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State-Space Speed Control of Two-Mass
Mechanical Systems: Analytical Tuning and

Experimental Evaluation
Seppo E. Saarakkala and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper proposes a model-based two-degrees-of-
freedom (2DOF) state-space speed controller design for a two-
mass mechanical system. Analytical tuning rules for a feedback
gain, reduced-order state observer, full-order state observer,
and prefilter are derived. The proposed design rules enable
automatic tuning of the controller if the mechanical parameters
are known. The prefilter is designed for step, ramp, and parabolic
command tracking. The effects of the time delay, measurement
noise, and parameter variations on controller tuning and control
performance are studied by means of Nyquist diagrams, noise
transfer functions, and time-domain simulations. It is shown that
the full-order observer based controller is a preferable choice,
especially if the feedback loop is delayed and noisy. The proposed
controller design is experimentally evaluated using two 4-kW
servo motors coupled with toothed belt; good reference tracking
for step and dynamic commands as well as robust and fast load-
torque rejection is demonstrated.

Index Terms—Delay, observer, resonance, stability, speed con-
trol, state-space control, two-mass system.

I. INTRODUCTION

High-performance ac electric drives are replacing pneu-
matic and hydraulic actuators or dc motor drives in modern
machineries—such as injection molding machines [1], ma-
chine tools [2], and industrial robots [3]—due to their en-
ergy efficiency, compact size, and flexible control algorithms.
These machineries often consist of several moving or rotating
masses, which are coupled together with flexible mechanical
transmissions (e.g., belts, gearboxes, long shafts), leading to
mechanical resonances.

Resonant mechanical systems are commonly modeled as
two-mass systems and controlled by means of 2DOF control,
where regulation and command tracking are separately de-
signed [2], [4]. The feedback controller is used to stabilize the
feedback loop and to reject the loading torque (such as friction)
acting on the system. The types of feedback controllers can
be roughly categorized into five groups:

1) proportional integral (PI) or PI derivative (PID) con-
troller [5]–[10];

2) PI controller augmented with additional feedbacks [5],
[8], [11], [12];

3) PI controller and output filtering [5], [13]–[15];
4) state-feedback controller [4], [6], [16], [17];
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trical Engineering, Aalto University, FI-00076 Aalto, Finland (e-mail:
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5) nonlinear control methods such as sliding-mode [18],
neuron-based [11], model-predictive [6], and repetitive
[19] controllers.

The main advantage of the PI-type controller is straight-
forward tuning. However, if using solely the PI controller,
only two of the four closed-loop poles can be freely placed.
This is the reason why the PI controller may be augmented
with additional feedbacks (e.g., load speed, motor or load
acceleration, or estimated load disturbance) or the controller
output may be filtered. On the other hand, if the state-feedback
controller is used, all the closed-loop poles can be freely
selected. A drawback of the state-feedback controller is that
all the states have to be known.

As mentioned, it is appropriate to use the feedback con-
troller only for the feedback-loop stabilization. If the feedback
controller is designed for command tracking, the feedback gain
increases and the stability may be lost. Instead, a feedforward
controller (or a prefilter) inserted into the command path can
be used to improve the command-tracking capability [2], [4],
[9], [20]–[22]. The input command shaping may be used to
generate the motion profiles [22]–[27].

In this paper, a complete model-based analytical design
method for 2DOF state-space speed control of a two-mass
system is proposed. The main contributions of this paper are:

1) Analytical design rules of the state-space controller (in-
cluding the feedback gain, state observer, and prefilter)
are presented.

2) A comparison of robustness between a full-order ob-
server and a reduced-order observer is carried out. A
special attention is paid to the sensitivity to the feedback-
loop time delay and to the measurement-noise amplifi-
cation.

3) Guidelines for the closed-loop pole selection, when the
feedback loop is delayed, are proposed.

4) Performance and robustness of the proposed state-space
controller is compared to those of the PI controller.

