a high degree of
variety. This was indicated by all answers, e.g., "That the spot pro-
vides opportunities for many types of movements", "Variety, being at
least partly usable in summer, autumn and spring, works for beginners,
reachable by public transport and by bike. Can be used to practice
balancing, skipping, jumping, climbing.", "Versatility, different shapes,
different height levels", "Rails, walls, wall run places, obstacles in dif-
ferent angles." The importance of variety is in agreement with earlier
work that characterizes parkour as curious play [2], highlighting
that an interesting environment should allow for different types
of uses. High variety enables experiencing high novelty, which is
one of the core appraisals contributing to the emotion of curious
interest [46].

3.2.2 Exploring and Finding Spots . The curious exploration view
of parkour is further highlighted in that "exploring the city" was the
most frequently indicated way of finding parkour spots (6 out of 9).
Nevertheless, 4 participants — nearly half of our sample — indicated

Figure 3: The spot map maintained by the Helsinki parkour
community as a GoogleMyMaps page (https://urly.fi/1hMx).
Spots are marked with pins, larger areas as polygons, and
longer runs as red paths (e.g., an esplanade lined up with
rocks to run on top of).

also using existing spot maps. This is not surprising given that
Helsinki has a community-maintained online spot map with a good
coverage of the best spots, as shown in Figure 3. The high usage of
the Helsinki spot map indicates that our work should be useful for
cities and regions that do not already have such maps. Other ways
of discovering parkour spots included friends (4 participants) and
social media (3 participants).

In addition to variety, participants highlighted the importance
of appropriate challenges, related to both technique and creativity,
e.g., "A big variety of difficulty levels and possibility for progressions.
Something for beginners and warm ups, low and easy but also some-
thing more challenging.", "Challenges that one can’t beat right away,
which motivates revisiting a spot once one’s skills develop", "Creative
action and problem solving, self-expression. Simplicity that forces one
to think and invent new ways to move." Aesthetics and privacy were
also mentioned: "I prefer secluded spots. I like concrete but greenery
makes a spot more enjoyable."

3.2.3 Reasons for Enjoying Parkour. Common reasons cited for
liking parkour in our sample are in line with earlier work:

• Interesting challenges (8 participants) "I like the challenges
that come with the sport (both physical and mental)"

• Creativity (5 participants). "I like being creative and being
able to explore places by moving.", "Funny challenges, moving
your body in a way you’ve never done before."

• Freedom and autonomy (4) "I like the sense of freedom I get
when I train", "Competing only against yourself, no wrong or
right ways to do stuff", "Parkour is easy to get back into after
a break, because it’s easy to adapt the difficulty level.".

• Community, fellowship (3 participants). "I was originally
drawn to the playfulness and social aspects of parkour.", "Fun
people who make training fun, love to goof around, try stupid
and silly things but still also train hard.", "I love how training
is a combination of doing your best and pushing yourself as
far as you can but also laughing more than anywhere else."

The answers above highlight the importance of variety in desir-
able parkour spot qualities. A spot with highly varied geometry
provides more opportunities for creative exploration and more free-
dom to select challenges appropriate for one’s skill level. Large

https://urly.fi/1hMx
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Figure 4: An example of a playground specifically designed
for parkour. Image courtesy of Lappset Group Ltd. Photog-
rapher: Antti Kurola.

spots with multiple shapes also support social training, as traceurs
can practice multiple things in parallel.

3.3 Discussion
In summary, the results indicate that one should think of good park-
our spots as (small) playgrounds consisting of versatile parkourable
shapes, as opposed to just one or a few specific objects. This view is
also supported by the recent emergence of playgrounds dedicated
to or heavily inspired by parkour practice, e.g., Figure 4. The im-
plication for the rest of this paper is that it is not enough that an
automatic parkour spot detection system recognizes suitable geom-
etry and objects such as stairs and rails; such a system must also
understand how the interplay of the objects provides interesting
and varied challenges.

4 SYSTEM
This section details our data collection and annotation approach,
the machine learning architecture, and the visualizations developed
for testing and evaluating the technology.

