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Abstract Multi-label pedestrian attribute recognition

in surveillance is inherently a challenging task due to

poor imaging quality, large pose variations, and so on.

In this paper, we improve its performance from the fol-

lowing two aspects: 1) We propose a cascaded Split-

and-Aggregate Learning (SAL) to capture both the in-

dividuality and commonality for all attributes, with

one at feature map level and the other at the feature

vector level. For the former, we split the features of

each attribute by using a designed attribute-specific

attention module (ASAM). For the later, the split fea-

tures for each attribute are learned by using constrained

losses. In both modules, the split features are aggre-

gated by using several convolutional or fully connected

layers. 2) We propose a Feature Recombination (FR)
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that conducts a random shuffle based on the split fea-

tures over a batch of samples to synthesize more train-

ing samples, which spans the potential samples’ vari-

ability. To the end, we formulate a unified framework,

named CAScaded Split-and-Aggregate Learning with

Feature Recombination (CAS-SAL-FR), to learn the

above modules jointly and concurrently. Experiments

on five popular benchmarks, including RAP, PA-100K,

PETA, Market-1501 and Duke attribute datasets, show

the proposed CAS-SAL-FR achieves new state-of-the-

art performance.

Keywords Pedestrian attribute recognition · atten-

tion · split-and-aggregate learning · feature recombina-

tion

1 Introduction

Visual analysis of pedestrian attributes [50,38,33,36,

61,55,48,11,28,29,49], e.g., gender, age and hair style,

has recently received increasing attention due to its po-

tential applications in surveillance and security applica-

tions. Although the performance has been greatly im-

proved owing to the success of deep learning [23,41,13,

12,17,15,31,56,39] especially the Convolutional Neural

Network (CNN) [24], accurate recognition of pedestrian

attributes remains a challenging task because of poor

imaging quality (e.g., low resolution and motion blur),

complex variations (e.g., arbitrary human poses, var-

ious camera viewing angles, and background), small

training datasets and so on.

For multi-label pedestrian attribute classification,

most previous works [50,38,33,36,28,29] employ simple

multi-task learning (MTL) framework to analyze all at-

tributes together with a shared feature extractor. Such

a shared strategy may prefer to capture the common
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and general features for all attribute (commonality),

while the specific semantics of each attribute may be

less involved (individuality). In other words, the com-

monality of all attributes may be overemphasized while

the individuality of each attribute may be ignored. Ac-

tually, for multi-label pedestrian attribute recognition,

different attributes are often related with different body

regions and semantics. For example, we mainly look at

the head region to recognize a pedestrian’s hairstyle

while the upper body region is often used to judge the

upper clothing style. Moreover, color information often

determines a pedestrian’s shoe color, while the texture

and shape features are essential to identify the type

of shoes. Therefore, learning the individuality of each

attribute is also very necessary, which ensures each at-

tribute can learn their own semantics.

In this paper, we propose a split-and-aggregate learn-

ing (SAL) to learn both individuality and commonal-

ity among pedestrian attributes. The features of each

attribute are firstly split out to capture the individu-

alities for all attributes and then aggregated together

by using several CNN layers to exploit their common-

alities and relations. To fully capture the individuality

and commonality, we formulate two SALs in a cascaded

way, with one at the feature map level and the other

at feature vector level. For the former, an Attribute-

Specific Attention Module (ASAM), which assigns each

attribute with several attention maps, is designed to

capture the features of an attribute from most relevant

body regions. ASAM has been implemented at different

feature levels to access abundant semantic information.

For the later, we learn the attribute-specific features by

using the constrained losses with each loss correspond-

ing to several neurons.

Moreover, we further propose a new feature recom-

bination operation to synthesize new representations.

The key idea is to recombine the components of dif-

ferent attributes, which is different from the previous

works of creating new samples via generative models [9,

22,63,6]. The extracted features of a sample can be re-

garded as a combination of the split features of all at-

tributes, with each denoting the semantics of a specific

attributes. By shuffling the split features over a batch

of samples, new synthetic representations with different

attribute semantics can be achieved. In recombination

stage, our method keeps the integrity and semantics for

each attribute-specific feature while spanning the po-

tential samples’ variability. To our best knowledge, it is

the first attempt to synthesize new samples at feature

level for pedestrian attribute recognition.

The main contributions of our work are as follows:

(1) We propose a novel unified framework with a cas-

caded split-and-aggregate features learning to capture

both individuality and commonality among pedestrian

attributes. (2) We propose a new feature recombina-

tion operation to synthesize new representations. (3)

We propose a novel attribute-specific attention module,

which can capture the features from the most impor-

tant regions/pixels for each attribute. (4) We conduct

extensive experiments on five popular pedestrian at-

tribute benchmarks including RAP, PA-100K, PETA,

Market-1501 and Duke attribute datasets, which shows

the proposed method achieves the new state-of-the-art

performance.

2 Related Works

Pedestrian Attribute Recognition. Earlier meth-

ods of pedestrian attribute recognition [4,65] typically

model each attribute independently based on the hand-

crafted features like color and texture histograms. Re-

cently, owing to the great successes of deep learning [41,

13], many approaches based on deep networks also have

been developed for pedestrian attribute recognition [50,

38,35,62,29,48,28]. Previous works mainly solve the

task of pedestrian attribute recognition from following

aspects: 1) constructing attention mechanisms to cap-

ture discriminative features [36,37,62,48,49]; 2) formu-

lating a part-based model by using human poses [35,

26,61] or Spatial Transformer Networks (STN) [49]; 3)

exploiting the relations among attributes or image re-

gions [50,62]; and 4) dealing with the imbalance data

problem [37,51]. Most of the previous works construct

their models based on the multi-task learning (MTL)

framework, while the traditional MTL framework usu-

ally prefers to learn the commonality of all attributes

while ignoring the individuality of each attribute. In

this work, we aim to capture both the individuality

and commonality of all attributes, where cascaded split-

and-aggregate learning is proposed to achieve this. The

proposed method is also different from the work [49],

which aims to select the most important regions for

each attribute. Our work not only considers to cap-

ture the discriminative features for each attribute, but

also considers how to aggregate those split features with

capturing the commonalities and relations among those

attributes. The split-and-aggregate learning is consid-

ered to be implemented at different levels, and then

learns them jointly and concurrently.

