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A B S T R A C T

Glottal source characteristics vary between phonation types due to the tension of laryngeal
muscles with the respiratory effort. Previous studies in the classification of phonation type
have mainly used speech signals recorded by microphone. Recently, two studies were pub-
lished in the classification of phonation type using neck surface accelerometer (NSA) signals.
However, there are no previous studies comparing the use of the acoustic speech signal vs.
the NSA signal as input in classifying phonation type. Therefore, the current study investi-
gates simultaneously recorded speech and NSA signals in the classification of three phona-
tion types (breathy, modal, pressed). The general goal is to understand which of the two
signals (speech vs. NSA) is more effective in the classification task. We hypothesize that by
using the same feature set for both signals, classification accuracy is higher for the NSA sig-
nal, which is more closely related to the physical vibration of the vocal folds and less affected
by the vocal tract compared to the acoustical speech signal. Glottal source waveforms were
computed using two signal processing methods, quasi-closed phase (QCP) glottal inverse fil-
tering and zero frequency filtering (ZFF), and a group of time-domain and frequency-domain
scalar features were computed from the obtained waveforms. In addition, the study investi-
gated the use of mel-frequency cepstral coefficients (MFCCs) derived from the glottal source
waveforms computed by QCP and ZFF. Classification experiments with support vector
machine classifiers revealed that the NSA signal showed better discrimination of the phona-
tion types compared to the speech signal when the same feature set was used. Furthermore,
it was observed that the glottal features showed complementary information with the con-
ventional MFCC features resulting in the best classification accuracy both for the NSA signal
(86.9%) and the speech signal (80.6%).
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

In producing speech signals, humans are capable of generating different phonation types (such as breathy, tense, creaky and
falsetto) by regulating the activation of laryngeal muscles with the respiratory effort (Laver, 1980; Childers and Lee, 1991; Pietro-
wicz et al., 2017). Phonation type is closely associated with voice quality, a perceptual attribute defined as the auditory coloring
of a speaker’s voice (Laver, 1980). Breathy and tense/pressed voices are often considered to be the two opposite ends of the voice
quality continuum (Kane and Gobl, 2013; Airas and Alku, 2007). Phonation type plays an important role in conveying para-lin-
guistic information such as vocal emotions and personality in speech (Campbell and Mokhtari, 2003; Grichkovtsova et al., 2012;
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Park et al., 2018; Afshan et al., 2018; Birkholz et al., 2015). Breathy phonation is typically used in expressing politeness and inti-
macy (Ito, 2004), and tense phonation is used in expressing emotions of high activity such as anger, disgust, anxiety and excite-
ment (Yanushevskaya et al., 2005; Gobl and Ní Chasaide, 2003). It is to be noted that apart from conveying para-linguistic
information, phonation type is also used to generate phonological contrasts in certain languages (Gordon and Ladefoged, 2001;
Ladefoged et al., 1988; Kuang and Keating, 2014; Esposito, 2010; ud Dowla Khan, 2012).

Modal phonation is typically used as the reference in comparing phonation types (Titze, 2000; Laver, 1980; Gordon and
Ladefoged, 2001). In modal voices, the laryngeal tension settings are low and the vibration of the vocal folds is mostly
periodic in a sequence of glottal cycles. In addition, the closure of the vocal folds is typically abrupt in modal voices.
Breathy phonation, however, involves weaker levels of laryngeal tension and partial closure of the glottis which leads to
the generation of turbulent noise (Titze, 2000; Laver, 1980). Hence, the harmonic structure of breathy voices is more
prominent at low frequencies compared to modal voices (Gobl and Ní Chasaide, 2003; Alku, 2011). On the other hand, the
laryngeal settings of pressed voices involve an increase in the adductive and longitudinal tension and a sharper glottal clo-
sure, which result in more prominent high-frequency harmonics compared to modal voices (Laver, 1980; Kane and Gobl,
2013; Titze, 2000; Alku, 2011). In the current study, the classification of phonation type into these three classes (breathy,
modal and pressed) will be investigated. Literature review of the topic is given next by dividing the review into two parts
based on the information signal that is used as input in the classification.