4.1 Data Collection
For training the network and validating system parameters, we
used images loaded through the Google Street View API. We also
considered using Flickr images tagged with the word "parkour", but
these usually include parkour athletes in addition to spot geometry,
which could confuse the learning. Two different sampling methods
were used: 1) sampling a given area in a grid-like fashion, and 2) an
informed approach where we obtained images of the pin locations
of the community-maintained online Helsinki parkour spot map in
Figure 3. Images of each map pin location were downloaded from
10 different angles.

The total number of training and validation images was 9,061.
This comprises grid-sampled sets of 5003 images from Helsinki,
Finland, 3252 images from Paris, France, and the informed sample
of 806 images.

Finally, we collected a test data set with 585 images from a region
in Espoo, Finland, which was not included in the other image sets.
To test howwell the system generalizes, we captured the test images
ourselves while walking around the region, instead of downloading
through the Google Street View API. This also allowed us to take
multiple photos of parkour spots to test how sensitive the system
is to different capture angles and distances.

4.2 Data Annotation
We recruited 5 parkour hobbyists to annotate the data, in addition
to one of the authors who had 3 years of parkour experience. The
annotators were recruited via the local parkour Facebook group and
received two movie tickets each as compensation. The annotation
was done in the browser-based LabelBox environment [19], which
allows annotators to conveniently work wherever and whenever
they choose.

Initially, the authors themselves tried labeling all common ob-
jects such as railings, poles, stairs, and low walls. However, this
turned out to be very monotonous, tiring, and prone to errors such
as missing one object out of many similar ones. During the annota-
tion process, it also became clear that the most interesting images
and geometry did not conform to the predetermined object classes.
The interview study echoed this; based on the study, good parkour
spots are not composed of single objects but instead of several that
have suitable distances, placements, etc. There are no clear rules
for defining what makes an interesting training spot.

In the end, we settled on amethodwith just two classes: very/definitely
interesting and somewhat/maybe interesting. Thismakes themethod
fast and also easy to apply in other contexts, such as skateboarding,
and also allowed for faster annotation of images. The first approach,
which one annotator tested with 1092 images, required 14 seconds
per image, on average. With the final approach, the same annotator
only used 5𝑠 per image. The times spent by the other annotators
were 7𝑠 , 4𝑠 , 4𝑠 , 5𝑠 , 16𝑠 , indicating that the average annotator can
process almost 1000 images per hour, although one annotator took
considerably more time than the others. The total annotation time
of all 9k images was 17 hours, i.e., approximately two work days.

The annotators were instructed as follows:
Please mark interesting parkour spots/areas with rectangles en-

compassing all the geometry you would like to use when practicing
(e.g., rails, stairs, walls, corners). For example, if there is a pole close
to a rail for jump & swing practice, draw the rectangle such that it
includes both the pole and the rail. If the pole is very tall, you don’t
need to include all of it, only the part that you would use in practice.
There’s no point in marking every common object like rails and poles.
Only mark things that you would pay special attention to and/or be
curious about when walking around the city. Please only consider the
images, disregarding your prior knowledge you may have about any
spots included in the images. For example, if you know there is a good
spot but it is occluded in the image, don’t mark anything.

Definitely interesting area: Something you would definitely want
an automatic parkour map generator to notice and highlight.

Maybe interesting area: Something that you are less enthusiastic
about or where it’s unclear whether the spot is really useful. You’d like
these areas to be highlighted on a parkour map, but omitting them
would not be a big problem either.
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Location Images Interesting Interesting%
Helsinki, grid-sampled 5003 202 4.0%
Paris, grid-sampled 3252 217 6.7%
Helsinki, informed 806 359 44.5%
Espoo (test data) 585 132 22.6%

Table 1: Image annotation statistics. Interesting images are
those with at least one maybe interesting or definitely inter-
esting annotated area.

Table 1 summarizes the annotation statistics. The statistics indi-
cate the randomly sampled Google Street View images only rarely
contain interesting areas, and if one wants more positive training
examples, it is useful to curate the training data, e.g., by utilizing
existing spot maps.

We also considered other annotation schemes, such as labeling
parkour spots based on their perceived challenge level or which
parkour moves they would allow for, but ultimately decided against
them due to our limited annotation capacity and because these
qualities would likely be hard to reliably determine based on just a
single 2D image.