Attention Mechanism. Attention models [15,7,

30,53,36,48,10,1,40,52] have aroused great interests in

recent years. Hu et al. [15] propose Squeeze-and-Excitation

Networks with recalibrating the channel-wise responses

by using a channels attention. Li et al. [30] jointly learn

both soft pixel attention and hard regional attention

for person re-identification. Woo et al. [53] formulate
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Fig. 1: An overview of the proposed CAS-SAL-FR. Two Split-and-Aggregate Learning (SAL) modules are se-

quentially applied on the feature maps level and feature vector level, where the split operation mainly learns the

attribute-specific features for each attribute while the aggregate operation exploits the commonalities and relations

among multiple attributes by learning how to aggregate them together. Specifically, the split operation at feature

maps level is achieved by an Attribute-Specific Attention Module (ASAM). Moreover, a Feature Recombination

(FR) strategy is adopted to synthesize new samples by shuffling the split features.

an attention mechanism by sequentially extracting the

discriminative features at channel and spatial dimen-

sions. Moreover, Chen et al. [1] propose a high-order

attention to model and utilize the complex and high-

order statistics information. Inspired by those works,

we also propose an attribute-specific attention module

to select important regions/pixels for each attribute.

Augmenting Training Samples. Previous meth-

ods of augmenting samples can be classified to follow-

ing categories: 1) basic image manipulations, like flip-

ping, translating, adding noises, random erasing[64],

mixup [14] and so on, 2) synthesizing new samples by

using generative models [9,22,63,6]. For example, Zheng

et al. [63] generate the synthetic samples with GAN in

person re-identification, 3) borrowing the samples from

relevant categories [32,46]. For example, Lim et al. [32]

augment data of the classes with few samples by bor-

rowing and transforming examples from other classes,

and 4) feature space transfer [5,34]. In the above meth-

ods, mixup [14] is somewhat related with our proposed

FR, where both our FR and mixup augment training

samples by using combinations of different samples and

their labels. However, there are still some crucial differ-

ences between our proposed FR and mixup. For mixup,

it employs a liner combination of a pair of images and

their labels to generate new samples. For our FR, it

first obtains the split features (separating the features

of each attribute), and then just uses a random shuf-

fle over a batch of samples to generate new samples,

which keeps the semantic information of each attribute

unchanged.

Split-and-Aggregate Learning. Some previous

works [59,47,43,45,42] also adopt the idea of split-and-

aggregate learning to capture more discriminative fea-

tures. For example, Zhang et al. [59] propose a Split-

Attention Block, which splits the features into several

groups and learns them individually. Then, the split

features of all groups are aggregated together by using

a concatenation. We further use a recurrent fusion to

aggregate those branches together. Moreover, inception

block also can be regarded as a special case of split-

and-aggregate learning [43,45,42], where the input fea-

tures are split by using several different CNN branches

and each one learns different features from each other.

Then, the block finally aggregates all features together

to form more comprehensive features. Our work con-

ducts the split-and-aggregate learning from a different

aspect. In the split stage, we first split the attribute-

specific features out and capture the individuality for

each task/attribute and then aggregate those split fea-

tures together to learn the commonality among all at-

tributes.

3 Proposed Method

To construct a deep model M for pedestrian attribute

recognition, we assume the available training set con-

tains n images and is denoted as D = {Ii}ni=1, with cor-

responding labels Y = {yi}ni=1. Each pedestrian is an-

notated with m attributes. For the ith image Ii, the cor-

responding image-level annotation is denoted as yi =

[yi1, yi2, · · · , yim], where yij represents the label of the
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jth attribute. In the following, we will introduce the

proposed network, namely CAScaded Split-and-Aggregate

Learning with Feature Recombination (CAS-SAL-FR).

3.1 Network Architecture Design

The network architecture of the proposed CAS-SAL-

FR is illustrated in Fig. 1. It adopts ResNet-50 [13] as

the backbone to extract the features of different levels

(the backbone also can be replaced with any other CNN

architecture, e.g., GoogleNet [44] and DenseNet [17]).

For convenience, we denote the features after res3d,

res4f and res5c blocks as F1(Ii), F2(Ii) and F3(Ii),

respectively. If we adopt a 256×128 image as the input,

F1(Ii), F2(Ii) and F3(Ii) would have the size of 32×16,

16× 8 and 8× 4, respectively. However, the resolution

of 8 × 4 is too low, which may hardly contain enough

information for all attributes. Therefore, we change the

stride of the final residual block from 2 to 1. In this way,

the size of F3(Ii) would be 16×8. After extracting those

features, two SALs are formulated in a cascaded way

to learn both the individuality and commonality for all

attributes, which will be introduced in the following.