1.1. Classification of phonation type using speech signals

Variations in vibration patterns of the vocal folds result in differences in the shape of the glottal volume velocity pulse,
called shortly as the glottal pulse, between phonation types. The glottal pulse varies from a smooth symmetric form in
breathy phonation to an asymmetric form with sharp edges in pressed phonation as shown by studies where glottal
inverse filtering (GIF) has been used to estimate the glottal pulse from speech (Airas and Alku, 2007; Alku et al., 2002b).
This variation in the time-domain is reflected by the tilt of the glottal flow spectrum in the frequency-domain (Gowda
and Kurimo, 2013; Hillenbrand et al., 1994). Using both time-domain and frequency-domain approaches, several features
have been developed to parameterize and classify phonation type using the estimated glottal pulse waveforms (Airas and
Alku, 2007; Kane and Gobl, 2013; Borsky et al., 2017b). Time-domain features such as the open quotient, the quasi-open
quotient (QOQ) and the closing quotient (CQ), and amplitude-based features such as the amplitude quotient and the nor-
malized amplitude quotient (NAQ) have been developed to parameterize the glottal pulse and its derivative (Airas and
Alku, 2007; Alku, 2011; Drugman et al., 2014). Frequency-domain features such as the H1-H2 (the amplitude difference
between the first (F0) and second harmonic) (Hillenbrand et al., 1994), the harmonic richness factor (HRF) (Childers and
Lee, 1991) and the parabolic spectral parameter (PSP) (Alku et al., 1997) have been developed to measure the spectral tilt
of the glottal pulse waveform. In Gobl and Ní Chasaide (2003); Swerts and Veldhuis (2001), phonation types were ana-
lysed by fitting the estimated glottal pulse derivative with an artificial Liljencrants-Fant (LF) glottal source model.

The performance of GIF deteriorates for high-pitched speech and expressive voices, which makes it difficult to derive glottal
features, specially in the time-domain (Alku, 2011; Drugman et al., 2014). Due to the difficulties in applying GIF for high-pitched
speech, studies in Garellek et al. (2016), Kreiman et al. (2012), Park et al. (2018) and Kreiman et al. (2015) measured the impact
of the glottal source directly from the speech spectrum using features such as the F0, spectral slope between H4 (the fourth har-
monic) and 2 kHz, and the spectral slope between 2 kHz and 5 kHz, H1-H2, and H2-H4. In Hillenbrand et al. (1994) and Klatt and
Klatt (1990), cepstral peak prominence (CPP) was analyzed to capture the amount of aspiration noise in breathy phonation com-
pared to modal phonation. Since breathy voices have larger open quotients and pressed voices have smaller open quotients, a
spectral feature called the low-frequency spectral density (LFSD) was proposed in Gowda and Kurimo (2013). Due to the larger
open quotient, the coupling of the subglottal system with the supraglottal system is stronger, making the low-frequency spectral
energy larger in breathy voices compared to pressed voices.

The linear prediction (LP) residual and the zero frequency filtered signal (ZFFS) have also been used to derive features
to classify phonation type. Features including the ZFFS slope, the energy of excitation, the loudness measure, and the ZFFS
energy were used in the analysis and classification of phonation types in speech and singing (Kadiri and Yegnanarayana,
2018b; Kadiri et al., 2020). Their study showed that the ZFFS slope is inversely proportional to the duration of the glottal
closed phase and that the ZFFS energy is directly proportional to the amount of low-frequency energy in speech signals.
In addition, Kadiri et al. (2020) showed that the energy of excitation is directly proportional to the vocal effort, and that
the loudness measure is directly proportional to the sharpness of glottal closure. In Kane and Gobl (2013), sharp changes
in the glottal closure characteristics were captured using a measure called the maximum dispersion quotient (MDQ),
which is based on the LP residual signal. It was reported that the discrimination capabilities of LFSD and MDQ were closer
to the discrimination capability of NAQ (Gowda and Kurimo, 2013). Even though the harmonic-to-noise ratio (HNR) was
found to provide poorer discrimination of phonation types, HNR has the potential to discriminate modal and breathy voi-
ces better compared to modal and pressed voices. In Kane and Gobl (2013) and Borsky et al. (2017b), a set of glottal
source features along with the MFCCs derived from speech signals were investigated for the classification of phonation
type. Glottal source features were also found to be useful in the detection of pathological voices in Narendra and
Alku (2020). Recently, MFCCs derived from the zero-time windowing spectrum were explored for the classification of pho-
nation type in singing in Kadiri and Alku (2019b). Moreover, a residual attention based neural network was studied in
Sun et al. (2020) in the classification of phonation type in singing using the mel-spectrogram as input.
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1.2. Classification of phonation type using neck surface accelerometer signals

The far majority of the phonation type classification studies is based on features which are computed from the acoustic speech
signal by either estimating the glottal pulse with GIF or by using the speech spectrum directly. The neck surface accelerometer
(NSA), however, provides an alternative means to indirectly measure vocal fold aerodynamics (Stevens et al., 1975; Rendon et al.,
2007; Mehta et al., 2015). The accelerometer is a sensor which measures the vibration of the vocal folds in the direction normal
to the neck surface during speech production. The accelerometer mounted on the below-glottis skin surface is less affected by
the vocal tract. Therefore, this sensor can be considered to be free from the effect of formants which are the source of essential
acoustic cues on speech intelligibility. The absence of formant cues makes the NSA signal unintelligible and therefore suitable for
the real-life voice quality assessment and monitoring as it does not breach speaker privacy (Mehta et al., 2015; 2016).

