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a b s t r a c t 

Refraction of electromagnetic waves at Fresnel interfaces, i.e. the boundaries between media with differ- 

ent refractive indices, is important not only in explaining many natural phenomena but also in radiation 

heat transfer in energy conversion and combustion systems, such as solar energy, spray cooling and com- 

bustion, and the evaporation of liquid fuels in pool fires. This paper presents a novel model for the effi- 

cient consideration of Fresnel interfaces in the Finite Volume Method-based solvers of thermal radiation. 

By conserving the transmitted radiative heat flux at the Fresnel interface, the new model accurately esti- 

mates the directional distribution of radiative intensities on the second side of the interface. To do so, a 

matrix of weighting coefficients is obtained, representing the transferred radiation energy from the con- 

trol angles on the first side of the Fresnel interface into each control angle on the second side. To assess 

the accuracy of the novel ordinate weighting method (OWM), its predictions are compared with the an- 

alytical solutions that we obtained for one- and two-layer slabs with various combinations of absorption 

and scattering properties. The validations are shown for normalized heat flux and irradiation, reflectivity, 

transmissivity, and intensity. The predictions of the OWM show an excellent agreement with the results 

of the analytical solutions. Compared to Murthy’s pixelation method, the OWM method provides better 

accuracy with lower computational cost. Finally, the sensitivity of the OWM method to uniform and non- 

uniform directional discretizations, used in the finite volume solution of the radiative heat transfer, is 

investigated. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Modeling spectral and directional dependency of radiative heat 

transfer in participating media has received substantial attention 

during the last few decades. Several models such as full spectrum 

correlated-k distribution (FSCK) [1,2] , spectral line-based sum of 

gray gases (SLW) [3,4] , and weighted sum of gray gases (WSGG) 

[5–8] have been developed to solve the spectral dependency of ra- 

diation intensity and some models like discrete ordinates method 

(DOM) [9,10] , finite volume method (FVM) [11,12] , zone method 

[14,15] and spherical harmonics method (SP) [13,16] have been 

proposed to solve its spatial and directional dependency. Most of 

these efforts focused on solving radiation heat transfer in the gas 

phase alone with only a few for the other phases [17,18] . However, 

in many applications such as fire dynamics modeling, remote sens- 

ing [19] , solid-state lighting [20] , solar applications [21] , biomed- 

ical engineering [22] , determining the radiative properties of the 
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materials [23] , optical fiber drawing process [24] , and penetration 

of short-pulse lasers within participating media in different emerg- 

ing applications [25] , radiation transfer should be solved in multi- 

phase systems. In this kind of problems, radiation heat transfer 

should be modeled not only within the individual phases but also 

through the interface of different phases or materials. When an 

electromagnetic wave hits the interface of two media with differ- 

ent refractive indexes, a part of the irradiation is transmitted into 

the second medium and the rest is reflected [26] . Due to the differ- 

ence in refractive indexes of the phases or materials, an important 

phenomenon of refraction occurs at the interface of the different 

phases altering the magnitude and directional distribution of the 

radiation intensity. The direction of intensity is given by Snell’s law 

and the reflected share of the incident radiation is determined by 

applying the Fresnel relation [26] . In addition, within the optically 

dense side of the interface, radiation intensity with angles greater 

than a critical angle is completely reflected. In this paper, we use 

the term of Fresnel interface to refer to an interface that applies 

the aforementioned effects. 

To numerically solve the radiation heat transfer through a Fres- 

nel interface, a specific boundary condition should be applied 

https://doi.org/10.1016/j.jqsrt.2021.107685 
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Nomenclature 

Latin 

ā Coefficient of linear anisotropic scattering 

C Coefficients of phase function series 

D Integral of direction vector over solid angle 

d Layer thickness ( m ) 

G Irradiation ( W/m 
2 ) 

I Intensity ( W/m 

2 
/ sr ) 

I ′ Redistributed intensity ( W/m 

2 
/ sr ) 

I + Forward intensity ( W/m 
2 
/ sr ) 

I − Backward intensity ( W/m 
2 
/ sr ) 

I b Blackbody intensity ( W/m 

2 
/ sr ) 

I d Diffuse intensity ( W/m 
2 
/ sr ) 

I f1 Intensity at upper face of a control volume 

( W/m 

2 
/ sr ) 

I f2 Intensity at bottom face of a control volume 

( W/m 
2 
/ sr ) 

n Refraction index 

ˆ n Unit normal vector 

P Legendre polynomial 

˙ q ′′ Heat flux ( W/m 
2 ) 

˙ q ′′′ Heat source ( W/m 

3 
) 

R Reflection at a interface 

r Weighting parameter 

S Source term ( W/m 

2 
/ sr ) 

ˆ s Direction vector 

T Tranmission through a layer 

x Location ( m ) 

Greek 

β Extinction coefficient ( m 
−1 ) 

δ� Averaged relative error of �

θ Polar angle 

κ Absorption coefficient ( m 
−1 ) 

μ Cosine of the polar angle 

ρ Reflectivity 

ρ̄ Averaged reflectivity 

σs Scattering coefficient ( m 
−1 ) 

τ Optical thickness 

φ Scattering phase function 

φ̄ Averaged scattering phase function 

ψ Azimuthal angle 

� Solid angle 

Abbreviation 

CDOM Composite discrete ordinate method 

DOM Discrete ordinate method 

FVM Finite volume method 

OWM Ordinate weighting method 

RTE Radiative transfer equation 

for directional redistribution of intensity. Despite the well-known 

theoretical concept and the vital importance of refraction at the 

boundary, a common approach for solving the radiation at a Fres- 

nel interface is to assume directionally diffuse boundary, which ef- 

fectively conserves radiating energy but neglects the difference be- 

tween the refractive indices and consequently the directional de- 

pendency of radiation. Hence, some inaccuracy can be expected in 

the predicted reflectivity and radiative source terms when such an 

assumption is made. 

Among the angular discretization methods, the two-flux 

method is the simplest one that considers two hemispheres in the 

forward and backward directions as two control angles. To con- 

sider a Fresnel boundary within this method, Dombrovsky et al. 

[27] developed a modified two-flux method which considers the 

transmitted radiation only within the angular region that is en- 

closed by a critical angle. Liou and Wu [28] included the Fresnel 

boundary in the composite discrete ordinates method (CDOM) by 

defining the discrete ordinates according to the direction of the 

transmitted radiation at both sides of the interface. For the modi- 

fied discrete ordinates, a set of new ordinates’ weights should be 

recalculated for each direction. However, in most of the radiation 

simulations using the DOM for different media, a set of fixed dis- 

crete ordinates is conventionally used, and the radiative transfer 

equation is discretized for each ordinate. By applying the CDOM, 

different sets of ordinates are used at each side of the interface. 