4.3 Network Architecture and Training
To reduce the number of needed training images, we utilize trans-
fer learning, i.e., a training curriculum where an initial learning
task makes the final task easier [6]. Specifically, we started with a
network pre-trained with generic image data and common object
classes, and only finetuned the network with our own data.

We selected Facebook AI Research’s Detectron code repository
[10] as the basis of our implementation, as it showed good results
and supported our use case with minimal modifications to the
original codebase: It already supported "freezing" the convolutional
layers, a feature crucial to using transfer learning, and only a small
edit of 17 lines to the code was required to allow the use of images
with no annotations as negative training examples. This change
was necessary to reduce the number of false positives from images
that resemble a potential parkour spot but are not suitable due to
the context the spot appears in, such as railings on highway bridges.
Apart from this change, we only needed to modify the configuration
files to adjust for our use case by, for example, defining the use of
a pre-trained model and our custom dataset, and modifying the
number of object classes being detected.

Of the pre-trained models included in Detectron, we selected the
Faster R-CNN neural network architecture [38] with the ResNeXt-
101-32x8d backbone, as this combination had fast training and
inference times, as well as one of the highest box average precisions
among all the models on the original task. The model was originally
trained using images from the ImageNet-1k data set [47], meaning
that it was primed to detect common object classes like people,
cars, and bicycles from a large variety of images including urban
imagery. Due to the relative similarity of the domains, we were
fairly confident that this would be a good fit for our purposes.

In fine-tuning the network, we kept the convolutional feature
extraction layers intact and only retrained the fully connected final
layers. In other words, the network does not need to learn to ex-
tract features; it only needs to learn which feature combinations

represents the objects or geometries of interest. This reduces both
the number of network weights to learn and the amount of training
data needed. The Detectron implementation [10] supports "freez-
ing" of convolutional layers out-of-the-box, and one only needs to
edit a configuration file to change the number of object classes.

We trained the network for 180,000 minibatch iterations using
a Tesla P100 GPU with 8 gigabytes of memory. One training run
lasted for approximately 8 hours.

4.3.1 Early Stopping, Validation Metric. To prevent the network
from overfitting to the limited data we used early stopping [11],
i.e., we saved snapshots of the network during training and finally
used the network that yielded the highest validation accuracy.

The Faster R-CNN network’s training objective function is based
on how well the detected areas overlap with ground truth areas.
However, as our goal is to detect suitable locations for parkour,
the exact bounding boxes and overlaps are not significant. Thus,
we computed the validation accuracy simply as the percentage of
images where either 1) both the network’s output and the validation
data had one or more interesting areas or 2) neither the network’s
output or the validation data had interesting areas. Note that Faster
R-CNN outputs a score in the range 0...1 for each detected area;
in computing the accuracy, we only considered detections above a
threshold value. We tested different threshold values between 0.59
and 0.99 with steps of 0.1.

4.3.2 Data Need. Modern deep learning achieves remarkable re-
sults inmany computer vision tasks but often requires large amounts
of data. Transfer learning should be able to reduce data require-
ments.We tested this by training the networkwith different amounts
of training data ranging from 1000 to 7000 images.We had 9061 total
images; we used a subset of 2061 images as the validation dataset for
computing detection accuracy and determining the early stopping
position.

4.3.3 Training Example Weighting. Our data annotations of defi-
nitely and maybe interesting areas were combined into a single-
class detection problem with definitely interesting training exam-
ples having a higher weight. This had the benefit of focusing train-
ing efforts to detecting the most/definitely interesting areas and
additionally helped to adjust for the imbalance between interesting
and not interesting images in our dataset.

4.4 Data Visualization
To test and scrutinize the usefulness of the neural network outputs,
we created both static and interactive visualizations.

Figure 5 shows examples of correctly and incorrectly detected
areas from our test dataset. The top row of Figure 5 shows the most
salient images, i.e., images sorted by the detection scores output
by the network. Multiple images from the same spot have been
pruned based on image GPS coordinates. The bottom row of Figure
5 shows randomly selected error images, i.e., images where either
a human or the network detected something, but not both.