NSAs have been used to measure laryngeal phenomena and it has been shown that NSA signals can supplement or supplant
acoustic speech signals recorded by microphone (Coleman, 1988; Mehta et al., 2016; Titze et al., 2003). NSAs offer advantages
over microphones by being much less sensitive to environmental noise sources. Moreover, when placed below the larynx, the
NSA is also insensitive to articulatory modulation, thus protecting privacy (Mehta et al., 2016; Cort�es et al., 2018). In addition,
NSAs are conducive for use in ambulatory monitoring that are worn throughout an individual’s daily activities to capture typical
and atypical vocal behavior (Van Stan et al., 2015; Mehta et al., 2015). In addition to sensing phonation variations, accelerometers
have also been useful to monitor subglottal resonances (Lulich et al., 2012) and nasal resonances (Stevens et al., 1975).

Relationships between acoustic-based estimates of the vocal function and their NSA-based counterparts have been investigated
to gain an insight into the interpretability of accelerometer-based vocal features (Coleman, 1988; Titze and Hunter, 2015; Van Stan
et al., 2015; Cort�es et al., 2018). Strong correlations were found between speech and NSA signals in production of vowels for F0, jitter,
CPP and HNR, and weak correlations were found for shimmer and spectral tilt (Mehta et al., 2016). The NSA signal was shown to
accurately convey glottal features such as F0, maximum flow declination rate (MFDR, minimum level of the glottal flow derivative in
one glottal cycle) and HRF which were derived using subglottal inverse filtering (Za~nartu et al., 2013; Mehta et al., 2016; Lin et al.,
2020). Recently, the relationship between the H1-H2 values computed from the NSA signal and from the glottal airflow waveform
obtained by inverse filtering the oral airflow was studied (Mehta et al., 2019). It was found that the correlation between the two sig-
nals was high indicating a close relationship between them in glottal closure properties and skewness of the glottal source. In
Ghassemi et al. (2014), it was shown that NSA signals have the capability of discriminating vocal hyperfunction from healthy produc-
tion of speech using F0 and the sound pressure level, and their statistics. Several glottal features (such as the difference between the
maximum and minimum amplitude within each glottal cycle, MFDR, open quotient, speed quotient, and NAQ) estimated from NSA
signals were investigated for the assessment of vocal hyperfunction in Cort�es et al. (2018).

Even though speech production has been studied using NSAs in several investigations as described above, there exist only two
studies in the classification of phonation type using the NSA signal. In the first study (Borsky et al., 2017a), the authors investi-
gated the discrimination capability of MFCCs derived from the NSA signal for four phonation types (modal, breathy, pressed, and
rough voice). In Lei et al. (2019), features such as spectral harmonics, jitter, shimmer and spectral entropy extracted from the
NSA signal were used for discriminating three phonation types (modal, breathy and pressed).

1.3. Goals of the study

The literature review in the two previous subsections indicates that the existing studies in the classification of phonation type
focus on using features, which are extracted either from the glottal flow waveform (estimated by inverse filtering either the
speech signal or the NSA signal) or from the spectrum of the speech signal or from the spectrum of the NSA signal. To the best of
our knowledge, there are, however, no previous studies on the automatic classification of phonation type comparing features
extracted from simultaneous recordings of the acoustic speech signal and the NSA signal. In other words, no one has yet studied
which one of the two signals (the acoustic speech signal vs. the NSA signal) works better in the classification of phonation type.
Therefore, the goal of the present study is to use different feature extraction methods to represent the speech signal and the
(simultaneously recorded) NSA signal and to compare the automatic classification of breathy, modal and pressed vowels using
the same set of features computed from the two inputs. We hypothesize that the classification accuracy should be higher when
the NSA signal is used as input because the NSA signal carries information that is more directly related to the physiological vibra-
tory patterns of the vocal folds compared the air flow generated by vocal fold vibration, the glottal pulse.

In summary, the highlights of the present study are:

� The classification of phonation types is studied for the first time by comparing simultaneously recorded speech and NSA
signals.

� Three phonation types (breathy, modal, pressed) are studied.
� Glottal features are computed using the quasi-closed phase (QCP) glottal inverse filtering method and the zero frequency fil-
tering (ZFF) method.

� Both scalar features and MFCCs derived from glottal waveforms are investigated.
� Experiments with the SVM classifier revealed that NSA signals discriminate phonation types better compared to speech
signals.

� The combination of glottal and MFCC features showed improved classification accuracy both for speech and NSA signals.
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1.4. Organization

The organization of the paper is as follows. Section 2 describes two signal processing methods, QCP and ZFF, for deriving glot-
tal source waveforms. The extraction of one-dimensional glottal features and the extraction of MFCCs from the glottal source
waveforms are described in Section 3. The experimental protocol is described in Section 4, which includes the database, the
parameters used for feature extraction along with the feature sets used in the classification experiments and the details of the
classifier. Results of the classification experiments are presented in Section 5. Finally, Section 6 summarizes the study.

2. Signal processing methods to compute glottal source waveforms

This section describes two signal processing methods which are used in the present study for the estimation of glottal source,
the QCP glottal inverse filtering method (Airaksinen et al., 2014) and the ZFF method (Murty and Yegnanarayana, 2008). It is to
be noted that inverse filtering of the acoustic speech signal recorded by microphone outside the mouth aims to remove the
supraglottal resonances from the speech signal, whereas inverse filtering of the accelerometer signal aims to remove the subglot-
tal resonances for deriving the glottal source.

