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Abstract: 

In this paper, the capability of combined use of computational fluid dynamics (CFD) and 

data-based deep learning to predict fluidized beds' complex behavior without solving 

transport equations is being examined. A convolutional neural network (CNN) is trained 

to anticipate fluidized bed volume fraction contours based on the numerical 

simulations' results and data-based machine learning. The trained CNN receives the 

first ten frames from the CFD as input and predicts the next frame. This process 

continues until all the required frames are obtained. The results show the superior 

spatial learning capability of CNN and how its combination with CFD can reduce the 

required computational power without compromising the accuracy. This paper also 

indicates a pathway to CFD simulations' future if deep learning is fully utilized and 

integrated.   
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1. Introduction 

Gas–solid fluidized beds are widely used in industry, particularly in the petroleum and 

chemical sectors. Understanding fluidization is of great interest, and a considerable 

number of studies have been conducted to study fluidization phenomena [1], 

investigate bubble formation mechanism [2], and flow patterns of fluidized beds [3]. 

Computational fluid dynamics (CFD) has been employed regularly as an effective 

technique to study the complex nature of gas-solid fluidized beds [4 - 7]. Two common 

approaches of CFD modeling of fluidized beds are Eulerian-Lagrangian and Eulerian-

Eulerian. In the Eulerian-Lagrangian approach, the gas phase is considered a continuous 
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phase, while the solid phase is the discrete one. In this approach, Newton's second law 

of motion is applied to each particle, and the effects of particle interactions and forces of 

gas-phase are taken into consideration [8]. 

On the other hand, in the Eulerian-Eulerian approach, gas and solid phases are 

considered interpenetrating continua. The integral form of continuity, momentum, and 

thermal energy equations is utilized for both phases and jump conditions of the 

interface. In this approach, the solid phase is assumed to behave like the fluid phase [9]. 

Askaripour and Dehkordi [10] modeled a 3D gas-solid fluidized bed with various drag 

models to compare the bed's expansion ratio and solids' velocity. A wide range of 

particle size, the bed's static height, and fluidization velocity were investigated in their 

study. The results showed that the Wen-Yu drag model [11] provides the best 

prediction of the expansion ratio and solids velocity. Askarishahi ae al. [12] carried out a 

numerical study on the flow pattern of solid in gas-solid fluidized beds to investigate the 

effects of particle size and time averaging by using the two-fluid model (TFM) closed by 

the kinetic theory of granular flows (KTGF). Their results showed that the particle size 

does not have a significant impact on the solid circulation and its flow pattern. It was 

also concluded that there is an optimum value for time-sampling, which is far smaller 

than the characteristic time for solid distribution. 

Recently, a handful number of researchers employed machine and deep learning 

techniques in fluid mechanics, particularly in multi-phase flows [13 - 16]. CFDNet [17] 

predicts the fluid's primary physical properties, including velocity, pressure, and eddy 

viscosity, using a single convolutional neural network at its core.  Thuerey et al. [18] use 

U-Net to investigate deep learning models' accuracy for Reynolds-Averaged Navier-

Stokes solutions' inference. Tompson et al. [19] proposed a convolutional neural 

network that leverages the approximation power of deep learning with the precision of 

standard solvers to obtain fast and highly realistic simulations to solve the 

incompressible Euler equations using the standard operator splitting method, in which 

a large sparse linear system with many free parameters must be solved. Zhu et al. [20] 

used machine learning methods for turbulence modeling in subsonic flows around 

airfoils and reconstructed a mapping function between the turbulent eddy viscosity and 

the mean flow variables by neural networks. Ling et al. [21] presented a deep learning 

method to learn a model for the Reynolds stress anisotropy tensor from high-fidelity 
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simulation data. Although many researchers employed artificial neural networks (ANN) 

and deep learning techniques in complex fluid mechanics, no research has been 

conducted on the frame generation in fluidized beds by coupling CFD and deep learning 

models. In this paper, the authors tried to close this gap by introducing a combination of 

