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Abstract

In this paper, a two-stage stochastic programming model is developed for the asset protection routing prob-

lem (APRP) to be employed in anticipation of an escaped wildfire. In this model, strategic and tactical

decisions are considered in a two-stage setting. The locations of protection depots are determined, taking

into account the routing decisions under different possible scenarios. To solve the proposed model, the Frank-

Wolfe Progressive Hedging decomposition approach is employed. A realistic case study set in south Hobart,

Tasmania, is considered. In this study, the scenarios for uncertain parameters are generated based on real

data, considering different sources of uncertainties such as wind direction and speed and total monthly rain-

fall. Computational experiments have been conducted to demonstrate the solution algorithm’s efficiency in

solving the asset protection routing problem with a two-stage stochastic framework. The numerical results

suggest that more assets with higher values can be protected by considering the proposed two-stage stochastic

programming model. The value of the approach is particularly significant where resources are limited, and

uncertainty levels are high. Moreover, the model and solution procedure can be applied to other disaster

situations in which protection activities occur.

Keywords: Asset protection, Location routing problem, Stochastic programming, Frank-Wolfe Progressive

Hedging method, Wildfires.

1. Introduction

Bushfires are natural disasters with devastating impacts on human lives and property. In Australia, the

New South Wales Rural Fire Service (NSW RFS) reported that, in addition to 25 fatalities, 2162 homes were

destroyed and 849 damaged by wildfires in 2019. Also, NSW RFS reported that during this time, 218 and

170 facilities were destroyed and damaged, respectively (Newsweek, 2020). However, the consequences of

wildfires, in terms of property damage and loss of human life can be mitigated by proper planning. Incident

Management Teams (IMT) respond to a range of different natural or anthropogenic disasters, including
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fires, floods, earthquakes, and tsunamis (Van der Merwe et al., 2015) and, thus, play an essential role in

the management of a disaster. IMT focus their efforts on the four phases of a disaster response, namely

mitigation, preparedness, response, and recovery (Altay and Green III, 2006). Analyzing the potential

danger and planning for activities that mitigate the effects of a disaster is performed in the first two phases.

In contrast, in the last two phases, the IMT provides relief to the victims, and there is the rebuilding of

infrastructure (Altay and Green III (2006)). Although all phases are critical, the first phase is the one

comprising strategic decisions since proper preparation in the first phase can ease activities in the subsequent

phases.

Wildfires have attracted intense research in recent years because of significant threats arising from wildfires

in many countries. Based on a California Department of Forestry and Fire Protection (CAL FIRE) report in

October 2017, 250 wildfires occurred in Northern California and led to 43 fatalities (CAL FIRE, 2017). Also,

the Thomas Fire in Southern California ruined more than 1300 assets in 2017 (CAL FIRE, 2018). Besides,

there have been several fire incidents in the wildland-urban interface (WUI) in Australia. The Ash Wednesday

bushfires were a series of bushfires in south-eastern Australia on 16 February 1983 that caused widespread

destruction across South Australia. The Black Saturday bushfires were a series of bushfires burning across

the Australian state of Victoria on Saturday, 7 February 2009, where 173 people died, and 414 were injured.

Of further concern is the observed rise in both fire occurrence and area burnt in Canada (Podur et al., 2002)

and the US (Westerling et al., 2006). Other countries, such as Russia, have also experienced wildfire events

in recent years (Kharuk et al., 2007).

These examples serve to highlight the need for fire incidents to be anticipated and appropriately planned

for. In such cases, the IMT will manage suitable responses to a wildfire and the interventions in each of the

aforementioned phases. In the first phase (the preparedness phase), strategies are implemented according

to the available or predicted information to minimize fire impact. Fuel management and fire suppression

preparedness planning are some examples of the tasks in this phase that aim to mitigate potential outbreaks.