This procedure complicates the programming of the method. One 

of the aims of the present work is to avoid changing the angu- 

lar discretization at the interface of two media, therefore a single 

set of ordinates would be applied to both phases. In another ver- 

sion of DOM, Zhang et al. [29] presented the radial basis function 

interpolation approach to find the refracted intensities at certain 

discrete angles in a multi-layer cylindrical medium. This interpola- 

tion is only done for polar angle within a plane that is defined by 

azimuthal angle. Similarly, Wei et al. [30] applied the radial basis 

function interpolation approach to find the refracted intensities at 

each specific control angle. For doing this interpolation, they have 

applied two different schemes: forward and backward interpola- 

tions. In the forward scheme, the interpolation is done for the re- 

fracted intensities, while, in the backward scheme, this interpola- 

tion is done before refraction. Their simulations showed that the 

former one is less stable when the ray propagates from an optically 

dense to an optically rarer medium. In this approach, the level of 

matching between the radial basis function and angular distribu- 

tion of the intensity governs the accuracy. Therefore, the selection 

of the radial basis function is case dependent and can be a poten- 

tial source of error. In another work, Zhang et al. [31] applied the 

DOM with interpolation in their analysis of radiative heat transfer 

in a two-dimensional semitransparent medium with a piece-wise 

constant refractive index. They used a simple linear interpolation 

to find the magnitude of the intensities at the locations of discrete 

ordinates. For the collimated incident radiation, Le Hardy et al. 

[32] applied the DOM for the angular discretization and expressed 

the incident term in the boundary condition of each discrete or- 

dinate by proposing a repartitioning scheme that divides the in- 

cident term between two adjacent ordinates. The repartitioning is 

done by defining a shared coefficient which is calculated from the 

angles of refracted intensities of two adjacent ordinates. Although 

this method works well for collimated incident radiation, it cannot 

be generally accurate when the refracted incident radiation for an 

ordinate may occupy more than two ordinates at the other side of 

the boundary. 

As reviewed, most numerical works considering Fresnel inter- 

faces were based on DOM. Similar to DOM, modeling a Fresnel 

interface with FVM needs an additional effort to solve the mis- 

match of directional radiative intensity on two sides of the in- 

terface. Considering the Fresnel boundary introduces a misalign- 

ment between the angles of the transmitted intensities of each 

control angle as already explained. Murthy and Mathur [33] in- 

troduced two approaches to solve the issue of misalignment of 

direction of intensity in FVM. In their first approach, the corre- 

spondent centroid direction of each control angle is determined af- 

ter passing the interface. Then, the whole radiation energy of that 

control angle is devoted to the control angle at the other side of 

the interface in which the correspondent centroid is located. This 

approach guarantees the conservation of radiative energy but it 

does not keep the directional distribution. In the second approach, 

they have applied the pixelation method to specify which part 

of the transmitted radiative energy is inside of any specific con- 

trol angle at the second side of the interface. This approach gives 
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higher accuracy but with the cost of high computational time as 

a large number of pixels should be considered within each control 

angle. 

In the present work, to improve the accuracy and computa- 

tional performance of FVM in simulating the Fresnel interface, a 

new approach is presented that uses the same control angles on 

both sides of the Fresnel interface. To estimate the directional dis- 

tribution of intensity after passing the interface, a weighting pa- 

rameter matrix is calculated by conserving radiative heat flux at 

the interface. 

This paper has been organized as follows. Reviewing the FVM 

solution of RTE, we will present the theoretical base of the new 

weighting approach in simulating a Fresnel interface within FVM 

in the next section. It will be followed by introducing the valida- 

tion case studies and presenting general solutions for directional 

radiative intensity in one- and two-layer slabs. Section 4 presents 

the analytical and numerical results of the case studies. Finally, 

Section 5 summarizes the new contributions and conclusions of 

the present research work. 

2. Model description 

2.1. Finite volume method 

To solve radiation heat transfer, the radiative intensity field in 

different directions should be obtained. The variation of intensity 

of each direction is determined by solving the radiative transfer 

equation: 

dI 

ds 
= κn 2 I b − βI + 

σs 

4 π

∫ 
4 π

I( ̂  s i ) φ( ̂  s , ̂  s i ) d�i (1) 

In the above equation, the parameters I, κ , σs and ˆ s are radia- 

tion intensity, absorption coefficient, scattering coefficient, and di- 

rection vector, respectively. The term φ( ̂ s , ̂  s i ) is scattering phase 

function and the parameter β is extinction coefficient defined as 

β = κ + σs . Depending on the characteristics of the medium, dif- 

ferent options for the scattering phase function can be considered. 

In this paper, we apply different forms of the phase function in- 

cluding isotropic phase functions, linear and non-linear anisotropic 

phase functions. Generally, the phase functions are described using 

the Legendre polynomials: 

φ( ̂  s , ̂  s ′ ) = φ(μ0 ) = 

N ∑ 

m =0 

C m P m (μ0 ) (2) 

where μ0 is the cosine of the angle between the incoming ray and 

the scattered ray. This parameter is defined as [34] : 

μ0 = μμ′ + (1 − μ2 ) 
1 
2 (1 − μ′ 2 ) 1 2 cos (ψ − ψ 

′ ) (3) 

In the above equation, ψ shows the azimuthal angle, and prime 

represents the scattered ray. If the phase function is not depen- 

dent on the azimuthal angle, the angle μ0 will be equal to μμ′ 
which is the case in the present research. In the case of linear 

anisotropic scattering, only the first two terms of Eq. (2) are con- 

sidered [34,35] : 

φ(μ0 ) = 1 + ā μμ′ (4) 

where the coefficient ā is given as: 

ā = 

∞ ∑ 

m =0 

(−1) m a 2 m +1 (2 m )! 

2 2 m m !(m + 1)! 
(5) 

For the nonlinear anisotropic scattering, different phase functions 

can be considered depending on the medium. For the study of 

nonlinear scattering, a phase function with strongly backward scat- 

tering will be used [36] : 

φ(μ0 ) = 0 . 75 − 1 . 2 μμ′ + 0 . 75 μ2 μ′ 2 (6) 

To solve the RTE, we use FVM in a one-dimensional test case 

( Fig. 1 ), but the method is equally applicable for two- and three- 

dimensional geometries. The details of the FVM discretization can 

be found in [37] , leading to a discrete form of the RTE: 

I p,i = 

S pi �x ��i − I f1 ,i D f1 ,i − I f2 ,i D f2 ,i (
β − σs 

4 π φ̄ii 

)
�x ��i 

(7) 

To derive this equation, a step discretization scheme has been ap- 

plied for the estimation of the intensities at cell faces. In Eq. (7) , 

I p,i , I f1 ,i , and I f2 ,i stand for the intensities at the node p, the up- 

per and the bottom faces of the control volume p in the direction 

i as shown in Fig. 1 . In addition, �x is the grid size, and ��i is 

the corresponding solid angle for the considered control angle i . 