Originally, the QCP and ZFF methods were proposed for acoustic speech signals. In the present study, we use these methods
for processing both the acoustic speech signal as well as the NSA signal for extracting information about the glottal source. For
the sake of simplicity of the presentation, the following descriptions of these signal processing methods are given using a generic
time-domain input signal, denoted as s½n�;which refers both to the speech signal and the NSA signal.

2.1. The quasi-closed phase (QCP) method

QCP (Airaksinen et al., 2014), whose block diagram is shown in Fig. 1, is a GIF method which is based on the principles of
closed phase analysis (Wong et al., 1979). Closed phase analysis is a GIF methods which estimates the vocal tract model from a
few samples located in the closed phase of the glottal cycle using LP analysis. In contrast to closed phase analysis, the QCP method
takes advantage of all the samples of the analysis frame in the computation of the vocal tract model. This is made possible by
using weighted linear prediction (WLP) analysis, computed with the attenuated main excitation (AME) (Alku et al., 2013) weight-
ing function, as an all-pole modeling method in the estimation of the vocal tract transfer function. The AME function is a straight-
forward time-domain waveform, using which WLP analysis can be made de-emphasize the square of the prediction error in
those samples where the effect of the glottal excitation is prominent (i.e. in the vicinity of glottal closure). Consequently, the
resulting all-pole WLP model (denoted by VðzÞ in Fig. 1) is affected more by the characteristics of the vocal tract leading to smaller
biasing of the vocal tract model by the glottal source. As shown in Alku et al. (2013), the AME weighting function is a simple, pos-
itive and real-valued waveform which is equal to 1.0 in the samples during the glottal open phase and equal to a small positive
value (e.g. 0.03) in the vicinity of glottal closure. The AME waveform can be adjusted with three parameters (the duration quo-
tient, the position quotient and the value of the waveform at glottal closure). In addition, the generation of the AME waveform
calls for extracting glottal closure instants (GCIs). After computing the vocal tract model using WLP analysis with the AME
weighting function, the input signal (s½n�) is finally inverse filtered in the QCP method with VðzÞ to estimate the glottal source
waveform. The QCP method was shown to provide better glottal source waveforms for modal and non-modal vowels compared
to four existing inverse filtering methods (Airaksinen et al., 2014). Hence, in the current study, QCP is used as a GIF method to
estimate the glottal source waveform.

2.2. The zero frequency filtering (ZFF) method

Based on the fact that the effect of an impulse-like excitation (which occurs at the instant of glottal closure) is present
throughout the spectrum including the zero frequency (0 Hz), the ZFF method was proposed in Murty and Yegnanarayana (2008).
In this method, the pre-emphasized signal (x½n� = s½n� - s½n� 1�) is first passed through a cascade of two zero frequency resonators
(ZFRs). That is, the pre-emphasized signal is filtered with a filter which has a pair of poles on the unit circle at the positive real
axis in the z-plane and the filtering can be expressed as:

yo½n� ¼
X4

k¼1

akyo½n� k� þ x½n�; ð1Þ

Fig. 1. Block diagram of the QCP method.
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where a1 ¼ þ4; a2 ¼ �6; a3 ¼ þ4; a4 ¼ �1. The resulting signal yo½n� is equivalent to integrating or cumulatively summing (in the
discrete-time domain) the signal four times, which makes the signal grow as a polynomial function of time. The growing trend is
removed from yo½n� by subtracting the local mean computed over the average pitch period. The trend removed signal (y½n�) is
referred to as the zero frequency filtered signal (ZFFS) and is given by:

y½n� ¼ yo½n� � 1
2N þ 1

XN

i¼�N

yo½nþ i�: ð2Þ

Here 2N þ 1 corresponds to the number of samples used to remove the trend. The ZFF signal can be regarded as an approximate
glottal source waveform in analysing glottal source characteristics (Kadiri and Alku, 2019a; 2019c; Murty and Yegnanarayana,
2008). The positive-to-negative zero-crossings (PNZCs) correspond to GCIs by considering the negative polarity of the signal
(Murty and Yegnanarayana, 2008; Kadiri and Yegnanarayana, 2017). The steps involved in the ZFF method are shown in Fig. 2.

To illustrate examples of glottal source waveforms computed by QCP and ZFF, a segment of speech signal (Fig. 3) and the cor-
responding simultaneously recorded NSA signal (Fig. 4) are considered. In both figures, the input (speech vs. NSA signal) is shown
in (a), and the glottal source waveforms computed by QCP and ZFF are shown in (b) and (c), respectively.

3. Extraction of glottal features

This section describes the extraction of features from the glottal source waveforms computed using the QCP and ZFF methods.
In addition, the extraction of MFCCs from the glottal source waveforms is described.

