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ABSTRACT
Deep learning has permitted unprecedented performance in sensor-

based human activity recognition (HAR). However, deep learning

models often present high computational overheads, which poses

challenges to their implementation on resource-constraint devices

such as microcontrollers. Usually, the computational overhead in-

creases with the input size. One way to reduce the input size is by

constraining the number of sensor channels. We refer to sensor

channel as a specific data modality (e.g. accelerometer) placed on

a specific body location (e.g. chest). Identifying and removing ir-

relevant and redundant sensor channels is feasible via exhaustive

search only in cases where few candidates exist. In this paper, we

propose a smarter and more efficient way to optimize the sensor

channel selection during the training of deep neural networks for

HAR. Firstly, we propose a light-weight deep neural network archi-

tecture that learns to minimize the use of redundant and irrelevant

information in the classification task, while achieving high perfor-

mance. Secondly, we propose a sensor channel selection algorithm

that utilizes the knowledge learned by the neural network to rank

the sensor channels by their contribution to the classification task.

The neural network is then trimmed by removing the sensor chan-

nels with the least contribution from the input and pruning the

corresponding weights involved in processing them. The pipeline

that consists of the above two steps iterates until the optimal set of

sensor channels has been found to balance the trade-off between

resource consumption and classification performance. Compared

with other selection methods in the literature, experiments on 5

public datasets showed that our proposal achieved significantly

higher F1-scores at the same time as utilizing from 76% to 93% less

memory, with up to 75% faster inference time and as far as 76%

lower energy consumption.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies → Neural networks.
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1 INTRODUCTION
Human activity recognition (HAR) using wearable sensors has nu-

merous applications in healthcare [23], smart home systems [7],

sign language translation [4], virtual reality interaction [14], and

etc. Taken the readings of multiple sensor channels as input, the
algorithms of HAR automatically identify the type of actions an

individual is performing. We refer to sensor channel (or simply

channel) as a stream of data of a specific modality (e.g. heart rate

meter, accelerometer, gyroscope, magnetometer, etc.) placed on

a specific part of the user’s body. For instance, an accelerometer

placed on the left wrist, an accelerometer on the chest, and a magne-

tometer on the right ankle represent three different sensor channels.

Among the methods for HAR, deep learning (DL) has been deliv-

ering impressive performance without the need for domain knowl-

edge for feature engineering. However, the utilization of DL in

real-time requires large amounts of available memory and compu-

tational power, considerably beyond the specifications of common

low-cost off-the-shelf microcontrollers [25]. The computational

overhead typically increases with the number of sensor channels

involved in the input. A straightforward way to reduce resource

consumption is to constrain the number of sensor channels without

significant performance degradation. Sensor channel selection
is defined as the identification and removal of channels that pro-

vide a negative, null, or negligible contribution to the performance

of a HAR classifier. It shares the same goal with neural network

compression techniques. The difference is that, in compression

techniques, the aim is to minimize the neural network complexity,

whereas sensor channel selection targets the minimization of the

input complexity.

Exhaustive search is a commonly used approach for sensor chan-

nel selection that trains neural networks with all possible combi-

nations of channels as input and selects the one that fulfills the

performance requirements with fewer channels. This approach is

not scalable, since the number of possible sensor channel combi-

nations increases exponentially as the number of sensor channels

increases, thus leading to extremely long training duration - espe-

cially in DL scenarios. In this paper, we propose a pipeline that is

able to spot and select relevant and non-redundant sensor chan-

nels more efficiently during the training process of the deep neural

network-based activity classifier.

https://doi.org/10.1145/3412382.3458278
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Figure 1: The pipeline of our method. Firstly, the classifier
is trained for a specific number of epochs 𝐸 defined by the
designer. Next, the training is paused while the sensor selec-
tion algorithm searches for and removes redundant or irrel-
evant sensor channels. The classifier training resumes with
fewerweights and fewer channels. At the end of the training,
our solution provides a list with all the 𝑛 remained channels
ranked according to their contribution to the classification.
At run-time, the 𝑘 ≤ 𝑛 most discriminative channels are uti-
lized, where 𝑘 depends on the computational budget.

Sensor channel selection has also been commonly approached by

training a separate classifier for each channel, fusing the predictions

of each classifier into a final one, and then removing classifiers

(and hence channels) while minimizing the impact on the final

prediction. Since each classifier is trained independently of the

others, this technique doesn’t allow for the learning of inter-channel

dependencies. That is, intricate relationships across sensor channels

are not learned, which leads to worsened performance. Our method

allows for inter-channel dependency learning by not splitting the

channels during training and at inference time.

In shallow learning scenarios, feature selection may lead to sen-

sor channel selection. For instance, if a feature selection algorithm

opts to exclude all the features corresponding to a certain sensor

channel, the sensor channel in question can also be excluded. In DL,

feature selection cannot be employed to filter out sensor channels.

This is because the features learned after multiple stacked layers

in a deep neural network typically contain simultaneously bits of

information from all sensor channels in an unpredictable manner.

Hence, even if feature selection is to be applied in DL, the selected

features will still include information from all channels. Moreover,

DL models are a black box with respect to how the information

from each of the available sensor channels is utilized to generate

a prediction. This characteristic poses a challenge to identifying

redundant and irrelevant sensor channels and, consequently, makes

the problem of sensor channel selection substantially hard.

As illustrated in Fig. 1, we solve the above-mentioned challenges

in a two-stage iterated process. The key features of the pipeline,

as well as the key contributions of this paper, are summarized as

follows:

• A novel and light-weight deep neural network architecture

for sensor-based HAR. It is trained with an objective function

that instructs it to learn to minimize the use of redundant and

irrelevant information across sensor channels while main-

taining high performance compared to other approaches and

without resorting to an exhaustive search.

• A more efficient sensor channel selection algorithm that

looks into the neural network weights, interprets them to de-

cipher which channels are more discriminative and identifies

the redundant and irrelevant ones to the classification task.

Moreover, this algorithm trims the neural network leaving

only the part responsible for processing information from

the relevant and non-redundant sensor channels. This leads

to a significant reduction of resource utilization during the

inference.

For evaluation, we conducted experiments with 5 public datasets:

PAMAP2 [22], Opportunity [6], Skoda [32], MHEALTH [3], and

Daphnet [2]. Compared with other selection methods in the lit-

erature [5, 15, 17, 30], our proposal achieved significantly higher

F1-scores at the same time as utilizing from 75% to 93% less memory,

with up to 75% faster inference time and as far as 76% lower energy

consumption. Despite our pipeline having been proposed for HAR,

we believe that it can be successfully utilized to other multi-input

problems in DL since the methods therein are general.

The rest of this work is organized as follows. In Section 2, we

describe the relatedwork. In Section 3, our pipeline is explained. The

experimental setup and results are detailed in Section 4 and Section

5, respectively. Section 6 discusses the advantages and limitations

of our proposal, including future work, followed by the conclusions

in Section 7.

2 RELATEDWORK
We review in this section previous works on the sensor channel

selection using exhaustive search and optimization-based methods,

respectively. Table 1 provides an overview of the features of our

pipeline compared to the literature.