CFD and deep learning techniques for frame generation in fluidized beds. In this hybrid 

system, the CFD generates the first ten time-step particle volume fraction contours. The 

deep learning model was then applied to generate the next time-steps contour without 

solving any transport equations. The CFD simulation was done using AnsysFluent, and 

20000 frames were generated during the numerical simulation, then an encoder-

decoder neural network was employed to train the network with 18000 frames. After 

the training process concludes, the encoder network gets sequential stacked frames as 

input and converts them into a latent vector. The decoder network gets the latent vector 

to predict the next frame. Then the predicted frame and all the previous frames create 

the new stack of frames and feed it again into the encoder, and this process continues 

until all the frames are generated.  

The CFD simulation was done on high performance computer (HPC) with 240 cores of 

Intel Xeon with the CPU clock of 2.6 GHz at South African CSIR/DST Centre for High 

Performance Computing (CHPC) centre. The simulation took 48 hours. For the CNN 

section, two NVIDIA V100 16 GB with 24 cores at CHPC were used for training. The 

training time was 10 hours. After training the CNN, the time required to predict each 

frame (interface time) was 0.10348170042037964 seconds. 

2. Numerical Modelling 

2.1 Governing equations 

In this study, the Eulerian-Eulerian approach is employed to model the fluidized bed. As 

mentioned before, in this approach, it is assumed that both gas and solid phases are 

interpenetrating continua. The Navier-Stokes equations representing the particle-

particle interactions and the gas-solid interactions were developed for the solid phase. 

The continuity equations can be written for the gas and particle phases as follows: 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔) + 𝛻. (𝜀𝑔𝜌𝑔�⃗�) = 0   

(1) 
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𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠) + 𝛻. (𝜀𝑠𝜌𝑠�⃗�) = 0 

(2) 

and momentum equations for both phases are: 

𝜕

𝜕𝑡
(𝜀𝑔𝜌𝑔�⃗�𝑔) + 𝛻. (𝜀𝑔𝜌𝑔�⃗�𝑔�⃗�𝑔) = −𝜀𝑔𝛻𝑃𝑔 + 𝛻. 𝜏𝑔 + 𝜀𝑔𝜌𝑔�⃗� − 𝐹𝑔𝑠 

(3) 

𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠�⃗�𝑠) + 𝛻. (𝜀𝑠𝜌𝑠�⃗�𝑠�⃗�𝑠) = −𝜀𝑠𝛻𝑃𝑠 + 𝛻. 𝜏𝑠 + 𝜀𝑠𝜌𝑠�⃗� + 𝐹𝑔𝑠 

(4) 

Where ε, ρ, and �⃗�𝑠  the volume fraction, density, and velocity, respectively. P denotes 

pressure, τ denotes stress tensor, and Fgs represents the exchange of momentum 

between phases. 𝐹𝑔𝑠 can be calculated as 𝐹𝑔𝑠 = 𝛽𝑔𝑠(𝑣𝑔 − 𝑣𝑠). The parameter of 

𝛽𝑔𝑠 known as a drag function, plays a crucial role in predicting solid-gas behavior, and 

Wen & Yu's model [11] was used to calculate this parameter. 

The solid phase (particle) is treated as a fluid with adequate transport characteristics. 

The stress tensor τs is defined as follows: 

𝜏𝑠 = (−𝑃𝑠 + 𝜂𝜇𝑏𝛻. �⃗�𝑠)𝐼 + 2𝜇𝑠𝑆𝑆 (5) 

𝑆𝑆 =
1

2
(𝛻 → 𝜐𝑠 + (𝛻 → 𝜐𝑠)𝑇) −

1

3
𝛻. → 𝜐𝑠 �̄̄� 

(6) 

𝜂 =
1 + 𝑒𝑝𝑝

2
, 𝜇𝑏 =

256

5𝜋
𝜇𝜀𝑠

2𝑔0,𝑠𝑠 
(7) 

