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a b s t r a c t

Robot grasping and manipulation require estimation of 3D object poses. Recently, a number of methods
and datasets for vision-based pose estimation have been proposed. However, it is unclear how well
the performance measures developed for visual pose estimation predict success in robot manipulation.
In this work, we introduce an approach that connects error in pose and success in robot manipulation,
and propose a probabilistic performance measure of the task success rate. A physical setup is needed to
estimate the probability densities from real world samples, but evaluation of pose estimation methods
is offline using captured test images, ground truth poses and the estimated densities. We validate
the approach with four industrial manipulation tasks and evaluate a number of publicly available
pose estimation methods. The popular pose estimation performance measure, Average Distance of
Corresponding model points (ADC), does not offer any quantitatively meaningful indication of the
frequency of success in robot manipulation. Our measure is instead quantitatively informative: e.g., a
score of 0.24 corresponds to average success probability of 24%.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A common task in robotics is object manipulation. Successful
object manipulation requires accurate object 3D pose estimates
so that the robot end effector can be successfully positioned
and closed. There is a number of works that focus on object
grasping [1–5], but these works do not address precision manip-
ulation where precise grasping is needed for task completion.
In this work, we focus on industrial assembly where precision
manipulation is needed. The manipulated objects are grasped and
manipulation tasks executed using estimates from vision-based
pose estimation methods.

Many pose estimation methods use point clouds as input [6–
8]. They estimate the object 6D pose parameters, three translation
and three orientation variables, by matching stored point cloud
models to observed point clouds. A number of offline datasets
have been proposed to evaluate pose estimation methods [9–13].
It is noteworthy that most of the datasets have been proposed
for vision research community and only a few have connection
to robot manipulation [13]. The two most popular performance
measures used in the datasets are (1) Absolute Translation and
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Orientation error and (2) Average Distance of Corresponding model
points (ADC). While the absolute errors in translation and ori-
entation are intuitive choices, ADC has recently become more
popular as it provides a single number for method comparison. A
variant of ADC is used in the annual 6D pose estimation challenge
that contains multiple datasets1 [9]. However, it remains unclear
how well the two performance measures predict success in robot
precision manipulation. Precision manipulation depends on many
factors beyond vision, for example, the manipulated object di-
mensions and material, the selected gripper, the selected grasping
point and the task itself.

We propose a novel approach to benchmark object poses so
that the performance indicates success in real manipulation tasks.
The main contributions are:

• An approach that connects the object pose error and suc-
cess in a manipulation task. Success is modeled as a prob-
ability density that is estimated by sampling with a real
physical setup (‘‘Training’’ stage in Fig. 1). The probability
model allows to collect an offline test dataset that does not
require the physical setup (‘‘Evaluation’’ in Fig. 1).
• A statistical formulation of the success in a robot manipu-

lation task (Section 3.1). The formulation provides intuitive
performance numbers for robot manipulation. For example,

1 https://bop.felk.cvut.cz/challenges/

https://doi.org/10.1016/j.robot.2021.103810
0921-8890/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2021.103810
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103810&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:antti.hietanen@tuni.fi
https://bop.felk.cvut.cz/challenges/
https://doi.org/10.1016/j.robot.2021.103810
http://creativecommons.org/licenses/by/4.0/


A. Hietanen, J. Latokartano, A. Foi et al. Robotics and Autonomous Systems 143 (2021) 103810

Fig. 1. Illustration of our approach. ‘‘Training’’ stage requires a physical setup to sample pose errors. The samples are used to estimate the probabilistic model of
success probability in the given task. ‘‘Evaluation’’ stage does not require the physical setup and is used in offline evaluation of pose estimation methods (with test
images, ground truth poses of objects in test images, and the estimated probability densities).

0.9 means that on average ninety out of one hundred
attempts succeed if the given pose estimate is used with
a real physical setup.
• Kernel regression based method and algorithm (Section 3.2

and Alg. 1) to sample and estimate the real success proba-
bilities (‘‘Training’’).
• A public test dataset using our approach. The dataset con-

tains four different industrial manipulations tasks with four
different objects. Probability densities are estimated using
more than 3,000 samples with the physical setups.