2.1 Exhaustive search
An exhaustive search algorithm consists in testing all (or a sub-

set of all) possible combinations of sensor channels, as opposed

to an optimization-based algorithm, where the selection of sen-

sor channels is obtained by optimizing an objective function. An

exhaustive search is only plausible in cases where the number of

channels is small enough to permit only very few different combina-

tions of them. For instance, a number of channels above 5 generate

more than 32 possible combinations, which renders the exhaustive

search prohibitively expensive, especially if it consists in training

DL models. To reduce the computational cost, a simple way is to

shrink the search space by performing the search on only a subset

of all possible combinations. However, if it is done randomly, it can

lead to sub-optimal solutions. To avoid this, heuristics can be used
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Feature Ours Exhaustive search
[1, 8, 9, 30]

Sensor channel
selection [5, 15, 17, 29]

Standard DL methods
[10, 11, 19, 20, 28]

Classification performance High Medium-High Medium High

Resource utilization Lower Low Low - Medium High

Redundant and irrelevant channels are removed Yes Yes Yes No

Rank channels by their importance Yes No No No

Duration of the training Medium-Long Extremely long Long Medium
Table 1: Comparison of our solution with the related work.

in the shortening of the search space, but it may require domain

knowledge.

Aziz et al. [1] determined the minimum amount of body-worn

IMU sensors and their locations to accurately classify the daily

living activities including walking, sitting down, standing up, and

standing still. Their method consisted in exhaustively testing 8 dif-

ferent settings - each setting with a certain number of sensor chan-

nels. The setting that provided the best performance was formed

by 3 IMU sensors, one on each of the following locations: chest,

right ankle, and left ankle. Similar work with an exhaustive search

for daily living activities was performed by Ertugrul and Kaya [8].

In [9], an exhaustive search composed of 214 − 1 combinations

of sensor channels was performed with shallow learning for the

recognition of home activities.

The approach in [30] consisted of having a classifier for every

individual channel. To fuse the predictions of all classifiers into a

unique class, a Naïve Bayes classifier was used. The authors focused

on the case where at run-time one or multiple sensor channels may

become unavailable (e.g. due to malfunction). During the training,

the authors then tested 3800 different combinations of sensor chan-

nels, saving in memory the statistics of the performance of each

combination for later reference. At run-time, a sensor channel se-

lection algorithm was used to pick a minimal and best-performing

combination depending on the availability of the sensor channels.

Follow-up work was presented in [31], where the authors replaced

the exhaustive search during model training with a more efficient

heuristics at run-time that reduced the search space from 2𝑁 − 1
possibilities to 2𝐾 −1, where 𝐾 ≤ 𝑁 and 𝑁 is the number of sensor

channels.

Compared to shallow classifiers, which are utilized in the afore-

mentioned works, DL models have a more complex structure with

a number of trainable variables that can reach millions. Moreover,

the designer of a DL model often has to go through the process of

selecting optimal values for the hyper-parameters by trial and error,

which signifies training the model multiple times. Therefore, in the

case of DL, exhaustive searches are expensive to an even greater

extent. For this, our proposal does not employ an exhaustive search.

2.2 Optimization-based methods
Yang et al. [29] proposed a sensor channel selection algorithm for

shallow learning. The authors addressed the problem by optimiz-

ing the performance and number of selected channels via Markov

Decision Process. Their algorithm is composed of two shallow neu-

ral networks - a classification network and a policy network. At a

certain instant of time, all channels are sampled and 13 different

handcrafted features are extracted from their data. These features

are fed into the policy network, which provides as output a vector

of binary values that represents the state of each sensor channel

(selected or not selected). The extracted features suffer a sparsifi-

cation: features of sensor channels that have not been selected are

set to zeros, whereas those of selected channels are left unchanged.

The classification network receives the sparse features as input and

classifies them according to the activity.

Two important points should be clarified about Yang’s [29]

method. First, a reduction in computational expense only happens if

the cost corresponding to the policy network plus the cost involved

in the classification of the sparse features does not surpass the

cost of classifying the dense features. The authors did not quantify

these costs. However, performing computations on sparse features

may not lead to an appreciable reduction in computational expense,

unless the device responsible for the computations is powered with

accelerations for sparse tensor algebra. This is hardly available in

microcontrollers or microprocessors, thus limiting the lightness

of their method with respect to the computational device. Second,

the memory footprint of the classification model is not reduced by

the fact that it receives sparse input data. On the contrary, there is

an increase in this factor by the use of a secondary network - the

policy network.

We devise an optimization-based method that presents modu-

larity with respect to the sensor channels - as it is also done in

[29]. However, differently, our method does not require zeroing-out

inputs corresponding to excluded sensor channels. Therefore, in

this sense, gains in resource efficiency are more obtainable since

sparse tensor algebra is not required. Also differently from [29],

memory footprint in our neural network can be reduced when

sensor channels are excluded.

In Cao et al. [5], similar to [30] and [31], there are as many clas-

sifiers as sensor channels - with each sensor channel connected

to a corresponding classifier. The authors then transformed the

problem of sensor channel selection into classifier selection and

proposed two distinct methods to select a subset of classifiers. For

instance, one of the proposed methods (mRMR) quantifies redun-

dancy among classifiers in order to select a subset of classifiers with

minimal redundancy.

Keally et al. [15] also resorted to ensemble learning (training

multiple classifiers, each of which assigned to a channel). However,

to identify redundancies across channels, the authors proposed to

use the Pearson correlation coefficient. In [17], device selection -

where each device is composed of a group of channels and has its

individual classifier - was addressed. In their method, at every 𝑘

seconds, a single device among all the available ones is selected

based on metrics that aim at quantifying its quality (by quality it is

meant capability of generating accurate predictions). The selected

device is then used to generate predictions until a new selection is

performed.
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Figure 2: Our neural network architecture designed for
resource-efficient HAR. Layers are shown in green, while
blocks appear in yellow. Our neural network is character-
ized by the presence of a dropout layer at the beginning,
which randomly drops sensor channels. A separated incep-
tion block performs the learning of short-temporal and spa-
tial dependencies within each channel. In the next stage, the
channels are fused according to their relevancy to the clas-
sification. This is where spatial dependencies between the
channels are learned. The long short-term memory (LSTM)
layer learns long-temporal dependencies in the data. Finally,
the fully-connected (FC) layer activated by a softmax func-
tion provides per-class predictions.

A drawback of having multiple classifiers for each channel - or

for each device as in the case of [17] - is that the classifiers do not

learn relationships across the sensor channels, which may lead to

reduced performance. By avoiding assigning a separate classifier

for each sensor channel and by combining features originated from

different channels before the classification layer, our neural network

is able to learn inter-channel dependencies.

2.3 Controlling the number of selected sensor
channels at run-time

In scenarios where the levels of resources - such as processing

power, and memory availability - are dynamically changing, con-

trolling the number of selected channels at run-time is an important

feature that allows the HAR system to adapt to these varying con-

ditions. In the optimization-based methods discussed [5, 29], this

feature is not present. In [29], alternating between a more cost-

saving approach (i.e., with fewer selected channels) and a more

accuracy-oriented approach (i.e., with a greater number of selected

channels) is only possible through complete retraining of both net-

works. In [5], this feature can be implemented at run-time without

the need for retraining. However, for this, modifications to the

method that selects the classifiers are necessary. Complete retrain-

ing of the classifiers is also necessary for the exhaustive search

methods discussed, with the exception of [30], whose system was

specifically designed for this purpose.

In our proposal, when the training is complete, our sensor chan-

nel selection algorithm provides an ordered list of channels accord-

ing to their contribution. At run-time, a subset of these channels

can be selected. Such a subset can have variable size depending on

the level of resource availability at the moment.

3 METHODS
We propose a neural network architecture, as illustrated in Fig.

2, for predicting the class of human activities based on sensory

input. Our design described in this section follows the principle

of minimizing the use of redundant and irrelevant information

across sensor channels, without causing significant performance

degradation. A sensor channel is denoted as 𝑠𝑖 ∈ R𝑎 × R𝑏 with 𝑖 as

Figure 3: The inception block. Dimensions 𝑎 and 𝑏 represent,
respectively, the sliding window’s time-length and spatial-
length. For instance, a sliding window of 100 time-samples
from a 3D accelerometer has dimensions 100 x 3. The first
dimension 𝑎 is pooled with kernel size 3, resulting in 𝑎′ =

ceil(𝑎/27) at the output.

its identifier. 𝑎 and 𝑏 are, respectively, the time-length and spatial

length of a sliding window. For instance, using the 3D accelerom-

eter (acceleration in x, y, and z axes) as an example, 𝑏 = 3. Each
component of the network is described as follows.

