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A B S T R A C T   

The Internet of Things (IoT) is the most promising technology in health technology systems. IoT-based systems 
ensure continuous monitoring in indoor and outdoor settings. Remote monitoring has revolutionized healthcare 
by connecting remote and hard-to-reach regions. Specifically, during this COVID-19 pandemic, it is imperative to 
have a remote monitoring system to assess patients remotely and curb its spread prematurely. This paper pro-
poses a framework that provides the updated information of the Corona Patients in the vicinity and thus provides 
identifiable data for remote monitoring of locality cohorts. The proposed model is IoT-based remote access and 
an alarm-enabled bio wearable sensor system for early detection of COVID-19 based on ontology method using 
sensory 1D Biomedical Signals such as ECG, PPG, temperature, and accelerometer. The proposed ontology-based 
remote monitoring system analyzes the challenges of encompassing security and privacy issues. The proposed 
model is also simulated using cooza simulator. During the simulation, it is observed that the proposed model 
achieves an accuracy of 96.33 %, which establishes the efficacy of the proposed model. The effectiveness of the 
proposed model is also strengthened by efficient power consumption.   

1. Introduction 

Biomedical Signals play an essential role in IoT-based Healthcare 
monitoring systems. The integration of these different signals allows us 
to a better healthcare monitoring system and detect other health-related 
issues. Healthcare IoT is predominantly a resonant concept in medicine 
to connect a person, device, or virtually any place as it evolves to change 
the very concept of care. Healthcare with IoT and remote patient 
monitoring has transformed healthcare during the past few decades due 
to the field’s technological revolution [1,2]. The application of IoT in the 
medical domain, referred to as the Internet of Medical Things (IoMT) 
paved the way for telemedicine, telecare, and remote health services. It 
encompasses the collection of various medical devices, systems, or ap-
plications that can connect to a computer network and further 
comprising of the collection of health data, its analysis, and transmission 
through the Internet in consort with connected medical devices and 

medical applications. The future of IoMT has potential as a result of 
cloud computing that allows connected devices to store the data on the 
cloud in order to provide uninterrupted availability, thus opening new 
opportunities in the field of healthcare. Further, IoMT is the first gen-
eration of wireless healthcare IT systems and thus is an essential mile-
stone in developing smart healthcare systems and medical devices. The 
various IoMT applications in hospitals and clinics include intelligent 
apps to connect patients and doctors in remote locations. 

There are several technological solutions for remote patient moni-
toring (RPM) that offer various services and devices. Resultantly, RPM 
gains traction in the front line of healthcare with the introduction of 
IoMT technologies. When a doctor monitors patient remotely using IoT- 
based medical devices, there is enhanced scope for specialized and 
tailored treatments. This is achieved as a result of enhanced access to 
remote patient data in the future. In this direction, bio wearable trackers 
are the principal component as they can collect, analyze, generate, and 
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transmit data directly to a healthcare provider’s network. As a result, a 
patient’s health data can be transferred to any location at par with a 
mobile phone operator’s reach, such as a doctor’s office, hospital, or 
even a hospital emergency room. These wearable trackers can measure 
vital physiological parameters such as stress levels, heart rate, sleep, 
blood pressure, cholesterol, glucose levels, blood sugar levels, etc., that 
help to monitor patient health [3] continuously. 

This research paper aims to employ the efficacy of remote moni-
toring to curb the spread of the latest epidemic that has hit the entire 
world in an unprecedented manner. The novel Corona infection COVID- 
19 has spread rapidly across the globe since its inception in December 
2019 from the Wuhan District of China. By considering its spread scope 
and pace, it was declared a pandemic by WHO (World Health Organi-
zation) [4]. Since then, the entire research community is engaged in 
finding viable solutions to contain the disease’s spread. Governments of 
the nations also implemented all obligatory steps to ensure that citizens 
are well prepared to face the challenge posed by this pandemic [5,6]. 
The most crucial factor in preventing the spread of this virus locally is to 
educate the citizens with the right information to adopt all precau-
tionary measures as advised by medical practitioners. Further, existing 
slow mechanisms of COVID-19 tests and the unavailability of vaccines 
currently in the market make it imperative to develop robust disease 
detection techniques and timely monitoring of the individuals. 

In this paper, the authors attempt to propose a facilitated solution 
through bio-wearable sensors to identify the COVID-19 patient. Also, the 
same information can be used to warn the people in the vicinity to get 
cautious and adopt preventive measures with utmost care. The tech-
nology has already been applied to correlate physiological metrics to 
daily activities. The same is proposed to be escalated further towards the 
early prediction of the COVID-19 incidences that are a necessity during 
this pandemic period. The proposed system tracks the individuals and 
records their behavior. It may also receive online diagnoses to manage 
its health. Thus, it becomes possible to monitor health, make an online 
diagnosis, and even efficiently manage health from a mobile phone’s 
comfort without leaving home with the adoption of remote medical 
monitoring. This is a great achievement as it ensures controlling the 
spread of the virus by a huge margin. 