Finally, the parameter D f j,i is defined for the faces of the control 

volume ( j = 1 , 2 ) using the following equation: 

D f j,i = 

∫ 
��i 

ˆ s i . ̂  n j d� (8) 

where ˆ n j is the unit normal vector of the faces of each control vol- 

ume. In Eq. (7) , subscripts 1 and 2 for the parameter D represent 

the upper and bottom faces of the control volume p. Neglecting the 

first term on the right-hand-side of Eq. (1) (i.e. medium emission), 

the source term S pi becomes 

S pi = 

σs 

4 π

n ∑ 

j=1 
j � = i 

I p, j φ̄ ji �� j (9) 

where the parameter φ̄ ji is calculated as 

φ̄ ji = 

1 

��i �� j 

∫ 
��i 

∫ 
�� j 

φ( ̂  s i , ̂  s j ) d � j d �i . (10) 

For the purpose of decreasing the number of needed iterations for 

convergence, the scattering term in direction i has been excluded 

from the summation term in Eq. (9) as recommended by Chai et al. 

[38] . 

2.2. Ordinate weighting method (OWM) 

Different refractive indexes alter direction and magnitude of the 

intensity while passing the interface of two media as shown in 

Fig. 2 . In FVM, a fixed angular discretization is considered and a 

constant intensity is assumed within each control angle. Change 

in the direction of intensity due to different refractive indexes of 

two adjacent media causes a misalignment problem in applying 

the standard form of FVM as shown in Fig. 3 . 

To apply a single solid angle discretization scheme in the FVM 

solution at both sides of the interface, we need a method to ac- 

count for the interface without losing accuracy or increasing com- 

putational time. Applying the conservation of heat flux at the in- 

terface as discussed in Appendix A , the following equation is ob- 

tained: 

n 2 a D a = n 2 b D b (11) 

where the parameters n a and n b are the refractive indexes of media 

a and b, respectively, and D a and D b are the corresponding values 

of the cell face angular integral ( Eq. (8) ). The calculation uses the 

Snell’s law that gives the change of direction of the intensity at the 

interface as 

sin (θa ) 

sin (θb ) 
= 

n b 
n a 

(12) 

Eq. (11) shows the conservation of the parameter n 2 D for the in- 

tensities within each control angle at the interface. However, the 

parameter n 2 �� which is related to the irradiation does not con- 

serve at the interface. Therefore, unlike the heat flux, the value of 
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Fig. 1. Considered angular (left) and spatial (right) discretization for finite volume method. 

Fig. 2. Change of solid angle at the interface of two media with different refractive indexes. 

Fig. 3. Misalignment of transmitted intensities with the boundaries of the consid- 

ered control angles for the finite volume method. 

irradiation changes at the interface. Considering symmetric angu- 

lar discretization with respect to the normal vector of the inter- 

face, the problem of misalignment is solved for reflection. There- 

fore, following this approach, the focus of this paper is to solve the 

misalignment problem of transmitted intensities. 

Next, we consider the intensity within an arbitrary control an- 

gle i in the medium a as shown in Fig. 3 which has a correspond- 

ing angular span between the angles θt,i and θt,i +1 in the medium 

b. As Fig. 3 shows, this angular span does not coincide with the 

control angle j in the medium b and covers only a part of it. For 

the control angle j, the radiative heat flux is calculated by the fol- 

lowing integral equation: 

˙ q ′′ b, j = 

∫ 
�ψ 

∫ θb, j+1 

θb, j 

I ( 1 − ρab ( θa ) ) 
(
n b 
n a 

)2 

cos ( θb ) sin ( θb ) d θd ψ (13) 

where the parameter ρab (θa ) is the reflectivity of the interface at 
θa that is calculated using the Fresnel relation as [26] : 

ρab = 

1 

2 

[ (
n a cos (θb ) − n b cos (θa ) 

n a cos (θb ) + n b cos (θa ) 

)2 

+ 

(
n a cos (θa ) − n b cos (θb ) 

n a cos (θa ) + n b cos (θb ) 

)2 
] 

(14) 

The transmitted part of the radiative heat flux of the control 

angle j within the medium b comes from different control angles 

of the medium a . To calculate this heat flux, the misalignment of 
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the angular span between control angle j and transmitted heat flux 

from each control angles of medium a should be included in the 

heat flux equation: 

˙ q ′ a,i → j = 

∫ 
�ψ 

∫ min ( θb, j+1 ,θt,i +1 ) 

max ( θb, j ,θt,i ) 
I i ( 1 − ρab ( θa ) ) 

(
n b 
n a 

)2 

cos ( θb ) sin ( θb ) d θd ψ 

(15) 

where max (θb, j , θt,i ) and min (θb, j+1 , θt,i +1 ) are the bounds of the 

misaligned angular span in medium b as shown in Fig. 3 , and 

˙ q ′′ 
a,i → j 

is the transmitted heat flux from control angle i to control 

angle j. To enable a fixed solid angle discretization scheme in FVM, 

this heat flux should be distributed into the entire control angle j. 

To conserve the radiative heat flux, we introduce a redistributed 

intensity I ′ : 
∫ 
�ψ 

∫ min (θb, j+1 ,θt,i +1 ) 

max (θb, j ,θt,i ) 
I i (1 − ρab (θa )) 

(
n b 
n a 

)2 

cos (θb ) sin (θb ) dθb dψ 

= 

∫ 
�ψ 

∫ θb, j+1 

θb, j 

I ′ (1 − ρab (θa )) 
(
n b 
n a 

)2 

cos (θb ) sin (θb ) dθb dψ (16) 

Now, the fraction of two intensities I ′ and I i in Eq. (16) defines the 
weighting parameter r ji as: 

r ji = 

I ′ 
I i 

= 

∫ min (θb, j+1 ,θt,i +1 ) 

max (θb, j ,θt,i ) 
(1 − ρab (θa )) cos (θb ) sin (θb ) dθb 

∫ θb, j+1 

θb, j 

(1 − ρab (θa )) cos (θb ) sin (θb ) dθb 

(17) 

The main issue in estimation of r ji is the difficulty of calculating 

the reflectivity terms ρab , since they change continuously with po- 

lar angle. To solve this issue, averaged values of the reflectivities 

are calculated as 

ρ̄ab, ji = 

∫ min (θb, j+1 ,θt,i +1 ) 

max (θb, j ,θt,i ) 
ρab (θa ) cos (θb ) sin (θb ) dθb 

∫ min (θb, j+1 ,θt,i +1 ) 

max (θb, j ,θt,i ) 
cos (θb ) sin (θb ) dθb 

(18) 

ρ̄ab, j = 

∫ θb, j+1 

θb, j 

ρab (θa ) cos (θb ) sin (θb ) dθb 

∫ θb, j+1 

θb, j 

cos (θb ) sin (θb ) dθb 

. (19) 

By substituting the averaged reflectivities into Eq. (17) , the formula 

for the weighting parameter simplifies to 

r ji = 

1 − ρ̄ab, ji 

1 − ρ̄ab, j 

∫ min (θb, j+1 ,θt,i +1 ) 

max (θb, j ,θt,i ) 
cos (θb ) sin (θb ) dθb 

∫ θb, j+1 

θb, j 

cos (θb ) sin (θb ) dθb 

= 

1 − ρ̄ab, ji 

1 − ρ̄ab, j 

D ji 

D j 

(20) 

Fig. 4 gives a schematic representation of the heat flux calculation 

for each control angle of the medium b. The transmitted heat flux 

from each control angle of medium a , Eq. (15) , is now obtained as 

r ji ̇ q 
′′ 
a,i 
. 