3.1 Dropout layer
The neural network starts with a dropout layer, originally proposed

in [26]. When training, the dropout layer removes a sensor channel

𝑖 with a pre-defined probability 𝑝 , which is constant and common to

all sensor channels. Consequently, the corresponding data streams

are removed from the input of the following layers. In other words,

they will not be processed in the following layers. We denote as 𝑜𝑖
the state of the sensor channel 𝑖 , in the sense that 𝑜𝑖 = 0 if 𝑠𝑖 was

dropped out - and otherwise 𝑜𝑖 = 1.
The dropout layer was originally proposed to avoid overfitting

in neural networks by breaking up co-adaptations specific to the

training data, thus allowing the network to generalize better on

unseen data [26]. Similarly, we base on the premise that standard

back-propagation builds co-adaptations between sensor channels.

This makes the trained network highly dependent on all sensor

channels. Even if some channels do not contribute, the performance

of the network would degrade if any of them is to be replaced with

random noise or zeros. By using dropout on sensor channels, the

network is enforced to learn to work with random combinations of

channels.

Higher values of 𝑝 drop channels more often, thus slowing down

the learning of the neural network - i.e. decreasing the convergence

speed of the training. Smaller values of p defeat the purpose of

channel selection since dropping out channels during training is

important to break the co-adaptations between them. Therefore, 𝑝

is a hyper-parameter that is tuned with the use of the results on

the validation set.

3.2 Inception blocks
The sensor channels that were not dropped out in the previous layer

are processed in inception blocks (Fig. 3). There is an independent

inception block for each sensor channel 𝑖 and we denote it as a
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function 𝐼𝑖 (·). The output of an inception block is written as 𝐼𝑖 (𝑠𝑖 ) =
𝑓
𝑖
. The inception block is originally proposed in [27] and has been

shown to be effective for HAR in [28]. Our variant of the inception

block is lighter and contains only 780 trainable variables. Fig. 3

illustrates the components of our inception block: three inception

layers and an average pooling layer at the spatial dimension 𝑏. The

goal of the inception block is to learn short-temporal and short-

spatial dependencies present in the sensor channel. Long-spatial

(i.e. across sensor channels) and long-temporal dependencies are

learned by the subsequent channel fusion layer and long short-term

memory (LSTM) layer.

3.3 Fusing channels
The feature maps extracted by the inception blocks - 𝑓

𝑖
- are input

for the channel fusion layer. The fusion of the channels is made

by performing a simple weighted sum of the normalized inception

feature maps (Eq. 1), which collaborates with the goal of a light-

weight model.

Some of the feature maps may have a different amplitude com-

pared to the others. This imbalance harms our goal of having weight

ℎ𝑖 that dictates the importance of its feature map 𝑓𝑖 for accurate

classification of the activities. For this reason, we normalize the

feature maps. The calculation of the mean and standard deviation

is shown in Eq. 2, which follows [16].∑
𝑖

ℎ𝑖 ·
𝑓𝑖 − 𝜇𝑖
𝜎𝑖

, (1)

𝜇𝑖 =
1

𝑈

𝑈∑
𝑗

𝑢𝑖𝑗 and 𝜎2𝑖 =
1

𝑈

𝑈∑
𝑗

(𝑢𝑖𝑗 − 𝜇𝑖 )
2, (2)

where 𝑢𝑖
𝑗
is a feature present in 𝑓𝑖 and𝑈 is the number of features

in 𝑓𝑖 . Notice that each feature map is normalized independently.

Therefore, changes in one feature map do not produce correlated

changes in the others.

The calculation of ℎ𝑖 is shown in Eq. 3.

ℎ𝑖 =
𝑜𝑖 · 𝑒𝑥𝑝 (𝑣𝑖 )∑
𝑗 𝑜 𝑗 · 𝑒𝑥𝑝 (𝑣 𝑗 )

thus

∑
𝑖

ℎ𝑖 = 1 (3)

The variables 𝑣𝑖 - sensor channel values - are calculated by Eq. 4.

𝑣𝑖 =
∑
𝑗, 𝑗≠𝑖

𝑜 𝑗 ·𝑤𝑖 | 𝑗 (4)

The variable𝑤𝑖 | 𝑗 - denoted as cross-channel weight - is defined

as the importance of the sensor channel 𝑖 , given that the sensor

channel 𝑗 (with 𝑗 ≠ 𝑖) is also used for the classification. On the other

hand, negative values for𝑤𝑖 | 𝑗 indicate the redundant or irrelevant
nature of channel 𝑖 in the presence of 𝑗 . Each variable 𝑤𝑖 | 𝑗 is a
trainable variable and we impose the relationship 𝑤𝑖 | 𝑗 = −𝑤 𝑗 |𝑖 ,
which enforces the network to learn the imbalance of the impor-

tance of sensor channels. The value of a cross-channel weight is

only considered in 𝑣𝑖 if its channel was not previously removed by

the dropout layer. This is expressed by the multiplication with 𝑜 𝑗 .

Moreover, ℎ𝑖 is not influenced by sensor channels that have been

dropped out.

The sum of the channel weights ℎ𝑖 being equal to 1 and the

utilization of the normalization layer gives the neural network a

modular characteristic with respect to the sensor channels. The

number of weights in the channel fusion block is as low as 𝑁 ∗
(𝑁 − 1)/2, where 𝑁 is the number of channels. This collaborates

with the light-weight purpose of our neural network. The output

of the channel fusion block is fed into the LSTM [13] layer, where

long-term temporal dependencies within the fused channels are

learned from the data.

3.4 Classification layer
The output of the LSTM layer is fed into a fully-connected (FC)

layer which generates a vector with a size equal to the number of

classes. A softmax layer proceeds to generate class probabilities.

The loss function L to be minimized is composed of three distinct

terms: 1) the standard cross-entropy for multiclass classification,

2) an entropy on the vector h, and 3) a knowledge distillation

cross-entropy objective as in [12]. The importance of each term

is determined by the positive real-valued constants 𝜆𝐶 , 𝜆𝐸 and 𝜆𝐷
defined prior to the training.

L = E[𝜆𝐶
∑
𝑖 𝑜𝑖

𝑁

∑
𝑘

𝑦𝑘 log(𝑦𝑘 ) − 𝜆𝐸
∑
𝑖

ℎ𝑖 log(ℎ𝑖 )

+𝜆𝐷
∑
𝑖 𝑜𝑖

𝑁

∑
𝑘

𝑦′
𝑘
log(𝑦𝑘 )]

(5)

In the first term - the cross-entropywith real labels -𝑁 represents

the number of sensor channels. 𝑦𝑘 and 𝑦𝑘 represent, respectively,

the label and the prediction probability for class 𝑐 . The multiplying

term

∑
𝑖 𝑜𝑖

𝑁
is a way of adjusting the gradients with the number

of sensor channels that were not dropped out. Therefore, bigger

changes in the values of the network’s weights come from cases

where fewer sensor channels have been dropped out.

Note that the weights𝑤𝑖 | 𝑗 are trained like any other parameter in

the neural network. However, minimizing the entropy of the vector

h - the second term - forces an imbalance in these weights, which

stimulates the network to learn to utilize as few sensor channels

as possible for accurate classification. The negative sign before the

entropy term and a positive real-valued constant 𝜆𝐸 dictate the

minimization of the entropy objective.