In the experimental part, we validate our approach by evaluating
a number of public 3D pose estimation methods with the new
test dataset and performance measure.

2. Related work

Pose estimation datasets. A seminal benchmark for 3D pose esti-
mation is LineMod by Hinterstoisser et al. [12]. They introduced
a data collection protocol and performance metric used in more
recent benchmarks. LineMod training data contains 3D recon-
structions (object models) and the original turn-table captured
RGB and depth images used for dense reconstruction. LineMod
test data consists of various cluttered scenes that were captured
from multiple view points using RGB and depth cameras. Hin-
terstoisser et al. propose Average Distance of Corresponding points
(ADC) performance metric that computes the average distance of
3D model points between the ground truth and estimated pose.
ADC provides a single performance number that measure how
well the two surfaces fit. However, since certain objects, such
as ‘‘bottle’’ are symmetric, Hinterstoisser et al. later proposed
a symmetry invariant ADC where the distances are measured
between the closest and not the corresponding points. There
are also other popular performance metrics, such as the absolute
translation and rotation errors [14], but ADC is more widely used
as it provides a single value for method comparison.

A recent effort to unify datasets and evaluation protocols for
3D pose estimation is the BOP Benchmark for 6D Object Pose
Estimation by Hodan et al. [9]. BOP includes LineMod and 7
other datasets that are all acquired similarly to LineMod. BOP
includes more variety in object types varying from household
objects [15] to industrial parts [16]. The evaluation protocol of
BOP is a further adaption of the symmetry-invariant ADC called
Visible Surface Discrepancy (VSD) [11]. VSD takes into account
view point dependent pose uncertainty and measures the ADC
error only for visible points of the object.

The main difference between our work and BOP is that their
evaluation is not connected to any task that requires object pose
estimation. BOP provides only vision-based evaluation of pose
parameters. As a more suitable approach for robotics, our work
connects the error in pose estimate to a specific robot manipula-
tion task and therefore answers to the question: "Does the robot
succeed in the task given the measured error in pose estimate?"

Pose estimation methods. In the experimental part of this work,
a number of publicly available 3D pose estimation methods are
compared using the introduced dataset and the proposed per-
formance measure. The methods are selected among the best
performing ones in the recent evaluation of Yang et al. [10] and
are described in more details in Section 4.3.

3. Object pose evaluation for robot manipulation

A standard procedure in industrial robotics is to manually
set up and program robot manipulation tasks. An experienced
engineer manually selects a stable grasp location and selects a
suitable gripper and fingers. A physical part feeder guarantees
precision feeding of the parts and therefore pre-programmed
grasping and manipulation perform with a high success rate. It
is difficult to make a generic feeder and therefore feeder design
makes it difficult to reconfigure the robot setup for new tasks.
The feeder is not needed if there is a method that can estimate
the object pose with sufficient accuracy.

3.1. Statistical model of task success P(X = 1)

The success of a robot to complete its task is a binary random
variable X ∈ {0, 1}, where a successful attempt X=1 occurs with
probability p and unsuccessful attempt (failure) X=0 occurs with
1 − p. Therefore, X follows the Bernoulli distribution, P(X |p) =
pX (1 − p)1−X , with complementary probability of success and
failure: E(X) = P(X = 1) = 1 − P(X = 0), where E denotes the
mathematical expectation. The pose is defined by 6D pose coordi-
nates θ = (tx, ty, tz, rx, ry, rz)T . The translation vector (tx, ty, tz)T ∈
R3 and 3D rotation (rx, ry, rz)T ∈ SO(3) both have three degrees
of freedom. The rotation is in axis-angle representation, where
the length of the 3D rotation vector is the amount of rotations
in radians, and the vector itself gives the axis about which to
rotate. Adding pose to the formulation makes the success prob-
ability a conditional distribution and expectation a conditional
expectation. The conditional probability of a successful attempt
is

p (θ) = E(X |θ) = P(X=1|θ) = 1− P(X=0|θ). (1)

2
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Fig. 2. Coordinate frames used in the pose sampling algorithm.