(I) SAL at Feature Map Level. After obtaining

F1(Ii), F2(Ii) and F3(Ii), each of them is followed by

an ASAM to select some important pixels or regions

for each attribute and capture the attribute-specific

features (also re-called as the split features). For the

employed ASAM, its detailed structure is illustrated

in Fig. 2. It contains multiple sub-networks, each of

which extracts the most relevant features for a specific

attribute. More specifically, each sub-network has two
streams, with one generating attention masks and the

other extracting high-level features. For clarity, we take

the sub-network for the jth attribute at the κth level as

an example (κ ∈ {1, 2, 3}). For the upper stream, the

attention masks Mκ
ij are generated by using several con-

volutional layers and a softmax function (the softmax

function is applied to the spatial dimension including

height and width). Inspired by the works [2,57], we use

the spatial pyramid convolutional layers with different

receptive fields to capture abundant semantics. For the

lower stream, it only contains two convolutional layers

to extract high-level features Hκ
ij . To reduce the num-

ber of parameters, the first convolutional layer in both

two streams is shared for all attributes. Finally, the at-

tentive features Xκ
ij for the jth attribute are generated

by an element-by-element multiplication between the

attention masks Mκ
ij and high-level features Hκ

ij . The

whole process can be denoted as:

Xκ
ij = SFM,κ

j (Fκ(Ii)) (1)

Fig. 2: Illustration of the proposed ASAM. For each

convolutional layer, {K,C} indicates its employed ker-

nel size and output channels, respectively. In the spatial

pyramid convolutional layers, K1, K2 and K3 represent

the kernel size of 1× 1, 3× 3, and 3× 3 with a dilata-

tion rate of 2. We share the first convolutional layer in

both two streams for all sub-networks, which aims to

reduce the parameters of the network. The number of

input channels c1, c2 and c3 are 512, 1024 and 2048,

respectively.

where FM indicates the feature map level and SFM,κ
j

represents the jth subnetwork in the ASAM at the κth

level feature. In our implementations, we let Xκ
ij has the

same shape of aκ × hκ × wκ (the number of channels,

height and width, respectively), with each aκ channels

capturing the discriminative features for a specific at-

tribute.

Till now, we have only allocated several attentive

maps for each attribute, without forcing them to cap-

ture the information only from that attribute. To achieve

this, additional constrained networks should be added.

For each attribute-specific feature map Xκ
ij , it would

be followed by a small constrained network to produce

the corresponding predicted score for the jth attribute,

which can be mathematically denoted as:

pFM,κ
ij = φFM,κ

j

(
Xκ
ij

)
(2)

where φFM,κ
j (·) indicates a constrained network with a

convolutional layer, a fully connected layer and a sig-

moid function as shown in Fig. 1. In this way, the pre-

dicted score pFM,κ
ij is generated only from the features

Xκ
ij , which ensures its learning under the label super-

vision of the jth attribute. For our proposed ASAM, it

is different from Squeeze-and-Excitation Networks (SE-

Net) [15] in following aspects: 1) SE-net can be consid-

ered as a channel attention which remodulates neurons’

responses by a channel-wise mask, while our ASAM is

constructed based on a spatial attention mechanism; 2)

Our ASAM aims to capture attribute-specific attention

features with considering each attribute individually.
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After the splitting stage, we aggregate those split

features by using a concatenation layer, a convolutional

layer and a Global Average Pooling (GAP) as shown in

Fig. 1. Mathematically, we denote such aggregation as

GFM(·), and thus the aggregated features are obtained

by:

Ai = GFM(X1
i ,X

2
i ,X

3
i ) (3)

where Xκ
i means {Xκ

ij}mj=1. In the aggregating process,

the network learns how to aggregate the features from

different attributes, it also learns the commonalities and

relations among those attributes.

(II) SAL at Feature Vector Level. At feature

vector level, a SAL is further employed as shown in

Fig. 1. After the GAP layer in the former aggregation

module, m fully connected layers are employed to ex-

tract the split features with each layer corresponding to

an attribute. We use SFVj to denote a fully connected

layer for the jth attribute, and then the split features

can be produced by:

xij = SFVj (Ai) . (4)

where FV indicates the feature vector level. Similarly,

to ensure xij only captures the information for the jth

attribute, those features are then followed by a fully

connected layer to generate the predicted score pFVij
(the generated process is similar to Eq. (2)), which is

optimized by the label supervision of the jth attribute.

Then, two fully connected layers are further em-

ployed to aggregate those split features together. It

helps to exploit the commonalities and relations among

those attributes. Different from the previous aggregat-

ing module that outputs the aggregated features, this

module directly generates the predicted scores pi for

final attribute predictions, which is represented as:

pi = GFV (xi) (5)

where xi = [xi1, · · · ,xim] denotes the feature vector for

all attributes, and GFV indicates two fully connected

layers.

Remarks: Our cascaded split-and-aggregated learn-

ing is different from previous works [48,49]: (1) The

work [49] extracts the attribute-specific features by us-

ing a hard regional attention while we our ASAM uses a

soft scheme of assigning each attribute with several at-

tention maps to explore more information. (2) Previous

works [48,49] do not consider the attribute-specific fea-

tures learning in feature vector level, while we achieve

this by using a simple but elegant structure (constrained

loss). (3) Two SALs are then formulated in a cascaded

way to access more effective features.

Fig. 3: An illustration of the feature recombination.

Each row indicates a feature vector or label vector for a

sample, and each column indicate the features or labels

from a specific attribute over a batch of samples.

3.2 Feature Recombination (FR)

The proposed FR aims to synthesize new samples by

shuffling the split features over a batch of samples.

Fig. 3 illustrates a simple example of FR on a batch

of 3 samples, and each sample is annotated with 4 at-

tributes. In the proposed FR, a random shuffle is con-

ducted at the batch level, where the split features from

different samples will be recombined to be new sam-

ples. The labels of those new synthetic samples are ob-

tained by a consistent shuffle on the original labels. For

example, the new corresponding label vector for the

synthetic sample [x31,x22,x13,x24] is [y31, y22, y13, y24].

The attribute-specific features xij contains the seman-

tics of indicating the absence or presence of the cor-

responding attribute. After feature recombination, the

value of xij remains unchanged, where semantic infor-

mation will be maintained. Thus, the corresponding la-

bel of the new synthetic sample for the jth attribute

also will be consistent with the original label yij .