Where 𝜇𝑠, 𝜇𝑏and 𝑒𝑝𝑝 denote the solid shear viscosity, bulk viscosity, and restitution 

coefficient, respectively. The solid shear viscosity 𝜇𝑠 model of Agrawal et al. [22] was 

used to estimate the tangential force. Due to the fluctuations of particle velocity, the 

equation of motion was coupled with an equation that predicts the pseudo-thermal 

energy. Finally, to examination, the frictional viscosity, the proposed model of Schaeffer 

[23] was chosen since it can satisfy the Coulomb yield status at a too high concentration 

of solids.  

2.2 Initial and boundary conditions 

The boundary conditions used for the modeling of the fluidized bed are as follows: 

uniform velocity for gas at the bottom boundary, no-slip boundary for all wall sides with 

particle-wall restitution of 0.9 and the specularity coefficient of 0.9, and the atmospheric 
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pressure was selected to allow particles for leaving the bed. The initial conditions of the 

bed are given in TABLE 1. 

2.3 Grid generation 

In the numerical simulation, grids size has a significant impact on the results.  

Therefore, choosing the right size of grids is one of the critical parts of a numerical 

study. Most studies have been performed on numerical problems that use grid 

independence to determine the optimum grid size. In the Eulerian-Eulerian approach 

for modeling fluidized beds, the grids' size depends on the particle size [24]. Therefore, 

in the present study, to generate the mesh, we selected ∆x =∆y = 5 mm and ∆z = 3 mm 

for each element for the particle size of 250μm. Consequently, the number of nodes for 

height, width, and depth of the bed are 300, 60, and 5, respectively, and the total 

number of cells is 90000. 

2.4 Numerical simulation method 

In the present study, the conservation equations of energy, momentum, mass, 

turbulence for both phases of gas and solid, and the equation of granular temperature 

for the solid phase have been solved simultaneously. The other equations explained in 

the previous section are used to predict the bed's particles' behavior.  The finite volume 

method (FVM) has been adopted to solve the governing equations, and the SIMPLE 

Coupled algorithm has been manipulated for the pressure-velocity coupling. The first-

order implicit method and the second-order upwind method have been implemented 

for transient and spatial discretization. TABLE 2 provides all the parameters and 

properties which are required for simulation.  The simulation was performed with a 

time step of 0.0005 seconds, and a fixed CFL number of 1.0 and 40 iterations for each 

time step were considered to reach the required convergence.  The simulation was 

performed for 15 seconds, and the first 10 seconds were ignored to eliminate the 

transient conditions, and the rest of the time was considered the time-averaging. 

Numerical simulation was performed by AnsysFluent software on a high performance 

computer (HPC) with 240 cores of Intel Xeon with the CPU clock of 2.6 GHz at South 

African CSIR/DST Centre for High Performance Computing (CHPC) centre. The 

numerical simulation was done in 48 hours. 
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2.5 Validation of CFD model: 

The bed's particle volume fraction's contour is compared to available X-Ray images of 

Askaripour and Dehkordi [10] to validate the numerical simulation. FIGURE 1 shows a 

visual comparison between experimental and numerical generated contours of particle 

volume fraction with two air inlet velocities of 0.264 (m/s) and 0.936 (m/s). This figure 

shows a good agreement between the numerically generated contours and the 

experimental X-ray pictures. Bed expansion ratio (H/H0) is also used to validate 

numerical simulation results compared to the experimental results. The bed's 

expansion ratio with the air inlet velocity of 0.264 (m/s) was reported to be 1.38, while 

it is numerically calculated to be 1.36. The bed's expansion ratio with the air inlet 

velocity of 0.936 (m/s) was reported to be 2.32, while the numerical simulations 

reported 2.3. In both cases, the numerical results' expansion ratio is in excellent 

agreement with the experimental results. 