3.1. Glottal features derived using the QCP method

Different methods have been developed for the parameterization of the glottal source waveform and they can be grouped into
two categories: time-domain glottal features and frequency-domain glottal features.

3.1.1. Time-domain glottal features
Time-domain glottal source waveforms can be parameterized using amplitude-based and time-based features (Airas, 2008;

Alku, 2011). The amplitude quotient (AQ) (Alku and Vilkman, 1996; Alku et al., 2006) and the normalized amplitude quotient

Fig. 2. Block diagram of the ZFF method.

Fig. 3. Glottal source waveforms derived using the QCP and ZFF methods: (a) speech signal, (b) glottal source waveform estimated by QCP, and (c) approximate
glottal source waveform estimated by ZFF (reversed in polarity for visualization purpose). The y-axes are normalized using the minimum and maximum values of
the signals and expressed in arbitrary units.
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(NAQ) (Alku et al., 2002a)) are the most widely used amplitude-based glottal features utilising amplitude values of the glottal
flow and its derivative in the parameterization (Fant, 1995; Alku and Vilkman, 1996; Alku et al., 2002a). NAQ was shown to be
strongly correlated with the closing quotient, which has been used widely in the study of voice quality (Alku et al., 2002a). In
time-based features, the classical approach is to compute time-duration ratios between the various phases (opening phase, clos-
ing phase, and closed phase) of the glottal flow pulse. These measures use the critical time instants, such as the GCI, primary and
secondary glottal opening, the instant of minimum and maximum glottal flow from the glottal source waveform. Detecting the
critical time instants is often difficult and to overcome this problem time-based features are sometimes computed by replacing
the true closure and opening instants by the time instants when the glottal source crosses a certain level. This level is set to a
value based on the maximum and minimum amplitude of the glottal pulse during the fundamental period (Alku, 2011).

3.1.2. Frequency-domain glottal features
Frequency-domain features are computed from the spectrum of the glottal source waveform to measure the slope of the spec-

trum. Several studies have quantified the spectral slope by using the amplitude of F0 and its harmonics. Features such as the
amplitude difference between F0 and the next harmonic (H1-H2) (Titze and Sundberg, 1992), the harmonic richness factor (HRF)
(Childers and Lee, 1991), and the parabolic spectral parameter (PSP) (Alku et al., 1997) are most widely used. HRF is computed as
the ratio of the sum of the amplitudes of the harmonics above F0 and the amplitude of F0. PSP is derived by fitting a parabola to
low frequencies of the glottal source spectrum (Alku et al., 1997).

In total, 12 glottal features (9 time-domain features and 3 frequency-domain features, listed in Table 1) are derived in this
study to characterize the glottal source waveforms estimated by the QCP method (Airas, 2008). The glottal features are extracted
using the APARAT Toolbox (Airas, 2008).

Fig. 4. Glottal source waveforms derived using the QCP and ZFF methods: (a) NSA signal, (b) glottal source waveform estimated by QCP, and (c) approximate glot-
tal source waveform estimated by ZFF (reversed in polarity for visualization purpose). The y-axes are normalized using the minimum and maximum values of the
signals and expressed in arbitrary units.

Table 1
Time-domain and frequency-domain glottal features derived from glot-
tal source waveforms estimated by the QCP method.

Time-domain features

OQ1 Open quotient, calculated from the primary glottal opening
OQ2 Open quotient, calculated from the secondary glottal opening
NAQ Normalized amplitude quotient
AQ Amplitude quotient
ClQ Closing quotient
OQa Open quotient, derived from the LF model
QOQ Quasi-open quotient
SQ1 Speed quotient, calculated from the primary glottal opening
SQ2 Speed quotient, calculated from the secondary glottal opening

Frequency-domain features
H1-H2 Amplitude difference between the first two glottal harmonics
PSP Parabolic spectral parameter
HRF Harmonic richness factor
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3.2. Glottal features derived using the ZFF method

To quantify the glottal source characteristics from the ZFF signal, the following four features are computed in the present
study: the slope of the ZFFS (ZFFS slope), the energy of the ZFFS (ZFFS energy), the energy of excitation (EoE), and the loudness mea-
sure (Loudness). These features have been shown to be useful for discriminating phonation types, emotions and voice pathologies
(Kadiri and Yegnanarayana, 2018a; Kadiri et al., 2015). By denoting GCIs as G ¼ fg1; g2; . . . ; gMg (M is the number of GCIs), these
four features are computed as follows.

ZFFS slope is the slope of the ZFFS around the cth GCI and is given by:

ZFFSslopegc ¼
����y gc þ 1½ � � y gc � 1½ �

����; c ¼ 1;2; :::;M: ð3Þ

This feature was shown to be useful in the analysis and classification of phonation type in speech, singing and emotions in
Gangamohan et al. (2013) and Kadiri et al. (2015, 2020). Similarly to NAQ, the ZFFS slope shows a decreasing trend when the pho-
nation type changes from breathy to modal and then to pressed due to the increasing trend of the closed phase (Airas and Alku,
2007; Alku et al., 2002a; Kadiri et al., 2020). In analysing vocal emotions, the ZFFS slope was shown to be large for low arousal
emotions and small for high arousal emotions (Gangamohan et al., 2013; Kadiri et al., 2015).

