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Abstract: The influence of hydrogen on the mechanical performance of a hot-rolled martensitic steel
was studied by means of constant extension rate test (CERT) and constant load test (CLT) followed
with thermal desorption spectroscopy measurements. The steel shows a reduction in tensile strength
up to 25% of ultimate tensile strength (UTS) at critical hydrogen concentrations determined to be
about 1.1 wt.ppm and 50% of UTS at hydrogen concentrations of 2 wt.ppm. No further strength
degradation was observed up to hydrogen concentrations of 4.8 wt.ppm. It was observed that
the interplay between local hydrogen concentrations and local stress states, accompanied with the
presence of total average hydrogen reducing the general plasticity of the specimen are responsible for
the observed strength degradation of the steel at the critical concentrations of hydrogen. Under CLT,
the steel does not show sensitivity to hydrogen at applied loads below 50% of UTS under continuous
electrochemical hydrogen charging up to 85 h. Hydrogen enhanced creep rates during constant load
increased linearly with increasing hydrogen concentration in the steel.

Keywords: hydrogen embrittlement; ultra-high-strength steels; thermal desorption spectroscopy;
constant extension rate test; constant load test

1. Introduction

There is an ever-increasing need for hard and tough steels for demanding wear and
impact resistance industrial applications. These include mining equipment in severe corro-
sion environments [1], ballistic resistance in armored and patrol vehicles, and protected
buildings in civil construction [2]. As the need for safe operation of higher strength steels
for challenging applications is increasing, so are concerns about their susceptibility to hy-
drogen. Over the years, several industrial failures related to hydrogen have been reported
ranging from small components such as fasteners to large ones like boilers, hydrogen
storage tanks, oil, and gas structures [3,4]. Hydrogen interacts with metallic materials
in a way that reduces their ductility, toughness and even their strength [5]. It has been
reported that local stresses and local hydrogen concentrations are controlling factors of the
loss of fracture strength in steels [6]. The primary conditions responsible for the undesired
failure depend often on dislocation process, and are controlled by hydrogen diffusion and
trapping, coupled with the state of stresses in the material [7-9].

Generally, the susceptibility of steels to hydrogen increases with their strength [10-13].
As steels are produced with increased strength, they become harder, less ductile, less tough,
and more susceptible to hydrogen embrittlement (HE). The susceptibility of quenched and
tempered ferritic-martensitic steels increases significantly above 1200 MPa with hardness
of about 360 HBW [14]. To a large extent, this can be attributed to two phenomena. One
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is the high diffusivity of hydrogen in ferritic-martensitic steels [15]. The other is the
segregation of alloying elements resulting from the high alloying and high carbon content
used for hardening, leading to the formation of carbides and precipitates that act as stress
concentrators, affecting the diffusion and trapping of hydrogen in these materials. Over
the years, HE mechanisms such as hydrogen enhanced decohesion (HEDE), and hydrogen
enhanced localized plasticity (HELP) have been proposed as damage mechanisms in steels
in the presence of hydrogen. The HEDE mechanism suggests that embrittlement is due to
localized reduction in cohesive strength of the iron lattice in hence assists the separation
of cleavage planes or grain boundaries under lower stresses [16,17]. While the HELP
mechanism focuses on the fact that atomic hydrogen accelerate the dislocation mobility
through an elastic shielding effect that causes a local reduction in shear stress and hydrogen
transport by dislocation motion, which could lead to localized high concentrations at
distances further ahead of crack tip [7,18,19].

The evaluation of the hydrogen embrittlement property of steels, particularly new
ultra-high strength steels, is an important task allowing their safe and reliable use in con-
ditions under which their susceptibility to hydrogen is found to be minimal. This is a
difficult task to perform because many variables considering that factors like chemistry,
microstructure, metallurgical defects, operating temperatures, and stress states simultane-
ously affect the sensitivity of steel to hydrogen. It is widely reported in literature [20-24]
that the degradation of mechanical properties of steels in the presence of hydrogen occurs
only when hydrogen reaches a certain critical concentration in the steel. Hence the critical
hydrogen concentration (Hit) was proposed as a parameter to evaluate the hydrogen
embrittlement property of high-strength steels [23,24].