The weighting parameter r ji in Fig. 4 indicate the fraction of the 

radiative heat flux within the control angle j in medium b which 

is initiated from the different control angles of the medium a . A 

matrix of weighting factors r ji is obtained and the following ma- 

trix equation can be written for the radiative heat flux of different 

control angles: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ q ′′ 
b, 1 

˙ q ′′ 
b, 2 

. 

. 

. 

˙ q ′′ 
b,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

r 11 r 12 . . . r 1 N 
r 21 r 22 . . . r 2 N 

. . . . 

. . . . 

. . . . 

r N1 r N2 . . . r NN 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ q ′′ a, 1 
˙ q ′′ a, 2 

. 

. 

. 

˙ q ′′ a,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(21) 

Each row of the weighting factors matrix represents the shares of 

the different control angles of the first side in the heat flux of dif- 

ferent control angles in the second side. By substituting the radia- 

tive heat fluxes Eqs. (13) and ( (15) ) into each row of the matrix 

Eq. (21) , the following equation for each control angle of the sec- 

ond side of the interface is obtained: ∫ 
�ψ 

∫ θb, j+1 

θb, j 

I j cos (θb ) sin (θb ) d θb d ψ 

= 

N ∑ 

i =1 

∫ 
�ψ 

∫ θb, j+1 

θb, j 

r ji I i (1 − ρab (θa )) 
(
n b 
n a 

)2 

cos (θb ) sin (θb ) dθb dψ 

(22) 

Hence, the transmitted part of intensity is derived as: 

I t, j = 

N ∑ 

i =1 

r ji I i (1 − ρ̄ab ) 
(
n b 
n a 

)2 

(23) 

For the reflection part, the following equation is applied: 

I r, j = ρ̄ba I 
−
j 

(24) 

where, I −
j 

is the incoming radiation intensity to the interface. 

Therefore, by suming up the transmitted and reflected parts 

( Eqs. (23) and (24) ), the following equation for the outgoing in- 

tensity from the interface is obtained as: 

I + 
j 

= 

N ∑ 

i =1 

r ji I i (1 − ρ̄ab,i ) 
(
n b 
n a 

)2 

+ ρ̄ba I 
−
j 

(25) 

2.2.1. Efficiency considerations 

For two media with the same refractive indexes, the weighting 

parameter matrix will be an identity matrix. For modeling radia- 

tion from a medium with a lower refractive index to a medium 

with a higher refractive index, the weighting parameter matrix is 

an upper triangular matrix and for modeling radiation in the re- 

verse direction, the weighting matrix is a lower triangular ma- 

trix. In any case, most of the elements of the weighting matrix 

are zeros. Therefore, we can skip calculating parts of the weight- 

ing matrix to speed up the calculations. Moreover, the intensity 

within the medium with higher refractive index is fully reflected 

for the control angles higher than the critical angle. For these 

control angles, the calculation of weighting parameters should be 

skipped because there is not any transmission to or from the adja- 

cent medium. Finally each control angle can only receive transmit- 

ted intensity from a few control angles of the adjacent medium 

depending on the used angular discretization. For example, for 

n a > n b , the first control angle in medium a receives intensity from 

the first control angle of the medium b only and the other control 

angles can only receive the intensity from the limited number of 

control angles of medium b. 

2.3. Diffuse boundary 

The diffuse boundary condition is commonly applied for model- 

ing the thermal radiation transfer at the interface of two different 
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Fig. 4. The transmitted heat flux from different control angles in medium a which may end up a control angle of medium b. 

Fig. 5. The considered geometry of the first case study. 

materials. This assumption does not consider the angular distribu- 

tion at the boundaries and divides the radiative energy equally be- 

tween the different control angles. Hence, the boundary condition 

at the second side of the interface is given by 

I + = (1 − ρ̄01 ) I d + 

ρ̄10 

π

∫ 
ˆ n . ̂ s < 0 

I −| ̂  n . ̂  s | d� (26) 

It is applied in one of our test cases to address the effect of this 

assumption on the radiative heat source distribution. Without ap- 

plying the Fresnel relation, the determined reflectivity for a diffuse 

boundary is just an estimation. In this paper, to enhance the accu- 

racy of modeling with the diffuse boundary assumption, the aver- 

age reflectivities used in Eq. (26) are calculated by Eq. (19) . 

3. Test cases and benchmark solutions 

3.1. One-layer slab with diffuse irradiation at the upper boundary 

The first case study is a one-layer slab with a thickness of d and 

a refractive index of n 1 that is surrounded by two regions with 

a refractive index of unity as has been shown in Fig. 5 . The ab- 

sorption and scattering coefficients of the layer are assumed to be 

constants, and a diffuse intensity enters the layer from its upper 

region. To solve the radiation transfer within the layer, two bound- 

ary conditions for the upper and bottom interfaces are introduced. 

The boundary condition for the upper interface is: 

I + (0 , μ1 ) = (1 − ρ01 (μ0 )) 
(
n 1 
n 0 

)2 

I d + ρ10 (μ1 ) I 
−(0 , −μ1 ) (27) 

where ρi j shows the reflectivity at the interface where the radia- 

tion propagates from medium i to medium j. For the bottom inter- 

face, the boundary condition is: 

I −(d, −μ1 ) = ρ12 (μ1 ) I 
+ (d, μ1 ) (28) 

An analytical solution for the forward and backward intensities is 

given in Appendix B . Using these intensities, the radiative heat flux 

and irradiation are given as: 

˙ q ′′ (x ) = 2 π

∫ 1 
−1 

I(x, μ) μdμ

= 2 π

(∫ 1 
0 

I + (x, μ) μdμ −
∫ 1 
0 

I −(x, μ) μdμ

)
(29) 

G (x ) = 2 π

∫ 1 
−1 

I(x, μ) dμ = 2 π

(∫ 1 
0 

I + (x, μ) dμ + 

∫ 1 
0 

I −(x, μ) dμ

)
(30) 
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Fig. 6. The considered geometry of the second case study. 

The reflectivity from the interface of regions 0 and 1 is: 

R = 

2 

I d 

(∫ 1 
0 

[1 − ρ10 (μ1 )] I 
−(0 , μ1 ) μ1 dμ1 + I d 

∫ 1 
0 

ρ01 (μ0 ) μ0 dμ0 

)
(31) 

and the transmissivity from the bottom surface of region 1 is: 

T = 

2 

I d 

∫ 1 
0 

[1 − ρ12 (μ1 )] I 
+ (d , μ1 ) μ1 d μ1 (32) 

In the Appendix B , the analytical solutions are given for the dif- 

ferent forms of phase function including: zero phase function 

(pure absorption), isotropic phase function, linear, and nonlinear 

anisotropic phase functions. 