Further, analyzing the evaluated metrics with the predictive plat-
forms can take this application to the next level by generating alert 
messages for these bio-wearable devices’ users. These alert messages are 
generated whenever there is a significant deviation in the vital health 
metrics associated with COVID-19. Further, Pseudo-anonymous data 
restricted to a particular region may be provided to the public health 
officials and researchers that enable them to track and mitigate the 
spread of the coronavirus. The proposed framework aims to provide the 
updated information regarding susceptible Corona patients in any lo-
cality. It also provides identifiable data in terms of remote monitoring of 
locality cohorts (colleagues, family members, visitors, etc.) associated 
with an individual exhibiting COVID-19 symptom or diagnosed with the 
same. In this paper, three main technologies are employed for IoT-based 
patient monitoring applications, viz. RFID, microcontrollers, and 
sensors. 

This paper presents a framework that consists of an IoT infrastructure 
that provides relevant information. It semantically represents the 
knowledge obtained through IoT devices and sensors. Further, it pre-
sents an ontological contextual model and associated middleware for 
remote monitoring of chronic patients in the network. 

1.1. Contribution 

The proposed work’s novel contribution is to provide the architec-
ture for IoT-operated remote accessible and alarm enabled bio wearable 
sensor system for early COVID-19 detection using sensory 1D biomedical 
signals such as ECG, PPG, temperature, and accelerometer. Following 
are the objectives for developing an IoT operated remote accessible and 
alarm enabled bio wearable sensor system for early COVID-19 detection:  

• To measure COVID-19 related biological or physical parameters of 
humans by developing IoT enabled Bio Wearable Sensor (BWS) 
system.  

• To design a standalone monitoring device with local memory and IoT 
remote server accessibility to store COVID-19 measured data in the 
form of sensory 1D biomedical signals such as ECG, PPG, tempera-
ture, and accelerometer.  

• To design an analytical system for recorded COVID-19 parameters to 
predict COVID-19 infection. 

1.2. Organization 

This paper is structured as follows. Section 2 presents the related 
works. Required preliminaries are presented in Section 3. The proposed 
framework and methodology are elaborated in Sections 4 and 5, 
respectively. Results are discussed in Section 6, and finally, Section 7 
concludes the paper and outlines directions for future work. 

2. Related work 

IoT and health technologies may revolutionize the healthcare in-
dustry over the next decade and thus significantly impact the healthcare 
system. The current section presents the recent work related to digital 
health systems that use technologies such as IoT, cloud computing, and 
big data and are designed to connect patients and providers across 
different healthcare systems seamlessly. 

Easy admittance to patients’ medical care information through syn-
chronous announcing and checking by means of associated gadgets will 
grow medical care suppliers’ capacity to offer proof-based therapies and 
redo therapies for patients. Nowadays, most medical devices, diagnostic 
imaging tools [42], and sensors constitute a core component of IoT. In 
essence, the IoT provides efficient scheduling of limited resources by 
ensuring the best use of the resources while serving maximum patients. 
The clinical workforce can utilize this assortment of exact wellbeing 
information to make educated choices that minimize the clinical blun-
ders [7]. Thus, there will be a decline in superfluous visits to the medical 
clinic, bringing down the expense of care [40,43–46]. Different issues 
must be addressed to transform medical services through IoT advance-
ment, as discussed in [8,9]. However, the medical services scene is 
changing rapidly with the evolution of IoT and is getting prepared to 
provide customized medical assistance at any place [34]. 

Many researchers are recently working to curb the spread of the 
recent COVID-19 pandemic [10–13,33,36,38,39]. Several researchers, 
during their research, have implied IoT for its diagnosis and treatment. 
For example, a COVID-19 intelligent diagnostic and treatment assistant 
program (nCapp) is proposed to detect COVID-19 [14]. An IoT-based 
ecosystem/locality with different smart systems and architectures is 
proposed for monitoring, controlling, preventing, and mitigating 
COVID-19 [15]. This is supported by another study that also believes in 
smart cities’ concept to reduce the impact and outbreak of COVID-19 
[16]. A smart delivery unit is proposed to deliver essential goods to 
people in a non-contact manner. For the same, it employed more 
tech-connected communities to mitigate and fight back with COVID. A 
Blended Learning (BL) model is also proposed to create a smart and 
intelligent learning environment for interaction with different users to 
collect the required database [17]. This database can be used to mini-
mize contact with the infected person by transferring crucial informa-
tion in a short period of time. 