Similar design rules for the feedback gain have been pro-
posed in [4], [6], [16], but the analysis of the feedback-loop
time delay is omitted. Furthermore, according to the authors’
knowledge, analytical design rules for the state observer and
the prefilter have not been proposed before. Together with
mechanical parameter estimation routine [28], the proposed
control method can be easily used for automatic controller
tuning.



2

Fig. 1. 2DOF state-space speed control structure. The state-feedback can be constructed using a full-order or a reduced-order observer.

II. SYSTEM MODEL

The mechanical dynamics of the resonating two-mass sys-
tem are given as a state-space representation
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(1)
where x =

[
ωM θM − θL ωL

]T
. The angular speeds of

the motor and the load are ωM and ωL, respectively. The
motor electromagnetic torque is TM and the loading torque
is TL. The angular positions of the motor and the load are θM

and θL, respectively. The moments of inertias of the motor
and the load are denoted as J ′M and J ′L, respectively. The
torsional stiffness and the damping of the shaft are K ′S and c′S,
respectively. The symbol ′ is used to refer to the actual values
of the system parameters. In the following, the estimates of
the system parameters will be marked without ′. If cS = 0
is assumed, the antiresonance and resonance frequencies are
estimated as

ωares =

√
KS

JL
, ωres =

√
KS

JM + JL

JMJL
(2)

respectively.

III. SPEED CONTROLLER DESIGN

The speed controller, depicted in Fig. 1, is designed in this
section under the following assumptions: the estimate of the
torsional damping is cS = 0; the torque-control loop is ideal,
i.e., Gt(s) = 1; and the speed measurement is ideal, i.e.,
M(s) = 1.

A. Feedback Controller Design

Because the feedback controller should be able to cope with
nonzero disturbance torque TL, the state-space model (1) is
augmented with the integral state,

ẋI = ωref,filt − ωM (3)

according to Fig. 1. When the state-feedback controller TM =
−Kx+ kIxI is used, the augmented closed-loop system is[

ẋ
ẋI

]
=
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A−BuK BukI

−C 0

]
︸ ︷︷ ︸

Acl
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x
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+
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03×1

1

]
ωref,filt +

[
Bw

0

]
TL (4)

where C =
[
1 0 0

]
and K =

[
k1 k2 k3

]
is the

feedback gain. Eigenvalues (poles) of the closed-loop system
can be calculated from the characteristic equation B(s) =
det(sI −Acl). Here, the four poles of B(s) are divided into
two pairs of complex poles (dominant and resonant poles)

B(s) = (s2 + 2ζdωds+ ω2
d)︸ ︷︷ ︸

Dominant poles

(s2 + 2ζrωrs+ ω2
r )︸ ︷︷ ︸

Resonant poles

(5)

which leads to the following feedback-gain selection

kI =
JLJMω

2
dω

2
r

KS

k1 = 2JM(ζdωd + ζrωr)

k2 = JM(ω2
d + ω2

r + 4ζdωdζrωr)−
KS(JM + JL)

JL
− kI

k3 =
2JLJM(ζdωdω

2
r + ζrωrω

2
d)

KS
− k1 (6)

The closed-loop poles in (5) can be arbitrarily placed by
deciding the undamped natural frequencies (ωd and ωr) and
the damping coefficients (ζd and ζr), cf. Section III-D.

B. State Observer Design
1) Full-Order Observer: The full-order state observer can

be presented as
˙̂x = (A−LC)︸ ︷︷ ︸

Ao

x̂+BuTM,ref +LωM (7)

where L =
[
lf1 lf2 lf3

]T
is the observer gain. Eigenvalues

of the observer can be calculated from the characteristic
equation Bo(s) = det(sI − Ao). The three poles of the
observer are presented as a combination of a real pole and
complex poles:

Bo(s) = (s+ αfo)(s
2 + 2ζfoωfos+ ω2

fo) (8)
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This choice leads to the observer-gain selection

lf1 = αfo + 2ζfoωfo

lf2 = 1 +
JM

JL
− JM(2ζfoωfoαfo + ω2

fo)