Assume the batch size we used in the training stage

is set as nbs. For the convenience in the following, we

remove the subscript j in the sign of features to denote

the features over a batch of samples. For example, the

split features over a batch can be denoted as Xκ =

[Xκ
1 , · · · ,Xκ

nbs ] and x = [x1, · · · ,xnbs ]. Their corre-

sponding labels also can be denoted as y = [y1, · · · ,ynbs ].

We denote the random shuffle operation as R(·), and

thus the recombined split features at feature map level

and their corresponding labels can be generated as:

Xκ,R1 = R(Xκ), yR1 = R(y). (6)

All of {Xκ,R1}3κ=1 should employ a consistent shuffle

to ensure the semantic consistency in the later aggre-

gating stage, and thus we use the same superscript R1

to indicate the consistent shuffle among them, and such
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superscript would be used in a similar way in the follow-

ing section. Later, Xκ,R1 is further used for inference

to generate the predicted scores pR1 . The inference de-

tails can refer to Eq. (3), (4) and (5). Similarly, the

random shuffle also can be conducted on x, and thus

the corresponding recombined features xR2 and the cor-

responding new labels yR2 can be obtained by:

xR2 = R(x), yR2 = R(y). (7)

The predicted scores pR2 of xR2 can be generated by

using Eq. (5).

For a specific attribute of a generated sample in the

proposed FR, its values can be that attribute’s of an

arbitrary sample over a sample batch. Thus, we can

generate a lot of new samples as long as we do more

random shuffles. To generate more synthesized samples,

we conduct the random shuffle 10 times, which gener-

ates feature representations {Xκ,R1} and {xR1} with a

number of 10× nbs for training.

3.3 Model Training

In the training stage, the weighted binary cross-entropy

loss [25,48,49] is employed as the loss function on homo-

geneous binary datasets, including RAP, PA-100K, and

PETA. While the multi-class softmax loss is employed

on heterogeneous attribute datasets, including Matket-

1501 and Duke. For clarity, we take the weighted binary

cross-entropy loss as an example, and the loss form for

the multi-class softmax loss can be produced similarly.

All of the predicted scores are followed by loss functions.

For the predicted score pFM,κ
ij of the jth attribute, its

loss over a batch can be calculated as:

LFM,κ
j = − 1

nbs

nbs∑
i=1

ρij

(
yij log(pFM,κ

ij )

+ (1− yij) log(1− pFM,κ
ij )

) (8)

where ρij is a penalty coefficient used to alleviate the
imbalanced data problem in pedestrian attribute recog-
nition, and set the same as the work [48]. We use rj to
denote the ratio of the images with the jth attribute,
and then ρij is calculated as follows: ρij =

√
1

2rj
, if

yij = 1; otherwise ρij =
√

1
2(1−rj)

. The sum of the

losses over all attributes can be denoted as: LFM,κ =∑
j L
FM,κ
j . The losses for the predicted scores p and

pFV can be produced in a similar way, and we denote
them as L and LFV , respectively. For the generated
samples, the losses LR1 and LR2 are calculated based
on predicted scores pR1 and pR2 and corresponding la-
bels yR1 and yR2 , respectively. The calculations of LR1

and LR2 have a similar form to Eq. 8 but with minor

changes. Here we take the LR1
j as an example and it

can be formulated as:

LR1

j = −
1

10× nbs

10×nbs∑
i=1

ρij
(
yR1

ij log(pR1

ij )

+ (1− yijR1) log(1− pR1

ij )
) (9)

Then, the losses for all attributes are summed together:

LR1 =
∑
j L
R1
j . The loss LR2 is calculated in a similar

way. The overall loss is the sum of all of those losses,

and can be denoted as:

Loverall = L+ LFM,1 + LFM,2 + LFM,3

+ LFV + LR1 + LR2 .
(10)

In the above equation, L denotes the loss for the whole

network training. LFM,1, LFM,2, LFM,3 and LFV are

the constrained losses for extracting the attribute-specific

features. Besides, LR1 and LR2 , which are used to guide

the learning of synthetic samples, can be regarded as

the regularization terms to span the potential samples’

variability. In the test stage, the predictions are ob-

tained based on the predicted scores p.

4 Experiments

We first introduce the datasets, settings, and evaluation

metrics employed in our experiments. Then, the exper-

imental results and analysis are presented to validate

the effectiveness of our method.

4.1 Datasets and Metrics

Five popular datasets including PA-100K [36], RAP

[27], PETA [4], Market-1501 [33] and Duke [33] are em-

ployed for experiments. For PA-100K, RAP and PETA

three datasets, all of them contain homogeneous bi-

nary attributes, while for both Market-1501 and Duke

datasets, they contain heterogeneous attributes where

different attributes may have a different number of cate-

gories. We adopt both homogeneous and heterogeneous

attribute datasets for experiments to thoroughly verify

the effectiveness of the proposed method.

PA-100K contains 100,000 pedestrian images from

various outdoor scenes and is the largest dataset for

pedestrian attribute recognition. Each image is anno-

tated with 26 commonly used attributes, e.g., gender,

clothing types. According to the works [36,48] the dataset

is randomly split into three subsets with 80,000, 10,000

and 10,000 images for training, validation and test, re-

spectively. RAP is the largest pedestrian attribute dataset

of indoor scenes, with containing 41,585 images. 51 at-

tributes with the positive ratio over 1% are selected for
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experiments. We evaluate the proposed method over 5

random splits, where 33,268 images are used for train-

ing and 8,317 images for the test in each split. We then

average the results overall splits to achieve the final

result. PETA is a classical dataset for pedestrian at-

tribute recognition. Following the works [4,48], 35 bi-

nary attributes are selected for evaluation. The whole

dataset is split into three sub-sets: 9,500 images for

training, 1,900 images for validation and 7,600 images

for test. Market-1501 attribute dataset contains 32,688

images of 1,501 identities. This dataset is annotated in

the identity level, and each image is annotated with

10 binary attributes and 2 multi-class attributes. Fol-

lowing to the works [33,48], 751 identities are used for

training, and 750 identities are used for the test. Duke

attribute dataset is also labeled in the identity level.