In the third phase (response), active or defensive actions are implemented in response to conditions and

acquired information. Central to fire fighting is the management of resources, a tactical-level activity, while

defensive activities comprise issuing warnings and evacuation of people. Asset protection measures also take

place in this phase. On days of extreme fire activity, fire suppression is ineffective and defensive tasks like

protecting threatened assets, evacuating people, and issuing warnings become the central task (CSIRO 2009).

In the last phase (recovery), incident analysis, post-fire rehabilitation and fauna rescue are performed.

In several related studies, operations research tools have been used to plan for the different stages of

wildfires. They are summarized and compared in Table 1. According to Table 1, it can be concluded that

most of the studies have considered the problem in a deterministic setting. In these studies, the planning

has been undertaken for all phases apart from the recovery phase. The nature of this problem is such that

the preparedness and response phases are the most critical since they can influence the efficacy of the later

phases.
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Table 1: A summary of recent studies related to optimization for the wildfire planning
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Stage Parameters
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Minas and Hearne
(2016)

Burning units * E IP

Shahparvari et al.
(2016)

* * E MIP

Rachmawati et al.
(2015)

Fuel management * E and HA MIP

Minas et al. (2015) Fuel management
and fire suppression
preparedness

* E IP

Van der Merwe
et al. (2015)

* * E IP

Donovan and Ride-
out (2003)

Resource Alloca-
tion for Wildfire
Containment

* E IP

Haight and Fried
(2007)

Fire suppression re-
sources allocation

* Fd HA IP

Ntaimo et al.
(2012)

* Fl - MIP

Belval et al. (2015) Suppression Re-
source planning

* W - MIP

Kabli et al. (2015) Fuel treatment
planning

W and Fo E IP

Matsypura et al.
(2018)

Fuel management * HA MIP

Krasko and Reben-
nack (2017)

* EM E MINLP

Shahparvari and
Abbasi (2017)

* Ep, Tw and Bp HA MIP

E:Exact, HA: Heuristic approach, Fd: Fire days, Fires locations, W:Weather condition, Fo: Fire
occurrence, Em: effects of mitigation, Ep: Evacuee population, Tw: time windows, Bp: bushfire
propagation
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Moreover, from the studies reviewed in Table 1, it can be seen that in the preparedness stage, the two

main activities are fuel management and suppression planning. It can also be observed that there are studies

with deterministic parameters for the response phase, including planning for asset protection, evacuation

and fire suppression. However, some factors that affect the parameters of a mathematical model, such as

weather conditions, ignition point, and the intensity of fire, are unknown at the planning stage. Therefore,

considering uncertainty in this problem is crucial for obtaining reliable recommendations in terms of decision

support. There are some studies considering uncertain parameters, and some of them are reviewed next.

Haight and Fried (2007) proposed a two-stage stochastic model by considering the number of resources

required at different locations as an uncertain parameter. In their model, the number of resources de-

ployed to each protection depot and the assignment of these resources to fire locations are the first- and

second-stage decision variables, respectively. Belval et al. (2015) proposed a multi-stage stochastic model to

determine suppression activities for minimizing the area destroyed by fire. Kabli et al. (2015) proposed a

two-stage stochastic programming model for fuel treatment in rural forests by considering different scenarios

for weather conditions and fire occurrence. Zhou and Erdogan (2019) proposed a two-stage stochastic model

for the response stage by considering the wildfire spread as a stochastic parameter in allocating firefighting

and resident evacuation. Two objectives were considered, including total cost and the number of people at

risk, and a goal programming approach was applied to solve the proposed model. Shahparvari et al. (2017)

proposed a capacitated vehicle routing problem for evacuation during a bushfire. They considered the pop-

ulation of evacuees at the town and its shelter capacity as uncertain parameters, which were represented

by triangular fuzzy numbers. Most of these try to allocate optimal resources for efficient fire fighting with

minimum cost, while one study Kabli et al. (2015) considers a two-stage stochastic programming approach to

fuel treatment planning. To the best of our knowledge, no previous study has considered the asset protection

routing problem with stochastic parameters based on a two-stage stochastic programming approach, which

is the focus of this study.