KS

lf3 =
JMαfoω

2
fo

KS
− JMlf1

JL
(9)

2) Reduced-Order Observer: The reduced-order observer
can be presented as [29]

ẋr = Arx̂ro +BrTM,ref +ByωM

x̂ro = xr +LrωM (10)

where x̂ro =
[
θ̂M − θ̂L ω̂L

]T
and

Ar =

[
lr1KS

JM
−1

KS

JL
+ lr2KS

JM
0

]
By =

[
1
0

]
Lr =

[
lr1 lr2

]T
Br = Lr/JM (11)

The two poles of the observer are presented as complex poles:

Bro(s) = s2 + 2ζroωros+ ω2
ro (12)

leading to the observer-gain selection

lr1 = −2ζroωroJM

KS
lr2 = JM

(
ω2

ro

KS
− 1

JL

)
(13)

C. Prefilter Design

The command tracking from the reference vector r to the
load angular speed ωL is set by the prefilter,
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where r =
[
jref aref ωref

]T
. The speed reference ωref and

its first and second time derivatives aref and jref , respectively,
can be generated as described, e.g., in [23], [24]. The prefilter
is designed to replace the dominant dynamics (ζd and ωd) of
the feedback loop with better damped and faster dynamics (ζl
and ωl) and to obtain zero steady-state tracking error for step,
ramp, and parabolic references [9].

D. Design Procedure

The speed controller is designed through the following
steps:

1) Construct the open-loop system matrices A and Bu in
(1) using the parameter estimates (JM, JL, KS). These
parameter estimates can be obtained, e.g., from the man-
ufacturers datasheet or from a parameter identification
routine [28].

2) Place the dominant poles of the feedback loop, i.e.,
select ωd and ζd. Because the feedback loop is used
only for disturbance rejection, avoid selecting too high
ωd. Select high enough damping for the dominant poles,
e.g., 0.8 ≤ ζd ≤ 1.

3) Place the resonant poles, i.e., select ωr and ζr. It is
important to notice that if ωd > ωares and the feedback
loop is delayed, the inertia ratio R = JL/JM should
be taken into account when placing the resonant poles.
More information about the resonant pole selection will
be provided in Section IV-D.

4) Place the observer poles by selecting the coefficients
{ωfo, ζfo, αfo} if the full-order observer is applied or
{ωro, ζro} if the reduced-order observer is applied. It
is to be noted that if the observer poles are selected to
be too fast, the measurement-noise amplification may
become unbearable. As an example, the following se-
lection may be applied: ωfo = ωro = ωd, ζfo = ζro = 1,
and αfo = ωr.

5) Calculate the state-feedback gains K and kI using (6).
Furthermore, calculate the full-order observer gain L
using (9) or the reduced-order observer gain Lr using
(13).

6) Decide command-tracking performance by selecting ωl

and ζl and construct the prefilter matrices Af , Bf , Cf ,
and Df using (14).

7) Discretize the continuous-time subsystems (3), (7), (10),
and (14), e.g., by applying Tustin’s method [30].

If there are significant time delays in the system, the stability
of the closed-loop system should be checked, e.g., by applying
the Nyquist diagram for the loop transfer function of the
system (cf. Section IV).

IV. DESIGN EXAMPLE

A. System Parameters

System parameters, considered in the design example, are
based on the experimental setup shown in Fig. 2. The setup
consists of two 4-kW 2400-rpm permanent-magnet ac servo
motors coupled together with a toothed belt. In order to
vary the coupling stiffness, different belts can be used. An
additional inertia disk can be added to the shaft of the load
motor.