We also created prototypes of interactive visualizations, shown
in Figure 1, Figure 6 and the supplemental video. In creating the
visualizations, we first considered the visualizations that traceurs
already create and use. The Helsinki parkour community has cre-
ated a fairly detailed digital spot map as a custom Google My Maps
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Figure 5: Example detection results with test data from amap region not used for training or hyperparameter tuning. Ground
truth human annotations shown in green, neural network predictions in magenta. Top: Highest scoring detections featuring
typical parkourable geometry such as low walls, rocks, and railings. Multiple images from the same spot have been pruned
based on image GPS coordinates. Bottom: randomly selected error images, including 7 false negatives and one false positive.

page, shown in Figure 3. Although the map is already useful and
nearly half of our interview respondents are using it, it has the
following limitations:

• Most of the pin descriptions do not have images and also
do not provide an easy way to show images, e.g., through
linking to Google Street View.

• The basic view does not show any images to highlight partic-
ularly interesting spots or inspire one’s mind about parkour
opportunities.

• The pin-based view would easily become too crowded if one
would add hundreds of spots automatically identified from
images.

Most online maps that we have found have been created with
Google My Maps or similar platforms that suffer from the same
limitations. As an example of how to overcome these limitations,
Figure 1, Figure 6, and the supplemental video2 show prototypes
where the user can control the amount of spots shown by adjusting
the detection score threshold with a slider. A thumbnail of the image
closest to the pointer is shown, which allows quick browsing of the
data. Clicking with the left mouse button enlarges the thumbnail
for closer inspection. The prototype in Figure 6 also augments the
map with a grid view of all thumbnails for each visible pin, sorted
in decreasing order of spot probability.

5 EVALUATION
We evaluate the developed system and visualizations from three
points of view:

• Quantitative evaluation: How accurate is the network in
detecting interesting parkour spots?

• Qualitative evaluation: Looking at example results, what
kind of spots does the network detect well, and what kinds
of errors does it make?

• Feedback from the parkour community: Do parkour hobby-
ists see value in the results? What benefits and challenges
do they identify?

5.1 Quantitative evaluation
Figure 7 shows the validation accuracy for each tested training
data set size, averaged over three independent training runs with

2https://youtu.be/vFCcXTicqNE

Figure 6: A browser-based interactive spot map generated
from our test dataset.

randomly initialized networks and training data subsets. The ac-
curacy grows with the training dataset size, but there is also some
random fluctuation. This is at least in part due to our small val-
idation dataset of 2061 images, which increases the variance of
the validation accuracy. The best validation accuracy over a single
training run was 92.24%, which was reached after 150,000 training
iterations, using a definitely interesting area weight 4, detection
threshold 0.59, and 7000 training images.

A 100% accuracy is practically unreachable in our case, as the
classification task is subjective and the annotators have differing
opinions of what is interesting. The accuracy range in Figure 7 is
also compressed because our training data: Due to the rarity of
interesting areas in the data, the naïve approach of always predict-
ing that there are no interesting areas yields an accuracy of 91.3%.
Correcting for the class imbalance is not motivated in our case,
as the imbalance is not due to incorrect training data collection.
Instead, the imbalance reflects the real-life sparsity of interesting
areas, and a good parkour spot detector should indeed reject most
images and only highlight the rare interesting ones.

https://youtu.be/vFCcXTicqNE
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Overall, we acknowledge that the accuracy leaves room for im-
provement, but as elaborated below, visualizing and exploring park-
our spots is a low-risk activity where some errors can be tolerated.

5.2 Qualitative evaluation
As shown in Figure 5, the highest-scoring detections are sensible
and the network correctly identifies clearly parkourable geometry
such as rails, walls, and stairs. However, the errors made by the sys-
tem are perhaps more interesting in analyzing what it understands
and what should be improved in future systems.

5.2.1 What kinds of errors does the system make? The false positive
image at the top-right corner Figure 5 illustrates the subjective and
imprecise nature of the human annotations. The same spot also
shows up as a false negative (bottom row, 4th from the left), but that
image is actually a data annotation error; the annotator mistook a
shadow for a platform. The spot is also confusing because it features
a large raw concrete shape, which usually draws a traceur’s eye;
concrete shapes are stable, durable, and provide excellent grip,
which makes them ideal for parkour.