It contains 34,183 images from 1,812 identities, and

each image is annotated with 8 binary attributes, and 2

multi-class attributes. According to the works [33,48],

16,522 images are used for training and 17,661 images

are used for the test.

According to previous works [36,27,48,49], a label-

based criterion mean accuracy (mA) and four instance-

based criteria accuracy (Accu), precision (Prec), Recall,

and F1 are employed for evaluation on PA-100K, RAP,

and PETA datasets. When evaluating on Market-1501

and Duke datasets, we employ the accuracy on all at-

tributes as the criterion used in [33,48].

4.2 Experimental Settings

The RGB image with a size of 256× 128 is used as the

input in our experiments. The input image is first nor-

malized by subtracting a mean and dividing a standard

deviation for each color channel before being fed to the

network. We also employ the data augmentation to im-

prove the performance of pedestrian attribute recogni-

tion, including random horizontal flipping, random scal-

ing, rotation, translation, cropping, erasing and adding

random gaussian blurs are employed. Those augmenta-

tions also facilitate the model to handle the variations

of pedestrian position, human poses, camera angle, and

so on. For the attribute-specific features at feature map

level, the output shapes aκ × hκ × wκ, κ = 1, 2, 3 are

set to 1 × 32 × 16, 3 × 16 × 8 and 6 × 16 × 8, respec-

tively. The parameter selection of aκ can be founded in

Section 4.5. The feature dimension of xij is set as 32.

Therefore, the shape of those generated features X1,R1 ,

X2,R1 , X3,R1 and xR2 are 10 · nbs × 1 · m × 32 × 16,

10 · nbs × 3 ·m × 16 × 8, 10 · nbs × 6 ·m × 16 × 8 and

10 · nbs × 32 ·m, respectively. All networks are initial-

ized with the pretrained weights of ImageNet [3], and

Table 1: The ablation studies of the SAL-FM.

Method
RAP PA-100K PETA

mA F1 mA F1 mA F1
w/o attention 81.87 79.50 80.76 86.92 85.52 86.78

w/o multi-level 82.40 79.78 82.18 87.15 85.48 86.36
w/o split 81.62 79.75 81.54 87.17 84.85 86.33

w/o aggregate 68.98 79.50 77.96 87.83 78.67 86.12
SAL-FM 82.96 79.92 82.46 87.22 85.62 86.56

Table 2: The ablation studies of the SAL-FV.

Method
RAP PA-100K PETA

mA F1 mA F1 mA F1
w/o split 82.25 79.94 81.85 86.98 85.29 86.44

w/o aggregate 74.48 80.03 80.33 87.18 84.37 86.41
SAL-FV 82.51 79.83 82.39 86.83 85.74 86.47

Table 3: The ablation studies of the feature recombina-

tion.

Method
RAP PA-100K PETA

mA F1 mA F1 mA F1
SAL-FM 82.96 79.92 82.46 87.22 85.62 86.56

SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88
SAL-FV 82.51 79.83 82.39 86.83 85.74 86.47

SAL-FV-FR 83.00 79.91 82.41 87.02 86.04 86.55

Table 4: The ablation studies of the cascaded learning.

Method
RAP PA-100K PETA

mA F1 mA F1 mA F1
SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88
SAL-FV-FR 83.00 79.91 82.41 87.02 86.04 86.55

CAS-SAL-FR 84.18 80.56 82.86 87.79 86.40 87.18

then finetuned on pedestrian attribute datasets. We em-

ploy the Adam optimizer [21] for optimization, and set

β1 = 0.9, β2 = 0.999 and ε = 10−8. The batch size is set

to 32 in the training stage. The learning rate is started

with 0.0001 and reduced by a factor of 10 along with

the increasing iterative times. All models are trained

and tested with PyTorch on GTX 1080Ti GPU.

4.3 Ablation Studies

In this section, we conduct the ablation studies on the

following modules: SAL at Feature Map level (SAL-

FM), SAL at Feature Vector level (SAL-FV), Feature

Recombination (FR) and cascaded learning (CAS). Fol-

lowing to the work [49], two important criteria, namely

mA and F1, are employed for evaluation. The exper-

iments are conducted on RAP, PA-100K, and PETA

datasets.
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Analysis on SAL-FM. Various experiments are

conducted by removing attention masks, multi-level fea-

tures, split losses and aggregating layers. From experi-

mental results in Table 1 (’w/o’ denotes ’without’), we

find attention masks, split losses, and aggregating layers

are extremely important to SAL-FM. When removing

the attention masks, attribute-specific attention mod-

ules degenerate into plain CNN layers and lose their

strong abilities to select the important regions/pixels.

When removing the splitted losses, the module fails

to capture the attribute-specific features, which hardly

capture the individuality for each attribute. When re-

moving the aggregating layers, the module makes the

predictions based on the averaging scores of pFM,1
i ,

pFM,2
i and pFM,3

i , which are generated by only us-

ing split features. We can observe that the performance

dramatically drops by over 10% at mA. The drop may

be due to the following reasons: 1) In split features, the

features of each attribute are denoted by the feature

maps with only several channels (1, 3, 6 channels are

set in the 1th, 2th and 3th feature level, respectively),

which may hardly contain enough semantics for each at-

tribute. 2) The information exchanges are not allowed

among multiple attributes at high-level features, which

hardly capture the relations among them. 3) Although

the split features contain the individual semantics for

each attribute, they may still be less discriminative than

the aggregated features.