Regarding the third term, i.e. the knowledge distillation term,

𝑦′
𝑘
is the prediction - named soft labels - given by a teacher model

and is defined in Eq. 6. The teacher model is a fairly more complex

neural network - as InnoHAR [28] - utilizing all sensor channels

without dropout. Preliminary experiments performed by us have

shown that distilling knowledge from a more complex model (the

teacher model) improves the convergence speed of the student

model (which is our neural network) in cases where the number

of sensor channels is greater than 10. However, we did not ob-

serve performance improvement. Hence, here the utilization of the

knowledge distillation has the only purpose of accelerating the con-

vergence of our neural network. Faster convergence speed of the

student model with the use of distillation has been mathematically

demonstrated in [21].

𝑦′
𝑘
=

exp(𝑙 ′𝑐/𝜏)∑
𝑐 exp(𝑙 ′𝑐/𝜏)

, (6)
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Algorithm 1: Training of our activity classifier.

Create the neural network and define learning rate (e.g. 2e-3)

Load training data D𝑇𝑅𝐴𝐼𝑁 and a pre-trained teacher model

Define the constants 𝜆𝐶 , 𝜆𝐸 , 𝜆𝐶𝐿 , 𝜆𝐷 , 𝐸, 𝜏 and 𝛼

Set contains_unnecessary_channels = True

while contains_unnecessary_channels do
for e = 1, e ≤ 𝐸, e++ do

for all 𝑥𝑡𝑟𝑎𝑖𝑛 in D𝑇𝑅𝐴𝐼𝑁 do
Compute gradients of the loss function L (Eq. 5)

Update the weights of the neural network

end
Find the sets S(1) , ..., S(𝑁 )

Run validation to find 𝐹 (1) , ..., 𝐹 (𝑁 ) , 𝐹 =
∑𝑁
𝑛 𝐹 (𝑛)

Save the model in memory if it has the highest 𝐹

end
Load the model that achieved the highest 𝐹

Load 𝐹 (1) , ..., 𝐹 (𝑁 )
and S(1) , ..., S(𝑁 )

Set num_excluded_channels = 0

for K = 1, K ≤ N, K++ do
if F(𝐾) − 𝐹 (𝐾−1) <𝛼

Exclude the sensor channel in S(𝐾) \S(𝐾−1)

num_excluded_channels += 1

end
if num_excluded_channels == 0

Set contains_unnecessary_channels = False

Measure the F1-score (Eq. 12) on the test set

else
Set N = N - num_excluded_channels

Remove the inception blocks of excluded channels

Reduce the learning rate (e.g., to 5e-4)

end
Return the trained classifier and a ranked list of

non-excluded channels according to their 𝑣𝑖 values.

where 𝑙 ′𝑐 is the output of the classification layer of the teacher model

for class 𝑐 , and 𝜏 is termed as the softmax temperature and serves

to smoothen the labels 𝑦′
𝑘
used in the student model. 𝜏 is a tuneable

parameter usually set as 𝜏 ≫ 1. The performance of the student

model is negatively affected as 𝜏 moves away from its optimal value

in both directions.

3.5 Sensor channel selection
Before proceeding, we will explain the notation that will be used

later. We define S as the set of all sensor channels (Eq. 7) that

are being utilized in the training. The set V (Eq. 8) is defined as

containing the values 𝑣𝑖 (defined previously in Eq. 4) for all these

sensor channels.

S = {𝑠𝑖 | 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑁 }, (7)

where 𝑁 is the number of sensor channels in the training and N is

the set of natural numbers.

V = {𝑣𝑖 | 𝑠𝑖 ∈ S} (8)

𝑉𝑀 is equal to the greatest real number 𝑚 such that the set

composed of all 𝑣𝑖 that are greater than𝑚 has cardinality𝑀 . This

is expressed in Eq. 9. In other words, 𝑉𝑀 is the𝑀-th highest value

in V.

𝑉𝑀 = inf{𝑚 | card({𝑣 ∈ V | 𝑣 > 𝑚}) = 𝑀} (9)

The set V(𝑀)
contains all values 𝑣𝑖 that are greater or equal to

𝑉𝑀 . That is, V(𝑀)
contains the highest𝑀 values of V. S(𝑀)

is the

set of all sensor channels whose values 𝑣𝑖 are elements of V(𝑀)
.

That is, all the𝑀 sensor channels of highest values 𝑣𝑖 . Eq. 10 and

Eq. 11 define these sets formally.

V(𝑀) = {𝑣 ∈ V | 𝑣 ≥ 𝑉𝑀 } (10)

S(𝑀) = {𝑠𝑖 | 𝑣𝑖 ∈ V(𝑀) } (11)

A pseudo-code of the entire training process is detailed in Al-

gorithm 1. At the end of each epoch, as described in Algorithm 1,

the validation is run for 𝑁 times. The first validation is performed

using S(1) as input resulting in an F1-score (defined in Section 4.3)

denoted as 𝐹 (1) . The second validation uses S(2) and provides 𝐹 (2) ,
and so on until S(𝑁 )

and 𝐹 (𝑁 )
. We define as 𝐹 as

∑𝑁
𝑛 𝐹 (𝑛) . At the

end of every 𝐸 epochs, the model that achieved the highest 𝐹 is

loaded back into memory. The sensor channel selection then occurs

as follows.

First, all the sets S(𝐾) ∀ 1 < 𝑀 ≤ 𝑁 , 𝐾 ∈ N are found. After this,

the sensor channel 𝑠𝑖 present in the set S(𝐾)\S(𝐾−1) is excluded
if 𝐹 (𝐾) − 𝐹 (𝐾−1) < 𝛼 ∀ 1 < 𝐾 ≤ 𝑁 , 𝐾 ∈ N, where 𝛼 is a small

real-valued positive constant (or zero) defined by the human prior

to the training. In other words, a sensor channel 𝑠𝑖 is excluded if its

addition resulting in S(𝐾−1) becoming S(𝐾) does not improve the

F1-score 𝐹 (𝐾) beyond a pre-defined threshold𝛼 . Note that, with this,
the sole sensor channel contained in S(1) is never excluded. The
goal of the threshold 𝛼 is to set a boundary between a negligible and

an appreciable contribution to the performance. Sensor channels

that do not provide at least a performance improvement of 𝛼 are

excluded as they are considered either redundant or irrelevant.

If no sensor channel is excluded, the training is complete. Other-

wise, the training proceeds without the excluded sensor channels

for another 𝐸 epochs. Also, 𝑁 is reduced to be equal to the number

of sensor channels still present in the training and the sets S and V
are redefined considering only the sensor channels still in use.

We propose to reduce the learning rate after removing some

sensor channels. The reason for this is that we have found that the

LSTM and classification layers overfit the data contained in the

reduced number of sensor channels since their complexity becomes

smaller than the required complexity for the new (and reduced) set

of sensor channels.

At the end of the training, our algorithm provides a ranked list of

the remained sensor channels according to their values 𝑣𝑖 . Channels

with a higher 𝑣𝑖 are considered to provide more contribution to

the classification task. At run-time, all the selected channels can be

used for inference. However, when resources are more constrained,

a subset of these channels containing the 𝑘 most discriminative

sensor channels can be used instead, with minor performance degra-

dation. Naturally, 𝑘 depends on the available resources at run-time.

Before run-time, we calculate using the validation set the resource

utilization for different values of 𝑘 . These statistics are stored in a
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Figure 4: The sensor channels included in the test datasets.
Best seen in color.
simple look-up table and loaded at run-time to select the value 𝑘

that best fits within the computational budget available.