ZFFS energy is the energy of y½n� over a window of L samples around the cth GCI and is given by:

ZFFS energygc ¼ 1
L

XL=2

i¼�L=2

y2 gc þ i½ �; c ¼ 1;2; :::;M: ð4Þ

As the ZFF signal is a low-pass filtered signal, the value of the ZFFS energy reflects the amount of low-frequency information in the signal.
The ZFFS energy shows a decreasing trendwhen the phonation type changes from breathy to pressed, which depicts the low-frequency
contents of the glottal source spectrumwhen the phonation type changes from breathy to pressed (Kadiri et al., 2020).

EoE is derived from the Hilbert envelope (he½n�) of the LP residual of the input signal over a 1 ms region around the cth GCI
(Kadiri et al., 2015) and is computed as follows:

EoEgc ¼
1

2K þ 1

XK

i¼�K

he2 gc þ i½ �; c ¼ 1;2; :::;M; ð5Þ

where 2K+1 corresponds to the samples in the 1 ms window. This feature was shown to capture the changes in vocal effort
(Gangamohan et al., 2013; Kadiri et al., 2015), where EoE was generally large for high arousal emotions and small for low arousal
emotions. EoE shows an increasing trend when the phonation type changes from breathy to pressed, indicating increased vocal
effort (Kadiri et al., 2020).

Loudness is the ratio between the standard deviation (sgc ) and mean (mgc ) of the samples of he½n� in a 1 ms window around
the cth GCI and is given by:

Loudnesssgc ¼ sgc

mgc
; c ¼ 1;2; :::;M: ð6Þ

This measure was shown to indicate the abruptness of glottal closure (Seshadri and Yegnanarayana, 2009). Loudness shows an
increasing trend when the phonation type changes from breathy to pressed, indicating the increase in sharpness of glottal closure
(Kadiri et al., 2020).

The steps involved in the deriving the glottal source features from the ZFF method are shown in Fig. 5.

3.3. Extraction of MFCCs from glottal waveforms

Experiments reported in Kadiri and Alku (2019c,a) have shown that the features derived from the glottal source spectrum
have better discrimination capability compared to the time-domain features. For an illustration, Figs. 6 and 7 show spectrograms
of glottal source waveforms estimated using the QCP and ZFF methods, respectively, from NSA signals (vowel [a]) in three phona-
tion types (breathy, modal and pressed). From the figures, it can be seen that there are clear variations in the harmonic structure
between the three phonation types. Pressed phonation exhibits a richer harmonic content compared to breathy and modal voi-
ces. This observation also holds for glottal source waveforms estimated from speech signals using the QCP and ZFF methods. In
order to capture these spectral variations in a compact form, MFCCs are derived from the spectra of the glottal source waveforms.
It is to be noted that the extraction of MFCCs used here is equivalent to the widely used conventional MFCC feature extraction
approach (Davis and Mermelstein, 1980), except that the glottal source estimated from the speech/NSA signal is used as the input
to the MFCC chain instead of the speech signal. Fig. 8 shows the steps involved in the extraction of MFCCs from the glottal source
waveforms obtained by the QCP and ZFF methods, and the corresponding features are referred to as QCP-MFCC and ZFF-MFCC,
respectively.

4. Experimental protocol

This section describes the database, the feature sets designed for the classification experiments and the details of the classifier.
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Fig. 5. Block diagram describing the steps involved in the extraction of glottal features using the ZFF method..

Fig. 6. Spectrograms of glottal source waveforms estimated from the NSA signal using the QCP method for breathy, modal and pressed [a] vowels.

Fig. 7. Spectrograms of glottal source waveforms estimated from the NSA signal using the ZFF method for breathy, modal and pressed [a] vowels.

Fig. 8. Extraction of MFCCs from the glottal source waveforms computed by the QCP and ZFF methods.
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4.1. Database

The database used in the present study consists of five vowels (½a� in the word ”father”, [æ] in the word ”cat”, ½e� in the word
”bed”, ½i� in the word ”heat” and ½u� in the word ”food”) uttered in three phonation types (breathy, modal and pressed) by 31
native Canadian English female speakers, aged between 18 and 40 years (Lei et al., 2019). The database consists of simultaneous
recordings of the acoustic speech signal (captured by microphone) and the NSA signal. The protocol for each participant began
with a training session, where the participants were instructed by an speech language pathologist (SLP) to practice the produc-
tion of the three phonation types. During the recording session, the corresponding utterance was repeated until the target phona-
tion type (judged by the SLP) was achieved. The entire recording session took approximately 30 min for each speaker. Each vowel
was uttered three times using the three phonation types, resulting in a total of 5 ¢3 ¢3 ¢31 ¼ 1395 vowels. The database was origi-
nally recorded using a sampling frequency of 44.1 kHz but the data was down-sampled to 16 kHz for the purposes of this study.
All the recorded speech signals were perceptually assessed independently by five SLPs, and the obtained scores were analysed in
terms of their inter-rater and intra-rater reliability. This process resulted in 952 samples (out of 1395 samples) which were con-
sidered to represent reliably the corresponding phonation type. From these 952 samples, 395 are breathy, 285 are modal and
272 are pressed. The entire duration of the data is around 52 min. More details of the database can be found in Lei et al. (2019).