It has been determined that tensile strength of steels decreases with increasing dif-
fusible hydrogen content leading to the formulation of a power law relationship between
fracture strength and diffusible hydrogen content [25]. However, it was also observed
the power law was not always applicable, especially for notched specimens. The strong
dependence of the notch tensile strength on the stress intensity factor makes it unlikely to
be used as fracture criterion for HE, except for specified geometries [6,25]. In addition, it
was found that the power law relationship between fracture stress and hydrogen content is
mostly applicable only when the fracture mode is intergranular [26] limiting its application
to various steels with complex microstructures. In recent years, many studies have explored
promising H-resistant additively manufactured steels [27,28]. However, until their full
development, conventionally manufactured ultra-high-strength, hard and impact resistant
steels are still the primary options.

Slow strain rate tests has been used in several studies to evaluate the effect of hydrogen
on mechanical properties of steels, the technique is believed to allow enough time for
hydrogen activity within the material [22]. Although SSRT and hydrogen concentration
measurement techniques have been employed in several studies to determine H; for
high-strength steels up to 1500 MPa [29-34], much more work is still required. Particularly
in determining H,j; for higher strength steels (>1500 MPa) and its effect on the mechanical
performance of these steels under constant loads, focusing specifically on the hydrogen
enhanced creep rates.

In this study, we determine the critical hydrogen concentration and evaluate its effect
on the mechanical performance of a modern steel for demanding applications. The material
is a martensitic ultra-high-strength steel (2200 MPa), with hardness of 600 HBW. The
research methods include constant extension rate testing (CERT), constant load testing
(CLT), hydrogen thermal desorption spectroscopy (TDS), and fractography.

2. Materials and Methods
2.1. Material
A hot-rolled and quenched medium carbon steel with ultimate tensile strength of

2200 MPa and hardness of 600 HBW (58 HRC) was studied. The steel was obtained from
steel manufacturer SSAB, in Finland. An optical microscopic observation of the studied
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2.3. Hydrogen Charging

Electrochemical hydrogen charging was performed in a glass, three-electrode electro-
chemical cell combined with a Gamry potentiostat framework. Calomel reference electrode
and platinum wire counter electrode were used in the cell together with the steel specimen
as the working electrode.

To obtain a suitable hydrogen charging parameters for the studied steel, the TDS
specimens were charged from 3% of NaCl and 0.1% NH4SCN as hydrogen atom recom-
bination poison [35]. The charging time was varied from 10 min to 12 h at an applied
electrochemical potential of —1 Vgcg, followed with hydrogen concentration measurement
using TDS method. Hydrogen uptake of the studied steel as a function of the applied
electrochemical potentials was also measured by varied potential from —0.8 to —1.3 Vscg
for a charging time of 2 h.
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for fractography’in a vactiuth chamber to prevent the formation of any oxide layers.