Network trimming. The inception blocks corresponding to the
excluded sensor channels can be removed from the network. The

performance drop associated with this trimming is negligible for

two reasons: 1) due to the dropout layer, the network has learned

to work with multiple combinations of sensor channels, and 2) the

continuation of training with reduced learning rate better adapts

the network to the absence of the excluded sensor channels. Also,

at run-time, when resources are limited, the inception blocks that

process the data from less discriminative selected channels can be

loaded off the memory.

4 EXPERIMENTAL SETUP
4.1 Datasets
We used 5 public datasets for evaluating our method, each of which

is described below. Fig. 4 illustrates the locations of the sensor

channels in each dataset.

PAMAP2. The PAMAP2 dataset [22] encompasses 18 different

physical activities. However, 6 of them are rarely present in the data.

Following previous works [10, 24, 25], to avoid a heavily imbalanced

training, only the remaining 12 activities are used in this work: lying

quietly, sitting, standing, ironing, vacuum cleaning, ascending stairs,

descending stairs, walking, Nordic walking, bicycling, running, and

rope jumping. Transient activities (denoted as the null class) are

discarded.

In total, 9 participants were designated for the data collection.

They wore a heart rate monitor and 3 IMUs attached to the chest,

hand, and ankle, respectively. Each IMU provided 6 different sensor

channels. Hence, in total, 19 sensor channels. The sampling rate -

originally at 100Hz - was reduced by decimation to 33.3Hz since

faster sampling rates don’t improve the performance for this dataset,

but increase computation and memory utilization [24].

Opportunity. This dataset [6] incorporates 18 kitchen-related
activities: null class, cleaning a table, opening/closing the fridge,

opening/closing the dishwasher, opening/closing 3 different draw-

ers (at different heights), opening/closing 2 different doors, toggling

lights on and off, and drinking from a cup. The data were collected

at 33 Hz from 4 participants equipped with sensors. In our experi-

ments, only the sensory readings from the upper limbs, back, and

both feet were considered (as in [10, 24, 25]). These readings come

from 29 different sensor channels (Fig. 4).

Skoda. The Skoda dataset [32] covers 10 activities involved in

a car maintenance scenario: writing down notes, opening/closing

the engine hood, checking door gaps, opening/closing door, open-

ing/closing two doors, checking the trunk gap, opening/closing

the trunk, and checking the steering wheel. Only one subject took

part in the data collection, wearing 10 3D-accelerometers on each

arm - 20 sensor channels in total (Fig. 4). In our experiments, the

sampling rate was decimated from 100Hz to 33Hz, for the same

reason as in PAMAP2.

MHEALTH. The MHEALTH dataset [3] comprises 12 physical

activities of varying intensities performed by 10 volunteers: stand-

ing still, sitting and relaxing, lying down, walking, climbing stairs,

bending waist forward, elevating arms frontally, bending knees,

cycling, jogging, running, and jumping to the front & back. IMUs

were placed on the subject’s chest, right wrist, and left ankle. Addi-

tionally, vital signs were recorded with 2-lead electrocardiogram

(ECG) measurements. These readings sum up to 9 sensor channels

(Fig. 4). The recordings were made at a 50Hz sampling rate.

Daphnet. This dataset [2] aims at detecting the freezing of gait

in Parkinson’s disease patients. It uses 3 wearable accelerometers (in

total 3 sensor channels) on the ankle, thigh, and trunk, respectively.

In total 10 subjects are included. The data contains 3 different labels:

transient activities (discarded here), freezing of gait, and normal

movements. In accordance with [33], we downsampled the data by

decimation from 64Hz to 32Hz.

4.2 Data pre-processing
Prior to the training of the activity classifiers, we normalized all the

data to zero mean and unit variance. Each dataset was segmented

with sliding windows. Each window was labeled with the activity

which lasts for the longest within the window. For the PAMAP2,

following [11, 19, 24, 25, 33], the window size contained approxi-

mately 5.12 seconds with 78% overlap. These numbers are 1 and 50%

for Skoda, Daphnet, MHEALTH, and Opportunity (also following

[11, 24, 25]).

The proportions of the training, validation, and test data for

Skoda and MHEALTH were chosen to be 0.70, 0.15, and 0.15, re-

spectively. As for PAMAP2, we utilize the data from subject 5 for

the validation set, subject 6 for the testing set, and the remaining

subjects for the training set. This protocol is followed in diverse

works [10, 11, 25, 28]. Also following [10, 11, 25, 28], for the Oppor-

tunity dataset, the validation set is composed of run 2 from subject

1, and the test set consists of runs 4 and 5 from subjects 2 and 3. The

remaining data is assigned to the training set. Finally, for Daphnet,

run 1 from subject 9 composed the validation set, whereas runs 1

and 2 from subject 2 formed the test set, with the remaining data

for training. This is also followed in [11].

4.3 Evaluation metrics
We utilized the F1-score as the performance metric (Eq. 12). The

F1-score can account for class imbalance in the dataset [19], which

is a common case in HAR.
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𝐹1 =
2𝑇𝑃𝑖

2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
, (12)

where 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , and 𝐹𝑁𝑖 represent the number of true positives,

false positives, and false negatives of a certain class, respectively. To

obtain a single measure for all classes, we calculate a weighted av-

erage of the F1-score for all classes, weighting each class according

to the number of samples available for it.

Other evaluation metrics include the memory footprint of the

neural network, the inference time of a prediction, and the energy

consumption per prediction. These metrics were measured on the

Raspberry Pi 4B microcontroller - a low-cost device for general

purposes - which is powered with a quad-core Cortex-A72 64-bit

System on a Chip.

4.4 The code
The training of the pipeline was implemented in Python 3.8.5

with TensorFlow 2.3.0 and executed on an Intel Xeon Gold 6134 at

3.20GHz and an NVIDIA Tesla V100 16GB of RAM. The inference,

however, took place on a Raspberry Pi 4B - as mentioned in Sec

4.3. Adam was used as the optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999.
The mini-batch size was set to 32. The LSTM layer included 32

hidden units. The dropout rate was set to 0.35. The choice of these

hyper-parameters was made by trial and error utilizing the valida-

tion sets. Our neural network is stable in the sense that different

combinations of hyper-parameters lead to very similar results.

We used InnoHAR [28] as the teacher model for the knowledge

distillation and for later comparisons in Sec. 5, with the same hyper-

parameters provided in the authors’ paper [28]. As mentioned in

Sec. 3.4, knowledge distillation is only utilized to improve the con-

vergence speed at the beginning of the training for cases where the

number of channels is above 10 - i.e. in the PAMAP2, Skoda, and

Opportunity datasets. Distillation for MHEALTH and Daphnet has

proved to be ineffective because the convergence speed for them is

already fairly fast due to the small number of channels.

The threshold 𝛼 was set to 5e-3. This signifies that we consider

improvements in F1-score lower than 5e-3 to be negligible and chan-

nels whose contribution is within this interval should be removed.

The number of epochs 𝐸 is 50. The learning rate was set to 2e-3 and

reduced to 5e-4 after the first 50 epochs. The constants 𝜆𝐶 , 𝜆𝐸 and

𝜆𝐷 were set - respectively - to 1, 0.4 and 0.5. We utilized a softmax

temperature 𝜏 = 10.

4.5 Comparison with previous works
We implemented Heuristic-based Assessment (HQA) [17], Practical

Body Networking (PBN) [15], Minimal Redundancy and Maximal

Relevancy Ensemble Pruning (mRMR EP) [5] and Naïve Bayes

Fusion with Exhaustive Search [30].