Analysis on SAL-FV. To analyze this module,

the network with removed the split losses and aggre-

gating layers are employed for comparisons. The exper-

imental results are shown in the Table 2. Although the

split losses can only improve the performance slightly,

those losses are indispensable components of extract-

ing attribute-specific features, which are very necessary

for later feature recombination and cascaded learning

modules. When removing the aggregating layers, the

performance drops significantly on all three datasets.

The poor performance may due to the same reasons as

mentioned above. The results also show the aggregating

layers are very necessary after splitting the features.

Analysis on Feature Recombination. We fur-

ther add the feature recombination on both SAL-FM

and SAL-FV, which are denoted as SAL-FM-FR and

SAL-FV-FR, respectively. The comparisons between meth-

ods with and without feature recombination are shown

in Table 3. The feature recombination improves the

performance on both SAL-FM and SAL-FV networks,

which clearly demonstrates its effectiveness. More spe-

cially, for SAL-FM, it improves the mA by 0.95%, 0.77%

and 0.36% on RAP, PA-100K and PETA datasets, re-

spectively.

Analysis on Cascaded Learning. We further com-

bine SAL-FM-FR and SAL-FV-FR together, and for-

mulate a cascaded Split-and-Aggregate Learning with

Feature Recombination (CAS-SAL-FR). As shown in

Table 4, the performance can be further improved on

all three datasets, which shows the effectiveness of cas-

caded learning.

4.4 Comparisons with State-of-the-arts

In this section, we compare the proposed CAS-SAL-

FR against previous state-of-the-art methods, includ-

ing HP-net [36], VeSPA [38], JRL [50], Fusion [26],

LG-Net [35], VAA [37], GRL [61], RA [62], JLPLS-

PAA [48], CoCNN [11], Da-HAR [54], MT-CAS [58],

Jia et. al [19], DTM+AWK [60], Gao et al. [8], Tang

et al. [49], PedAttriNet [33] and APR [33]. On RAP,

PA-100K and PETA datasets, we further add the mean

accuracy of mA, Accu, Prec, Recall and F1 five crite-

ria for evaluation (denoted as mFive). This is because

some models may perform very well on a specific crite-

rion while obtaining low performance on other criteria.

Take mFive into account, and the evaluation can be

more comprehensive.

The experimental results of the homogeneous binary

attributes on RAP, PA-100K and PETA datasets are

shown in Table 5, Table 6 and Table 7, respectively. The

experimental results of the heterogeneous attributes on

Market-1501 and Duke attribute datasets are shown in

Table 8. The proposed CAS-SAL-FR achieves the high-

est performance on all five datasets (including three

homogeneous binary attribute datasets and two het-

erogeneous attribute datasets), showing its superiority
for pedestrian attribute recognition. The mean perfor-

mance of our method on RAP, PA-100K, PETA, Mar-

ket, and Duke attribute datasets are 78.94%, 85.18%,

85.57%, 88.30% and 85.91%, respectively. Moreover, com-

pared with the recent work, Tang et al. [49], the pro-

posed method outperforms it by 0.66%, 1.73% and 0.29%

on RAP, PA-100K, and PETA datasets, respectively.

For the recent work JLPLS-PAA, our method outper-

forms it by 1.13%, 0.71%£ 0.58%, 0.42% and 0.67%

on RAP, PA-100K, PETA, Market-1501 and Duke at-

tribute datasets, respectively. Those improvements are

promising because the performance is averaging on dozens

of attributes where the accuracies of some attributes

are really hard to be improved due to low resolution,

occlusions, unbalanced data, and so on.

Owing to the lack of a unified benchmark method

in the field of pedestrian attribute recognition, differ-

ent methods may adopt different backbones. The back-

bone of all models, e.g., AlexNet [23], CaffeNet [20], In-

ception v2/v3 [18], GoogleNet [44], DenseNet-201 [17],
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Table 5: The comparisons on RAP dataset.

Method Ref. Backbone mA Accu Prec Recall F1 mFive
VeSPA [38] BMVC’17 GoogleNet 77.70 67.35 79.51 79.67 79.59 76.76
HP-net [36] ICCV’17 Inception v2 76.12 65.39 77.33 78.79 78.05 75.14

JRL [50] ICCV’17 AlexNet 77.81 – 78.11 78.98 78.58 –
Fusion [26] ICME’18 CaffeNet 74.31 64.57 78.86 75.90 77.35 74.20
LG-Net [35] BMVC’18 Inception-v2 78.68 68.00 80.36 79.82 80.09 77.39

GRL [61] IJCAI’18 Inception-v3 81.20 – 77.70 80.90 79.29 –
RA [62] AAAI’19 Inception-v3 81.16 – 79.45 79.23 79.34 –

Gao et al. [8] ACM MM’19 ResNet-50 82.45 49.10 55.00 80.44 65.33 66.46
JLPLS-PAA [48] TIP’19 SE-Net 81.25 67.91 78.56 81.45 79.98 77.83

CoCNN [11] IJCAI’19 ResNet-50 81.42 68.37 81.04 80.27 80.65 78.35
Tang et al. [49] ICCV’19 Inception-v3 81.87 68.17 74.71 86.48 80.16 78.28
Da-HAR [54] AAAI’20 ResNet-101 79.44 68.86 80.14 81.30 80.72 78.09

DTM+AWK [60] Arxiv’20 ResNet-50 82.04 67.42 75.87 84.16 79.80 77.86
Jia et. al [19] Arxiv’20 ResNet-50 76.48 67.17 82.84 76.25 78.94 76.33
CAS-SAL-FR This work ResNet-50 84.18 68.59 77.56 83.81 80.56 78.94

Table 6: The comparisons on PA-100K dataset.