3.2. Two-layer slab with diffuse irradiation at the upper boundary 

For the second case study, as has been shown in Fig. 6 , a two- 

layer slab with the refractive indexes of n 1 and n 2 and the thick- 

nesses of d 1 and d 2 for the first and second layers are considered. 

These two layers are surrounded by two regions with a refractive 

index of unity and a diffusive intensity enters from the region 0 to 

the region 1 (i.e. first layer). To solve the radiation transfer within 

the two layers, four boundary conditions are needed. The boundary 

condition for the upper interface of region 1 is: 

I + 1 (0 , μ1 ) = (1 − ρ01 (μ0 )) 
(
n 1 
n 0 

)2 

I d + ρ10 (μ1 ) I 
−
1 (0 , −μ1 ) (33) 

For the interface of region 1 and region 2, the boundary condition 

for the side facing region 1 is: 

I −1 ( d 1 , −μ1 ) = ( 1 − ρ21 ( μ2 ) ) 

(
n 1 
n 2 

)2 

I −2 ( 0 , −μ2 ) + ρ12 ( μ1 ) I 
+ 
1 ( d 1 , μ1 ) (34) 

For the upper interface of the region 2, the boundary condition is 

described by the following equation: 

I + 2 (0 , μ2 ) = (1 − ρ12 (μ1 )) 
(
n 2 
n 1 

)2 

I + 1 (d 1 , μ1 ) + ρ21 (μ2 ) I 
−
2 (0 , −μ2 ) 

(35) 

The last boundary condition is for the bottom surface of region 

2: 

I −2 ( d 2 , −μ2 ) = ρ23 ( μ2 ) I 
+ 
2 ( d 2 , μ2 ) (36) 

For different forms of the phase function, the analytical solutions 

for the second test case are given in Appendix C . 

4. Results and discussion 

4.1. Mesh independence study 

The mesh independence of the numerical solutions has been 

investigated by monitoring radiative heat flux, and irradiation ob- 

tained by using different grid sizes. For the first and second case 

studies in the pure absorption state, Fig. 7 shows the variation 

of the normalized heat flux and normalized irradiation within the 

medium for three different grid sizes. Most of the results are pre- 

sented with respect to the optical thickness ( τ ) that is defined 
as τ = β × x . The difference between the results of using the grid 

with the optical thicknesses of 0.01 and 0.005 in the one-layer slab 

and of using the grid sizes of 1 cm and 5 mm in the two-layer slab 

were less than 1%. Therefore, using the grid with optical thickness 

of 0.01 in the first case study and 1 cm in second case study assure 

mesh independence of the results. 

4.2. Results for the first case study 

Having reflection or scattering makes the radiation solution it- 

erative, therefore a convergence criterion is needed. For the first 

and second case studies, the following convergence condition for 

irradiation ( G ) is applied [39] : 

max 

∣∣∣∣G 
N 
p −G 

N −1 
p 

G 
N 
p 

∣∣∣∣≤10 −4 (37) 

where the superscripts N and N − 1 represent the current and pre- 

vious steps, respectively. 

To investigate the accuracy of the OWM for the Fresnel in- 

terface, results of the normalized radiative heat flux, normalized 

irradiation, reflectivity, transmissivity, and directional intensity will 
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Fig. 7. Mesh independence study for the normalized heat flux and normalized irradiation in: left) one-layer slab with β1 = 1 , n 1 = 1 . 5 and right) two-layer slab with κ1 = 0 . 5 , 

κ2 = 1 , n 1 = 1 . 5 , and n 2 = 1 . 333 . 

Fig. 8. The normalized radiative heat flux with normalized irradiation (left) and reflectivity with transmissivity (right) for one-layer slab with β1 = 1 , n 1 = 1 . 5 . 

Fig. 9. The normalized radiative heat flux (left) and normalized irradiation (right) for different types of scattering in one-layer slab with β1 = 1 , σs, 1 = 0 . 5 , and n 1 = 1 . 5 ; 

solid line: analytical results, and marker: numerical results. 

be compared to the analytical results. For all the presented results, 

the polar and azimuthal angles within the sphere octant have been 

discretized into 32 segments. Fig. 8 shows the results for both 

analytical and OWM within the one-layer slab with respect to the 

optical thickness. For the transmissivity and reflectivity, the results 

have been presented with respect to the total optical thickness 

of the layer. These results were obtained for the pure absorption 

case. Diagrams in Fig. 8 show an excellent agreement between 

the analytical and numerical results. For the scattering media, 

different types of phase functions have been applied within the 

calculations. All the analytical solutions for scattering media in this 

paper have been extracted using the Nyström method [40] with 

48 quadrature points. For the linear scattering, the assumption of 

a = 1 . 843041 was used (see Eqs. (4) and (5) ). The normalized heat 

flux and normalized irradiation for three types of phase functions 

have been presented in Fig. 9 . It is worth reminding that the non- 

linear scattering in the present work is based on Eq. (6) . For the 

scattering media, the accuracy is lower compared to the pure ab- 

sorption case that suggests applying finer angular discretizations. 

For the reflectivity and transmissivity from the upper and bottom 

interfaces of the one-layer slab, Fig. 10 shows the results of the an- 

alytical and the OWM for three different optical thicknesses with 

respect to the refractive index of the medium. These results are 

for scattering media with isotropic scattering phase function. Ac- 

cording to Fig. 10 , for higher optical thicknesses, the results of the 

numerical method are in excellent agreement with the analytical 

results. However, for the lower optical thicknesses, the averaged 

error is around 1%. To show the simulation results in more details, 

the variation of radiation intensity in the forward direction has 

been presented at different depths of the medium in Fig. 11 . Note 
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Fig. 10. The reflectivity (left) and transmissivity (right) for different optical thicknesses in one-layer slab with β1 = 1 ; solid line: numerical results, and marker: analytical 

results. 

Fig. 11. The directional intensities at different depths of the one-layer slab in pure 

absorption state with β1 = 1 , n 1 = 1 . 5 ; solid line: analytical results, and marker: 

numerical results. 

that the incident transmissivity defined as the ratio of the forward 

intensity to the diffuse intensity at the boundary ( I + /I d ) does not 
begin with unity which is due to reflection from the surface. By 

passing through the interface, the magnitude and direction of the 

intensity are changed due to the different refractive indexes of the 

two adjacent media. Therefore, the transmitted intensity converts 

to the intensity at depth 0 (i.e. blue line) that is the intensity at 

the other side of the interface facing the second medium. As the 

media of the first test case were non-scattering, the direction of 

the intensity will remain unchanged but its magnitude decreases 

due to the medium absorption. To show the accuracy of the OWM, 

the intensities of different directions calculated by the numerical 

and analytical methods have been compared in Fig. 11 . The results 

show good accuracy for the simulated directional intensities. To 

study the effect of assuming diffuse radiation for modeling Fresnel 

interface, the predicted radiative heat source and heat flux for 

the one-layer slab are given in Fig. 12 . For Fresnel interface, the 

irradiation is less absorbed due to the smaller solid angle at the 

optically dense side. Therefore, the radiative heat source is lower 

and heat flux is higher for this type of interface compared to the 

diffuse interface. 