Most of the errors in Figure 5 are false negatives, i.e., where a
human marked an area but the network did not detect anything.
The amount of false negatives can be decreased by using a lower
detection threshold, as shown in the supplemental video. On the
other hand, this also increases the amount of false positives, which
may cause clutter in data visualization. Ultimately, the optimal
detection threshold depends on the visualization or application.

The 3rd error image from the left in Figure 5 is a spot that is
correctly detected in other images, but probably missed in this case
because of small scale. The 5th image shows a pyramid shape that
is unique to the test dataset. Although slanted walls are interesting
for sliding and climbing, they are very rare in the training data.
Sometimes, it also seems that the network understands geometry

Figure 7: Validation accuracy as a function of the number of
training images, averaged over three independently trained
networks. The red line depicts null accuracy, i.e., the accu-
racy achieved by always predicting no interesting areas. The
null accuracy is high due to the rarity of interesting park-
our spots in random images. Additional training images in-
crease the accuracy.

but not material affordances; the false positive on bottom-right
corner of Figure 5 would be an interesting spot if the windowsill
was actually suitable for standing and the round shrubs were rocks
instead. It is possible that the material of the shrubs is unclear
because of the heavy shadows.

5.2.2 Data Annotation Quality. The errors further highlight the
subjective nature of the training data. Only images 1, 3, 5, and 7
(from the left) of Figure 5 are clear false negatives. Image 2 is less
clear, as the vegetation surrounding the rocks somewhat impairs
both visual detection and parkourability. As discussed, image 4 is
an annotation error, and image 6 is likewise an error or a border-
line case. While the low wall can be used for vault practice, the
single shape does not provide much variety, and the data annotator
remembers questioning whether he should annotate it or not.

We also spotted at least one training image where an annotated
area was so small that the annotator probably marked it based on
their experience of the area instead of what is actually visible in
the image. We advised the annotators against this, but mistakes are
made easily in the monotonous annotation process.

5.3 Feedback from the Parkour Community
We solicited feedback from the local parkour community in two
ways. First, we posted spot detection results to the Parkour Helsinki
Facebook group for commenting. Second, we recruited traceurs to
evaluate the browser-based spot map prototype we generated from
our data, shown in Figure 6 and on the supplemental video at 01:52.

5.3.1 Feedback on results posted on social media. We generated a
sequence of 10 top predictions and 10 error images using the vali-
dation dataset and posted them to the Parkour Helsinki Facebook
group, asking for feedback. In total, seven traceurs commented
on the images. The respondents were not compensated. The com-
ments pointed out that traceurs can have highly differing opinions
about what is considered an interesting area. Two respondents com-
mented that out of the 10 false negatives, only 4 were real errors
and the rest of the images did not really contain anything inter-
esting. As a caveat, it was pointed out that similar to one’s own
parkour gaze, visual inference is limited and one cannot be certain
of a spot’s qualities without actually trying it out. For example, it
may turn out that the distances between objects are too short or
long, or the surface materials are too slippery.

Overall, feedback was positive, and the traceurs identified many
of their common training spots among the top detections. The
responses also indicated that the system gives useful suggestions
of spots to check out. For future work, it was requested that the
system would also work with aerial images, e.g., to recognize rock
formations and walls or ruins.

5.3.2 Evaluation of the browser-based interactive map. As the social
media feedback consisted of mostly brief positive comments with
little information, we recruited four traceurs for more in-depth test-
ing and insights. Due to the COVID-19 lockdown which prevented
meeting with user study participants, we had participants use the
browser-based prototype in Figure 6 in their homes, while sharing
their screens with a researcher over a Zoom video call. For compar-
ison, participants also used the community-created Google Map in
Figure 3. Ages of the practitioners ranged from 26 to 40 years old.
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Overall parkour experience of the practitioners ranged from 8 to 20
years. The order of map interfaces compared was counterbalanced.
The study duration was approximately 30 minutes. Participants
were provided 10 EUR for their participation.

For each tested interface, participants were instructed to:
"Imagine that you’d like to practice some parkour, but
you are bored with your usual spots. You’d like to find
some new spots to train at and explore what some
city area can offer. Please try using the interface to
accomplish that, narrating your thoughts and feelings
as you go. You should use at most 5 minutes for this."