2.4. Mechanical Testing

After 2 h of hydrogen pre-charging, mechanical testing comprising of CERT and CLT
is initiated under continuous hydrogen charging. CERTs were performed with a 30 kN
MTS benchtop tensile test machine at the strain rate 10 s and CLTs at the same strain
rate until the applied load was attained. In the case of CLT, mechanical testing was
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hydrogen concentration. Lastly, the effect of the concentration of NH4SCN in the electrolyte
was determined. At a controlled applied potential of —1.2 VgcE the increase of NH4SCN in
the electrolyte from 0.1% to 0.3% results in an increase of measured hydrogen concentration
2.25to 3.3 wt.ppm, as shown in Figure 4c. An appropriate combination of applied potential
and NH4SCN concentration allows for a controlled amount of hydrogen concentration in
the tested specimen [35].
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The reduction of the fracture stress during CERT of the studied steel as a function
of the hydrogen concentration is shown in Figure 5b. The strength of the steel reduces
from an apparent upper plateau for small hydrogen contents to a clear lower plateau at
about 1100 MPa for higher hydrogen concentrations up to 4.8 wt.ppm. The observed lower
plateau can be considered as the maximum hydrogen effect on the UTS of the studied
steel. The hydrogen concentration of about 1.1 wt.ppm corresponding to the midpoint
between the upper and lower plateau can be considered the critical hydrogen concentration
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(Hegrit) [21]. An analytical representation of the critical hydrogen concentration can be
described with an ‘atan’ function in form of Equation (1):

Y=Yy + A xatan[(X — X.)/ W], 1)

where X is the measured hydrogen concentration and Yy = 1657, A = -—412,
X. = 1.05, and W = 0.2 are the best fitting parameters generated automatically by the
OriginPro software. The fitted curve corresponds well with the experimentally obtained re-
sults with an accuracy of R? = 0.96 as shown in Figure 5b. Notably, X, = 1.05 corresponds
to the critical hydrogen concentration. The hydrogen embrittlement index (EI) which is
about 50% for the studied steel was calculated by Equation (2) [36]:

UurTs,;, — UTSH( lateau)
El= : 100% 2
0TS x 100%, @)

where UTS,;, = 2200 MPa is the ultimate tensile strength of the steel tested in air,
and UTSyplateany = 1100 MPa is the ultimate tensile strength of the steel tested un-
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&g%nﬂa%gh%&f&{iﬁ{ﬁﬁmyﬁsmg@{q);ommon for high-strength steels after defor-
mation under CERT [37]. For both curves 1 and 2, the lower temperature components of the

TDS spectra are preferably assokiated Wl&%l@ﬂ?&%g_elgﬁ)a@ﬁng in microstructural defebks
Wb sotidgolytionsuch ae diglgeptign staitbruadpHesvacapcies] g57, pano-vpidsy 38l.
Y\hvilgthamishen tea?pem&uvse%@nmaagﬁtﬁ%ﬁéﬁé&%iagﬁ.&%&head%ﬂm&aﬁiowf the
Oelsnpas boeneeen frPraddnipids drrdosdha et ivgical ERRsseRdritdily obtained
results with an accuracy of R* = 0.96 as shown in Figure 5b. Notably, X, = 1.05 corre-
sponds to the critical hydrogen concentration. The hydrogen embrittlement index (EI)
which is about 50% for the studied steel was calculated by Equation (2) [36]:

UTSair - UTSH(plateau)
UTS,ir

El =

x 100%, @)

where UTS,;, = 2200 MPa is the ultimate tensile strength of the steel tested in air, and
UTSs 4.~ = 1100 MPa is the ultimate tensile strength of the steel tested under contin-



Metals 2021, 11, 984

crostructural defects in the solid solution such as dislocatic
cies, and nano-voids [38]. While the higher temperature cor
the decomposition of the molecular hydrogen trapped in v

processes [39].

TDS curves for CERT under continuous
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on a semi-logarithmic scale. For example, the hydrogen—fr
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3.4. Fractography

Fractographic observations were made after CERT in air, hydrogen charged to the
critical concentration, and hydrogen charged above the critical concentrations. As shown
in Figure 9a, the fracture surface manifests a ductile fracture characterized by dimpled
rupture for the specimen tested in air. At increasing hydrogen concentrations around the
critical range, the fracture surface shows a brittle fracture area with clearly visible long
secondary cracks, as emphasized in Figure 9b. At hydrogen concentrations corresponding
to the plateau above the critical concentration the fracture surface shows a fine blend of
transgranular and intergranular fracture mode, with high-density of secondary cracks
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rupture for the specimen tested in air. At increasing hydrogen concentrations around the
critical range, the fracture surface shows a brittle fracture area with clearly visible long
secondary cracks, as emphasized in Figure 9b. At hydrogen concentrations corresponding
to the plateau above the critical concentration the fracture surface shows a fine blend of
transgranular and intergranular fracture mode, with high-density of secondary ctaeklp