IoT’s prime contribution towards fighting the current pandemic is 
through effective control of data, superior treatment, and improved 
diagnosis [18,34,35]. IoT can also help produce intelligent ventilation 
systems, masks, medical equipment that can self-monitor the patients 
and thus can minimize the contact of the patient with medical staff [19]. 
Further, contact tracing among the people through mobile-based data is 
possible using IoT. Additionally, intelligent point-of-care testing kits can 
be developed to assist the diagnostic units. It processes the real-time 

N. Sharma et al.                                                                                                                                                                                                                                



Biomedical Signal Processing and Control 68 (2021) 102717

3

captured data and other vital information of the affected persons. To 
capture data, it also collects, monitors, and manages the entire data for 
future processing by inter-connected networks [20]. Such smart systems 
ensure that each infected person is scanned and every symptom is 
continuously captured. Thus, it plays a crucial role in assisting medical 
professionals in providing supervised assistance and thus ensures an 
optimized quarantine period. The prime advantage in IoT based systems 
is that it digitally captures the data without requiring any physical 
contact [22]. Thus, IoT can provide a more automated and transparent 
diagnostic process in situations like COVID-19. 

As discussed IoT-based healthcare systems are capable of analyzing 
patient data easily however it has some associated limitations. For 
instance, IoT devices have very little memory, which hinders them from 
meeting the needs of an IoT-based health network [21]. Further, the 
heterogeneous devices used in an IOT-based health care system poses 
another challenge as it requires scrutiny by using IoT-controlled, 
non-invasive checks. In addition, MCOM uses an ontological context 
model to process and determine a patient’s health status and stores it in 
health monitoring [22]. Such MCOM framework for remote monitoring 
of healthcare is based on international standards and implements 
ontological context models [23]. 

It can safely be concluded that IoT offers remote monitoring of pa-
tients in the most precise manner. Using IoT, real-time patient data, 
decision-making systems, and medical data can be integrated into a 
system to assist patients. Further, it can also monitor precise health 
parameters from a remote location. It thus may aid doctors in assessing 
the medical condition of the patients based on vital health parameters 
such as blood pressure, heart rate, and blood sugar levels [41]. Thus, IoT 
systems help physicians evaluate patients’ physical and mental health 
status, enabling them to provide patient care in a more efficient, effi-
cient, and effective manner. ECG which is used to measure the electrical 
activities, and its most essential indicator in health indicator. However, 
most wearable devices used to measure ECG suffers from memory and 
energy consumption. CULT [46] overcome this issue by using the 
compressing approach. 

As far as the deployment of IoT in Covid-19 is concerned [25], 
various authors have given some promising frameworks to control the 
virus’s spread. For instance, authors in [21,24] proposed a smart 
helmet-based thermal imaging system. It scans the crowd by recording 
the temperature in order to detect any infected person. The proposed 
model also has a facial recognition system. In this model, if it detects a 
high temperature for any person, it captures the person’s image through 
the optical camera. It alerts the local authorities by providing them with 
an image and location. Further, the authors [26] also proposed a 
cost-effective solution that performs a diagnostic check to determine if 
COVID-19 infects an individual or not. The proposed model is based on 
artificial intelligence and can navigate through crowded areas to di-
agnose an individual. It employs machine learning on the real-time data 
fetched through various sensors used to measure related physiological 
factors. Thus, it is evident that IoT has proven to be a promising 
approach during this crisis that the whole world is witnessing. 

3. Preliminaries 

COVID-19 is associated with several physiological symptoms that 
can be monitored using wearable sensors, as mentioned in Table 1 [27]. 

Presently, several metrics such as temperature, blood pressure, heart 
rate, etc., which can serve as possible indicators for COVID-19, are 
already in the market by big companies such as Apple Watch, Fitbit, etc., 
using their own restrictions and limitations [28]. A detailed comparison 
of the existing bio-wearable bands is presented in Table 2. 

The justification of the proposed system with respect to the existing 
systems is detailed as under:  

1 Most of the BWS available in the market report monitor physiological 
metrics related to cardiac and accelerometer-related metrics. These 
devices measure parameters such as stress, recovery, activity, and 
sleep. It has been observed that the changes in electrocardiogram 
(ECG) pattern may reveal information indicative of an infection. 
Nevertheless, there is not a single device available in the market 
which measures all related metrics.  

2 The body temperature and arterial oxygen saturation (SpO2) are 
vital parameters owing to the high pervasiveness of fever and 
respiration-related symptoms in COVID-19. Despite the same, these 
parameters are not regularly monitored by the available commercial 
wearable devices [29–32,36].  

3 Although many wearable devices support monitoring of COVID-19, 
few devices enable IoT-enabled support and analytics related to that.  

4 An alarming system can prove to be beneficial to contain the spread 
of the disease. It can prove helpful to the ordinary person, health 
practitioners, and even to the entire nation. 