The torque-control loop is accomplished using field-oriented
control. When the system is operating in the linear region,
the closed torque-control loop can be modeled as a transfer
function [31]

Gt(s) = e−sTd
αt

s+ αt
(15)
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Fig. 2. Experimental setup.

where αt = 1.8 krad/s is the bandwidth and Td = 0.2 ms is the
time delay of the torque-control loop. The speed measurement
is modelled using a time delay M(s) = e−sTm and noise
n, cf. Fig. 1. The sampling period is h = 0.5 ms, leading
to the speed-measurement delay of Tm = 0.5 ms [10]. The
variance of noise n is 0.5 rad2/s2.1 The feedback-loop delay
is expressed as

G∆(s) = Gt(s)M(s) (16)

Depending on the belt selection and the usage of the
additional inertia disc, the mechanical-parameter values of the
test system are: J ′M = 0.005 kgm2, J ′L,min = 0.005 kgm2,
J ′L,max = 0.039 kgm2, K ′S,max = 1100 Nm/rad, K ′S,min =
650 Nm/rad, and c′S = 0.11 Nms/rad. Unless otherwise stated,
accurate mechanical-parameter values are assumed in the fol-
lowing sections when designing and analyzing the controllers
(i.e., JM = J ′M, JL = J ′L, and KS = K ′S, which leads to
A = A′ and Bu = B′u). For time-domain simulations and
laboratory experiments, the proposed controller was digitally
implemented as described in the Appendix.

B. Loop Transfer Function and Measurement-Noise Amplifi-
cation

The open-loop transfer function from the torque reference
TM,ref to the measured motor speed ωM is

G(s) = C(sI −A′)−1B′uG∆(s) (17)

The loop transfer functions of the state-space controlled sys-
tems with a full-order observer and with a reduced-order
observer are

Hfo(s) = K(sI −A+LC)−1[LG(s) +Bu]

+ kIG(s)/s (18)

Hro(s) = Kr(sI −Ar)
−1[Br + (By +ArLr)G(s)]

+KrLrG(s) + (kI + k1)G(s)/s (19)

respectively. The stability of the different systems will be ana-
lyzed in the following sections by means of Nyquist diagrams

1In the experiments, ωM is measured using an incremental encoder (2500
pulses per revolution). The angular speed is calculated from the measured
angular position difference within the fixed sampling period h. This sampling
scheme leads to a significant quantization noise [10].

TABLE I
DESIGN PARAMETERS AND RELATING CONTROLLER GAINS FOR

DIFFERENT CONTROLLERS

Design Value Controller Value
parameter gain
ζd 0.9 kI(Nm/rad) 1444
ωd (rad/s) 380 k1(Nms/rad) 4.08
ζr 0.1 k2(Nm/rad) −268
ωr (rad/s) Eq. (2) k3(Nms/rad) 3.19
αfo (rad/s) 663 kp(Nms/rad) 4.94
ζfo 1 ki(Nm/rad) 832
ωfo (rad/s) 380 lr1(Nm/rad) −0.0035
ζro 1 lr2(Nms/rad) −0.3436
ωro (rad/s) 380 lf1(Nm/rad) 1423
ζl 1 lf2(Nms/rad) −0.95
ωl (rad/s) 420 lf3(Nm/rad) −988

of these loop transfer functions. The Nyquist diagrams are
depicted between the frequencies of ω = 0 and ω = π/h. The
system is stable if the Nyquist diagram of the loop transfer
function does not encircle the critical point (−1+j0) [29].

Moreover, the robustness of the closed speed-control loop
is analyzed by applying the maximum peak criteria for the
sensitivity function S(s) = [1 +H(s)]−1, where H(s) is the
corresponding loop transfer function [i.e., (18) or (19)]. The
maximum peak of the sensitivity function is defined as [32]

MS = max
ω
|S(jω)| (20)

Having MS < 2 indicates good robustness. On the other hand,
if MS > 4, both robustness and performance are poor. It is
worth noticing that, when applying the maximum peak criteria,
there is no need to use the phase margin or gain margin
[32]. The sensitivity function peaks are given together with
the Nyquist diagrams in the following sections.