HQA [17] was originally devised for device selection - where

each device consists of a group of sensor channels. Here, however,

we consider that each device consists of a sole sensor channel. Also,

for a fairer comparison, the hyper-parameters for the methods

PBN [15], mRMR EP [5] and NBF + ES [30] were chosen so that

the resulting number of selected channels were equal to that of

our method. In NBF + ES, we limited the exhaustive search to 50

random combinations of channels, since analyzing all the possible

Dataset: MHEALTH
Iteration 1: F1-score of 0.982, ECG monitors and gyroscopes

removed. Only accelerometers and gyroscopes remaining.

Iteration 2: F1-score of 0.983, right arm acc. removed. Remain

left ankle acc., chest acc., right arm mag. and left ankle mag.

Iteration 3: F1-score of 0.992. No channels removed. The

remaining channels are the same as in the previous iteration.

Table 2: Demonstration of the pipeline’s results through all
iterations for MHEALTH.

Dataset Selected channels by our method
Daphnet 2 out of 3: 1. Trunk acc. and 2. Shank acc.

MHEALTH

4 out of 9: 1. Left ankle acc., 2. Chest acc.,
3. Right arm acc., and 4. Left ankle mag.

PAMAP2

5 out of 19: 1. Ankle mag., 2. Chest ±16g acc.,
3. Hand ±16g acc., 4. Ankle ±6g acc., and
5. Chest mag.

Opportunity

4 out of 29: 1. Right wrist mag., 2. Center of the

back mag., 3. Right biceps acc., and 4. Left wrist

acc.

SKODA

8 out of 20 (acc. only): 1. Slightly above left wrist,

2. Slightly below right wrist, 3. Left-side of upper

right arm, 4. Right-side of upper right arm, 5. Left

arm brachoradialis muscle, 6. Left arm deltoid

muscle, 7. Right arm deltoid muscle, and

8. Right-side of the upper left arm

Table 3: The sensor channel selection - in order from most
to least discriminative - provided by our algorithm. Abbrevi-
ations: acc. for accelerometer, gyro. for gyroscope and mag.
for magnetometer.

combinations would result in days of uninterrupted code execution.

Choosing the number of channels for HQA [17] is not possible

since - at every 𝑘 seconds - this method selects one device among

all possible ones and only utilizes it to generate the predictions

until a new device is chosen in the following selection. As proposed

in the original paper, We set 𝑘 equal to 10 times the length of the

sliding window.

Finally, as discussed in Section 2.2, all four channel selection

methods used for comparison utilize an ensemble of classifiers

where each classifier is responsible for generating predictions to a

sensor channel and the channel selection problem is transformed

into a classifier selection problem. The classifiers in the ensemble

were chosen to be a simple version of InnoHAR with 12 filters on

each convolutional layer - instead of the original 128 filters. This

number of filters was found - by trial and error using the validation

sets of each dataset - to be the minimum one that provides in

average best F1-score across all datasets.

5 EXPERIMENTS
In this section, we first demonstrate the results at all stages of

our pipeline for MHEALTH (Sec. 5.1). Next, in Sec. 5.2, we show

the final results - in terms of the evaluation metrics described in

Sec. 4.3 - for all datasets and compare them to related works in

sensor channel selection [5, 15, 17, 30], as well as to InnoHAR

[28] - which does not perform sensor channel selection. We then

evaluate the trade-off between the number of sensor channels and

classification performance. In Sec. 5.3 we discuss the criteria for
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Method F1-score, memory footprint (MB), inference time (ms) and energy consumption per prediction (mJ)
Daphnet MHEALTH PAMAP2 Opportunity Skoda

InnoHAR [28] 0.889 17.1 28.7 79.2 1.000 23.9 48.4 140.4 0.916 70.9 182.1 540.0 0.898 17.9 33.0 104.4 0.979 17.1 26.8 80.8

Ours 0.901 2.0 0.4 1.8 0.990 2.9 1.1 3.6 0.884 3.5 4.0 12.9 0.864 1.9 0.8 2.1 0.926 3.0 1.5 5.0
HQA [17] 0.838 5.8 0.6 2.3 0.892 27.9 1.76 5.3 0.776 59.8 9.97 30.2 0.782 85.5 3.4 10.9 0.885 38.2 1.9 5.9

PBN [15] 0.855

3.8 1.1 3.9

0.993

12.4 3.9 11.8

0.875

16.0 17.8 54.0

0.804

11.8 3.6 11.5

0.925

15.2 5.2 16.2mRMR EP [5] 0.841 0.967 0.856 0.760 0.913

NBF + ES [30] 0.856 0.990 0.820 0.778 0.927

Table 4: Comparison between ourmethod, InnoHAR [28] and relatedworks in sensor channel selection [5, 15, 17, 30]. InnoHAR
uses all possible channels and is included here to provide contrast with selectionmethods. At inference time, themethods PBN
[15], mRMR EP [5] and NBF + ES [30] only differ with respect to the fusion of the predictions of each classifier. The resource
utilization involved in this fusion stage is negligible for all three methods, hence the identical values in resource utilization.

Datasets PAM. MHE. Skoda Daph. Opp.
Number of channels 2 1 2 1 1

F1-score 0.707 0.779 0.679 0.855 0.737

Memory footprint (MB) 3.14 1.87 1.87 1.91 1.91

Inference time (ms) 1.79 0.36 0.44 0.26 0.25

Energy cons. per pred. (mJ) 5.04 1.08 1.44 0.68 0.75

Number of channels 3 2 4

-

2

F1-score 0.780 0.960 0.811 0.811

Memory footprint (MB) 3.29 1.95 1.94 1.92

Inference time (ms) 2.52 0.63 0.80 0.44

Energy cons. per pred. (mJ) 7.92 1.80 2.51 1.08

Number of channels 4 3 6

-

3

F1-score 0.865 0.970 0.913 0.825

Memory footprint (MB) 3.31 2.00 2.05 2.01

Inference time (ms) 3.28 0.90 1.16 0.62

Energy cons. per pred. (mJ) 10.08 2.52 3.24 1.80

Table 5: Performance and inference expenses of our neu-
ral network for different numbers of sensor channels. The
Daphnet dataset featured only 2 selected channels. There-
fore, only one - instead of 3 - configuration was tested
here. Abbreviations: PAM. for PAMAP2, Daph. for Daphnet,
MHEA. for MHEALTH, and Opp. for Opportunity.

optimal sensor channel selection observed from our experiments.

Finally, we provide ablation studies in Sec. 5.4.

5.1 Demonstrating the pipeline
A short demonstration - for the MHEALTH dataset - of all stages of

our pipeline is outlined in Table 2. In total, 3 iterations were needed.

The process started with 9 sensor channels and, at the end of each

iteration, a reduced number of them remained. However, the last

iteration left the sensor channels unchanged and, as a consequence,

it marked the end of the pipeline. The performance increases after

each iteration, despite sensor channels being excluded. The reason

is two-fold: 1) the excluded sensor channels contain irrelevancies

and unnecessary redundancies, and 2) the classifier is being contin-

uously trained with a reduced learning rate.

5.2 Comparison with the state-of-the-art
Our sensor channel selection algorithm provides a ranked list of

sensor channels according to their contribution to the overall per-

formance - Table 3. In the listing, the first channel is the most

discriminative one (i.e. highest 𝑣𝑖 according to Eq. 4), and vice-

versa for the last channel. In scenarios of sufficient computational

resources, all the selected channels can be used to obtain the best

performance possible. However, in cases of limited resources, a

subset of the selected channels containing those that contribute the

most can instead be used. The discussion on the selection for each

dataset is included in Section 5.3.