Method Ref. Backbone mA Accu Prec Recall F1 mFive
HP-net [36] ICCV’17 Inception v2 74.21 72.19 82.97 82.09 82.53 78.79
Fusion [26] ICME’18 CaffeNet 74.95 73.08 84.36 82.24 83.29 79.58
LG-Net [35] BMVC’18 Inception v3 76.96 75.55 86.99 83.17 85.04 81.54

JLPLS-PAA [48] TIP’18 SE-Net 81.61 78.89 86.83 87.73 87.27 84.47
CoCNN [11] IJCAI’19 ResNet-50 80.56 78.30 89.49 84.36 86.85 83.91

Tang et al. [49] ICCV’19 Inception v3 80.68 77.08 84.21 88.84 86.46 83.45
MT-CAS [58] ICME’20 ResNet-34 77.20 78.09 88.46 84.86 86.62 83.04
Jia et. al [19] Arxiv’20 ResNet-50 79.38 78.56 89.41 84.78 86.55 83.73

DTM+AWK [60] Arxiv’20 ResNet-50 81.67 77.57 84.27 89.02 86.58 83.82
CAS-SAL-FR This work ResNet-50 82.86 79.64 86.81 88.78 87.79 85.18

Table 7: The comparisons on PETA dataset.

Method Ref. Backbone mA Accu Prec Recall F1 mFive
HP-net [36] ICCV’17 Inception v2 81.77 76.13 84.92 83.24 84.07 82.03
VeSPA [38] BMVC’17 GoogleNet 83.45 77.73 86.18 84.81 85.49 83.53

JRL [50] ICCV’17 AlexNet 85.67 – 86.03 85.34 85.42 –
Fusion [26] ICME’18 CaffeNet 82.97 78.08 86.86 84.68 85.76 83.67
VAA [37] ECCV’18 DenseNet-201 84.59 78.56 86.79 86.12 86.46 84.50
GRL [61] IJCAI’18 Inception v3 86.70 – 84.34 88.82 86.51 –

Gao et al. [8] ACM MM’19 ResNet-50 86.23 77.21 84.52 87.22 85.85 84.20
RA [62] AAAI’19 Inception v3 86.11 – 84.69 88.51 86.56 –

JLPLS-PAA [48] TIP’19 SE-Net 84.88 79.46 87.42 86.33 86.87 84.99
Tang et al. [49] ICCV’19 Inception v3 86.30 79.52 85.65 88.09 86.85 85.28
MT-CAS [58] ICME’20 ResNet-34 83.17 78.78 87.49 85.35 86.41 84.24
Jia et. al [19] Arxiv’20 ResNet-50 85.12 79.14 86.99 86.33 86.39 84.79

DTM+AWK [60] Arxiv’20 ResNet-50 85.79 78.63 85.65 87.17 86.11 84.67
CAS-SAL-FR This work ResNet-50 86.40 79.93 87.03 87.33 87.18 85.57

ResNet-50/101 [13] and SE-Net [16], also have been

clarified. Our method is constructed based on ResNet-

50. Although some previous methods [48,37] construct

their model based on more advanced backbones. For ex-

ample, JLPLS-PAA [48] and VAA [37] build their mod-

els based on SE-Net [15] and DenseNet-201 [17], respec-

tively. However, our method can still achieve better per-

formance. Moreover, in some previous methods [48,61,

8], external information is employed to improve the per-

formance further. For example, JLPLS-PAA [48] cap-

tures the external semantics from human parsing, and

GRL [61] utilizes the human pose information for hu-

man body localization. Moreover, some researchers [50]

employ an ensemble of multiple models to obtain higher

performance. Our proposed CAS-SAL-FR still outper-

forms those models, which shows the effectiveness of

the proposed cascaded split-and-aggregate learning and

feature recombination.
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Table 8: The comparisons on Market-1501 and Duke

datasets.

Dataset Market-1501 Duke
PedAttriNet [33] 84.64 80.07

APR [33] 85.33 80.12
JLPLS-PAA [48] 87.88 85.24

CAS-SAL-FR 88.30 85.91

Fig. 4: The mA results on RAP of (a) all classifiers, (b)

the network with using the attention module of different

settings and (c) removing the splitting operation and

low-level features.

4.5 Further Analysis

Performance on All Classifiers. We visualize the

results of all classifiers in Fig. 4 (a). FM(1), FM(2),

FM(3), FV denote the classifiers at 1st, 2nd, 3th feature

map levels and feature vector level, respectively. The

highest performance is obtained by the final classifier

(denoted by Final). The poor performance obtained by

FM(1), FM(2), FM(3) and FV may due to that the split

features may be less discriminative than the aggregated

features’.

Analysis on aκ in ASAM. The number of chan-

nels for each attribute of the ASAM at 1st, 2nd, 3th fea-

ture map levels is denoted as a1, a2, a3 (denoted by

a1 − a2 − a3), respectively. The experimental results

by varying their values are shown in Fig. 4 (b). The

highest performance is achieved using 1− 3− 6, where

the small number of ASAM channels is used at low lev-

els. a1 = 1, a2 = 3 and a3 = 6 are adopted in other

experiments.

Removing Split Operation. To investigate how

much the split operation can contribute to the final per-

formance, we conduct an additional experiment with

removing the split operation on both feature map and

vector levels. As shown in Fig. 4 (c), the mA is dropped

by 1.42% when removing the split operations, which

shows their effectiveness. The split operation helps the

network to capture the individuality for each attribute,

Table 9: The comparisons on parameters, FLOPs and

speed.

Method Param FLOPs Speed
JRL∗ [50] 58.3M×10 0.72G×10 2.06ms×10
VAA† [37] 20.2M 4.37G 39.45ms

JLPLS-PAA [48] 92.75M 48.07G 54.56ms
CAS-SAL-FR 35.2M 5.58G 22ms

JRL∗ is a combined model based on 10 AlexNets, so its
complexity is estimated by using 10 AlexNets. VAA† is
constructed based on the DenseNet-201, and its efficiency
is estimated with a DenseNet-201.