4.3. Results for the second case study 

For the second case study, the normalized heat flux, normalized 

irradiation, transmissivity at the bottom surface of region 2, and 

reflectivity of the upper surface of region 1 have been presented 

for both analytical and OWM for the case of pure absorption. Simi- 

lar to the first case study, transmissivity and reflectivity have been 

plotted with respect to the optical length of the medium. An ex- 

cellent agreement between the analytical and numerical results 

proves the high accuracy of the presented method for the pure ab- 

sorption case. In Fig. 14 different absorption coefficient have been 

assumed for each of the two non-scattering layers where the nor- 

malized radiative heat flux and normalized irradiation have been 

plotted in semi-logarithmic scale. With semi-logarithmic scale, the 

results are shown as straight lines which is due to media’s absorp- 

tion exponential decay. The interface of the two layers has been 

shown with a dashed line. For the scattering media, similar to the 

first-layer case study, three different phase functions have been 

considered. The normalized radiative heat flux and normalized ir- 

radiation have been shown in Fig. 15 . As explained in the model 

description section, only the radiative heat flux is conserved at the 

interface of the two media. The presented results show this fact at 

Fig. 12. The normalized radiative heat source (left) and normalized radiative heat flux (right) for diffuse and Fresnel interface in one-layer slab of absorbing and non- 

scattering medium with β1 = 1 , n 1 = 1 . 5 . 
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Fig. 13. The normalized radiative heat flux with normalized irradiation (left) and reflectivity with transmissivity (right) for two-layer slab in pure absorption state with 

β1 = 0 . 5 , β2 = 1 , n 1 = 1 . 5 , and n 2 = 1 . 333 . 

Fig. 14. The normalized radiative heat flux and normalized irradiation for two-layer 

slab in pure absorption state with β1 = 0 . 5 , β2 = 1 , n 1 = 1 . 5 , and n 2 = 1 . 333 . 

the interface that is located at the optical thickness of 1. Unlike the 

normalized heat flux, the normalized irradiation is not conserved 

and a step is observed in normalized irradiation profiles at the in- 

terface. This is not only due to the reflection at the interface, but 

also due to the change in the solid angle of the intensities that is 

occurred for media with different refractive indexes. To study the 

capability of the OWM in estimating the reflectivity and transmis- 

sivity of a scattering media, the analytical solution presented for 

the isotropic scattering media in [41] have been used as the bench- 

mark solution here. The results are presented for three different 

optical thicknesses in Fig. 16 . Similar to the one-layer case study, 

the accuracy of the simulation increases with increment of the op- 

tical thickness. Finally, the angular distribution of the intensity in 

Table 1 

The averaged relative errors of the OWM for different case studies. 

Medium 

One-layer Two-layer 

δ ˙ q ′′ (%) δG (%) δ ˙ q ′′ (%) δG (%) 

Pure absorption 0.07 0.27 0.90 0.85 

Isotropic scattering 0.88 3.2 2.9 4.5 

Linear scattering 0.92 2.1 1.9 1.9 

Nonlinear scattering 0.81 2.7 2.6 4.9 

the forward direction has been plotted in Fig. 17 at the location 

of interfaces. As explained for the one-layer case, the magnitude 

and angular distribution of the intensity change while passing the 

interface. By going from a medium with a lower refractive index 

to the medium with a higher refractive index, the magnitude of 

the intensity increases but its solid angle span is reduced and vice 

versa. A comparison has been done between the analytical and nu- 

merical results for the directional intensities. The presented results 

confirm the good accuracy of the OWM for estimation of the di- 

rectional intensities of the two-layer slab, too. 

To summarize the accuracy of the OWM for different case stud- 

ies, Table 1 includes the quantitative values for the averaged rela- 

tive error of radiative heat flux and irradiation. The given averaged 

relative errors in Table 1 are calculated as 

δ� = 

1 

m 

∑ m 

i = 1 
| Φan −Φnum | 

�an 
×100 % (38) 

where �an and �num are the analytically and numerically calcu- 

lated values of �, respectively, and � is either ˙ q ′′ or G . 

To show the applicability of the OWM for different types of an- 

gular discretization, a new non-uniform angular dicretization has 

also been investigated that produces relatively equal solid angles 

Fig. 15. The normalized radiative heat flux (left) and normalized irradiation (right) by applying different types of scattering phase function for two-layer slab with σs, 1 / β1 = 

0 . 5 , σs, 2 / β2 = 0 . 5 , n 1 = 1 . 5 , and n 2 = 1 . 333 ; solid line: analytical results, and marker: numerical results. 
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Fig. 16. The reflectivity (left) and transmissivity (right) in two-layer slab with σs, 1 / β1 = 1 , σs, 2 / β2 = 0 . 7 , n 1 = 1 . 5 , and n 2 = 1 . 333 ; solid line: analytical results [41] , and 

marker: numerical results. 

Fig. 17. The directional intensities at the location of interfaces in pure absorption 

case of two-layer slab with β1 = 0 . 5 , β2 = 1 , n 1 = 1 . 5 , and n 1 = 1 . 333 ; solid line: 

analytical results, and marker: numerical results. 

Table 2 

The effect of the angular resolution on the difference between simu- 

lated and benchmark results for transmissivity of the two-layer slab with: 

σs, 1 / β1 = 1 . 0 , σs, 2 / β2 = 0 . 0 , n 1 = 1 . 5 , n 2 = 1 . 333 , τ1 = 1 . 0 , and τ2 = 0 . 5 . 

Angular discretization Benchmark solutions OWM Error (%) 

2 × 2 0.26519 0.22524 15.06 

4 × 4 0.26519 0.23655 10.80 

8 × 8 0.26519 0.25197 4.99 

12 × 12 0.26519 0.25893 2.36 

16 × 16 0.26519 0.26202 1.20 

24 × 24 0.26519 0.26523 0.02 

in different directions. The detailed formulation of this discretiza- 

tion scheme has been given in [42] . A comparison of the results 

obtained using uniform and non-uniform solid angle discretization 

schemes with the same number of control angles is presented in 

Fig. 18 for the normalized irradiation and heat flux. The results are 

shown for the one- and two-layer slabs with the same conditions 

as those of Figs. 8 and 13 . The results obtained using the two dis- 

cretization schemes are practically identical, which confirms the 

applicability of the OWM with different types of discretizations. 

While all the results so far were obtained for 32 × 32 control 

angles of the sphere octant, the results of the OWM for the coarser 

solid angle discretizations are compared with the analytical results 

of [41] in Table 2 for transmissivity and Table 3 for reflectivity 

into region 0. The transmissivities ( Table 2 ) show that by coars- 

ening the angular discretization to 8 ×8, the error is still lower 

than 5%. For the reflectivity into region 0, the reported results in 

Table 3 show an excellent accuracy even for the coarsest angular 

discretization of 2 ×2. It appears that the accuracy of the predicted 

reflectivity remains better than that of transmissivity at the coarse 

angular resolutions. 

