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Abstract: Additive manufacturing of ferromagnetic materials for electrical machine applications is
maturing. In this work, a full E-type transformer core is printed, characterized, and compared in
terms of performance with a conventional Goss textured core. For facilitating a modular winding
and eddy current loss reduction, the 3D printed core is assembled from four novel interlocking
components, which structurally imitate the E-type core laminations. Both cores are compared at
approximately their respective optimal working conditions, at identical magnetizing currents. Due
to the superior magnetic properties of the Goss sheet conventional transformer core, 10% reduced
efficiency (from 80.5% to 70.1%) and 34% lower power density (from 59 VA/kg to 39 VA/kg) of the
printed transformer are identified at operating temperature. The first prototype transformer core
demonstrates the state of the art and initial optimization step for further development of additively
manufactured soft ferromagnetic components. Further optimization of both the 3D printed material
and core design are proposed for obtaining higher electrical performance for AC applications.

Keywords: additive manufacturing; soft magnetic materials; selective laser melting; iron losses;
magnetic properties; transformer

1. Introduction

Metal additive manufacturing (AM) is maturing, enabling previously unavailable
production possibilities in terms of feasible product complexity and personalization. As
currently, the cost per part of AM is still relatively high, it has been most applicable for
parts for high tech industries: producing specialized parts benefiting the most from the
topology optimization possibilities of AM. For example, 3D printing has been utilized for
the production of more efficient and long-lasting inductor coils [1], stronger, cheaper and
lighter aircraft fuel nozzles [2], and high performance heat exchangers [3].

In parallel to the printing of structural, thermal, and electrical components, research
interest in printed soft magnetic materials and topology optimized electromechanical
components has spiked drastically over recent years. It has been proposed that with the
easily available computational power and free-form printing capabilities of AM systems,
next generation electrical machine designs could be modelled and constructed by the
research community. These topology optimized designs (with reduced weight, integrated
cooling channels, reduced inertia, increased heat exchange etc.) could be prototyped
in-house, significantly reducing the lead time, cost, and machinery involved [4].

State of the art additive manufacturing of electromagnetic devices involves selective
laser melting (SLM) printing of conductive and soft magnetic materials with air gaps
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partitioning the material structure for separating individual turns in coils and reducing
the induced eddy currents in soft magnetic cores [5,6]. The air gaps are printed due to the
current lack of multi-material printing capacity of SLM systems, limiting the parallel print-
ing of conductive, core, and insulation materials. The introduction of airgaps considerably
reduces the power density of the components, however, as gapped printed component fill
factor is typically relatively low (in the range of 60%) [6,7].

Despite extensive material optimization of different soft magnetic alloys, relatively
few functional components or devices have actually been printed and characterized. For
this reason, in this work, a full small-scale transformer core is printed, characterized, and
compared with a commercial transformer. The simplistic design of an E-type transformer
makes it ideal for the next step of testing additively manufactured magnetic material capac-
ity and performance for electrical machine applications (succeeding the characterization of
small-scale toroidal samples). In this paper, a novel interlocking core design is employed
for eddy current reduction, which exhibits a competitive component fill factor. The paper
is divided into two larger sections. The first part describes the 3D printed core design and
its fabrication process, and the second the characterization and comparison of the printed
core with conventional cores.

2. Transformer Core Design
2.1. Commercial Transformer

The 3D printed core design investigated in this paper was based on the commercially
available 30 VA single phase isolation transformer provided by MS Balti Transformers
Ltd (Tallinn, Estonia). The transformer was chosen based on its suitable size, type, and
availability. Its shell-type transformer core is constructed from E-type stampings of grain-
oriented M 165-35S silicon steel. The conventional transformer design with its dimensions
are detailed on Figure 1.
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Figure 1. Investigated conventional transformer: (a) Core dimensions, (b) E-type stamping dimen-
sions in detail.

The fully encapsulated modular windings of the transformer are utilized in both the
conventional and 3D printed core designs. The modular windings are incorporated in
both designs in order to improve the comparability of the transformer core performance
and to demonstrate the compatibility of 3D printed and conventional parts. The nominal
parameters of the windings are characterized in Table 1.