forming most likely along the former austenite grain boundaries as well as martensitic
lath, as depicted in Figure 9c.
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hydrogen in steels interacts pre erably w1th spec1f1c microstructural features and defects,
it is essential to distinguish between different critical concentrations reported in literature
as: (a) Global total hydrogen concentration in the bulk steel specimen after fracture and
(b) hydrogen concentration at a particular location in the steel that is sufficient enough to
initiate cracking leading to failure [41]. In fact, the abrupt drop in local strength and duc-
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degradation, is caused by the presence of hydrogen. Additionally, the density of hydro-
gen-induced secondary cracks were determined by linear intercept method to have in-
creased by a factor of two for the specimen charged to critical concentration compared to
the hydrogen free sample. Similar observations were made in martensitic steels by Lovicu
Metals 2021, 11, 984 et al. [22] where secondary cracks induced by electrochemical chargmg generally lovias

or extension, thelr contribution to the susceptlblhty of the steel at stresses corresponding

to Crlthal dro en C ncentratlon Cannot be dismissed.
in 1t1§ratH % en concentration,in t el s ec1men after
sfp gbi
r

ic O ser w Te per rmed on ossct‘teln ens
%e%lcon ntﬁltl nata tic %r locat m tl}gg ste i t1 su 1ent
n1t1 Crac TL P a ure ;] nf(z):lc ru 8
lf i emer}) curvC 1 gh e mai ctors 1r1
0 ex‘%% Hihe P ol 'The ?X%

e m e
el conichinon e @SP&% - 1%0 al s
C ur mo e rom

%0%%;& Lto en %Ee slt;;e S con cetntrlaﬁon rcolr(l)rltls e w 1te %Yasrhéf

e stee ru e
re m ure tigatio OWS t T ss C entration
e ce 0 e CO n ot‘n Yo% ﬁ tn H\ en Fo tSal ure a(tltf]e s{ tesses
re&ons we e c ract r 1c es. 1 ure ows mlcg%%rfl
Tes 0 cr1 en ra 10n scer 1ne )Servin re sur—
st t 31 e s CIMEN C ar e IRB e cra 1r11 1ates om t e a utmd
ces r os eNnsl1 e n a1 ec1 1 t m as- su ition,

Ragticle (srRhasized By red Wa“ 53 lﬂlgp 4 eowe%rﬁ% JS O%E“G’f Egac e
SlV?f%BS%’f"&?é’Bié sy O?ets‘%samﬂg%fssﬁ%\cs% d themyta e mesty dluminimbases Ao
metpd! M@cf%los% DBV wofhsmmvﬁaeﬁ&éhcec%ﬁsg Rt F&S?ﬁr%oﬁ%f’s‘tféé‘ﬁaﬂn
WRYSRI3Y S BB HASAD e R dips et e lneysavitho vl ingss: i drlsid
QS H‘PJ} yeregsae i lespkatnsheioerseh is ﬁb%%‘fﬁf@ Yenhaneeddeteaedt
of 1 16H 15 0359 HeS §E‘21Ys1513éhﬂb%ﬁi?ﬁ %tg Bhee as}épmaﬁh%ef@sﬁmeéf
‘g;éﬁagﬁy qeiticl Ao airn dssHmbopRnlEdecal iy @aa}ﬁe%%?dh}’éﬁﬁﬁ?“tﬁ‘étﬁ’éﬁéﬂ&
Rk EavigRIcesmaEsrrplaxhelvEeRIash &y By BRR sonerbian anskies
hvbaseriaies ByompasHed ubhrbetal ypres by dragsprsenGedPAsIBatAt SANTRI-
plasticity efdhs apssinaneshanig e sasnrpsiblefon thaebsenad degiadatinp fisteeneth
ythesieel ararmebtheeriticabesngeaniratinis ang e dhsyeankuitblemp ericanErarHesp ensi-
lilepaiemeorthied erar stieak iy daoBem EoRcERiFateRcibH sfinibian, Beins rhakeTelateghie
holptwlepcentertioniohhydengasnteinonsible ok gaskepudliaiost iteroRHEBRREES
difiedoatiinmay hatiedihpseshentibateaiple ediho abaidldimesedithe fracture [20,41].