We focus on the asset protection routing problem (APRP), in which the protection depots should be

optimally located to achieve effective and efficient asset protection with the least cost. Since escaped wildfires

destroy infrastructure and community assets, protecting such infrastructure in a timely manner should be

the primary goal. Communication towers, power network dispatchers, hospitals, schools, hotels, historical

buildings, bridges, and factories are examples of community assets. Therefore, a location routing model that

considers the protection of key assets is proposed in this paper. Amideo et al. (2019) and Bruni et al. (2020)

studied location routing and vehicle routing problems for an evacuation procedure under disaster situations,

respectively. Moreover, according to the nature of an asset and its function and associated risks, a value may

be assigned to each asset. To protect an asset, the required capabilities and resources should be available

over a time window determined by the advancing fire. Protection time (called service time) differs from one

asset to another. Service and travel times, routing cost, the value of assets, the time window upper bound

are stochastic parameters that depend on, e.g., the weather condition or wind speed.
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In most studies of related vehicle routing and location routing problems, two approaches, namely robust

optimization and stochastic programming were applied to address uncertainty. Schiffer and Walther (2018)

proposed a robust location routing problem for electric vehicles by considering customers’ patterns as an

uncertain parameter. Also, they developed a parallelized adaptive large neighbourhood search algorithm.

Shi et al. (2019) proposed a robust model for a vehicle routing problem in home health care planning by

considering uncertainty in travel and service times. Lu and Gzara (2019) proposed a robust formulation for

the vehicle routing problem model under demand uncertainty. Bertazzi and Secomandi (2018) proposed a

model of a vehicle routing problem with stochastic demand and an extended roll-out algorithm and improved

its efficiency. Zhang et al. (2019) proposed a two-stage stochastic model for a location and routing problem

for electric vehicles with stochastic demand. Salavati-Khoshghalb et al. (2019) developed an exact method

for solving a stochastic vehicle routing problem by considering the demand.

In this study, a two-stage stochastic programming formulation is proposed to determine the locations

of protection depots and the allocation of the assets to them based on the establishment and routing costs

as well as the utility level associated with protecting the assets. The first-stage decision is the location of

protection depots, while the second-stage decisions are asset protection plans according to each scenario of

fire spreading. The first- and second-stage decision variables represent the tasks in the preparedness and

responses phases, respectively. Temperature, monthly rainfall, wind speed, and the time of day that the fire

started are the sources of uncertainty considered for generating scenarios in this study. A realistic set of

scenarios for uncertain parameters are generated based on real data taken from south Hobart, Tasmania.

The complexity of two-stage and multi-stage stochastic programming models increases with the number

of scenarios. Therefore, scenario-based decomposition algorithms, including Progressive Hedging (PH) and

dual decomposition have been proposed to deal with the increase in computational time (Guo et al. (2015)).

Progressive Hedging, originally proposed by Rockafellar and Wets (1991), is based on augmented Lagrangian

dual problems and is guaranteed to converge to a global optimal solution for convex problems (i.e., only

including continuous decision variables). However, there is no guarantee of convergence of PH for stochastic

mixed-integer programming (SMIP) models. The combination of PH with other algorithms has recently been

proposed for solving two-stage and multi-stage models with integer first-stage decision variables. Boland et al.

(2018) proposed an algorithm that combines PH and the Frank-Wolfe method for solving SMIP models with

integer decision variables in different stages. Boland et al. (2019) provided convergence guarantees for a

close variant of FW-PH to SMIPs under the perspective of a proximal bundle method. Barnett et al. (2017)

proposed an algorithm based on a combination of PH and a branch-and-bound approach for solving multi-

stage models. In this method, PH is used in each node of the branch-and-bound algorithm. Guo et al. (2015)

proposed a method that used PH and dual decomposition algorithms in an integrated way to speed up the

convergence of the dual decomposition algorithm to the optimal solution.