2.2. 3D Printed Design

Next, an SLM printing system was utilized for the 3D printing of the full transformer
core. The 3D printed core design was required to exhibit compatibility with the modular
windings, incorporate the segregated structure for classical eddy current loss reduction with
high filling factor, and adhere to the printing system requirements. Lamination thickness of
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0.95 mm was chosen to obtain high fill factor and mechanical strength of the first prototype.
For all segregated designs considered, it was critical to achieve continuous geometries
(with minimal air gaps dividing the flux paths) with maximal flux path cross sectional
area (high fill factor). Furthermore, since the printed transformer must be comprised of at
least two parts (to accommodate the modular winding), optimization of the inter-part air
gap must be considered. In conventional transformers, the influence of the inter-stamping
airgaps is typically reduced by overlapping stamping layers: which facilitates the flux
paths through the adjoining stampings. Similar overlap between the flux-guides can be
realized in printed designs.

Table 1. Nominal parameters of the modular transformer coil.

Winding Turns Resistance
(Ω)

Nominal
Voltage (V)

Nominal
Current (A)

Insulation
Class

Primary 1370 98 230 0.17 H
Secondary 1 151 1.35 25.1 1.3 F
Secondary 2 56 2.7 9.3 0.25 F

For simplicity, in this paper, only conventional stamping inspired designs were consid-
ered for 3D printing. In Figure 2, three considered transformer core designs are illustrated:
(a) a laterally laminated interlocking design from four parts, (b) an axially laminated
gapped design from two parts, and (c) an axially laminated interlocking design from
four parts. The axially laminated interlocking design was chosen for printing due to its
simplicity and similarity to the conventional design, its high achievable fill factor and its
post-processing possibilities: all of the unmelted powder can be removed between the
laminations post-printing and, if needed, all of the surfaces can be cleaned and oxidized or
varnished for enhanced inter-lamination electrical resistance.
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Figure 2. Considered lamination strategies: (a) Laterally laminated interlocking design, (b) Axially
laminated design with air-gapped core structure, (c) Exploded view of the 3D printed transformer
core design with interlocking axial laminations comprising four individual components.

3. Methods
3.1. Powder Characteristics

Transformer parts were printed with identical powder, processing, and annealing
parameters to the previous study characterizing the AC and DC losses of the printed
material [6]. Pre-alloyed, gas-atomized Fe-Si provided by Sandvik group was utilized for
printing. The powder exhibited roughly spherical particle shape with a median diameter
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of 38 µm, and its chemical composition is described in Table 2. The powder size, shape,
and chemical composition were verified to verify the manufacturer declaration.

Table 2. Chemical composition of the employed Fe-Si powder.

Elements Fe Si Mn Cr Ni C

Wt% Balance 3.7 0.2 0.16 0.020 0.01

3.2. SLM Printing of the Transformer Core

Transformer core parts were printed on the SLM Solutions GmbH Realizer SLM-280.
The printing system provides a 280 × 280 × 350 maximum build envelope and a single
1070 nm yttrium scanning laser (1 × 700 W). Custom smaller build platform (D100 mm)
and re-coater were used for printing of the transformer core, designed for streamlining the
powder substitution between projects for different raw powders.

Laser re-melting strategy was used to prevent the powder balling related uneven
growth of the relatively large transformer parts during printing, which can result in rough
porous material structure or the termination of the print job due to re-coater jamming.
The phenomenon is related to an oxide film on the preceding layer impeding interlayer
bonding and leading to balling, due to insufficient wetting of the molten metal on the oxide
layer [8]. The balling phenomenon can be reduced in a higher purity environment (oxygen
level below 0.1%), applying a combination of high laser powder and low scanning rate or
applying re-melting scanning on the part [9].

Stripe (10mm wide) scan pattern was utilized with 30◦ rotation between layers. All of
the printing was conducted in a nitrogen inert gas environment because of its relatively
low cost. Platform pre-heating was not utilized as the custom reduced platform is not
equipped for it. A summary of the main laser printing parameters is presented in Table 3.

Table 3. Summary of the printing parameters.