Table 10: Comparisons between FR and mixup

Method
RAP PA-100K PETA

mA F1 mA F1 mA F1
SAL-FM + mixup 80.40 80.70 81.61 87.63 85.37 86.63

SAL-FM-FR 83.91 80.16 83.23 87.42 85.98 86.88

which ensures each attribute can learn its own seman-

tics.

Removing Low-level Features. To further ver-

ify the effectiveness of the low-level features (including

both 1th and 2th levels), we conduct the experiments

by removing those features in our CAS-SAL-FR. The

experimental results can be found in Fig. 4 (c). The mA

is dropped by 0.41% when removing low-level features,

which shows the low-level features also contribute a lot

to the final performance.

Efficiency Analysis. We compare our method with

three popular methods in parameters, FLOPs and infer-

ence speed, including JRL [50], VAA [37] and JLPLS-

PAA [48]. As shown in Table 9, our method has certain

advantages compared with three compared method. For

example, JLPLS-PAA is constructed based on two large

models, where one model (SE-BN-inception) is used for

pedestrian attribute recognition and the other model

(PSPNet, ResNet-101) is used for generate pedestrian

parsing maps. Thus, JLPLS-PAA contains lots of pa-

rameters and FLOPs.

GPU memory consumption of FR. Although

FR generates a large number of synthetic samples for

training, all of them only need to be delivered in the

last few layers of the network, which takes up very lit-

tle GPU memory. We conduct experiments with two

settings, namely CAS-SAL and CAS-SAL-FR to verify

this. Experiments show that CAS-SAL takes up 5357M

GPU memory when running with a batch size of 32, and

the GPU memory occupation increases to 5697M when

adding the proposed FR strategy. This indicates that

only about 340M GPU memory are taken up for FR,

which verifies that FR only takes up very little GPU

memory.
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FR vs. mixup. We conduct experiments with both

FR and mixup to compare their performance, and the

corresponding experimental results are listed in Table 10.

Compared with using mixup, FR helps the model to ob-

tain a higher accuracy on mA. For example, on RAP

dataset, the mA accuracty of SAL-FM-FR is 3.5% higher

than that of SAL-FM + mixup. In our FR, we just uses

a random shuffle on the split features over a batch of

samples to generate new samples, which keeps the se-

mantic information of each attribute unchanged. For

mixup, it achieves low mA accuracy may due to that

the liner combination may destroy the integrity of the

feature especially when the quality of images and fea-

tures are not so high.

Visualizations of Attention. We visualize the

attention masks in ASAM after F3(Ii). We select 6

representative attributes, i.e., Gender, Glasses, Hand-

Bag, LongSleeve, UpperPlaid and Shorts, and visualize

their mean attention masks. As shown in Fig. 5, dif-

ferent attributes may focus on different regions to ex-

tract the discriminative features for corresponding at-

tributes. For example, the attention module focuses on

the head region for Glasses attribute. More visualiza-

tions on RAP and PETA datasets can be founded in

Fig. 6 and Fig. 7. The visualizations can qualitatively

show the proposed ASAM can really capture discrim-

inative features from some important regions for each

attribute. ASAM is designed to extract discriminative

attribute-specific features for each attribute with at-

tention mechanisms. Similarly, Our ASAM also can be

extended to the fields of multi-task learning and multi-

label classification, which helps the network to learn

the discriminative features of each attribute/task sepa-

rately and capture specific semantics of each task/category.

Qualitative Analysis. Two predicted examples on

the test set of the PA-100K dataset are shown in Fig. 8.

The ground truth (GT) labels and the predictions of the

baseline ResNet-50 and CAS-SAL-FR are denoted by

red, green, and blue colors, respectively. Benefited from

the cascaded split-and-aggregate learning and feature

recombination, the proposed CAS-SAL-FR can achieve

more reliable predictions than the baseline ResNet-50.

For the first image, some attributes like Gender and

Skirt&Dress are wrongly predicted by ResNet-50, while

our CAS-SAL-FR can well correct them.

5 Conclusions

In this work, we have proposed a new framework for

pedestrian attribute recognition, named CAScaded Split-

and-Aggregate Learning with Feature Recombination

(CAS-SAL-FR). At first, a cascaded Split-and-Aggregate

Fig. 5: Visualizations of the attention masks of ASAM

on PA-100K dataset. (a) indicates the raw image,

and (b)-(g) represent the attention masks of Gender,

Glasses, HandBag, LongSleeve, UpperPlaid and Shorts

attributes, respectively.

Fig. 6: Visualizations of attention masks of ASAM on

RAP dataset. (a) indicates the raw image, and (b)-

(g) represent the attention masks of Female, BlackHair,

LongTrousers, LeatherShoes, Calling and Carryingby-

Hand attributes, respectively.

Learning (SAL) has been proposed to capture both the

individuality and commonality for all pedestrian at-

tributes. Besides, feature recombination has been fur-

ther proposed to synthesize more training representa-

tions for achieving better performance. The experiments

have been conducted on five popular datasets includ-

ing RAP, PA-100K, PETA, Market-1501 and Duke at-

tribute datasets, showing the proposed method achieves

the new state-of-the-art performance. Finally, we also

have presented feature visualizations and a comprehen-
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Fig. 7: Visualizations of attention masks of ASAM on

PETA dataset. (a) indicates the raw image, and (b)-(g)

represent the attention masks of carryingBackpack, car-

ryingOther, footwearLeatherShoes, hairLong, personal-

Male and lowerBodyShorts attributes, respectively.

Fig. 8: Two prediction examples on PA-100K dataset.

sive analysis on CAS-SAL-FR to qualitatively verify its

effectiveness.
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