The maximum likelihood estimate of the Bernoulli parameter
p ∈ [0, 1] from N homogeneous samples yi, i = 1, . . . ,N , is the
sample average

p̂ML =
1
N

N∑
i=1

yi, (2)

where homogeneity means that all samples are realization of
a common Bernoulli random variable with unique underlying
parameter p. However, guaranteeing homogeneity would require
that the samples {yi, i=1, . . . ,N} were either all collected at the
same pose θ1= · · · = θN , or for different poses that nonetheless
yield same probability p(θ1) = · · · = p(θN ), i.e. it would require
us either to collect multiple samples for each θ ∈ SE(3) or to
know beforehand p over SE(3) (which is what we are trying to
estimate). This means that in practice p must be estimated from
non-homogeneous samples, i.e. from {yi, i=1, . . . ,N} sampled at
pose {θi, i=1, . . . ,N} which can be different and having different
underlying {p(θi), i=1, . . . ,N}.

The actual form of p over SE(3) is unknown and depends
on many factors, e.g., the shape of an object, properties of a
gripper and a task to be completed. Therefore it is not meaningful
to assume any parametric shape such as the Gaussian or uni-
form distribution. Instead, we adopt the Nadaraya–Watson non-
parametric estimator which gives the probability of a successful
attempt as

p̂h(θ) =
∑N

i=1 yiKh(θi − θ)∑N
i=1 Kh(θi − θ)

, (3)

where θi denotes the poses at which yi has been sampled and
Kh : E → R+ is a non-negative multivariate kernel with vector
scale h =

(
htx , hty , htz , hrx , hry , hrz

)T
>0.

In this work, Kh is the multivariate Gaussian kernel

Kh(θ) = G
( tx
htx

)
G
( ty
hty

)
G
( tz
htz

)∑
j∈Z

G
( rx+2jπ

hrx

)
·∑

j∈Z

G
( ry+2jπ

hry

)∑
j∈Z

G
( rz+2jπ

hrz

)
, (4)

where G is the standard Gaussian bell, G (θ) = (2π)−
1
2 e

1
2 θ2 . The

three sum terms in (4) realize the modulo-2π periodicity of SO(3).
The performance of the estimator (3) is heavily affected by

the choice of h, which determines the influence of samples yi in
computing p̂h(θ) based on the difference between the estimated
and sampled poses θ and θi. Indeed, the parameter h can be
interpreted as reciprocal to the bandwidth of the estimator: too
large h results in excessive smoothing whereas too small results
in localized spikes.

To find an optimal h, we use the leave-one-out (LOO) cross-
validation method. Specifically, we construct the estimator on the
basis of N−1 training examples leaving out the ith sample:

p̂LOO
h (θ, i) =

∑
j̸=i yjKh

(
θj − θ

)∑
j̸=i Kh

(
θj − θ

) .

The likelihood of yi given p̂LOO
h (θi, i) is either p̂LOO

h (θi, i) if yi=1, or
1− p̂LOO

h (θi, i) if yi=0. We then select h that maximizes the total
LOO log-likelihood over the whole set Sy:

ĥ = argmax
h

∑
i|yi=1

log
(
p̂LOO
h (θi, i)

)
+

∑
i|yi=0

log
(
1−p̂LOO

h (θi, i)
)
.

Our choices of the kernel and LOO optimization of the kernel
parameters result to probability estimates that are verifiable by
controlled experiments (as illustrated in Fig. 4).

3.2. Sampling the pose space

Section 3.1 provides us a formulation of the probability of suc-
cessful robotic manipulation given the object relative grasp pose
P(X = 1|θ). The practical realization of the probability values is
based on Nadaraya–Watson non-parametric kernel estimator that
requires a number of samples in various poses θi and information
of success yi = 1 or failure yi = 0 for each attempt. In this
stage, a physical setup is needed for sampling, but the users of
the benchmark do not need to replicate the setup. For practical
reasons we make the following assumptions:

• We assume a user defined canonical grasp pose with re-
spect to the manipulated object. The user can freely select
the canonical pose based on the object intrinsic parame-
ters (e.g. the distribution of mass and object dimensions)
and task requirements (i.e. on which way the object is be-
ing installed). During the training stage (pose samples) the
canonical pose is obtained automatically using 2D markers
and cameras.
• The pose space is randomly sampled around the canonical

grasp pose. Each sample θ = (tx, ty, tz, rx, ry, rz)T defines
SE(3) ‘‘displacement’’ from the canonical grasp pose. Sam-
pling was initialized by first finding the success limits of
each dimension. The limits were found by step wise guiding
the end effector away from the canonical pose until the task
execution starts to fail on every attempt. The limits found for
the objects in our experiments are listed in Table 1.
• The estimated probability models were validated by sam-

pling each dimension separately on grid points and execut-
ing the task ten times on each point with real robot. The
averaged task success rate on real robot was then compared

3
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against the proposed models and the estimated probabilities
matched well as can be seen in Fig. 4.

With the help of the above assumptions we define a sam-
pling procedure that records samples and their success/failure
automatically.

3.2.1. Coordinate transformations
In our notation T A

B denotes a 4 × 4 homogeneous transfor-
mation matrix that describes the position of the frame B origin
and the orientation of its axes, relative to the reference frame
A. The setup used in our experiments is illustrated in Fig. 2. The
transformations are:

• Tmarker
grasp – a constant transformation from the canonical

grasp pose to the marker frame;
• T sensor

marker – camera and marker obtained transformation
from the marker frame to the sensor frame;
• T effector

sensor – a constant transformation from the sensor frame
to the robot end effector frame (camera is attached to the
end effector);
• Tworld

effector – robot kinematics obtained transformation from
the end effector frame to the world frame.

The world frame is fixed to the robot frame (i.e. center of the
robot base). The robot program is based on moving the tool
point that is the end effector frame. The coordinate transfor-
mation Tworld

effector can be automatically calculated using the joint
angles and known kinematic equations. T effector

sensor is computed using
the standard procedure for hand-eye calibration with a printed
chessboard pattern [17]. Automatic and accurate estimation of
the object pose during the sampling is realized by attaching 2D
markers to the manipulated objects (see Fig. 3). For a calibrated
camera the ArUco library [18] provides real-time poses of the
marker with respect to the sensor frame T sensor

marker . The constant
offset Tmarker

grasp from the marker to the actual grasp pose is object-
marker specific. The offset is estimated manually by hand-guiding
the end effector to the desired grasp location on the object
(canonical grasp pose) and measuring the difference between this
pose and the marker pose:

Tmarker
grasp =

(
Tworld

marker

)−1 Tworld
grasp .

During pose sampling, the canonical grasp pose is calculated with
respect to the world frame from:

Tworld
grasp = Tworld

effector · T
effector
sensor · T

sensor
marker · T

marker
grasp (5)

Finally, samples around the canonical grasp pose are generated
from

T̂
world
grasp = Tworld

grasp ·Φ(θ) (6)

where Φ(·) maps the 6D pose vector to a 4 × 4 matrix represen-
tation

Φ(θ) =
[
R3×3 t
0 1

]
. (7)

The generated pose sample is defined in the vicinity of the canon-
ical pose by the translation shift t = (tx, ty, tz)T and rotation ma-
trix R ∈ R3×3 constructed from the axis-angle vector (rx, ry, rz)T .

3.2.2. Automatic failure detection
The objects in our experiments have a predefined position

and orientation how they should be installed. For example, the
motor parts have to be placed on the motor block precisely in
order to fasten the screws. The task is to place the part to the
installation pose and release it by opening the gripper fingers. In
addition, excessive force during the task can cause damage to the
manipulated objects. Therefore success is detected based on two
factors:

• After release the part must be within pre-set limits in the
correct installation pose.
• The online measured wrench torque at the end effector must

remain below a pre-set limit during the task.

The limits are task specific and are set during the system setup.
For pose limits, two thresholds were used: τt for the maximum
translation error and τr for the maximum orientation error. These
are computed between the camera obtained installation pose
Γ̂ =

[
R̂ | t̂

]
and the ground truth installation pose Γ = [R | t].