Parameter Value

Layer thickness 50 µm
Hatch distance 120 µm

Laser Power 250 W (primary)/100 W (secondary)
Scanning velocity 0.5 m/s (primary)/0.5 m/s (secondary)

Scan strategy Stripes
Environment Nitrogen

Oxygen content ~0.1%

Transformer printing was completed in three parts in a total of 16 h: interlocking
E-profiles separately (2 × 6 h) and the I-profiles in the same build (1 × 4 h). The printed
components are illustrated in Figure 3: showing the surface finish, support structure, and
the powder bed post-printing. Some concave warpage of the E-profiles was observed
after separation from the build platform due to internal part stress, which obstructed the
transformer assembly. Its causality can be traced to the relatively high internal stresses
induced in part by the micro-welding process of SLM, and it can be resolved through the
annealing of the printed parts at moderate temperature, pre-cutting from the platform for
stress relief. Next, the support surfaces were polished and the inter-lamination air-gaps
were lightly sanded for improved surface finish and fitting of the components.
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3.3. Annealing

After mechanical post-processing, the printed transformer parts were annealed at
1200 ◦C in a low vacuum environment (~0.1 mBar) with a heating rate of 300 K/h, main-
tained at the target temperature for 1 h and then slowly furnace-cooled to room temperature.

3.4. Material Properties

The additively manufactured 3.7% silicon steel shows comparable magnetic perfor-
mance to non-oriented conventional silicon steels after thermal treatment. Magnetization of
1.5 T is achieved at 1800 A/m, exhibiting electrical resistivity of 56.9 µΩ·cm and hysteresis
losses of 0.61 (W10,50) and 1.7 (W15,50) W/kg [6]. In comparison, a typical non-oriented steel
M235-35A used for electrical machine fabrication exhibits total core losses of 0.92 (W10,50)
and 2.35 W/kg (W16,50), resistivity of 59 µΩ·cm, and magnetization of 1.53 T at 2500 A/m.
In this paper, we are comparing the additively manufactured core with a conventional
Goss textured silicon steel M165-35S (equivalent to M111-35N) core, which shows superior
magnetic properties to the non-oriented materials for transformer applications, as pre-
sented on Figure 4. The grain-oriented transformer steel shows approximately 0.3 T greater
saturation magnetization than both of the non-oriented steels.
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The grade designation of M165-35S of the Goss textured steel specifies 1.65 W/kg
losses at 1.7 T (W17,50), and a lamination thickness of 0.35 mm. The materials’ exact
silicon content, resistivity, and other typical properties are unspecified and depend on the
manufacturer (manufacturing freedom in the range of grade specifications).

3.5. Transformer Characterization

The nominal performances of both the 3D printed and the conventional magnetic core
transformers were characterized through open circuit and full load testing. The nominal
parameters of the conventional transformer were obtained from the manufacturer’s dec-
laration. A drop in the nominal voltage is expected for the printed transformer due to
its reduced fill factor, possible fitting defects (air-gaps between laminations), and lower
saturation magnetization of the printed material. Its nominal voltage and iron losses were
determined from the open circuit tests of the conventional transformer. To determine the
transformer efficiencies, a load test was performed, where the transformer was energized
up to nominal power. For thermal performance assessment, steady-state thermal images of
the fully loaded transformers were captured with a Fluke Ti10 Thermal Camera.

The open circuit test setup is described in Figure 5, consisting of an autotransformer
for variable voltage input and digital multimeters for measuring the voltage, current, and
active power consumed in the transformer coil. In the open circuit test, the current drawn
by the transformer establishes the magnetic field in the core. The active power consumed
by the transformer signifies its total power loss, consisting mainly of magnetizing, and
some ohmic, losses. The magnetizing losses summarize the energy lost from each magne-
tizing cycle, which are classically segregated into the hysteresis, classical, and excess eddy
current loss.
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The ohmic losses are induced from joule heating of the coils due to the magnetizing
current drawn. The total specific transformer core losses can be calculated from (1), where
W is the active power loss measured in the open circuit test, I is the magnetizing current, R
is the magnetizing coil resistance, and m is the weight of the core.