The noise amplification of the system is examined through
the noise transfer function from the noise n to the motor
electromagnetic torque TM. The noise transfer functions of
the state-space controlled system with a full-order observer
and with a reduced-order observer are

Nfo(s) = −Gt(s)[kI/s+K(sI −A)−1L] (21)
Nro(s) = −Gt(s){kI/s+ k1

+Kr[(sI −Ar)
−1By +Lr]} (22)

respectively. The measurement-noise amplification of the dif-
ferent systems is compared in the following sections. Lower
measurement-noise amplification indicates a better feedback-
loop operation.

C. Observer Selection

As mentioned before, the state feedback can be constructed
applying either the full-order observer or the reduced-order
observer, cf. Fig. 1. The observer type is selected based on
the Nyquist diagrams of the loop transfer functions (18) and
(19) and the measurement-noise amplifications (21) and (22).
The feedback-loop poles are selected as shown in Table I
and the estimates of the mechanical parameters, needed when
calculating the controller gains, correspond to Section IV-A:
JM = J ′M, JL = J ′L,min, and KS = K ′S,max. Moreover, the
feedback loop is delayed.
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(a) (b)

Fig. 3. (a) Nyquist diagrams of the loop transfer functions (18) and (19), and the corresponding sensitivity function peaks MS [cf. (20)]. (b) Measurement-noise
amplifications of the state-space controlled system with a full-order observer and reduced-order observer, when the feedback loop is delayed, cf. Section IV-A.

(a) (b) (c) (d)

Fig. 4. Nyquist diagrams of the loop transfer function Hfo in (18) and the corresponding sensitivity function peaks MS for different resonant-pole locations
(red curve: ωr = ωd, ζr = 0.9; black curve: ωr = ωres, ζr = 0.1). (a) Inertia ratio R = 1 and ideal feedback loop, i.e., G∆(s) = 1. (b) R = 1 and delayed
feedback loop. (c) Inertia ratio R = 7.8 and ideal feedback loop. (d) R = 7.8 and delayed feedback loop. It it worth noticing that ωd > ωares is selected
for both the inertia ratios.

Fig. 5. Contours of the sensitivity function peaks MS, when the load inertia
and coupling stiffness are varied.

Fig. 3(a) shows the Nyquist curves of the loop transfer
functions. It can be seen that the minimum distance of the
Nyquist curve from the critical point (−1+j0, marked with
the red cross) is approximately the same for both the observers

and the sensitivity function peaks are MS ≈ 2, indicating that
the both observers could be applied without difficulties. Fig.
3(b) shows the measurement-noise amplifications. It can be
seen that the full-order observer suppresses the high-frequency
noise much better than the reduced-order observer. Similar
feedback-loop characteristics can be found with different
mechanical parameters or with different state-feedback pole
locations. Hence, based on these observations, the full-order
observer is selected for further analysis.

D. Selection of Resonant Poles

The selection of the resonant-pole coefficients ωr and ζr is
based on the stability analysis of the proposed state-feedback
controller. The analysis is carried out for two different load-
inertia values (JL = 0.005 kgm2 and JL = 0.039 kgm2),
corresponding to the experimental setup and leading to the
inertia ratios of R = 1 and R = 7.8. In order to study the
effects of a fast feedback loop, the natural frequency ωd of
the dominant feedback-loop dynamics is selected to be higher
than the antiresonance frequency ωares. Furthermore, in order
to have the same relative distance between ωd and ωares for
both the inertia ratios, ωd = 2ωares/3 + ωres/3 is chosen; the
condition ωd > ωares is fulfilled as can be realized based on
(2). The damping coefficient ζd = 0.9 is selected.
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Fig. 4 shows the Nyquist diagrams of the loop transfer
function (18) with two resonant-pole locations (red curve:
ωr = ωd, ζr = 0.9; black curve: ωr = ωres, ζr = 0.1). Fig.
4(a) shows a case where the inertia ratio is R = 1 and the
feedback loop is assumed to be ideal, i.e., G∆(s) = 1. Fig.
4(b) shows a case where the inertia ratio is R = 1 and the
feedback loop is delayed, cf. Section IV-A. It is worth noticing
that the resonant-pole selection {ωr = ωd, ζr = 0.9} leads to
an unstable feedback loop, whereas the selection {ωr = ωres,
ζr = 0.1} is stable, though the peak sensitivity value Ms = 8.8
indicates poor robustness. In practice, either the feedback-loop
delay should be reduced or dynamic performance (i.e., the
natural frequency ωd) should be reduced in this particular case.