4. Proposed framework of Bio Wearable Sensor (BWS) system 

The proposed framework is explained as follows. Initially, the 
anticipated model is simulated. The blueprint of the model is designed 
using software tools in which the components are connected to each 
other to determine the flow of data through the simulated model. The 
proposed circuit uses ATmega325, which enables successful simulation 
of the results. Further, a blueprint of the designed circuit is printed for 
the further process of PCB designing. 

After the design of the PCB, the fabrication process is carried out. 
Followed by these steps, the embedded code is designed for the model in 
the programming phase to carry out all the proposed model processes. 
As the model requires the data to be processed regularly, the proposed 
model is connected with the IoT server through a suitable networking 
process, as illustrated in Fig. 1. The purpose of incorporating IoT servers 
is to carry out data synchronization and its communication with the 
control unit and remote access. The 1D Biomedical signals received 
through wifi module that is processed using AI-based image processing 
techniques. Afterward, the diagnosis of the model is performed for pre- 
recorded data that check its working. 

The next phase is deployment; the model is deployed in the real-time 
environment. This is an important phase of system designing as it vali-
dates the deployed model in a real-time environment. It includes the 
human beings wearing a designed band that records biological and 
physical parameters, as demonstrated in Fig. 2. Further, the recorded 
values are evaluated according to the expected outcome for the system. 
If the output is observed as expected, then the system will be considered 
as effective unless it encounters any issue. If any issue is found, debug-
ging of the system is carried out. Eventually, the proposed model anal-
ysis is performed to validate its efficacy in presenting current health 

Table 1 
Sensor modalities (1D Biomedical Signals such as ECG, PPG, temperature, and accelerometer) for monitoring physiological metrics relevant to COVID-19.  

Sensors Rest/Sleep Skin Temperature (ST) Body Temperature (BT) Heart Rate (HR) HR Variability 
(HRV) 

Resting HR Respiration Rate (RR) SPO2 

ECG   ✓ ✓ ✓ ✓ ✓ ✓ 
PPG   ✓ ✓ ✓ ✓ ✓ ✓ 
Accelerometer ✓        
Temperature  ✓ ✓       
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status and alarming the user and registered co-workers when the 
symptoms and actions are considered COVID-19 related. 

The model, once finalized, will incorporate ontology-based IoT as it 
makes decision-making easier for medical practitioners in emergencies. 
The ontology built by the doctor for treating a particular disease could 

help in better decisions, thereby lowering the mortality rates. Similarly, 
the hospital location and the practitioner details will be publicly avail-
able through the ontology database. 

Table 2 
A Detailed Survey of Commercially Available Bio-Wearable Devices.  

Device Wearing Type BT ST RR HR HRV Early Detection for COVID-19 IoT Eabled Mobile App Price 

Apple Watch Wrist band X X ✓ ✓ ✓ X X X 400$ 
Biobeat Wrist band ✓ ✓ ✓ ✓ ✓ ✓ X X NA 
FitBit Charge Wrist band X X X ✓ X X X X 150$ 
Fitbit Iconic Wrist band X X X ✓ X X X X 250$ 
Fitbit Versa Wrist band X X X ✓ X X X X 200$ 
Garmin Fenix Wrist band X X X ✓ X X X X 500$ 
Forerunner 945 Wrist band X X ✓ ✓ X X X X 550$ 
Venu Wrist band X X ✓ ✓ X X X X 300$ 
VivoActive Wrist band X X ✓ ✓ X X X X 270$ 
Bio-strap Wrist band X X ✓ ✓ X X X X 175− 320$  

Fig. 1. Architecture Diagram of Proposed Bio Wearable Sensor System for Covid-19 Early Detection using sensory 1D Biomedical Signals such as ECG, PPG, tem-
perature, and accelerometer. 

Fig. 2. Communication Model of Proposed BWS System with IoT Server and Remote Analysis and User Alerting System.  
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5. Proposed diagnostic model 

The data is acquired from the four modalities, namely ECG, PPG, 
Temperature, and accelerometer. The modalities from two states: 
healthy and prone, are utilized in the cloud using the WAN interface. 
The WAN can have any system for transferring data such as Wi-Fi, 
Ethernet, or cellular connection. The cloud consists of a cloud supervi-
sor that provides the data related to a particular group stored in the data 
storage center. The cloud manager controls the data flow to and from 
different servers and adequately handles the communication (sending 
and receiving), data storage, and other data-related queries. Afterward, 
the data is sent to the cognitive engine for the final processing of the 
data. The cognitive engine is basically the intelligence of an IoT-based 
framework that analyzes the given data. It contains an entire feature 
extraction and classification unit that generates the output for assisting 
the doctors in making their decision about the current status of the 
COVID-19 patient. 