P =

(
W − IR2)

m
(1)

Traditionally, the magnetic material loss behaviour is discussed in terms of cycle
peak polarization (Bmax) of the core. Unlike in the toroidal cores for magnetic material
characterization [6,13], however, the flux density in the investigated transformer core can
only be evaluated as an approximation, due to its uneven flux distribution. The analytical
expression for calculating the peak polarization in a transformer can be derived from the
differential form of Faraday’s law (2), where E is the induced electromotive force by the
switching magnetic field, N is the number of turns on the primary coil (1370), f is the
excitation frequency of the magnetic field (50 Hz), Bmax is the peak material polarization, S
is the core cross sectional area, F is the core filling factor, U is the applied voltage on the
primary coil, and Ur is the voltage drop over the primary coil.
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E = N
dΦ
dt
→ Emax = N2π f SFBmax → Bmax =

Emax

N2π f SF
=

U −Ur

N2π f SF
(2)

Alternatively, the approximate material polarization can be evaluated from the mate-
rial B-H curve (as presented on Figure 4) or by the finite element method (FEM) simulation.
In both methods, the actual B-H curve of the transformer core can differ from the previously
characterized material, most prominently due to air-gap related curve shearing. For Bmax
evaluation, the magnetic field strength in the transformer is calculated from (3), where N
is the number of turns on the primary coil, i is the peak magnetizing current and l is the
length of the mean magnetic flux path of the core. All FEM simulations are performed in
open source finite element analysis software package Finite Element Method Magnetics
(FEMM). The model accounts for the transformer cross sectional geometry, magnetized up
to the peak magnetizing current measured from the open circuit test, including the material
magnetization curve and fill factor, but excluding any gaps in the core internal structure.

H =
Ni
l

(3)

4. Results
4.1. Assembled Transformer

The conventional and finished assembled printed transformer cores are presented
in Figure 6. The overall transformer core dimensions correlated well, with the printed
transformer exhibiting a slightly thinner and lighter core. The fill factor of the 3D printed
core was measured from the axial centerline of the interlocking E-cores. For the conven-
tional transformer, the fill factor was adopted from the stamping datasheets. The physical
comparison of the transformer cores is presented in Table 4. No additional oxidation,
treatment, or varnishing was applied to the surfaces of the 3D printed transformer core for
increased eddy current reduction—the insulation is provided by the high natural surface
roughness of the printed parts.
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Table 4. Physical comparison of the transformer cores.

Core Lamination
Thickness (mm) Fill Factor Dimensions (mm) Weight

Core (kg)
Weight

Coil (kg) Varnish

Conventional 0.35 0.96 58.5 × 49.8 × 26.0 0.44 0.095 Yes
Printed 0.95 0.89 58.8 × 49.9 × 25.0 0.41 0.095 No

4.2. Performance

Open circuit tests of the transformers confirmed the flux drop in the core and the
reduction of the sustainable operating voltage of the printed transformer. In Figure 7, both
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the magnetizing current drawn from the supply for generating the desired voltage and
the iron loss behavior calculated from (1) are presented. At 40 mA magnetizing current,
the conventional transformer is energized up to 230 V, while the printed transformer is
energized to a 30% lower voltage of 160 V. This is due to the lower flux density sustained
by the printed material. For energizing the printed transformer up to 230 V, a magnetizing
current of 220 mA is required. This is inefficient, however, due to deep core oversaturation,
requiring 450% more current than for magnetizing the conventional core and 30% more
current than the rated full load current of the winding.
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At 40 mA RMS excitation current (60 mA peak current), the analytically calculated
(3) average H field generated in the magnetic core is 668 A/m, which corresponds to the
magnetization of 1.72 T for M165-35S and 1.42 T for the annealed 3D printed material
as determined from the magnetization curves in Figure 8. At 40 mA RMS excitation
current, analogous excitation of both cores is achieved. Both are magnetized slightly
above the approximate material knee-point and exhibit identical copper losses. Excitation
of the conventional core to 160 V or the 3D printed core to 230 V would be impractical
comparison-wise, as both states exhibit significantly differing magnetic behavior. At
160 V, the conventional core is still at the linear magnetic behavior: drawing only 7.6 mA
magnetizing current and exhibiting 0.005 W of copper losses and 0.35 W of iron losses.
At 230 V, the printed transformer shows deep saturation behavior, drawing 220 mA of
magnetizing current, resulting in a significant voltage drop of 21.6 V, copper losses of 4.7 W,
and iron losses of 2.6 W.
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FEM simulation of the transformer cores shows similar values of material magneti-
zation: reaching 1.68 T for the conventional and 1.39 for the 3D printed core (Figure 9).
Additionally, the simulation illustrates the uneven flux distribution in the core due to
variations in transformer limb width. Analytical calculations with (2) show lower core
flux density required for inducing a specific voltage in the core. For energizing the trans-
former up to 230 V, a flux density of 1.65 T is required, while for 160 V, a flux density of
1.26 T is required. The higher magnetization calculated from the experimental excitation
current and FEM simulation is most likely the result of intra-lamination air-gaps, which
shears the material magnetization curve and requires more current for achieving the same
material polarization.
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Iron losses were identified as 1.82 W/kg for the conventional core at 230 V (at ap-
proximately 1.7 T, 50 Hz) and 3.05 W/kg for the 3D printed core at 160 V (in the range
of 1.26–1.4 T, 50 Hz). Efficiency of the transformers was calculated from the load test
measurements at both the ambient core temperature and the steady state temperature at
full load conditions. The transformers reached steady state temperature after four hours
of loading. The thermal images of the transformers are shown in Figure 10, with slightly
higher heating observed for the 3D printed transformer core. The measured coil hotspot
temperature was measured at 91.1 ◦C for the conventional core and at 95.1 ◦C for the 3D
printed core. The core hotspots were measured with a thermocouple sensor due to the high
reflectivity of the printed core, exhibiting temperatures of 71 ◦C (conventional) and 75 ◦C
(3D printed).