Fig. 4(c) shows a case where the inertia ratio is R = 7.8 and
the feedback loop is assumed to be ideal. Fig. 4(d) shows a
case where the inertia ratio is R = 7.8 and the feedback loop is
delayed. Interestingly, in this case, the resonant-pole selection
{ωr = ωres, ζr = 0.1} leads to an unstable feedback loop. On
the other hand, the pole selection {ωr = ωd, ζr = 0.9} gives
a stable and robust feedback-loop operation (Ms = 2.5).

Based on Fig. 4 and on a more extensive study (where the
inertia ratio was varied between R = 0.5 . . . 10), it can be
concluded that if the inertia ratio is small (approximately R <
1.5) and the feedback loop is delayed, it is beneficial to keep
the closed-loop resonant poles in the vicinity of the open-loop
resonant poles. On the other hand, when the inertia ratio is
higher (approximately R > 1.5), the natural frequency ωr of
the resonant poles should be lower and the damping ζr higher.
It was also found out that if the feedback loop is delayed and
ωd < ωares, it is beneficial to use ωr = ωres and 0.05 < ζd <
0.1 also with higher inertia ratios.

E. Feedback-Loop Robustness

The robustness against the parameter errors is analyzed by
calculating the sensitivity function peaks MS, when the actual
load inertia J ′L is varied between 0.001 . . . 0.05 kgm2 and the
actual coupling stiffness K ′S is varied between 250 . . . 1500
Nm/rad. The controller gains are kept constant (Table I). Fig.
5 shows the contours of the sensitivity function peaks with the
given parameter variation. The peak values MS < 3 indicate
that the designed controller is robust against the parameter
variations.

V. BENCHMARK METHOD: PI CONTROLLER

In the following sections, the proposed state-feedback con-
troller will be compared to the PI speed controller. The output
of the PI controller is TM,ref = C(s)(ωref − ωM), where

C(s) = kp +
ki

s
(23)

and kp is the proportional gain and ki is the integral gain. If
ωd < ωares is selected, the dominant poles of the PI-controlled

system can be placed to equal those in (5), leading to the PI-
controller gain selection [9]

kp =
2JMζdωd

[
KSJ

ω2
dJMJL

+
JLω

2
d

KS
+ 2(2ζ2

d − 1)
]

KS

ω2
dJL

+
JLω2

d

KS
+ 2(2ζ2

d − 1)

ki =
JMω

2
d

(
KSJ

ω2
dJMJL

+
JLω

2
d

KS
− J

JM
+ 4ζ2

d − 1
)

KS

ω2
dJL

+
JLω2

d

KS
+ 2(2ζ2

d − 1)
(24)

where J = JM + JL.
The loop transfer function of the PI-controlled system is

HPI(s) = C(s)G(s) (25)

The noise transfer function is

NPI(s) = −Gt(s)C(s) (26)

VI. RESULTS

A. Simulation Results

The proposed state-space controller is compared to the PI
controller defined in Section V by means of time-domain sim-
ulations, which are supported with the corresponding Nyquist
diagrams and measurement-noise amplifications. Particularly,
the load-torque rejection and sensitivities to the measurement
noise, mechanical parameter errors, and torque-control loop
dynamics are studied. To make a fair comparison, the coef-
ficients (ωd and ζd) of the dominant poles are selected to
be equal for both the controllers. Moreover, to be able to
use the PI controller, ωd < ωares has to be selected. Table I
shows the selected feedback-loop coefficients and the related
controller gains, which are calculated using (6), (9), and (24),
using the mechanical parameters JM = J ′M, JL = J ′L,min, and
KS = K ′S,max. Both controllers are discretized using Tustin’s
method.