The task was marked successful ift − t̂
 ≤ τt

arccos
(
trace

(
R̂R−1

)
− 1

2

)
≤ τr

. (8)

The torque is used to detect if the robot collides with its envi-
ronment. The external wrench is computed based on the error
between the joint torques required to stay on the programmed
trajectory and the expected joint torques. The robot’s internal
sensors provide the torque measurements F = (fx, fy, fz), where
fx, fy and fz are the forces in the axes of the robot frame coordi-
nates and measured in Newtons. For each task the limit fmax was
manually set for each operation stage during the system setup.
If ∥F∥ > fmax at any stage of the task, then the attempt was
labeled as failure. Automatic pose sampling procedure is defined
in Algorithm 1.
Algorithm 1: Automatic pose sampling

Input: Waypoints W := {wstart , wgrasp, winstall}; Num. of
samples S

Output: Set of samples {⟨θi, yi⟩}i=1,...,S
1 for i = 1 to S do
2 Init: yi ← success; θi ←

SampleRandomDisplacement();
3 T sensor

marker ← DetectMarker();
4 Tworld

sensor ← ComputeForwardKinematics();

5 T̂
marker
grasp ← AddDisplacement(θi, Tmarker

grasp );

6 T̂
world
grasp ← Tworld

sensor · T
sensor
marker · T̂

marker
grasp ;

7 GraspObject(T̂
world
grasp , wgrasp);

8 if NOT SuccessfulGrasp() then
9 yi ← failure

10 else
11 InstallObject(winstall);
12 if NOT SuccessfulInstall() then
13 yi ← failure

14 Store(θi, yi);
15 MoveObjectToStart(wstart );

4. Experiments

To experimentally validate our approach we collected data
from four industrial assembly tasks and evaluated a number of
publicly available pose estimation methods.

4.1. Physical setup

Fig. 3 illustrates the physical setup used in the experiments.
The setup consists of a model 5 Universal Robot Arm (UR5) and
a Schunk PGN-100 gripper. The gripper operates pneumatically
and was configured to have a high gripping force (approximately
600N) to prevent object slippage. In addition, the gripper has
custom 3D printed fingers plated with rubber. For visual per-
ception, Intel RealSense D415 RGB-D sensor was secured on a

4
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Table 1
Sampling limits for translation (tx, ty, tz ) and rotation (rx, ry, rz ) in meters and degrees, respectively.
Beyond these limits the task always fails.
Variable Task name

Task 1 Task 2 Task 3 Task 4

tx [−9.0, 9.0] ·10−3 [−6.0, 6.0] ·10−3 [−9.0, 9.0] ·10−3 [−6.5, 8.5] ·10−3

ty [−1.0, 1.0] ·10−3 [−3.0, 2.5] ·10−3 [−5.0, 6.0] ·10−3 [−2.1, 2.1] ·10−2

tz [−1.0, 5.0] ·10−3 [−2.0, 4.0] ·10−3 [−2.0, 5.0] ·10−3 [−1.2, 1.7] ·10−2

rx [−6.3, 6.3] ·100 [−6.3, 6.3] ·100 [−2.0, 1.0] ·100 [−1.5, 1.5] ·101

ry [−5.0, 5.0] ·10−1 [−2.5, 1.0] ·100 [−2.0, 2.0] ·100 [−1.5, 1.5] ·101

rz [−5.0, 5.0] ·10−1 [−1.5, 1.5] ·100 [−4.0, 4.0] ·100 [−1.5, 1.5] ·101

Fig. 3. The setup used to sample pose errors of the engine cap 1. The task is to pick and move the cap to the engine block. Failures in task execution were
automatically detected during sampling (see Section 3.2 for details).

Table 2
Summary of the data used in our experiments. Training samples were used to
estimate the probability densities. Training samples required execution of the
task and took approximately 45–55 s each. Test images were used for method
evaluation.
Task Training samples Test images Description

1 3416 152 Pick and install (motor cap 1)
2 3805 152 Pick and install (motor frame)
3 3722 161 Pick and install (motor cap 2)
4 3550 158 Pick and drop (faceplate)

3D printed flange and mounted between the gripper and the
robot end effector. 3D prints were made in-house using nylon
reinforced with carbon fiber to tolerate external forces during the
experiments. The computation was performed on a single laptop
with Ubuntu 18.04. All tasks and the preset grasp poses were
validated by executing the task 100 times with poses obtained
from the camera system (Section 3.2). No failures occurred during
the setup validation. On average, successful executions took 45–
55 s and in 24 h the robot was able to execute approximately
1,100 attempts. The setup recovered automatically from most of
the failure cases (dropping the object, object collision, etc.). Only
if the printed marker was occluded or the manipulated object was
jammed against the parts of the engine, the system was restarted
manually.