3. Convolutional Neural Network (CNN) and Network Architecture 

Convolutional neural networks (CNNs) are currently specialized neural networks for 

processing data with a known grid-like topology. Examples include time-series data, 

which can be thought of as a 1-D grid taking samples at regular time intervals, and 

image data, which can be considered a 2-D grid of pixels. Convolutional networks have 

been tremendously successful in practical applications. The name "convolutional neural 

network" indicates that the network employs a mathematical operation called 

convolution. Convolution is a specialized kind of linear operation. Convolutional 

networks are simply neural networks that use convolution in place of general matrix 

multiplication in at least one of their layers [25]. These neural networks are widely used 

for research related to computer vision and image classification. In this type of neural 

network, images can be fed directly into the network as input, and the feature extraction 

process takes place with the use of convolutional layers. These convolutional layers 

slide a set of randomly initialized independent filters over the images, which transform 

the images based on the filters' values. These filters that are used to extract patterns 

from the images can be learned using Gradient Descent. During the training process, 

filters are adjusted to extract features and generate meaningful information. Hence, the 

values of the filters are the weights that need to be optimized during the training. By 
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stacking multiple convolutional layers on top of each other, each layer will earn 

different input features. The first layers learn to extract simple features like edges, and 

the later layers extract more abstract and in-depth information. However, the use of 

multiple convolutional layers leads to an exponential increase in parameters that need 

to be trained [26].  

The model architecture used for future state prediction in this paper is explained here. 

This problem is approached as a future frame prediction using several sequential 

frames (states of the system) to predict the next frame (state). Then the predicted state 

was used as an input to predict the next frame again and so on.  The proposed network's 

schematic is shown in FIGURE 2 and is based on Autoencoder [27] with one encoder 

and one decoder. The encoder network 𝑓𝜃(𝑧 ∨ 𝑥𝑡−𝑇:𝑡) receives a sequence of T frames as 

input 𝑥𝑡−𝑇:𝑡and encodes them into a low dimensional latent vector z. The decoder 

network 𝑔𝜙(𝑥𝑡+1 ∨ 𝑧)gets the encoded latent vector z and gives back the next frame 𝑥𝑡+1. 

Here θ and φ denote the parameters of the encoder and decoder networks, respectively. 

To find the optimum number of sequential stacked frames, the network was trained for 

five different input sequence lengths of 2, 3, 5, 10, and 15. TABLE 3 shows the amount of 

total loss for each case. Even though the result shows that the input sequence length 

does not significantly impact the total loss, the input sequence length of 10 has the 

lowest total loss and is used for feeding the encoder. The encoder network gets ten 

sequential stacked frames as input and converts them into a latent vector, and the 

decoder network gets the latent vector to predict the next frame. Then the predicted 

frame and nine previous frames create the new stack of ten frames and feed it again into 

the encoder, and this process continues until all the frames are generated. To train this 

encoder-decoder structure and obtain the θ and φ parameters, the negative log-

likelihood loss function is used to minimize the error between the next ground truth 

frame and the predicted frame: 

𝐿 = −𝐸𝑓𝜃(𝑧|𝑥𝑡−𝑇:𝑡)𝑙𝑜𝑔 (𝑔𝜙(𝑥𝑡+1|𝑧)) (8) 

The input images are ten sequential frames with a size of 64×64×3, which are 

concatenated into one tensor of size 64×64×30, and the output is one frame with the 

size of 64×64×3. The encoder network has five Conv-layers of 4×4 kernel size, stride 2 

for all layers except the first one, which is 1, padding 1 for all layers, with 16, 32, 64, 
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128, and 256 channels. Each Conv-layer is followed by a Batch Normalization layer 

except the first Conv-layer and Leaky ReLU activation function. The feature map is 

flattened and followed by a linear layer with Batch Norm and Leaky ReLU activation 

function to create the latent vector with a dimension of 100. All the Leaky ReLU 

activation functions have a negative slope of 0.2. The decoder network, the predictor's 

head, has one fully connected layer followed by Batch Normalization-layer and ReLU 

activation function and a reshape function to generate the feature-map 256×4×4, and 

then four Transposed Convolution-layers with stride 2, padding 1, and kernel size 4×4. 