In this study, a PH-based algorithm is used to achieve a tight dual bound for the problem while employing

decomposition. The first-stage decision variables in the proposed model are binary variables representing the
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decisions concerning the location of the protection depots. Because of the integrality of the first-stage decision

variables, there is no guarantee that PH will converge to a globally optimal solution. Therefore, a combination

of the PH algorithm and the Frank-Wolfe method, the Frank-Wolfe Progressive Hedging (FW-PH) algorithm

as proposed by Boland et al. (2018), is used for obtaining dual (i.e., lower) bounds for the proposed SMIP

model. Unlike PH, FW-PH is guaranteed to converge to the optimal Lagrangian dual bound of a SMIP and

does not suffer from premature convergence and cycling issues.

The paper has been organized as follows. The problem formulation is presented in the next section. A

brief introduction to the FW-PH algorithm is given in Section 3. The scenario generation scheme developed

for our study is presented in Section 4. Numerical examples and analyses are presented in Section 5, and

finally, concluding remarks are presented in the last section.

2. Problem definition

In the asset protection problem, the assets need to be protected through protection activities, such as

clearing potential ignition sources and hosing down structures by teams dispatched from depots. Each asset

should be protected in a given time window related to the fire spread. The depots can be established

in different locations and can be permanent structures. However, they often are simple temporary bases

comprising teams and vehicles located at strategically designated waiting places. The selection of suitable

locations for establishing protection depots will determine the travel times to the assets and, as a result,

significantly affect the number of assets that can be protected.

Because of the limited number of available resources and the time window for protecting each asset, often

not all assets can be protected. Therefore, assets are selected for protection after considering their utility

values and risk of damage. The utility value for each asset is determined following criteria such as monetary

aspects, the importance of the asset to the community, and the number of people affected.

Wildfire intensity is a significant hazard to assets and depends on temperature, monthly rainfall, and

wind speed. The risk of damage for each asset depends on how long the wildfire will take to reach it (i.e.,

the upper bound of the time window for protecting a given asset), which determines the latest time by which

firefighters must depart from an asset. Assets with earlier (i.e., smaller) upper bounds in their protection time

windows are at greater risk of damage. Figure 1 provides a schematic representation of the problem. Two

types of assets, including schools and electricity substations, are considered. As shown in Figure 1, three

assets are selected to be protected according to their corresponding utility and risk values. The problem

consists of locating protection depots over potential locations, allocating assets to located protection depots,

selecting assets to be protected according to their protection time windows, utility values, or other resource

limitations. Finally, the routing plan is used to protect the selected assets.

The utility value and risk of damage for each asset and the effect of these factors on protection decisions are

illustrated in the example presented in Figure 1. Assets with greater utility values are selected for protection

based on their corresponding time window. Moreover, the routing order will be decided based on travelling
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costs. In disaster conditions, mitigating damage and keeping people safe is more important than travelling

costs. Therefore, assets far from the protection depot might be selected for protection in case of high utility

values.

Because of the inherent uncertainty, this problem is modeled as a two-stage stochastic programming

model. The decisions of interest are the location of the protection depots, which must be determined in

advance. The assumptions of the proposed model are the following:

• The protection depots have equal protection capacity.

• It is assumed that the vehicles are heterogeneous in terms of travel time and cost, but each vehicle can

do all activities required for asset protection.

• The upper bound of the time window for each asset is considered an uncertain parameter and directly

affected by temperature, monthly rainfall, and wind speed, while the lower bound of the time window

for all assets is assumed to be the start time of the wildfire. An asset can be protected before the upper

bound of its time window.

• The utility value of each asset depends on the starting time of the fire. Therefore, the utility value for

each asset is considered an uncertain parameter.

• The service time to protect an asset depends on the wildfire intensity and is affected by temperature

and monthly rainfall. Therefore, asset service times are also considered uncertain parameters.

• Travel time and cost are considered as uncertain parameters.