Table 4 presents the results of our neural network (trained as-

sisted with the sensor channel selection) compared with other

selection methods [5, 15, 17, 30] and InnoHAR [28] - a DL model for

HAR that delivers state-of-the-art performance and utilizes all the

available sensor channels. In terms of prediction performance, our

neural network was able to deliver F1-scores closer - or even higher

as for the Daphnet dataset - to the case where all sensor channels

are utilized (in the InnoHAR [28] row). This is due to the character-

istic of our neural network of learning inter-channel dependencies.

This characteristic is not present in the works we compare with

since they train separate and independent classifiers for each sensor

channel, which leads to a degradation in prediction performance

for datasets where considering intricate relationships between the

sensor channels may be determinant to more accurate predictions -

as it is the case for Daphnet, PAMAP2, and Opportunity.

Comparing resource utilization with other selection methods,

we observe that our neural network occupies from 76% to 93%

less memory - averaged across all datasets. Improvements are also

observed in inference time, where we achieve from 45% to 75%

faster prediction delay on average. Finally, the energy consumption

is on average from 56% to 76% smaller for our neural network.

Compared to InnoHAR [28], our neural network achieves at least

91% of savings in resource utilization in any of the considered

metrics.

This considerable leap in resource efficiency is attributed to two

characteristics of our neural network’s architecture. First, in our

method, the fusion of the sensor channels happens inside the neural

network and before the recurrent and classification layers. This sig-

nifies that the same recurrent and classification layers are utilized

for all sensor channels. In other selection methods, each sensor

channel has its own classifier with individual recurrent and clas-

sification layers, which adds to resource utilization. The second

reason is that our neural network relies more on inter-channel

than intra-channel dependencies to generate a prediction; which

allows for more light-weight layers that learn intra-channel depen-

dencies. This is not the case with other selection methods since

each channel has its own classifier that is trained independently of

the others, thus relying mostly on intra-channel dependencies and

consequently requiring more complex structures in each classifier.
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Figure 5: The selected sensor channels of the 5 public
datasets. Excluded sensors are shown in grey color.

For each dataset, we also tested classification models with differ-

ent numbers of the most discriminative sensor channels as input.

The results are presented in Table 5. As the number of channels

is reduced, there is a considerable reduction in inference time and

energy consumption with only a reasonable performance degra-

dation. The memory footprint, however, is hardly affected by the

reduction of sensor channels. We are unsure as to why this is the

case, but we conjecture that larger savings in memory footprint

when reducing the number of channels are possible by tweaking

the deployment of the neural network to the microcontroller.

We performed these tests to demonstrate the ability of our neural

network when working - without major performance drops - with

a smaller set of the channels it was trained with, in order to meet

a more limited resource availability. As described in Sec. 3.5, at

run-time, statistics of resource utilization as those in Table 5 can be

utilized to define the number of 𝑘 most discriminative sensor chan-

nels to adapt to the resource utilization constraints. For instance,

for the PAMAP2 dataset, utilizing only the two most discriminative

channels results in an F1-score of 0.707 while reducing the inference

time and energy consumption to approximately 60% of the original

value (when all the 5 selected sensor channels are used). Replacing

with zeros all sensor channels, except for the two most discrimina-

tive ones, in InnoHAR, results in a performance drop from 0.916 to

0.229. This major performance drop is not only exclusive to Inno-

HAR. The training of standard DL models for HAR leads to built

co-adaptations between sensor channels. As discussed previously in

Sec. 3.1, we approached this issue by employing random dropouts

of sensor channels during the training.

The comparison is not performed with other selection methods

for the following reasons. HQA [17] strictly uses only one sensor

channel to generate a prediction. PBN [15], mRMR EP [5] and NBF

+ ES [30] can dynamically change the number of used channels at

run-time, however, these methods do not provide a ranked list of

channels according to their contribution to the classification.

5.3 Criteria of sensor channel selection
Our experimental results prove the effectiveness of our sensor

channel selection method and also provide insights on the following

characteristics of HAR and criteria of sensor channel selection.

Figure 5 illustrates the results of sensor channel selection for all

datasets.

5.3.1 Redundancy removal. It is intuitive that sensors located ex-

tremely close to each other share redundancies since we can expect

that they capture the same information. This is the case of the

Opportunity and Skoda datasets. In the case of Skoda, there are

two closely-spaced accelerometers on the wrist. Our method selects

only one of them. The clutter located on the lower and upper arm is

also minimized via the selection. In the case of Opportunity, three

sensors are placed on the wrist, from which only one is selected. In

general, there is a maximization of the distance between sensors

for both datasets.

5.3.2 Irrelevancy removal. The evidence favoring the character-

istic of irrelevancy removal of our method is seen in PAMAP2,

MHEALTH, Opportunity, and Daphnet. One of the first things ob-

served for the PAMAP2 dataset is that the heart rate sensor channel

was excluded. The activities in the dataset can be classified into 1)

activities of low intensity (lying down, sitting, standing), activities

of medium intensity (ironing, vacuum cleaning, ascending and de-

scending stairs, walking, and Nordic walking), and activities of high

intensity (running, rope jumping and bicycling). The information

about the heart rate is only able to classify among these groups

of activities. The remaining sensor channels, however, are able to

give more precise information about the activity. For example, in

high-intensity activities, the accelerometer placed on the hand can

provide information about whether or not the participant is rope

jumping. The accelerometer and magnetometer on the ankle can

then classify between running or bicycling. Therefore, it is intuitive

that the heart rate can be excluded.

PAMAP2 also contains sensor channels with temperature infor-

mation. These channels, however, are not present in the selection.

A study performed in [18] showed that the skin temperature of a

person increases in response to high-intensity physical activities.

However, the variations in temperature can persist even after 24

hours after the physical activity. Therefore, using the skin tempera-

ture to detect activities (or even the intensity level of the activities)

may not be appropriate. Our sensor channel selection method au-

tomatically excluded these channels. Finally, as described in the

documentation of the PAMAP2 (available on the UCI Machine

Learning Repository online), the orientation sensor channels are

invalid for the data collection (the reason is not specified). These

channels have also been opted out in the selection.

In MHEALTH, the information about the heart activity - from

ECG lead 1 and lead 2 - was disregarded in the selection. The

same explanation used for the PAMAP2 holds true here since the

activities and sensor channels involved in these two datasets are

similar. Concerning Opportunity, the set of activities present in the

dataset are activities in which the upper part of the body is the

main actor. Our method was able to understand this by excluding

all sensor channels from the lower part of the body.

In the last case of irrelevancy removal, in the Daphnet dataset,

the sensor at the right leg’s ankle was excluded from the selection.

When the freezing of gait occurs, the movement of the patient’s feet

suddenly stops, while the torso still carries forward momentum.

Since the feet cannot move, the momentum on the upper body is
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directed downwards, which causes falls in some cases. Therefore,

it is expected that sensors placed at the height of the ankle may

not detect the change in direction of the momentum of the upper

body. This explains the absence of the ankle’s accelerometer in the

selection.

5.3.3 Ranking the most discriminative channels higher. The effec-
tiveness of our method in ranking the most discriminative sensor

channels on the top is observed in all datasets. In PAMAP2, regard-

ing the scale of the accelerometers, ±16g seems to be preferred.

This can be explained by the fact that, in some activities, the ±6g
variant can get quickly saturated.

In Opportunity, at least 7 of the activities involve leaning the

back forward to reach objects at different heights. This explains

the magnetometer channel ranking at the top since it is able to

provide information on the orientation of the participant’s back.

We hypothesize that the participants used the right side of the body

predominantly. This hypothesis can explain why the right arm

sensor channels are, in general, placed above that of the left arm.