4.2. Benchmark dataset

The benchmark dataset for testing requires only the images
from the test scenes, part ground truth poses, and the estimated
success probability densities. The training samples and the physi-
cal setup are needed in the ‘‘training stage’’ where the probability
densities are estimated. The dataset used in the experiments is
summarized in Table 2.

The three first tasks were selected from the production line
of a local engine manufacturing company: motor cap 1 assem-
bly (Task 1), motor frame assembly (Task 2) and motor cap 2

assembly (Task 3). The fourth task is a validation task that does
not require precise manipulation and is used to sanity check
the evaluation methods. The faceplate part used in Task 4 bin
picking is from the Cranfield assembly benchmark. The tasks
were programmed by a team of experienced lab engineers who
carefully selected the grippers and fingers.

Success probability estimation. Tested methods were evaluated
using their test image pose estimates. Given the estimates and the
stored ground truth poses the average success probabilities over
all test images is computed. The success probability is calculated
using the probability model P(X = 1|θ) in Section 3.1. The
probability densities were estimated using the kernel density
model and the sampling procedure described in Section 3.2. For
the Tasks 1–4 the densities were estimated using 3,416–3,805
samples (Table 2). The true and estimated probabilities for Task
3 are illustrated in Fig. 4 where they match well.

Test models. Test models are full 3D models of the four parts used
in Tasks 1–4. They are stored as 3D point clouds {xi|i = 1, . . . ,N}
and RGB color vectors c i. The part point clouds were obtained by
moving the robot arm with the attached RGB-D sensor around
each part (Fig. 5). The captured point clouds were manually
verified and all artifacts and redundant parts of the reconstructed
point cloud were removed using the MeshLab software [19].

Test scenes. Test scenes were captured by moving the RGB-D
camera to arbitrary locations and capturing a point cloud. No
manual cleaning of the data was performed. 152–161 test images
were collected under three different settings: (1) a single target
object present (ideal case), (2) multiple objects present (back-
ground clutter) and (3) multiple objects and partial occlusion.
Ground truth poses were obtained through robot kinematics and
stored using the part model coordinate system as the world
frame.

5
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Fig. 4. Grasping of the motor cap 2 used in Task 3. The used coordinate system is object centric (top left) and pose samples are taken around the pre-defined
‘‘canonical grasp pose’’ (top right). The six estimated success probabilities (red, green and blue lines) match well with the true success probabilities (yellow line).
The six graphs correspond to the three translation axes and the three rotation angles in 3D.

Fig. 5. Top: Point cloud models of the parts: faceplate, motor cap 1, motor cap 2 and a motor frame (points clouds acquired by multiview capturing). Middle:
example test scenes. Bottom: models rendered to the scene using ground truth pose.

Fig. 6. Coordinate frames in the evaluation procedure.

4.3. Pose estimation baselines

The baseline methods were selected among the best perform-
ing methods in the recent evaluation by Yang et al. [10].

Random sample consensus (RANSAC). RANSAC is a widely used
technique for 6D pose estimation [20–22]. It is an iterative pro-
cess that uses random sampling technique to generate candidate
transformations that align the two surfaces. The design parameter
of the method is NRANSAC which is the maximum count of trans-
formation. The transformations are evaluated by transforming
all points and calculating the Euclidean distance between the
corresponding points. Matches with distance less than dRANSAC
are counted as inliers. The final pose is estimated using all inlier
points for the transformation with the largest number of inliers.

Hough transform (HG). Hough transform [23] goes through all
point correspondences which cast votes and pose with the largest
number of votes is selected. There are variants available [24,25]
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Fig. 7. ADC pose error (green) and success probability (red) on the Task 4 test set for the six tested methods. Images (x-axis) are sorted according to their ADC.
Note the rapid drops from successful (1.0) to unsuccessful (0.0) estimates while the ADC error produces smooth curves without clear indication of success.

from which the Hough Grouping (HG) by Tombari et al. [25] was
selected. For fast computation, the method uses a unique model
reference point (mass centroid) and bins represent pose around
the reference point. To make correspondence points invariant
to rotation and translation between the model and scene, every
point is associated with a local reference frame [26]. The main
parameter of the method is the pose bin size — coarse size
provides faster computation but increases pose uncertainty.