In Fig. 6, the feedback loop is assumed to be ideal, i.e.,
G∆(s) = 1. Though, the measurement noise n remains.
Simulation results are shown in Fig. 6(a), where the speed
reference is zero and a 10-Nm stepwise loading torque is
applied at t = 0.02 s. According to the Nyquist diagrams
and the sensitivity function peaks, shown in Fig. 6(b), both the
proposed controller and PI controller could be applied without
difficulties. However, the measurement-noise amplification,
shown in Fig. 6(c), favours the selection of the proposed
state-space controller. It can be seen that the time-domain
simulation results in Fig. 6(a) agree well with the frequency-
domain analysis.

In Fig. 7, the feedback loop is delayed, cf. Section IV-A.
It can be seen in Fig. 7(b) that the PI-controlled system is
close to be unstable, because the loop transfer function curve
almost encircles the critical point. This is also indicated with
the high value MS = 7.9 of the sensitivity function peak.
However, the proposed state-space controller remains stable
and the sensitivity function peak MS = 2.0 indicates good
robustness. Moreover, the measurement-noise amplification of
the state-space controller is lower.

In Fig. 8, the effect of the mechanical parameter errors on
the stability of the system is examined by increasing the load



7

(a) (b) (c)

Fig. 6. Ideal feedback loop, i.e., G∆(s) = 1: (a) simulated load-torque rejection; (b) Nyquist curve and the sensitivity function peak MS; (c) noise
amplification of the control system.

(a) (b) (c)

Fig. 7. Effect of the current-control loop and speed measurement dynamics: (a) simulated load-torque rejection; (b) Nyquist curve and the sensitivity function
peak MS; (c) noise amplification of the control system.

(a) (b) (c)

Fig. 8. Effect of the mechanical parameter errors: (a) simulated load-torque rejection; (b) Nyquist curve and the sensitivity function peak MS; (c) noise
amplification of the control system.

inertia to J ′L,max and reducing the coupling stiffness to K ′S,min.
It is worth noticing that the estimated values of JL and KS,
which are used for the controller tuning, are kept unchanged.
Other parameters are kept in their nominal values. It can be
seen in Fig. 8(b) that both the systems remain stable but the

state-space controller is a more robust option according to the
lower sensitivity function peak MS = 2.3. Again, the noise
amplification of the state-space controlled system is clearly
lower.
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Fig. 9. Experimental and simulated step responses of the proposed 2DOF
controller.

Fig. 10. Experimental parabolic-command tracking of the proposed controller.

Fig. 11. Experimental load-torque rejection.

Fig. 12. Experimental step response of the proposed 2DOF controller, when
a rated-speed step is applied.

B. Experimental Results

Experiments were carried out using the setup described in
Section IV-A. The step-command tracking of the proposed
controller is evaluated both experimentally and by means of
simulations (using the same model as in Section VI-A). The
results are shown in Fig. 9. It can be seen that the proposed
2DOF state-space controller gives a fast response. Further-
more, the simulation results agree well with the experimental
results.

Experimental results of the parabolic-command tracking test
are shown in Fig. 10. In order to illustrate the effect of the
2DOF controller structure in command tracking, the test was
carried out without the prefilter (1DOF structure) and with the
prefilter (2DOF strucure). It can be seen that the command-
tracking error can be almost completely removed, when using
the 2DOF structure (i.e., when the prefilter is applied). Similar
command-tracking performance could be achieved by applying
the PI-type feedback controller together with the prefilter,
according to [9]. It is worth noticing that the sine signal,
appearing in the speed error and in the torque in Fig. 10, is not
caused by the speed controller. Instead, an eccentric assembly
of the speed encoder causes the problem. The amplitude and
the frequency of this sine depend on the rotational speed.