In MHEALTH, the most discriminative channels were listed as

the ankle’s and chest’s accelerometers. This combination is effective

since 9 out of the 10 activities - that is, excluding the activity of

elevating the arms - can be well differentiated by patterns of move-

ments from the chest and the ankle. Less discriminative is the right

arm’s magnetometer since it is mostly useful for only one activity:

elevating the arms. We hypothesize that the ankle’s magnetometer

is useful to differentiate between sitting and standing up since the

ankle’s orientation can differ in these activities.

As for Skoda, the sensors placed on the wrist ranked at the top

since the amplitude of the movement there is higher, which can

be more helpful in discriminating between activities. For the same

reason, sensors ranked at the bottom are those located on the upper

arm, for instance, on the deltoid muscle. Finally, for Daphnet, the

accelerometer on the trunk is selected to be the most discriminative.

As we discussed previously, it is near the trunk where the change

in the direction of the momentum occurs, thus sensors placed at

that height are expected to be more discriminative.

5.3.4 Symmetry. When activities are equally performed by both

sides of the body and when the sensor placement also exhibits

symmetry with respect to the center-line of the body, the selection

of optimal sensor channels is expected to also follow the symmetry.

This is observed in Skoda and Opportunity. However, in Opportu-

nity, the symmetry is less pronounced due to the presence of an

additional channel placed on the right arm. This can be explained by

the same hypothesis as used before: the participants in the training

set use the right hand predominantly.

5.3.5 Consistency. In the MHEALTH dataset, it is noticeable that

the set of selected sensor channels shows similarity to that of the

PAMAP2 dataset. This shows evidence for consistency in the re-

sults of our method since both datasets encompass nearly identical

activities, sensor placement, and sensor type (IMUs and heart ac-

tivity sensors). This also demonstrates that prior knowledge from

prior sensor selection cases can serve as concrete guidance to other

cases. For instance, sensors placed on the ankle should provide an

advantage in activities running, jogging, walking, climbing stairs,

jumping, and cycling. Also, a heart rate monitor is irrelevant for

the same type of activities.

Ablation Without dropout Without entropy term
Dataset PAMAP2 Opportunity PAMAP2 Opportunity
F1-score 0.757 0.858 0.886 0.870

# of selected

channels
6 11 8 7

Table 6: Results of ablation studies in the absence of the
dropout layer and the entropy term in the loss function.

5.4 Ablation studies
In this section, we propose to remove the dropout layer and the

entropy term in the loss function, respectively, to evaluate their

impact on the results. We limited our attention to the two largest

and hardest datasets - PAMAP2 and Opportunity. Table 6 presents

the results.

Removing the dropout degrades the performance especially in

the PAMAP2 case where the degradation reaches roughly 13%.

When the neural network is trained without dropout, it learns to

rely on features that include built co-adaptations between sensor

channels. For this reason, by removing sensor channels, the per-

formance can degrade unless the network is sufficiently trained

without the removed channels. It is also noticed dropping out chan-

nels during training also contributes to a reduced selection, as it

helps the network to better learn about the contribution of each

channel.

In the absence of the entropy term, the variation in performance

is negligible. However, the cost of removing this term is evidenced

in the higher number of selected sensor channels. The reason for

this is that the entropy term enforces the network to learn to create

an imbalance of importance in the sensor channels while main-

taining high performance. This imbalance results in the neural

network learning which channels are redundant or irrelevant for

the classification. The entropy term is, therefore, essential in our

design.

6 DISCUSSION
We discuss in this section the advantages and limitations of our

sensor channel selection method, as well as a possible research

direction for future work.

6.1 Advantages
Our proposed solution advances the previous works through the

following designs: resource efficiency, insights on the black-box DL

models regarding sensor channels, adaptability to variable resource

constraints, and sensor malfunction robustness.

Lightweight. Sensor channels that were not selected are simply

removed from the input of the network, instead of being replaced

with zeros. This means that computational power can be spared,

especially in cases where sparse tensor algebra is unavailable or

not used - which is often the case of common off-the-shelf micro-

controllers. Removing sensor channels from the input also makes

the network slimmer, since the weights responsible for modeling

dependencies in the excluded channels are no longer needed.

Insightful.Our pipeline provides insights - through the ranking
of the 𝑣𝑖 values - on the contribution of each sensor channel to the

classification task, which to a certain extent helps to unveil the

black-box nature of DL models.
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Datasets PAMAP2 MHEALTH Skoda Daphnet Opp.
# of epochs 250 150 150 50 300

Duration (h) 5 1.5 3 < 2.5 11

Table 7: The number of epochs and the approximate train-
ing duration for each dataset. Abbreviation: Opp. for Oppor-
tunity.

Modularity. The number of sensor channels used at run-time

can vary. In cases when the computational resources should be

spared, the number can be reduced without retraining the classifier,

taking into account the performance requirements.

Robustness. The use of the dropout layer forces the network to
learn to work with random combinations of sensor channels, thus

giving it the ability to deal with sensor malfunction more robustly

in comparison to other networks.

6.2 Limitations
The limitations are related to the long training duration and to

the fact that it does not rule out the need for data collection with

several sensors.

Training duration. The presence of the dropout layer increases
the convergence time of the learning since multiple variations of

the same network are being trained [26]. Fusing the channels by

performing average pooling across channels is very similar to a

global average pooling layer, which also slows the convergence

speed. The use of knowledge distillation reduces the effect of slow

convergence. However, it does not completely solve it. Table 7

provides the number of epochs and the approximate duration of the

training for each dataset. We estimate that the total duration spent

on training the classifier is 4 - 5 times longer than InnoHAR, due

to the repeated iterations for sensor channel selection. However,

compared to exhaustive search, this is many orders of magnitude

faster than training all possible sensor channels combinations (e.g.,

more than 500 million combinations in the case of Opportunity).

Also, based on our experiments, the training of our neural network

is also up to 2 times faster than training an ensemble of weak

classifiers [5, 15, 17, 30].

Adaptability to dynamic context. Our selection algorithm

considers a static context where the importance of the sensors

doesn’t vary according to the activity or the subject who performs

the activities. However, this can be addressed by making the train-

able weights𝑤𝑖 | 𝑗 dependent on the activity and subject. In Algo-

rithm 1, this signifies that the sets S and the values 𝐹 ( ·) also depend
on the activity or subject and 𝐹 becomes the average of all the val-

ues 𝐹 ( ·) across all activities or subjects. The ranked list of channels

then becomes also dependent on the activity or subject.

Physical prototypes. Our method still does not remove the

need for creating physical prototypes with multiple sensors and

for collecting data. For future work, we would like to integrate

our method into a data collection simulator that can generate syn-

thetic data from artificial sensors, thus resulting in more significant

time and cost savings involved in developing prototypes for HAR

systems.

7 CONCLUSIONS
We have proposed a sensor channel selection pipeline composed

of a modular neural network that learns to minimize the use of

sensor channels by understanding the redundant and irrelevant

relations between them. Also contained in the pipeline, our sensor

channel selection algorithm extracts the knowledge of the network

regarding the channels, selects the most discriminative ones, and

discards those that provide a negligible contribution to the overall

performance. The information on the contribution of each sensor

channel is easily accessible which provides insights that help to

reduce the black-box nature of DL models for HAR.

Compared to recent work, our selection algorithm led to sig-

nificantly higher classification performance and reduced resource

utilization, as well as showed consistency regardless of the number

of sensor channels in the dataset. In addition, we provided and

discussed evidence in favor of the claimed features of our pipeline,

including its characteristic of being able to work with a subset of

the sensor channels used during training with minor performance

degradation. Finally, even though our experiments focused on HAR,

we believe that our pipeline can be applied to other multi-input

problems in DL with little or no modification, due to the fact that

all methods in the pipeline are general.
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