It is worth noting that the database used in the current study is much smaller than databases currently used in speech tech-
nology areas such as speech recognition, speaker recognition, and speech synthesis. However, to the best of our knowledge, the
selected database is the only phonation type database, which includes simultaneous recordings of speech and NSA signals and
which is currently available for research purposes.

4.2. Feature sets

In total, four glottal feature sets and one MFCC feature set were designed for the phonation type classification in the present
study. All these sets were computed to express the two input signals that were of interest in the study, the speech signal and the
NSA signal. The first feature set consists of the following 12 glottal features derived using the QCP method: OQ1, OQ2, NAQ, ClQ,
SQ1, SQ2, AQ, QOQ, OQa (time-domain features) and H1-H2, PSP, HRF (frequency-domain features). This set is referred to as QCP-
1D (with reference to the use of QCP and 1-dimensional features). All these features were extracted for every glottal cycle with
QCP using Hamming-windowed 25 ms frames with a 5 ms shift and a vocal tract order of 30. The second set consists of the follow-
ing 4 glottal features derived using the ZFF method: ZFFS slope, EoE, Loudness and ZFFS energy. This set is referred to as ZFF-1D.
All these features were computed around GCIs. EoE and loudness measure were computed from a 1 ms region of the Hilbert
envelope of the LP residual (computed using an order of 12) around each GCI. The third set consists of the MFCC features derived
from the glottal source waveforms estimated by QCP. This set is referred to as the QCP-MFCC features. The fourth set consists of
the MFCC features derived from the glottal source waveforms estimated by ZFF. This set is referred to as the ZFF-MFCC features.
In addition to the glottal sets above, we computed as the fifth set MFCCs directly from the input signal (i.e. the speech signal and
the NSA signal). All the MFFC-based feature sets were computed using 25 ms Hamming-windowed frames with a 5 ms frame
shift and using 13 static coefficients and their delta & double-delta coefficients yielding 39-dimensional feature vectors. The num-
ber of mel-filter banks used was 40 and the DFT size was 1024.

Experiments were carried out with the individual feature sets as well as with combinations of the feature sets to analyze com-
plementary information between the feature sets. In total, nine feature sets were investigated, out of which five were individual
feature sets (denoted by FS-1 to FS-5) and four were combinations of feature sets (denoted by FS-6 to FS-9). In the combination
of the feature sets, complementary information was studied both between the glottal feature sets (FS-6 to FS-8) and between the
glottal and MFCC feature sets (FS-9). The last combined set (FS-9) was built by combining the conventional MFCC features with
the proposed glottal source feature set that yielded the highest accuracy. In other words, FS-9 included FS-5 combined with the
best set of glottal source features (from FS-1 to FS-4 and from FS-6 to FS-8). In summary, the 9 feature sets used in the current
study are listed below.

� FS-1: QCP-1D
� FS-2: ZFF-1D
� FS-3: QCP-MFCC
� FS-4: ZFF-MFCC
� FS-5: MFCCs
� FS-6: Combination of the QCP-based sets (QCP-1D, QCP-MFCC)
� FS-7: Combination of the ZFF-based sets (ZFF-1D, ZFF-MFCC)
� FS-8: Combination of all glottal feature sets (QCP-1D, QCP-MFCC, ZFF-1D, ZFF-MFCC)
� FS-9: Combination of the best of (FS-1, FS-2, FS-3, FS-4, FS-6, FS-7, FS-8) and FS-5.

4.3. Classifier

Support vector machine (SVM) with radial basis function kernel is used as a classifier. The Scikit-learn Python library (Pedre-
gosa et al., 2011; Chang and Lin, 2011) was used to implement the SVM classifier. The default values of the SVM classifier are
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used for all hyper-parameters. It is known that the SVM classifier is effective particularly in cases where a small amount of train-
ing data is available as in the present study (Kane and Gobl, 2013; Borsky et al., 2017b). Experiments are conducted using leave
one speaker out (LOSO) strategy. That is, one speaker data out of 31 speakers (consisting of all three phonation types) is used for
testing, and remaining 30 speakers data (consisting of all three phonation types) is used for training. Classification accuracies for
each of the speaker is first computed, and finally the mean and standard deviation of these accuracies are computed.

5. Results

This section reports the study results by first describing the classification accuracies obtained using the designed features sets
and then reporting confusion matrices for the two input signals (speech vs. NSA).