The schematic block diagram representing the detailed view of the 
proposed diagnostic model is shown in Fig. 3. It consists of input data 
from four modalities, i.e., ECG, PPG, Temperature, and accelerometer. 
The extracted features from the different modalities are input to the 
fusion analysis model, i.e., Kernel Multiview Canonical Correlation 
Analysis (KMCCA), to evaluate associations across all the modalities. 
Afterward, the data classification into their respective groups is per-
formed using Machine Learning (ML) based classifiers [42. 

5.1. Channel wise Average Fusion (CAF) 

The motive behind using Channel-wise Average Fusion (CAF) is to 
exploit the complementary information computed among ECG signals’ 
different channels. Let us suppose that the features computed from 
various channels are given as input to CAF that finds the average of the 
features and provide a single fused feature set (X ∈ Rmxn). This signifi-
cantly reduces the computational complexity and enhances the classi-
fication performance of the diagnostic system. 

5.2. Kernel-Based Discriminant Correlation Analysis (KDCA) 

The kernel method [37] outperforms the conventional linear as well 
as nonlinear neural network performances. From machine learning 
techniques to dimensionality reduction approaches, the Kernel-based 
trick has demonstrated its efficiency through the following:  

(i) it applies a non-linear mapping to a higher-dimensional space 
where the non-linear input data turns to linear or alike-linear; 

(ii) it reduces the computational complexity as the parameter eval-
uation is shifted to a Kernel space. 

The kernelization trick inserts the features in lower-dimensional 
space into higher-dimensional space, which separates the original 
inseparable data into linear separable. Let matrices A ∈ Raxn, B ∈ Rbxn, 
C ∈ Rcxn, represents the three different feature sets corresponding to 
ECG (output from CAF), eye-tracking and behavioral performance data, 
respectively. For MDCA, the features sets will be sorted by their rank, 
such that (rank (A) > rank(B) > rank (C)). Based on this feature set, A 
and B are fused using DCA producing output AB with vector length 
min(c − 1, rank(A), rank (B)). Thereafter, the output AB is fused with 
feature set C. Each of the feature set consists of n columns (representing 
separate groups G involved in the study; n =

∑G
q=1nq) with a-dimen-

sional, b-dimensional, and c-dimensional feature vectors. 

5.2.1. Kernel trick 
The introduction of the kernel into the DCA algorithm provides a 

solution by projecting the feature vectors (X, Y and Z) into a high- 
dimensional Hilbert space. Let us consider that a non-linear function δ 
maps X to Γ 

δ : xpq → δ(xpq) (1)  

X → Γ  

where Γ represented a higher-dimensional feature matrix containing 
elements as 

Γ = [δ
(
x11, ….., xpq , ,…, xnG , G] or simply, we can say Γ = [δ11, … 

.., δpq , ,…, δnG , G]. The element xpq = X reflects the feature vector cor-
responding to pth sample of qth group. The parameter δq is mean of qth 

group and δ is whole feature-set mean. 

δq
=

∑nq

p=1

δpq

nq (2)  

δ =
1
n

∑G

q=1

∑nq

p=1
δq (3) 

The between-group scatter matrix can be given as: 

SBX(axa) =
∑G

p=1
nq∇q(∇q)

T
= ∅X(axG)∅T

X(axG) (4)  

where ∇q = (δq
− δ) and ∅ = [

̅̅̅̅̅
n1

√
∇1 …….,

̅̅̅̅̅̅
nG

√
∇G 

5.2.2. DCA of kernelized features 
The next steps will be similar to the DCA algorithm, which is to 

diagonalize the inter-group scatter matrix. Basically, in DCA, first, an 
inter-group scatter matrix is utilized for discriminant analysis of fea-
tures, and then the correlation between the feature sets is directed by 
diagonalizing the inter-group covariance matrix. As the number of fea-
tures is higher in the present study than the number of the groups, thus 
the co-variance matrix (∅T

X∅X)GxG is computed instead of (∅X∅T
X)axa. If 

the groups are well-separated, then ∅T
X∅X would be a diagonal matrix, 

and to achieve this, the transformation applied will be: 
Fig. 3. Schematic Block Diagram of the proposed Diagnostic Model.  
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UT(∅T
X∅X)U = ∧X (5)  

with U as the orthogonal eigenvector matrix and ∧X as the diagonal 
matrix with eigenvalues in decreasing order. The matrix ∅T

X∅X has the 
diagonal elements equal to 1 and non-diagonal elements are 0, which 
provides minimum correlation between centroids of different groups, 
which ensures that groups are separated. Let VGxr is another matrix 
containing r eigenvectors corresponding to large-valued eigenvectors 
from U, such that: 

VT(∅T
X∅X)V = ∧rxr (6) 

The eigenvector of SB is obtained by transforming V →∅V. 