However, as discussed in Section VI-A, when applying
the PI controller, the feedback loop is more sensitive to the
time delay and to the measurement noise. Fig. 11 shows the
comparison of the measured load-torque rejection for the PI
controller and the proposed state-space controller. The test was
completed at the speed of 200 rpm. It is to be noted that, in
order to obtain similar measurement-noise amplification and
similar sensitivity function peak value for both the controllers,
the PI controller gains are recalculated using ωd = 150 rad/s
and ζd = 0.4. Fig. 11 shows that the proposed state-space
controller outperforms the PI controller in the load-torque
rejection. It is worth noticing that the corresponding simulation
results can be found in Fig. 7(a) for the state-space controller.

The aforementioned experimental results are obtained, when
the controller is operating in the linear region. Nonetheless, the
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discrete-time implementation, given in the Appendix, includes
also the anti-windup. Fig. 12 shows the speed reference
ωref,filt, obtained from (14), and the load-speed response from
a test, where the speed reference is stepped from 1200 rpm
(half rated) to −1200 rpm (half rated) at t = 0.05 s and
the maximum torque Tc,max = 22 Nm in (28). It can be
seen that the anti-windup is operating well. The undershoot
in the speed at around t = 0.21 s could be reduced, by
modifying the damping ζd of the dominant feedback-loop
poles or by modifying the anti-windup gain 1/k1, cf. the
Appendix. Moreover, it can be seen that the speed reference
ωref,filt remains in reasonable limits even though a rated speed-
step is requested.

VII. CONCLUSIONS

A systematic design method for 2DOF state-space speed
control of two-mass mechanical systems is presented. The de-
sign rules for the state-space controller (including the feedback
gain, the full-order observer, the reduced-order observer, and
the prefilter) are derived using model-based pole-placement
methods. Sensitivity to the measurement noise and feedback-
loop time delay were analyzed by means of Nyquist diagrams,
noise transfer functions, and time-domain simulations. It was
found out that the full-order observer based state-feedback
controller is a preferable option. Simulations and experiments
showed that the designed controller gives good reference
tracking for step and dynamic commands as well as robust and
fast load-torque rejection. Furthermore, it was shown that the
measurement-noise rejection capability of the proposed state-
space controller is superior to that of the PI controller (for
given dynamic performance).

APPENDIX
DIGITAL IMPLEMENTATION

When the state feedback is constructed from the estimated
states and the integral state is augmented with anti-windup,
i.e., TM = −Kx̂+ kIxI and ẋI = ωref,filt − ωM + (TM,ref −
TM)/k1, the controller subsystems (3), (7), and (14) can be
presented as

ẋc = Acxc +Bcuc

Tc = Ccxc (27)

where uc =
[
rT ωM TM,ref

]T
is the controller input

vector and Tc is the controller output. The anti-windup gain
is selected as 1/k1 (comparable to 1/kp for a traditional PI
controller). The saturated controller output TM,ref is

TM,ref =

{
Tc, if |Tc| ≤ Tc,max

Tc,maxsgn(Tc), if |Tc| > Tc,max
(28)

where Tc,max is the maximum torque and sgn(·) the signum
function. According to (3), (7), and (14), the controller states

Fig. 13. Digital implementation of the proposed controller.

are selected as xc =
[
x̂T xI xT

f

]T
, leading to

Ac =

 A−LC 03×1 03×2

K/k1 kI/k1 Cf

02×3 02×1 Af

 (29)

Bc =

 03×3 L Bu

Df −1 1/k1

Bf 02×1 02×1


Cc =

[
−K kI 01×2

]
The discrete-time implementation of the proposed controller
is shown in Fig. 13. The discrete-time matrices Φc, Γc, Hc,
and Jc are obtained using Tustin’s method [30].
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