At full load, the measured efficiency of the transformers ranged from 83.8% (21 ◦C) to
80.4% (71 ◦C) for the conventional transformer and 74.7% (21 ◦C) to 70.1% (75 ◦C) for the
3D printed transformer. The efficiency-load characteristic is presented in Figure 11. The
highest efficiencies were measured at 41% load at ambient core temperature, reaching an
efficiency of 88.7% for the conventional transformer and 80.5% for the 3D printed core. The
efficiency of the 3D printed core was approximately 10% lower over the full measurement
range. Due to the material saturation and inter-lamination air-gap related reduction of
nominal voltage, the printed transformer core sustained reduced power density when
compared to the conventional core. The transformer power density dropped 34% from
59 W/kg to 39 W/kg. The results of the transformer performance characterization are
summarized in Table 5.
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Table 5. Comparison of transformer performance.

Parameter (Full Load, 21 ◦C) 3D Printed Core Conventional Core

Nominal Voltage 160 V 230 V
Nominal Current 0.17 A 0.17 A

Power Factor 0.97 0.97
Input Power 27.2 VA 39.1 VA

Output power 19.8 VA 31.8 VA
Efficiency (ambient temperature) 74.7% 83.8%

Efficiency (operating temperature) 70.1% 80.5%
Power Density (Core) 47 VA/kg 72 VA/kg

Power Density (Full Transformer) 39 VA/kg 59 VA/kg

5. Discussion

The characterized transformers show typical performance values for small 20–30 VA
power rating single-phase transformers. From manufacturer datasheets, the typical ef-
ficiency for a 30 VA rated power transformer is in the range of 83 [14]–81% [15], which
decreases to 77% [14] at 22 VA and to 65% [14] at 4.5 VA. The rated power densities vary
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significantly depending on the design (some designs are fully encased), and are typically
in the range of 56 [15]–39 VA/kg [14] for 30 VA rated transformers and slightly lower
(50 [16]–39 [14] VA/kg) for 20 VA rated transformers. In this study, we obtained an effi-
ciency of 80.5% for the conventional transformer and 70.1% for the 3D printed transformer
core at steady state temperature. The 10% reduced overall transformer efficiency can most
prominently be attributed to the eddy currents generated in the 170% thicker laminations
of the printed design. The reduced power density of the printed design can be attributed
to both a larger degree of assembly defect related air-gaps within the core and the overall
lower magnetic saturation of the printed material compared to the Goss textured conven-
tional steel. Both designs are within the range of typical power density values for low
power transformers.

The 3D printed core exhibited iron losses of 3.05 W/kg at 160 V transformer energiza-
tion. Analytical calculations identify an average Bmax of 1.26 T at this transformer voltage
level. Comparing the magnetizing values with previously measured 3D printed material
magnetization curves, its shearing is proposed. Due to the air-gaps in the assembled
printed design, more magnetizing current is required for the same material polarization
and voltage generated by the transformer. Similar iron loss values have been measured by
Plotkowski et al. for a 3D printed E-type transformer core [17]. In their work, they achieved
a core loss of 3.5 W/kg (W10,60) at 1.0 T, 60 Hz magnetization for a printed 3% silicon steel
lamination inspired core. They achieved considerably improved losses with more complex
geometry, reaching approximately 1.5 W/kg (W10,60) to 3.2 W/kg (W15,60) with ‘Hilbert
pattern’ 6% silicon steel. It is important to note, however, that in their work approximately
56% core fill factor was achieved, resulting in low power density and voltage generation of
the transformer.