The Transposed Convolution-layers have 64, 32, 16, and 3 channels followed by Batch 

Normalization-layer and ReLU activation function except the last one, followed by a 

Sigmoid activation function. The detailed structure of the generator (both encoder and 

decoder) used in this paper has shown in FIGURE 3. The Autoencoder network is 

trained using Adam [28] optimizer with the learning rate of 0.001 and the batch size of 

1024 for 500 epochs. The model is implemented in PyTorch [29]. A data set of 20000 

frames is collected, and 90 percent of it is used for training and the remaining for 

testing. Two NVIDIA V100 16 GB with 24 cores at CHPC were used for training the 

network. The training was done in 10 hours, and the time required to predict each 

frame (interface time) after the training was 0.10348170042037964 seconds. 

4. Results and Discussions: 

The deep learning generated frame takes the first ten time-steps of the CFD simulated 

frames and generates the eleventh frame without solving transport equations. In our 

proposed model, CFD and deep learning are not used to generate an identical time-step 

frame. Still, in this section, to show the capability of our proposed hybrid model, both 

CFD and deep learning were used to generate the contours of particle volume fraction at 

t = t0, t = t0 + 83∆t, t = t0 + 95∆t, and t = t0 + 170∆t (time-steps are 0.001 seconds). These 

frames were compared in FIGURE 3 to FIGURE 6. These figures also help understand 

how many independent time-steps, the deep learning generated frames, and CFD results 

are compatible with contours of particle volume fraction in a fluidized bed. FIGURES 

4a1, 4a2, and 4a3 illustrate the CFD and the deep learning generated contours of 

particle volume fraction and the average volume fraction of the particles in different 

positions in the direction of the x-axis at t = t0, respectively. The results show that the 

flow patterns are in good agreement with each other, and in both cases, most particles 
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are amassed on the right side of the column and in the middle part of the bed. The result 

also shows that for both CFD and deep learning generated frames, the gas phase 

concentration is higher than that of the solid phase. FIGURES 4b1-4b3 show the 

numerical simulation results and deep learning developed particle volume fraction 

frames after 83 time-steps at t0 + 83∆t. It is essential to mention that between t = t0, and 

t = t0 + 83∆t, no transport equation has been solved. FIGURE 4b2 is in good agreement 

with the CFD-generated contour. The bed's expansion height and the particles' 

accumulation location are approximately similar in both FIGURES of 4b1 and 4b2 even 

after 83 time-steps. The proposed deep learning model and CFD after 95 time-steps are 

shown in FIGURES 4c1 to 4c3. 

For 95 straight time-steps from t = t0 and t = t0+ 95∆t, the deep learning proposed model 

generated the particle volume fraction contour independent of CFD and without solving 

any transport equation. Even though FIGURES 4c1 and 4c2 visually show an acceptable 

agreement, the careful comparison reveals a few deviations in the middle of the bed. 

FIGURE 4c3 also indicates a divergence in the middle of the bed. It is something that 

was expected after 95 time-steps of independent frame generation. Finally, the 

proposed deep learning model and CFD after 170 time-steps are shown in FIGURES 4d1 

to 4d3. These figures show that after 170 time-steps, the proposed deep learning model 

cannot generate correct contours of particle volume fraction in a fluidized bed 

compared to the result of CFD, especially at a nondimensional length of 0.5. It is easily 

noticeable that at the nondimensional length of 0.4 to 0.6, an area at the bottom of the 

bed consists of the gas phase in the CFD-generated contour. 