Participants could ask questions during use of each tool. Exper-
imenters also aided in finding certain aspects of the tools, such
as routes on Google My Maps and the adjustable spot detection
threshold for our neural network.

Once participants felt confident with using the tool, they were
asked:

• Do you think this tool can help you find interesting training
spots? Why?

• What is good about this tool?
• What should be improved about this tool?

After answering these questions, the participant tried out the sec-
ond tool and answered those questions again. After the participant
was familiar with the usage of both tools, they were asked:

• How would you compare the two tools you tried?
• Which tool would you prefer and why?

Participants highlighted the simplicity of our system as both
a pro and con. On the one hand, it was easier for participants to
find locations, and unlike the Google My Maps tool, they were not
provided with information overload. It was easier for participants
to pick up and use right away, whereas the Google My Maps tool
had a steeper learning curve, given its various features. On the
other hand, the simplicity of the tool meant that several features
participants enjoyed in the Google MyMaps tool were not available
in our tool. For instance, our tool lacks descriptions of the areas
and the ability to zoom in on images. This meant that participants
were not entirely sure why some spots were chosen by the system.

To improve the Google My Maps tool, participants suggested
a filtering system by difficulty, as some spots may be more suited
to expert-level traceurs, while others may be better suited for be-
ginners. Additional filtering was suggested to filter by legality, as
some spots on the Google map required jumping across rooftops,
which is questionable on its legality.

To improve our tool, participates suggested a rating and feed-
back system from the community and the ability to overlay terrain
imagery. In addition, participants requested knowledge of what
parameters the system uses to select spots, as well as the ability to
adjust these parameters.

One of the main problems of the Google My Maps interface we
addressed in our own design was the lack of visual information.
Indeed, the Google My Maps tool was negatively received by par-
ticipants regarding the lack of pictures of the area. In the Google
My Maps tool, community members can add pictures or even video
of each training location, but it is much easier to add a simple de-
scription. Thus, most training spots on the Google My Maps tool

consist primarily of descriptions with very few pictures and even
fewer videos.

6 DISCUSSION
Overall, our results indicate that it is possible to combine computer
vision and streel-level imagery to automatically detect urban physi-
cal activity opportunities such as parkour spots. Furthermore, using
transfer learning makes this feasible with only a modest amount of
data collection and annotation. We have also demonstrated the use
of the generated data in building spot exploration and visualization
tools, in order to support the curious exploration view of parkour
highlighted by both previous research and our interview study, and
to overcome the lack of visual information we have identified in
existing spot maps.

Beyond the already mentioned possibility for a parkour-themed
variant of Pokémon Go [32], it is easy to envision other applications
for our data, e.g., automatically generating jogging paths that also
visit parkour spots where one has to complete one or more exercises.
A recent example in this vein is provided by Cityspotting [36], a
gamified urban exploration app that motivates players to visit new
locations and perform exercises such as hopping on seaside rocks.
The app was in development during our spot map evaluation and
the founder happened to be one of the participants who tested
our prototype. He says that understanding urban geometry and its
exercise affordances is crucial to their product, and our data gave
him valuable insights into parts of the city that he was not familiar
with.

As our participants asked for a way for the parkour community
to provide feedback and ratings, a hybrid community-created and
machine learning -based system might provide the best of both
worlds. This would also align with the need for citizen-centered
and inclusive processes of city-making [44], and the vision of future
hybrid cities with immersive and collaborative digital layers or
"mirror worlds", where citizens can become content creators [53].
User-generated content would also mitigate an inherent limitation
we encountered in Google Street View imagery: Some parkour
spots are not visible from the street. Figure 8 shows examples of
this.