Further optimization of both the component topology and its material properties
are unavoidable for achieving high performance 3D printed transformer cores. To obtain
high magnetic polarization (high power density) of the printed material with minimal
magnetomotive force, a higher degree of control of the printed material grain structure
must be achieved. The effect of the grain structure orientation in relation to the magnetic
field is significant as illustrated by Figure 12 [18]. In conventional stampings, the grain-
oriented pronounced Goss texture can be achieved with various hot and cold rolling stages
of the steel sheets. In printed material, the optimization of the material grain structure is
largely immature, with some grain structure evolution observed in [13], in heat treated
laser-remelted printed silicon steel samples.
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Several topological improvements can be applied to the transformer for enhanced
performance. The printed transformer topology can be improved by increasing the fill
factor of the assembled components, optimizing the lamination thickness for reduced eddy
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current loss, and increasing its power density through shape optimization for achieving
uniform magnetization. Due to the limited multi-material printing capacity of current SLM
systems, two methods are proposed for eddy current reduction: the interlocking and the
gapped core designs. With next-generation powder deposition methods [19], multiple
metal or intermetallic materials can be utilized in parallel, allowing for more options and
more advanced core topologies.

First, for increasing the fill factor, higher accuracy of the printing system must be
achieved. With the current settings, the printed parts still suffer from low surface roughness-
related reduced fill factor for interlocking designs or inter-lamination short-circuits and
sintered unremovable powder for the gapped designs. Secondly, the lamination thickness
can be optimized to provide minimal core losses with maximum part fill factor, i.e., to
achieve the optimal ratio of air gap to lamination width. Thirdly, the shape of the core can be
optimized for achieving uniform magnetization, weight reduction and improved thermal
capacity. Several methods for improving ferromagnetic part performance through topology
optimization are discussed in further detail in [20,21]. For improved heat exchange of the
printed transformer, enhanced convective heat transfer can easily be obtained by increasing
its outer surface area with different surface relief structures [22].

6. Conclusions

In this paper, a fully functioning, additively manufactured soft magnetic transformer
core was fabricated and tested. For the first time in literature, an electromagnetic device
with a fully 3D printed magnetic core was evaluated in terms of efficiency and perfor-
mance. The prototype core showed uncompetitive performance when compared to modern
conventional transformer cores. Although the printed material is not currently suitable
for the production of commercial transformer cores, the analysis of the prototype core
did allow us to demonstrate the current state of the art, identify the technical challenges
involved, and propose next steps for realizing topology optimized 3D printing soft ferro-
magnetic components.

A novel, interlocking core design was developed and utilized successfully for achiev-
ing a relatively high fill factor of 89% (compared to other 3D printed cores) and eddy
current reduction of the additively manufactured transformer core. For obtaining higher
fill factor with this method, lower surface roughness of the printed parts must be obtained
for more precise fitting of the components. Furthermore, the interlocking core design
enabled the integration of modular winding to the transformer design, simplifying its
assembly process.

The first prototype transformer core showed both lower efficiency (10% reduced) and
power density (34% reduced), when compared to the conventional modern transformer
at their respective optimal working conditions. These preliminary performance results of
the first prototype core are likely to improve with more refined core designs and materials
as part of future research. Currently, the main challenge in realizing high-performance
3D printed soft magnetic components is achieving a higher degree of control over the
printed material grain texture, since the conventional post-processing methods for Goss
textured silicon steel sheets are not suitable for processing geometrically complex 3D
printed magnetic components. Even so, for non-grain-oriented applications (such as
rotating electrical machines), the current material properties appear suitable, especially
with the unprecedented prototyping freedom of 3D printing systems—which could enable
the emergence of entirely new types of machines. Although the current 3D printed cores
for AC applications suffer either from high eddy current losses or low filling factor, next-
generation emerging multi-metal SLM printers can potentially improve the additively
manufactured core performance considerably. Future work on this project will include
further optimization of both the printed material and component topology for designing
and constructing AM topology optimized electrical machines.
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