Table 3 

The effect of the angular resolution on the difference between simulated 

and benchmark results for reflectivity of the two-layer slab with: σs, 1 / β1 = 

1 . 0 , σs, 2 / β2 = 0 . 0 , n 1 = 1 . 5 , n 2 = 1 . 333 , τ1 = 1 . 0 , and τ2 = 0 . 5 . 

Angular discretization Benchmark solutions OWM Error (%) 

2 × 2 0.30520 0.30206 1.03 

4 × 4 0.30520 0.30144 1.23 

8 × 8 0.30520 0.30322 0.65 

12 × 12 0.30520 0.30333 0.61 

16 × 16 0.30520 0.30374 0.48 

24 × 24 0.30520 0.30479 0.13 

To compare the accuracy of the OWM against the Murthy’s pix- 

elation method, both methods were used for calculating transmis- 

sivity through the two-layer slab. The results are shown in Table 4 

for three different angular resolutions and two different pixelation 

resolutions for each of the angular resolutions. The results show 

that by applying the same number of control angles in both meth- 

ods and a single pixel, OWM is more accurate than the pixelation 

method at all resolutions. Adding 10 × 10 pixels for each control 

angle makes the pixelation method more accurate at low angular 

resolutions. 

Implementing the Murthy’s pixelation method requires the 

computation of several variables, such as the reflectivity and radia- 

tive heat flux, for each pixel. In addition, the angles at both sides of 

the interface need to be determined, and the corresponding control 

angle identified. To assure good accuracy, these parameters must 

be calculated at each time step. The benefit of the present OWM 

is that the weighting matrix is calculated only once in the begin- 

ning of the simulations, and the summation in Eq. (25) is done 

for less than half of the matrix elements by efficient program- 

ming. Lower CPU time is thus expected for the OWM. To quan- 

tify the computational costs, simulations were performed for the 

one-layer medium (i.e. first case study) in pure absorption state 

with β1 = 1 and n 1 = 1 . 5 using 400 grids. Table 5 gives the av- 

eraged relative errors of the radiative heat flux and irradiation of 

the two methods together with their CPU times. The calculations 

were done using MATLAB codes with similar programming logic 

on the same computer (Intel core i7 6500U processor). As seen 

in Table 5 , the Murthy’s pixelation method requires 6 to 19 times 

more CPU time than the OWM. For the finest solid angle discretiza- 

tion, which is more commonly used in CFD models, the accuracy of 

OWM is better than the Murthy’s pixelation method. Nonetheless, 

the Murthy’s pixelation method provides slightly more accurate re- 

sults at coarse angular resolutions, yet with the cost of longer com- 

putational time. 

Finally, the performance of the OWM is studied at different ab- 

sorption and scattering states of the two-layer slab. The prediction 

errors of the transmissivity and reflectivity are given in Table 6 

for six different radiative property combinations. The simulation 
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Fig. 18. The normalized radiative irradiation and heat flux for one-layer (left) and two-layer (right) slabs with uniform and nonuniform angular discretizations. 

Table 4 

Comparison of the OWM and the Murthy’s pixelation method predictions for transmissivity of the two- 

layer slab with: σs, 1 / β1 = 1 . 0 , σs, 2 / β2 = 0 . 0 , n 1 = 1 . 5 , n 2 = 1 . 333 , τ1 = 1 . 0 , and τ2 = 0 . 5 . 

Angular OWM Angular discretization Murthy’s Pixelation method 

discretization Transmissivity Error (%) together with pixels Transmissivity Error (%) 

2 ×2 0.22524 15.06 2 ×2 × 1 ×1 0.322 21.42 

2 ×2 × 10 ×10 0.238 10.25 

4 ×4 0.23655 10.80 4 ×4 × 1 ×1 0.308 16.14 

4 ×4 × 10 ×10 0.254 4.22 

8 ×8 0.25197 4.99 8 ×8 × 1 ×1 0.245 7.61 

8 ×8 × 10 ×10 0.266 0.31 

Table 5 

Comparison of the accuracy of OWM with the Murthy’s pixelation method for a one-layer slab with β1 = 1 and n 1 = 

1 . 5 . 

Angular OWM Angular discretization Murthy’s pixelation method 

discretization δ ˙ q ′′ (%) δG (%) CPU time (s) together with pixels δ ˙ q ′′ (%) δG (%) CPU time (s) 

4 ×4 7.6 1.9 0.003 4 ×4 × 10 ×10 3.7 1.8 0.019 

8 ×8 3.4 1.3 0.008 8 ×8 × 10 ×10 1.9 1.2 0.058 

16 ×16 0.24 0.48 0.015 16 ×16 × 10 ×10 0.52 0.54 0.280 

Table 6 

The simulation error of the transmissivity and reflectivity for different states of the two-layer media. 

σs, 1 / β1 σs, 2 / β2 τ1 τ2 n 1 n 2 Error of transmissivity (%) Error of reflectivity (%) 

0.2 0.8 1.0 0.5 1.5 1.333 0.03 0.15 

0.8 0.2 0.5 1.0 1.333 1.5 0.69 0.78 

1.0 0.0 1.0 0.5 1.5 1.333 0.02 0.13 

0.0 1.0 0.5 1.0 1.333 1.5 0.75 0.26 

1.0 1.0 1.0 0.5 1.5 1.333 1.17 1.05 

1.0 1.0 0.5 1.0 1.333 1.5 1.93 2.27 

results were obtained with 24 ×24 angular discretization for the 

sphere octant. The results prove the good accuracy of the OWM 

for a wide range of states. For the pure scattering cases, however, 

the error increases compared to the other states, suggesting a need 

for higher number of discretiztaion angles. 

5. Conclusions 

At the interface of optically different materials known as the 

Fresnel interface, the magnitude and direction of the radiation in- 

tensity change which in turn alters the irradiation. A new numer- 

ical method for considering the Fresnel interface in the FVM has 

been presented in this paper. The novel ordinate weighting method 

(OWM) is based on the conservation of radiative heat flux at the 

interface and provides the angular intensity distribution on the 

other side of the interface with high accuracy and low computa- 

tional cost. For the numerical implementation, the weighting pa- 

rameters are calculated for the each pair of control angles at the 

two sides of the interface. The weighting parameters represent the 

share of the radiative heat flux within a control angle on the sec- 

ond side of the interface that originates from a specific control an- 

gle on the first side. 

To investigate the accuracy of the OWM, benchmark solutions 

were developed for one- and two-layer case studies with different 

properties by applying the Nyström method with high number of 

quadrature points. For the scattering media, different types of scat- 

tering phase function were considered, including isotropic, linear 

and nonlinear scattering phase functions. The OWM predictions for 

several radiation parameters, such as the normalized irradiation 

and radiative heat flux, reflectivity from the upper surface, trans- 

missivity from the bottom surface, and the directional intensity, 

were in excellent agreement with the analytical solutions and the 

previously reported data of the literature. Comparing the OWM 

predictions against the Murthy’s pixelation method showed that 

the OWM exhibits better performance both in terms of accuracy 

and computational time. To show the applicability of the OWM 

with different types of angular discretizations, simulations were 

carried out for non-uniform and uniform angular discretizations 
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with the same number of control angles. The results for the two 

discretization schemes were practically identical, proving the capa- 

bility of the OWM in supporting different solid angle discretization 

schemes. Finally, the accuracy over a range of different radiative 

properties was demonsrated. 