Ultimately, one might envision an open source and open data
ecosystem that extends present tools such asOpenStreetMap through
combining interaction design and machine learning. People inter-
ested in urban play and exercise could have efficient mobile inter-
faces and tools, not just for discovering locations and content, but
for building a shared playground and community through contribut-
ing images, video, 3D scans of the environment, and associated data
such as spot annotations or game levels (e.g., parkour flows or street
workout challenges). Machine learning and computer vision could
then automatically filter and anonymize the data (e.g., blurring faces
like in Google Street View) and generate new content. Examples of
the latter include generalizing human annotations to new data like
in this paper, providing recommendations (“people who liked this
spot/challenge also liked. . . ”), or rendering AR content such as a
virtual character or recorded “ghost” of another player providing
a follow-the-leader challenge. Through combining mobile phone
movement sensors, computer vision, and dedicated fitness tracking
devices, one could also automatically collect leaderboard metrics
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Figure 8: Two examples of how a street view may provide
limited or no visibility of good parkour spots. Both illus-
trated spots are frequented by Helsinki traceurs, allowing
varied practice of balancing, precision jumping, running up
or vaulting over the low walls, falling and rolling on the
sand etc.

such as the total time balanced on rails or total wall run steps per
week and per spot, either for an individual user or collaboratively
for a neighborhood.

As a downside, technological augmentation might restrict one’s
creativity and hinder the development of one’s non-augmented
parkour vision. It may be that technology tools for parkour spot
discovery pose the danger of further severing our ability to be
present and in immediate connection with our surroundings, as
opposed to interacting through devices and apps. On the other
hand, traceurs already use and create digital spot maps, and not
every hobbyist has the time to explore and discover everything
themselves. The effect of technological augmentation also depends
on the specifics of the implementation. For example, Malinverdi
et al. [24] found that a projected version of an Augmented Reality
interface promoted more direct engagement with the environment
than a screen-based version.

7 LIMITATIONS
Our data is imperfect in that we only employed a single annotator
per image. Therefore, we cannot make conclusions of the biases
and variance of the annotations. As elaborated in Section 5.2.2, the
annotations are inevitably subjective and annotators may have also
used their prior knowledge in addition to purely visual inspection
when making decisions, which could make it harder to train a
computer vision system on the data. Collecting a more extensive
and higher quality dataset with multiple annotators for each image
remains as future work.

Street level imagery might not be readily available or up to date
for some regions. For example, there was an area in the Helsinki
region that contained multiple parkour spots marked on the com-
munity map, but the area is poorly covered by Google Street View

images, and there were also some areas where spots were marked
but images were almost a decade old. The latter can especially be
a problem when automatically detecting potential spots, as new
construction work might render old spots unusable and create new
ones that cannot be discovered before the images are updated.

Further limitations of our work are that complete beginners
might not understand the affordances of the spots recognized by
our system, and we have not extensively prototyped and tested
what kind of visualizations and Geographic Information Systems
could be created using the neural network data. In future work,
we aim to investigate both interactive parkour spot maps and see-
through Augmented Reality "parkour vision" that would not only
highlight interesting areas, but also show animations of movements
to practice. The latter requires in-depth knowledge of the 3D geom-
etry; fortunately, this is increasingly available through large scale
photorealistic 3D "digital twin" city models such as Virtual Helsinki
[23].

8 CONCLUSION
We have presented a two-part study: 1) An interview study about
what kind of parkour spots are interesting and how parkour hob-
byists find them, and 2) an experiment in training a deep neural
network for the novel problem of automatically detecting interest-
ing parkour spots from urban images which are easily available in
large quantities through services like Google Street View and Flickr.
The results were evaluated both quantitatively and qualitatively.

Our work provides a new tool for discovering and understand-
ing physical activity opportunities in one’s everyday environment,
which should be valuable for researchers and practitioners of fields
like exergame and urban design. The feedback from our local park-
our community has been very positive, and we look forward to
using our system to generate online spot maps of new cities, in
order to help people find meaningful exercise environments and
challenges.

More generally, our work illustrates how open source machine
learning tools are maturing rapidly and can be easily applied, en-
abling new research opportunities. We demonstrate that using a
transfer learning approach—i.e., fine-tuning an off-the-shelf pre-
trained network with a small custom dataset—can keep the amount
of data collection and annotation feasible, even if the annotations
require expert knowledge and are thus challenging to crowdsource
in vast amounts. We also show how testing and iterating on the
data annotation scheme can enable considerable savings in annota-
tion work. On the other hand, our work highlights the limitations
of street view imagery, demonstrating hidden playgrounds about
which a street view only provides subtle hints. In future work, this
could be addressed by augmenting street view imagery with custom
crowdsourced image data.
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