In contrast, there is none in the deep learning generated ones. The result demonstrates 

that the proposed deep learning model can predict fluidized beds' behavior and 

generate future frames independent of CFD without solving any transport equation. It is 

observed that the error gradually increases with the increase in the number of time-

steps. It is also shown that there is an optimal time-step that the proposed deep learning 

model cannot generate the frame independently and with acceptable accuracy after that 

time-step. That is why generating frames using the proposed deep learning model stops, 

and the model automatically uses CFD for the successive frames. When CFD generates 

enough frames, the deep learning model will start again to generate frames, and this 

process continues until all required frames are generated. 
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5. Conclusion 

This study illustrates the high capability of a deep learning-based model to predict the 

complex behavior of fluidized bed and independent frame generation of particle volume 

fraction quicker than CFD with less computational load due to not solving transport 

equations. Our proposed deep learning model is first trained using the CFD generated 

frames from t = 0 to t = t0. After completing the training process, the proposed deep 

learning model becomes independent of CFD and can generate the next time-step frame. 

The proposed CNN can predict the next time-step frame at t = t0 + ∆t quicker than CFD. 

It is because the proposed CNN requires less computational power after being trained. It 

is also related to the fact that the proposed CNN generates the particle volume fraction 

contour without solving any transport equation and using computer vision. 
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TABLE1. Initial conditions of the bed 

Freeboard section Minimum fluidization condition 

𝜀𝑔 = 1 𝜀𝑔 = 𝜀𝑚𝑓 

𝑣𝑠,𝑥 = 0, 𝑣𝑠,𝑦 = 0, 𝑣𝑠,𝑧 = 0 𝑣𝑠,𝑥 = 0, 𝑣𝑠,𝑦 = 0, 𝑣𝑠,𝑧 = 0 

𝑣𝑔,𝑥 = 0, 𝑣𝑔,𝑦 = 𝑣𝑚𝑓 , 𝑣𝑔,𝑧=0 𝑣𝑔,𝑥 = 0, 𝑣𝑔,𝑦 = 𝑣𝑚𝑓 𝜀𝑚𝑓⁄ , 𝑣𝑔,𝑧=0 
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TABLE 2. Required parameters and properties for CFD modeling 

Parameter Value 

Particle density (kg.m-3) 

Particle sizes (µm) 

Particle-wall restitution coefficient 

particle-particle restitution coefficient 

Gas density (kg.m-3) 

Gas viscosity (Pa.s) 

Column height (m) 

Column width (m) 

Column depth (m) 

Specularity coefficient 

The angle of internal friction (◦ ) 

Initial bed voidage fraction 

Maximum packing limit 

2500 

250 

0.9 

0.9 

1.225 

1.789×10-5 

1.5 

0.3 

0.015 

0.5 

30 

0.4 

0.63 
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TABLE 3. Total loss for different input sequncence lengths 

Input sequence length  2 3 5 10 15 

Total Loss 0.2513 0.2506 0.2489 0.2406 0.2473 
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Figure 1. Comparison between CFD and experimental results for two different inlet 
velocities (a) 0.264 m/s, and (b) 0.936 m/s 
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FIGURE 2. Convolutional autoencoder architecture used in current study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 
 

 

 

FIGURE 3. Detailed structures of the proposed CNN based encoder-decoder 
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FIGURE 4. (a1) CFD generated frame at t = t0 (a2) deep learning generated frame at t = t0 
(a3) the average volume fraction of the particles in different positions in the direction of 
the x-axis at t = t0 (b1) CFD generated frame at t = t0 + 83∆t (b2) deep learning 
generated frame at t = t0 + 83∆t (b3) the average volume fraction of the particles in 
different positions in the direction of the x-axis at t = t0 + 83∆t (c1) CFD generated frame 
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at t = t0 + 95∆t (c2) deep learning generated frame at t = t0 + 95∆t (c3) the average 
volume fraction of the particles in different positions in the direction of the x-axis at t = 
t0 + 95∆t (d1) CFD generated frame at t = t0 + 150∆t (d2) deep learning generated frame 
at t = t0 + 150∆t (d3) the average volume fraction of the particles in different positions 
in the direction of the x-axis at t = t0 + 150∆t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