In this paper, the OWM was presented for a flat interface in 

one-dimensional geometry, discretized with a structured mesh. Im- 

plementing this method to the cases with unstructured mesh and 

non-flat interface are some of the potential ideas for continuation 

of the research. 
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Appendix A 

For the transmitted part of the incident intensity with solid an- 

gle of ��a , the radiative heat flux is calculated using the following 

equation: 

˙ q ′′ a = 

∫ 
�ψ 

∫ 
�θ a 

I ( 1 − ρab ( θa ) ) cos θa sin θa dθa dψ (A.1) 

Passing a Fresnel interface, the direction of intensity changes. 

Therefore, the direction of θa for the intensity in medium a 

changes to θb in medium b. The relation of these two angles is 

given by Snell’s law. Therefore, the radiative heat flux at other side 

of the interface is calculated using the equation: 

˙ q ′′ b = 

∫ 
�ψ 

∫ 
�θb 

I ( 1 − ρab ( θa ) ) 
(
n b 
n a 

)2 

cos θb sin θb dθb dψ (A.2) 

Differentiating the equation of Snell’s law gives: 

n a cosθa dθa = n b cosθb dθb (A.3) 

Therefore, applying the Eqs. (A.2) and ( A.3 ) gives the following re- 

lation for θa and θb : 

cosθb sinθb dθb = 

(
n a 

n b 

)2 

cosθa sinθa dθa (A.4) 

Replacing the above equation into Eq. (A.2) , gives the equality of 

˙ q ′′ a and ˙ q ′′ b . 

Appendix B 

The solution of radiation transfer in a one-layer slab with dif- 

fuse irradiation at the boundary for the forward radiation intensity 

is given as: 

I + (x, μ1 ) = (A (μ) + ρ10 B (μ)) exp 
(
−β

x 

μ1 

)
+ ρ10 

∫ d 
0 

exp 

(
−β

x + x ′ 
μ1 

)
S(x ′ , −μ1 ) 

dx ′ 
μ1 

+ C(0 , x, μ) 

(B.1) 

For the backward radiation, the analytical solution for the intensity 

is given as: 

I −(x, −μ1 ) = C(x, d, μ) + B (μ) exp 

(
βx 

μ1 

)
(B.2) 

In the above equations, A , B , and C are defined as: 

A (μ) = 

(
n 1 
n 0 

)2 

(1 − ρ01 (μ0 )) I d (B.3) 

B ( μ) =ρ12 

C ( 0 , d, μ) + ρ10 

∫ d 
0 

exp 

(
− βx ′ 

μ1 

)
S 
(
x ′ , −μ1 

) dx ′ 
μ1 

+ 
∫ d 
0 

exp 

(
βx ′ 
μ1 

)
S 
(
x ′ ,μ1 

) dx ′ 
μ1 

exp 

(
2 βd 
μ1 

)
− ρ10 ρ12 

(B.4) 

C(a, b, μ) = 

∫ b 
a 

exp 

(
β
x − x ′ 
μ1 

)
S(x ′ , −μ) 

dx ′ 
μ1 

(B.5) 

where, the source term is defined by: 

S(x ′ , μ) = 

σs 

4 π

∫ 
4 π

I(x ′ , μ′ ) φ(μ0 ) d� (B.6) 

Appendix C 

For the two layer media with diffuse irradiation at the upper 

boundary, the analytical solution for the forward radiation inten- 

sity within region 1 is given as: 

I + 1 ( x 1 ,μ1 ) = 
( 
A + 

G 
(
ρ23 

(
( 1 − ρ12 ) E 1 ( 2 d 1 ) E 2 ( 2 d 2 ) 

(
An 2 12 + D 12 ( 0 ,d 1 ) 

)
+ E 2 ( 2 d 2 ) D 22 ( 0 ,d 2 ) 

))
J 

+ 

GD 21 ( 0 , d 2 ) + ρ10 H 
(
ρ12 An 

2 
20 E 1 ( 2 d 1 ) + D 11 ( 0 ,d 1 ) ( 1 + ρ12 E 1 ( 2 d 1 ) ) 

)
J 

) 
E 1 ( d 1 ) +E 1 ( x 1 ) D 12 ( 0 , x 1 ) 

(C.1) 

For the backward intensity within the region 1, the analytical solu- 

tion is: 

I −1 (x 1 , −μ1 ) = BI + 1 (d 1 , μ1 ) + (1 − ρ21 ) n 
2 
12 (D 21 (0 , d 2 ) + F ) E 1 (d 1 − x 1 ) 

+ E 1 (−x 1 ) D 11 (x 1 , d 1 ) (C.2) 
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For the region 2, the analytical solution of the forward radiation 

intensity is given as: 

I + 2 (x 2 , μ2 ) = (n 2 21 ((1 − ρ12 ) + ρ21 B ) I 
+ 
1 (d 1 , μ1 ) 

+ ρ21 (D 21 (0 , d 2 ) + F ) + D 22 (0 , x 2 )) E 2 (x 2 ) (C.3) 

Finally, for the backward radiation intensity within the region 2, 

the analytical solution is: 

I −2 (x 2 , −μ2 ) = n 2 21 BI 
+ 
1 (d 1 , μ1 ) E 2 (d 2 − x 2 ) + (F + D 21 (x 2 , d 2 )) E 2 (−x 2 ) 

(C.4) 

where the included parametres are defined as follows: 

A = (1 − ρ01 ) 
(
n 1 
n 0 

)2 

I d (C.5) 

B = 

ρ23 (1 − ρ12 ) E 2 (d 2 ) 

H 

(C.6) 

C = ρ12 + (1 − ρ21 ) B (C.7) 

D i j (a, b) = 

∫ b 
a 

E i ((−1) j+1 x ′ i ) S(x ′ i , (−1) j μi ) 
dx ′ 

i 

μi 

(C.8) 

E i (x i ) = exp 

(
−βi x i 

μi 

)
(C.9) 

F = ρ23 
ρ21 D 21 (0 , d 2 ) + D 22 (0 , d 2 ) 

1 − ρ21 ρ23 E 2 (2 d 2 ) 
E 2 (d 2 ) (C.10) 

G = ρ10 (1 − ρ21 ) 
(
n 1 
n 2 

)2 

(C.11) 

H(μ) = 1 − ρ23 ρ21 E 2 (2 d 2 ) (C.12) 

n i j = 

n i 
n j 

(C.13) 

J = H(1 − ρ12 ρ10 E 1 (2 d 1 )) − ρ23 ρ10 (1 − ρ12 )(1 − ρ21 ) E 1 (2 d 1 ) E 2 (2 d 2 ) 

(C.14) 
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