Spectral technique (ST). Leordeanu and Hebert [27] proposed a
spectral grouping technique to find coherent clusters from the
initial set of feature matches. The method takes into account
the relationship between points and correspondences and finally
uses an eigen-decomposition to estimate the confidence of a
correspondence to be an inlier.

Geometric consistency (GC). While the RANSAC and Hough trans-
form based methods operate directly on the 3D points there are
methods that exploit the local neighborhood of points to establish
more reliable matches between model and scene point clouds [6,
28]. Geometric Consistency Grouping (GC) [28] is a strong base-
line and it has been implemented in several point cloud libraries.

GC works independently from the feature space and utilizes only
the spatial relationship of the corresponding points. The algo-
rithm evaluates the consistency of two correspondences ci and
cj using a compatibility score

d(ci, cj) =
⏐⏐⏐ xi − xj

− x′i − x′j
 ⏐⏐⏐ < τGC. (9)

GC simply measures distances near the points and assigns corre-
spondences to the same cluster if their geometric inconsistency
is smaller than the threshold value τGC.

Search of inliers (SI). A recent method by Buch et al. [6] achieves
state-of-the-art on several benchmarks. It uses two consecutive
processing stages, local voting and global voting. The first voting
step performs local voting, where locally selected correspondence
pairs are selected between a model and scene, and the score
is computed using their pair-wise similarity score sL(c). At the
global voting stage, the algorithm samples point correspondences,
estimates a transformation and gives a global score to the points
correctly aligned outside the estimation point set: sG(c). The final
score s(c) is computed by combining the local and global scores,
and finally s(c) are thresholded to inliers and outliers based on
Otsu’s bimodal distribution thresholding.
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Table 3
Comparison of pose estimation methods with our dataset (single: single object in the scene; multi: multiple objects (clutter); occ: multiple objects and occlusion:
all: average over all test samples).

Task: Task 1 Task: Task 2

Method Part: Motor cap 1; Gripper: Shunker Part: Motor frame; Gripper: Shunker
Fingers: Custom made Fingers: Custom made

Average success probability %{p ≥ 0.9} Avg. ADC Average success probability %{p ≥ 0.9} Avg. ADC

single multi occ all all all best-25% single multi occ all all all best-25%

GC [28] 0.24 0.18 0.12 0.19 12% 0.08 3.83·10−3 0.21 0.22 0.19 0.21 9% 0.02 5.36·10−3

HG [25] 0.31 0.29 0.20 0.26 14% 0.06 3.87·10−3 0.28 0.27 0.27 0.28 15% 0.03 5.19·10−3

SI [6] 0.00 0.00 0.00 0.00 0% 0.46 1.78·10−1 0.14 0.04 0.03 0.07 5% 0.42 1.81·10−2

ST [27] 0.01 0.03 0.00 0.01 0% 0.35 9.12·10−2 0.23 0.16 0.07 0.17 7% 0.34 4.38·10−3

NNSR [23] 0.00 0.00 0.00 0.00 0% 0.26 1.18·10−1 0.00 0.00 0.00 0.00 0% 0.36 1.50·10−1

RANSAC [20] 0.00 0.00 0.00 0.00 0% 0.75 1.71·10−1 0.00 0.00 0.00 0.00 0% 0.65 2.03·10−1

Method Task: Task 3 Task: Task 4
Part: Motor cap 2; Gripper: Shunker Part: Cranfield faceplate; Gripper: Shunker
Fingers: Custom made Fingers: Custom made