Figure 1: A schematic view of the problem.
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2.1. Model notation

We present the notation used to formulate the proposed model.

Sets:

I= { 1, 2, ..., I } Set of assets which may face bushfire hazard and need protection.

J= { I+1, I+2, ..., I+J} Set of potential nodes which may be selected to establish a protection depot.

N= { 1, 2, ..., I+1, I+2, ..., I+J} Set of all nodes including assets and potential protection depots.

K= { 1, 2, ...,K} Set of vehicles.

Ξ= { 1, 2, ..., S} Set of scenarios.

Parameters:

Ej Establishment cost of protection depot at node j (j ∈ J ).

Ai Time window lower bound for protecting asset i (i ∈ I).

Bi(ξ) Time window upper bound for protecting asset i (i ∈ I) under scenario ξ (ξ ∈ Ξ).

Vi(ξ) Utility value of node i (i ∈ I) under scenario ξ (ξ ∈ Ξ).

Cii′k(ξ) Routing cost from node i (i ∈ N ) to node i’ (i′ ∈ N ) by vehicle k (k ∈ K) under scenario ξ

(ξ ∈ Ξ).

Oi(ξ) Operation time in protecting node i (i ∈ N ) under scenario ξ (ξ ∈ Ξ).

Tii′k(ξ) Travel time from node i (i ∈ N ) to node i’ (i′ ∈ N ) by vehicle k (k ∈ K) under scenario ξ (ξ ∈ Ξ).

M A large number M = max
i,ξ

(Bi(ξ)).

Decision variables:

xj 1 if a protection depot is established at node j (j ∈ J ), 0 otherwise.

zij(ξ) 1 if node i (i ∈ I) is serviced by protection depot j (j ∈ J ) under scenario ξ (ξ ∈ Ξ), 0 otherwise.

yi(ξ) 1 if asset of node i (i ∈ I) is protected under scenario ξ (ξ ∈ Ξ), 0 otherwise.

rii′k(ξ) 1 if vehicle k (k ∈ K) travels along (i, i’ ) (i, i′ ∈ N ) under scenario ξ (ξ ∈ Ξ), 0 otherwise.

tik(ξ) A positive variable indicates the arrival time to node i (i ∈ I) by the vehicle k (k ∈ K)

under scenario ξ (ξ ∈ Ξ).

The proposed APRP model is given by
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(APRP) min.
∑
j∈J

Ejxj + Eξ

(∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)rii′k(ξ)−
∑
i∈I

Vi(ξ)yi(ξ)

)
(1)

s.t.:
∑
k∈K

∑
i∈N

rii′k(ξ) = yi′(ξ), ∀i′ ∈ I, ξ ∈ Ξ (2)

zij(ξ) ≤ xj , ∀j ∈ J , i ∈ I, ξ ∈ Ξ (3)∑
i′∈N

rii′k(ξ)−
∑
i′∈N

ri′ik(ξ) = 0, ∀i ∈ N , k ∈ K, ξ ∈ Ξ (4)

∑
j∈J

zij(ξ) = yi(ξ), ∀i ∈ I, ξ ∈ Ξ (5)

ti′k(ξ) +Oi′(ξ) + Ti′ik(ξ) ≤ tik(ξ) +M × (1− ri′ik(ξ)) , ∀i′ ∈ N , i ∈ I, k ∈ K, ξ ∈ Ξ (6)

Ai ≤ tik(ξ) ≤ Bi(ξ), ∀i ∈ I, k ∈ K, ξ ∈ Ξ (7)∑
i∈N

∑
j∈J

rijk(ξ) = 1, ∀k ∈ K, ξ ∈ Ξ (8)