(∅V)
T SB (∅V) = ∧rxr (7)  

where ∧X = diag (γ1, γ2,…. γr) and VX = [v1, v2, …. vr]. The diagonal-
ization is basically solving for eigenvalues and eigenvectors of SB such 
that: 

SB v = γ v (8) 

The dimensionality of the higher-dimensional feature vector space 
(say F) is arbitrarily large and could be even infinite, but by following 
the kernel method, the inner product in F can be replaced by the kernel 
function in the input feature space (say R). It can be given as: 

δij, δrh = k(xij, xrh) (9)  

5.2.3. Correlation 
Next, the correlation between X and Y is maximized by diagonalizing 

the inter-class covariance matrix of the transformed feature set using 
singular value decomposition: 

S’
XY(rxr) = H

∑
JT (10) 

that employ 

HT S’
XY(rxr)J =

∑
(11)  

Where, 
∑

is a diagonal matrix. Similar to scatter matrix, we have to 
apply transformations for covariance matrix, i.e., WCX = H

∑− 1/2 and 
WCY = BJ such that 

(H
∑− 1/2

)
T S’

XY J
∑− 1/2

= I (12) 

this will turn the feature sets as: 

X∗ = WCXX’ = WCXAT
XKX (13)  

Y∗ = WCYY’ = WCYAT
Y(bxn)KY where WX and WY represents trans-

formation matrices. By using these matrices, it can be shown that: 

SB∗
X =

∑− 1

(14) 

Finally, the feature-level fusion is acquired by computing either the 
summation or concatenation of the transformed feature vectors. The 
present paper has considered the summation method. 

Z = [X∗ + Y∗] (15) 

Consequently, the output of fusion of two feature sets is fused with 
the third feature set. In this manner, the KMDCA normalizes the sets, 
fuses them using both linear and non-linear features, and performs 
dimensional reduction on the fused datasets, thus overcoming the hin-
drances of fusing the different types of features. 

The fused feature set (SG) is fed to the minimal-Redundancy 
Maximal-Relevance (mRMR) approach in order to minimize the 
redundant features and keep only relevant features. The acquired opti-
mized feature set (OG). 

OG = argmaxF⊂SG ∅(F, G) =
D(F,G)

R(G)
(16) 

In the mRMR method, the relevance (D) and redundancy (R) of the 
features are evaluated in terms of mutual information. Basically, the 
correlation between the features is computed, and from mutually- 
correlated feature sets, only one of the features is considered for 
further processing, and another one is discarded. 

5.3. Transformation of 1D biomedical signals to images 

The features extracted from 1D biomedical signals obtained are 
converted into images. The rationale behind this is to establish a method 
capable of translating Biomedical signals into significant images. The 
primary concern regarding this is to be certain that the signals encode 
visual class discriminative information that can be extracted by pro-
cessing 1D biomedical signals. The work utilized the approach of con-
verting the signals to images using Gramian Angular Summation Field 
(GASF), in which the time series is normalized in the range of [-1,1]. The 
obtained signal is subsequently transformed to a polar coordinate from a 
cartesian coordinate, retaining the biomedical signal’s temporal data. 
Afterward, every time point is matched with a neighboring point for 
finding the correlation between adjacent points, which is done by 
applying the trigonometric cosine function, arccos(). The correlation 
obtained by applying this function creates the Gramian matrix of 
dimension [m,m], where m is the number of sample points of the 1D 
biomedical signal. Let S= {S1, S2,…, Sn} represent the biomedical signal 
with m-samples, and signal S can be rescaled within the values [-1,1] 
evaluated from the Eq. (17) below: 

S0 =
Si − min(S)

max(S) − min(S)
(17) 

Afterward, the angle is calculated as given in Eq. (18): 

∝ = arccos(S0) (18) 

The summation of the angle between the adjacent features (i,j) is 
used to calculate the correlation among them, leading to the Gram 
matric called Gramian Angular Summation Field as shown in Eq. (19): 

GASF =
[
cos(∝i + ∝j)

]
(19)  

5.4. Classifier 

The mRMR based feature set is given as an input to the widely uti-
lized and preferred ML-based classifiers, namely SVM and KNN. The 
classifiers’ performance is compared using performance metrics 
involving sensitivity, specificity, and accuracy to provide a more effi-
cient classification process. A 10-fold cross-validation strategy is utilized 
to compute different comparisons among the dataset. Specifically, the 
entire dataset is partitioned into 10 different subsets, and then, 
randomly, one subset is selected for testing while the remaining 9 sub-
sets are used for training purposes. The entire process is repeated 10 
times to clear any biasing possibility during data partitioning in a cross- 
validation process. To avoid biasing in fold selection, the complete 10- 
fold cross-validation procedure was repeated 20 times using different 
participants’ partitions. The averaging of results from each simulation 
was evaluated to compute the final result. 