Results of the phonation type classification experiments are shown in terms of the mean and standard deviation of the
classification accuracy in Table 2. From the table, it can be clearly seen as the general trend that the classification accuracy
is higher when the NSA signal is used instead of the speech signal as input: the accuracy is higher in NSA compared to
speech in all nine feature sets. This observation is as expected in the study hypothesis. This result suggests that in com-
parison to the acoustic speech signal, the NSA signal includes more information about the functioning of the vocal folds
when speakers change their phonation type from breathy to modal and then to pressed. In the glottal feature sets (FS-1
to FS-4), the ZFF-MFCC features (FS-4) show the best performance for the NSA signal and the QCP-1D (FS-1) features
show the best performance for the speech signal. In comparing the QCP-based feature sets (FS-1 and FS-3) for speech, the
QCP-1D features (FS-1) show better performance than the QCP-MFCC features (FS-3). In the ZFF-based features (FS-2 and
FS-4), the ZFF-MFCC features (FS-4) are better than the ZFF-1D (FS-2) features both for the speech signal and for the NSA
signal. It is interesting to observe that the conventional MFCC features (FS-5) perform better than any of the glottal fea-
tures both in the speech signal and in the NSA signal. By comparing FS-6 to FS-1 and FS-3, it can be seen that the combi-
nation of the QCP-based feature sets improved the accuracy for the NSA signal and nearly the same happened for the
speech signal. In addition, accuracy also improved when the ZFF-based feature sets were combined as can be seen by com-
paring FS-7 to FS-2 and FS-4. When both the QCP-based and ZFF-based feature sets were combined (FS-8), accuracy
improved further both in the speech signal and in the NSA signal. It is interesting to note that the combined QCP-based
and ZFF-based feature sets (FS-8) perform better than conventional MFCC features (FS-5) both in the speech signal and in
the NSA signal. Finally, the combination of the conventional MFCCs with all the glottal feature sets (FS-9) lead to a further
improvement in accuracy both in speech and NSA indicating the existence of complementary information between the
conventional MFCC features and glottal features.

Class-wise accuracy was analysed in terms of confusion matrices using the combined feature sets (i.e. the sets from FS-
6 to FS-9). Table 3 shows the confusion matrices for the speech and NSA signal for the FS-6 to FS-9 feature sets. In the
case of the speech signal, it can be clearly seen for all the feature sets that there exists confusion between breathy and
modal voices as well as between modal and pressed voices. The same is true also for the NSA signal, even though there is
an improvement in accuracy in all phonation types. It can also be observed that the class-wise accuracies show an increas-
ing trend for the feature sets from FS-6 to FS-9, especially for modal voice, and also to some extent for breathy and
pressed voices. It should be noted that even though there is an improvement in classification accuracy from FS-6 to FS-9,
modal voices are confused with breathy and pressed voices which makes the overall accuracy lower both in the speech
and NSA signal. These observations indicate that there is a need for further investigations to develop features that reflect
differences in voice production characteristics between the three phonation types. It addition, further research is needed
to better understand the complexity of the classification problem by evaluating overlapping between the classes. In order
to study the complexity of the phonation type classification task, the techniques described in Lorena et al. (2019), for
example, could be used.

Table 2
Phonation type classification accuracy
(mean and standard deviation) for the
speech signal and the NSA signal for
individual feature sets and combina-
tions of feature sets.

Feature set Speech [%] NSA [%]

FS-1 70.9§3.4 74.5§3.9
FS-2 66.3§2.1 73.3§0.9
FS-3 63.4§2.0 71.6§5.7
FS-4 67.4§3.9 76.7§2.5
FS-5 75.8§1.3 84.0§3.4
FS-6 70.2§3.6 78.5§4.4
FS-7 73.0§4.2 80.4§2.4
FS-8 76.9§4.6 84.9§2.2
FS-9 80.6§2.2 86.9§2.7
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6. Conclusions

In this article, classification of phonation type into three classes (breathy, modal, pressed) was studied using the acoustic
speech signal and the simultaneously recorded NSA signal. Features describing the glottal source were derived using two signal
processing methods, QCP and ZFF. QCP estimates glottal source waveforms based on the source-filter decomposition while ZFF
computes source waveforms without explicitly using the source-filter decomposition. Using the glottal source waveforms
obtained by these two methods, several scalar glottal features were computed. In addition, the glottal source waveforms were
parameterized using MFCCs. Classification experiments using different glottal features with SVM revealed that the NSA signal
has a better capability to discriminate the three phonation types compared to using the acoustic speech signal. It was also
observed that there exists complementary information between the glottal features computed by QCP and ZFF. Furthermore, it
was observed that the classification accuracy improved both for the speech signal and the NSA signal when the glottal features
were combined with the conventional MFCCs, indicating complementary information between these feature sets. Finally, we
would like to point out that the classification experiments conducted in the current study were all based on treating the two sig-
nals separately, that is, we did not merge information extracted from the acoustical speech signal to information extracted from
the NSA signal. Since both the speech signal and the NSA signal carry valuable information related to phonation type, a potential
topic for future studies is to investigate how merging information from these two signals could further improve the classification
performance.
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