—{ 2400
—{ 2000
5
| o
=
—{ 1600
—{ 1200
1

1
[wt.ppm]

Eﬁ%&%% Fﬁagt%a%esgafr seob i tensilspssimensn(@) drstesddn air withonthdioaso shersing: ) dsrtpdhemicalhin
%rocﬁen ch a (c){ V\it xBP
ogen A rge tol ppm.

Further fractographic observations were performed on the post-tensile specimens
that fractured upon reaching the hydrogen critical concentration (about 1.1 wt.ppm) on
the embrittlement curve, to highlight the main factors influencing the susceptibility to
hydrogen of the steel. The majority of the hydrogen-induced cracks leading to failure have
been found to nucleate from high stress concentration regions, such as the white-dashed
marked feature in Figure 11a. Further investigation shows that those stress concentra-
tion regions were characterized by inclusion particles. Figure 11b shows micrographs
of one post-tensile specimen charged to 1.1 wt.ppm, where the crack initiates from the
alumina particle (emphasized by yellow arrow) leading to failure. The results from energy-
dispersive spectroscopy (EDS) on the particles revealed them to be mostly aluminum-based
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non-metallic inclusions (NMI), as shown in Figure 11c. Even though stress concentration
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5. Conclusions

The effects of hydrogen on mechanical performance of a 600 HBW n
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5. Conclusions

The effects of hydrogen on mechanical performance of a 600 HBW martensitic steel
were evaluated through CERT and CLT under continuous hydrogen charging. The follow-
ing is worth highlighting:

e  The strength of the martensitic steel reduces from an apparent upper plateau for
small hydrogen contents to a clear lower plateau at about 1100 MPa for hydrogen
concentrations higher than 2 wt.ppm. This about 50% tensile strength degradation,
at the lower plateau, stays essentially constant for hydrogen concentrations up to
4.8 wt.ppm. Thus, the observed lower plateau can be considered as the maximum
hydrogen effect on the UTS of the studied steel.

e  The critical hydrogen concentration found was 1.1 wt.ppm, corresponding to the mid-
point between the upper and lower strength plateaus. At this point, the degradation
of tensile strength is about 25% of the original UTS.

e Inthe CLT of the uncharged condition of the steel, no fracture occurred at applied load
up to 72% of UTS. In continuous hydrogen charged samples, at conditions providing
the critical hydrogen concentrations of 1.1 wt.ppm, the steel fracture occurred at 85 h
under applied load of 50% of UTS.

e  The presence of hydrogen at 0.65 and 1.04 wt.ppm (i.e., below the critical hydrogen
concentration of 1.1 wt.ppm) increased, markedly, the creep rates during CLT by more
than two orders of magnitude, under same loads, compared to uncharged specimens.

e  Although more work is required towards a deep assessment of the influence of the
microstructure in the mechanism driving the HE, the largely dominant martensitic
microstructure, with only a small fraction of bainitic islands and corresponding bai-
nite/martensite interfaces, may be the reason for the observed lower plateau and
apparent saturation of the effect of hydrogen in this 600 HBW steel. Ongoing research
in similar hard steels, with higher fraction of bainite, is expected to provide further
support to this conclusion.
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