Average success probability %{p ≥ 0.9} Avg. ADC Average success probability %{p ≥ 0.9} Avg. ADC

single multi occ all all all best-25% single multi occ all all all best-25%

GC [28] 0.24 0.25 0.20 0.24 13% 0.09 6.28·10−3 0.66 0.67 0.59 0.64 65% 0.15 4.57·10−3

HG [25] 0.13 0.21 0.10 0.15 9% 0.11 7.81·10−3 0.64 0.68 0.56 0.63 60% 0.16 3.43·10−3

SI [6] 0.11 0.19 0.11 0.13 8% 0.09 1.11·10−2 0.37 0.43 0.20 0.35 35% 0.39 9.94·10−3

ST [27] 0.17 0.18 0.08 0.15 8% 0.11 5.46·10−3 0.40 0.39 0.30 0.37 36% 0.30 6.47·10−3

NNSR [23] 0.02 0.00 0.00 0.01 1% 0.19 6.10·10−2 0.05 0.04 0.07 0.05 5% 0.28 7.16·10−2

RANSAC [20] 0.00 0.00 0.00 0.00 0% 0.28 1.24·10−1 0.00 0.04 0.00 0.01 1% 0.51 1.05·10−1

4.4. Performance indicators

The main performance metric in our work is the estimated
success probability defined in Section 3.1. The probabilities were
computed around the canonical grasp pose to find how the per-
formance depends on misalignment to different dimensions. The
corresponding object-relative grasp pose of the pose estimate Υ̂
is calculated as:

θ̂ = Φ−1
(
T grasp

sensorΥ̂
)
, (10)

where the transformation matrix T grasp
sensor defines the canonical

grasp pose respect to the sensor coordinate system (see Fig. 6).
The Φ−1(·) operator converts the 4 × 4 pose matrix to 6D vector
representation. Finally, the task success is evaluated using the
proposed metric as P(X=1|θ̂). As the final performance indicators
the average probability over test scenes is computed and also the
proportion of images for which the probability is greater or equal
to 0.90.

In addition to the proposed indicator we also report the ADC
error calculated over the points transformed by the ground truth
and estimated object pose as suggested in [12]. The ADC error is
computed from

ϵADC =
1
|M|

∑
x∈M

Υ̂x−Υx
 (11)

where M is the set of model 3D points. We also report the
top−25% ADC error, which is less affected by outliers.

4.5. Results

The results for all baseline methods and tasks are summarized
in Table 3. The two best methods are Hough Transform (HG) by

Tombari et al. [25] and GC by Chen and Bhanu [28]. HG and GC
perform considerably better than the two more recent methods
SI and ST. The two simplest methods, Hough voting (NNSR) and
RANSAC, are the worst. It should be noted that the ADC provides
the same rank order as the proposed success probability, but ADC
does not indicate success or failure rates in the tasks.

It is noteworthy that even for the simplest bin-picking task
(Task 4) the best average success probability is only 0.64 and the
number of accurate estimates (p ≥ 0.9) is only 65% which are
clearly below what is expected for the typical assembly lines (>
99%).

Success probability vs. ADC. While the ADC and the proposed
success probability indicators both provide similar ranking of the
best methods in Table 3, it remains unclear what is the effect of
pose estimation error to the task success. It turns out that in our
tasks the success probability rapidly changes from ‘‘successful’’
to ‘‘unsuccessful’’ which is not indicated by the ADC metric. This
is evident in Fig. 7. While the change points are partly visible in
the ADC measurements the ADC indicator behaves smoothly in
regions that are irrelevant for the studied task and for which the
probability is nearly 0.0.

5. Conclusions

This work addresses the question of how to evaluate object
pose estimation methods for robot manipulation. In the reported
experiments, the widely used performance measure, Average Dis-
tance of Corresponding model points (ADC), provides method rank-
ing, but cannot indicate whether the task could be completed
using the given estimates.

The proposed novel performance measure, success probability,
connects the success rate and pose error, and clearly indicates

8



A. Hietanen, J. Latokartano, A. Foi et al. Robotics and Autonomous Systems 143 (2021) 103810

that none of the tested methods would perform well in any
of the four manipulation tasks. The best success rates (GC and
HG) varied from 0.24 to 0.64 meaning that only 24% to 64%
of attempts would succeed on average. The proposed approach
allows offline method evaluation similar to the existing datasets
which is an important factor for fair comparisons and method
development. The physical setup is needed to collect training data
for success probability estimation and that is the laborious part
of our approach.
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