6. Results and discussion 

The section represents the results obtained from the proposed 
model’s execution on the simulation environment using contiki-cooja 
simulator. The bands are connected to the Micro-controller board that 
fetches the real-time data through the band and performs accuracy 
analysis from the computing device. Once the calculation part is over, 
the calculated results are then forwarded to the base station using a 
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wireless module. The 1D biomedical signals are converted into images as 
shown in Fig. 4. 

The proposed framework’s efficiency is evaluated in two scenarios, 
viz. the accuracy of the results and the network evaluation. The accuracy 
of the results measured using performance metrics such as accuracy, 
precision, and recall. Further, network evaluation is done using network 
parameters viz. Transmission power, power consumed in the different 
modes of the network, and total power. The detailed result evaluation is 
divided into the following sections: 

6.1. Accuracy of the model 

The model is trained on the collected dataset to classify the patients 
into an infected and non-infected category. Simulations are done using R 
Software. The results are analyzed in terms of sensitivity and specificity. 
The sensitivity, also known as True Positive Rate (TPR), represents the 
correct prediction of positive cases, i.e. when the patient is infected. On 
the other hand, specificity, also known as true negative rate (TNR), 
represents the model’s ability to predict the non-infected cases i.e., when 
the patient is healthy. The trained data, tested data, validation data, and 
prediction for disease prediction are illustrated in Fig. 5. The model’s 
performance is determined in the given Fig. 5 by using the training and 
testing data for the classification of COVID-19 patients in Table 3. The 
performance rate comes out to be 0.035332. The trained model is finally 
evaluated in terms of the specified metrics viz. accuracy, specificity, and 
sensitivity. The sensitivity value is calculated to be 92.33 %, and the 
specificity value is 92.20 %. The accuracy of the model is calculated to 
be 96.33 %. 

The effect of different combinations on the classification performed 
using SVM and KNN is shown in a tabular form in Table 4. 

The running time achieved by two classification methods (SVM and 
KNN) for the proposed and KMCCA approaches for the testing and 

training phase is summarized in tabular form in Fig. 6. 
The running time is lower for a testing phase in all the samples 

compared to the training phase. For the proposed approach with SVM 
classification, the entire algorithm took 26.32 s compared to KNN 
(31.98 s). The reduced running time reflects the proposed approach’s 
reduced computational complexity despite integrating different fusion 
methods. 

The comparison of the performance of both the classifiers is also 
carried out using ROC curves, as shown in Fig. 7. The higher value of 
AUC = 0.988 for the proposed method with SVM classifier as compared 
to KNN classifier (0.958) and KMCCA + SVM (0.945) and 
KMCCA + KNN (0.919). 

6.2. Network evaluation 

The analysis is done in two modes, i.e., active mode and non-active 
mode. By active mode, we refer to the mode when COVID-19 patients 
are detected in the building and thus require the transfer of data packets 
to the base station. On the contrary, the non-active mode is referred to 
mode when there are no patients detected in the building and thus don’t 
require any packets exchanged during a single network round. However, 
the non-active mode also consumes some power to keep the network 
alive. The detailed results on different scenarios are elaborated below: 

6.2.1. Transmission power in the network (mW) 
For evaluating the transmission power consumed in the network, a 

client-server network is created. Here, the edge computing device, 
which calculates the number of COVID-19 patients, acts as a client, and 
the base station acts as the server. Both the scenarios of power con-
sumption viz. with and without COVID-19 patients are evaluated. Fig. 8 
represents the comparison in the transmission characteristics. From 
Fig. 8, it is evident that transmission power consumed during detection 

Fig. 4. (a): Conversion of Normal Beat ECG Signal into Image (b): Conversion of Unknown Beat ECG Signal into Image (c): Conversion of Ventricular Ectopic Beat 
ECG Signal into Image (d): Conversion of Supraventricular Beat ECG Signal into Image (e): Conversion of Fusion Beat ECG Signal into Image. 
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of COVID-19 patients for 1st round, i.e., after 60 s, is 0.68548 mW as 
compared to 0.282046 mW without any such patient detected. This 
reduced power consumption for no COVIOD-19 patient is due to reduced 
data transfer in such a scenario. However, if a COVID-19 patient is 
detected, the readings of all the sensors are communicated to the base 
station and hence require increased power. 

6.2.2. Power consumed in the different modes of network (mW) 
The power consumption is calculated based on power trace output in 

all the client and server mote’s working modes. Working mode refers to 
the state in which the node is currently during simulation. These modes 
are CPU, Low power mode (LPM), Transmit (Tx), and Listen mode(Rx). 
The graph of power consumption for each simulating scenario viz. with 

COVID-19 patents and without COVID-19 patents is shown in Figs. 9 and 
10 , respectively. Fig. 9 shows the power consumed in milli-watt in each 
of the working modes of the client node. This power consumption is 
measured with COVID-19 patients. Here, the transmitting node sends all 
parameters one by one to the receiving node at regular intervals (i.e., 
1 s). Whereas Fig. 10 shows power consumption in milli-watt by client or 
sink node in all of the working modes without COVID-19 patients. The 
comparison drawn between two approaches regarding power con-
sumption shows that total power consumed with COVID-19 patients is 
1.2 mW as compared to .9 mW for no patient. This proves the efficacy of 
the proposed model regarding power consumed. Even during the 
detection of COVID-19 patients, when the number of packets is being 
sent to the receiver node, power consumption is not much higher and is 
thus power-efficient. 

6.2.3. Total power consumed (mW) 
The results regarding total power consumption are depicted in 

Fig. 11 for both scenarios. For a scenario that detects COVID-19 patients, 
each sensor’s readings are sent to the remote receiver node at a regular 
interval of 1 min. Here, computation of the total number of readings 
collected from the various sensors is done at the sink node itself. On the 
contrary, without COVID-19 patients, each sensor’s values are fetched 
only once at MCU, which is sent to the remote receiver node at regular 
intervals. The authors establish that power consumption without pa-
tients in 10 iterations (intervals) is 1.326 mW from the simulation of 
power consumption. 

Fig. 5. Trained Data in the band for AI-related to COVID’19 Forecast.  

Table 3 
Trained Data in the band for AI related to COVID’19 Forecast.  

Iteration Train Data Validation Data Test data COVID’19 Prediction 

0 1 1 1 1 
5 0.9 0.9 0.9 0.8 
10 0.8 0.7 0.8 0.6 
15 0.7 0.6 0.5 0.5 
20 0.6 0.5 0.4 0.4 
25 0.5 0.4 0.3 0.3 
30 0.5 0.1 0.2 0.3 
35 0.3 0.2 0.1 0.1 
40 0.2 0.1 0.1 0.1  

Table 4 
Comparison of the Performance Metrics (Sensitivity, Specificity, and Accuracy) of SVM and KNN classifiers in fusing different combinations of feature sets.  

Feature Index Fusion Method Classifier Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

ECG 

Single Modality 
(no fusion) 

SVM 0.90 0.80 0.87 
KNN 0.87 0.82 0.84 

PPG 
SVM 0.83 0.79 0.82 
KNN 0.76 0.8 0.78 

Temperature 
SVM 0.78 0.82 0.80 
KNN 0.77 0.74 0.76 

Accelerometer SVM 0.76 0.81 0.79 
KNN 0.72 0.73 0.75 

ECG + PPG 
DCA fusion 

SVM 0.97 0.89 0.94 
KNN 0.93 0.87 0.90 

Temperature + Accelerometer 
SVM 0.96 0.89 0.92 
KNN 0.94 0.85 0.89 

ECG + PPG + Temperature + Accelerometer MDCA fusion 
SVM 0.98 0.95 0.97 
KNN 0.94 0.92 0.93  
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Fig. 6. Running time (Seconds) of different methods consumed in the classification of COVID-19 Prone Patients.  

Fig. 7. Performance Comparison using RoC Curves.  

Fig. 8. Comparison of transmitting power in both simulating scenario.  
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Fig. 9. Power Consumption with COVID-19 patients.  

Fig. 10. Power Consumption without COVID-19 patients.  

Fig. 11. Comparison of total power in both simulating scenario.  
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On the contrary, if any patient is detected, this power consumption is 
3.404 mW. Hence, the power consumed in 10 iterations in the trans-
mission is 2.078 mW. Also, the total power consumed in 10 iterations is 
nearly 8.646 mW. 

7. Conclusion 

IoT solutions in the medical domain provide a seamless environment 
by monitoring remote patients and providing medical help to distant 
locations by integrating different 1D biomedical signals into a single 
domain. During the COVID-19 pandemic situation, remote patient 
monitoring has become an absolute necessity as medical services fell 
short of pharmaceutical help. This work proposed an IoT ontology-based 
remote patient monitoring system that can help contain the spread of 
virus and treatment using sensory 1D Biomedical Signals such as ECG, 
PPG, temperature, and accelerometer. The research work aims to pro-
vide information regarding Corona Patients/suspected Corona patients 
in any locality to cohorts (colleagues, family members, visitors etc.). 
Three leading technologies are used to develop the IoT patient moni-
toring application described in this paper: RFID, microcontrollers, and 
sensors. 

Along with that, the ontology related to COVID-19 may be incor-
porated. Here, the efficiency of the proposed model is validated in terms 
of accuracy and power consumption. During simulation of the proposed 
model, it becomes evident that the model gives an accuracy of 96.33 %. 
Additionally, it is also observed that the proposed model is also efficient 
in terms of power consumption. The obtained accuracy and energy ef-
ficiency establishes the effectiveness of the proposed model. 
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