∑
i′∈N

rji′k(ξ) + ri′ik(ξ) ≤ zij(ξ) + 1, ∀i ∈ I, j ∈ J , k ∈ K, ξ ∈ Ξ (9)

xj , zij(ξ), yi(ξ) ∈ {0, 1}, ∀i ∈ I, j ∈ J , ξ ∈ Ξ (10)

rii′k(ξ) ∈ {0, 1}, ∀i, i′ ∈ N , k ∈ K, ξ ∈ Ξ (11)

tik(ξ) ≥ 0, i ∈ I, k ∈ K, ξ ∈ Ξ (12)

The objective function (1) consists of three terms: the establishment cost and the expected value of both

the routing cost and the associated value of protecting assets. Constraints (2) guarantee that if the i′th asset

is protected under scenario ξ it must be visited in the route of a vehicle. Constraints (3) state that the

ith asset can be protected by the protection depot established at the jth node. Constraints (4) are vehicle

balance equations and ensure that if the ith asset is visited by the kth vehicle, the vehicle must visit another

asset after it or return to the protection depot. Constraints (5) ensure that if the ith asset is protected, it

must be allocated to a protection depot. Constraints (6) and (7) impose time window constraints for each

asset. Also, constraints (6) are sub-tour elimination constraints. Constraints (8) ensure that each vehicle

should return to its established protection depots at the end of the tour. It should be noted that if a vehicle

visits a protection depot immediately after the departure of the same protection depot, it means that the

vehicle is not used for protecting any assets. Constraints (9) guarantee that if the ith asset is allocated to

the jth established protection depot, it must be visited in the route that starts from that protection depot.

Otherwise, the same vehicle can not visit protection dept j and asset i. Constraints (10)-(12) determine the

types and domains of the decision variables.
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3. The Frank-Wolfe Progressive Hedging algorithm

The scale and, consequently, the computational requirements of two-stage and multi-stage stochastic

programming models increase with the number of scenarios. Therefore, if a solution strategy can solve

a scenario-wise decomposed version of the problem, the computation time will likely decrease significantly.

Progressive Hedging (PH) and dual decomposition methods are two well known scenario-based decomposition

methods for two-stage and multi-stage stochastic models (Guo et al., 2015). In these methods, the first-

stage decision variables are artificially replicated for each scenario, and the non-anticipativity conditions are

imposed utilizing constraints. These constraints are relaxed in these methods, thus yielding a model that can

be solved independently for each scenario. As previously mentioned, PH can be used to obtain tight dual

(i.e., lower) bounds for two-stage and multi-stage stochastic programming models. PH is suitable for solving

models with continuous decision variables, but there is no guarantee it will converge when applied to SMIPs.

Boland et al. (2018) proposed a variant of PH that addresses these convergence issues in the context of SMIPs

by incorporating a convexification strategy using polyhedral inner-approximations. Specifically, the Simplicial

Decomposition method (SDM), an extension of the Frank-Wolfe method, is used in FW-PH. This modified

algorithm is guaranteed to construct a lower bound convergent to a tight Lagrangian relaxation (dual) bound

on the (primal) objective value of the APRP. Moreover, feasible primal solutions can be constructed in

each iteration of the algorithm, and so an estimate of a duality gap can be calculated. In FW-PH, the

Lagrangian relaxation version of the APRP model is decomposed into S sub-problems and solved iteratively,

which is possible once the non-anticipativity constraints have been relaxed. Sets of feasible solutions that

typically do not satisfy non-anticipativity constraints are determined by solving these sub-problems. Then,

an augmented Lagrangian reformulation of these sub-problems considering an inner-approximation convex

hull of the constraint set is used to find values approximately equal to the first-stage decision variables. The

pseudocode of the Frank-Wolfe Progressive Hedging (FW-PH) algorithm used in this study is described in

Algorithm 1. The additional sets and parameters in the FW-PH algorithm are as follows:

Parameters:

kmax Maximum number of iterations in the FW-PH algorithm.

ρ Penalty parameter in the FW-PH algorithm.

ωmj (ξ) Dual variables associated with the non-anticipativity constraint of jth first-stage variable in

the FW-PH algorithm at the mth iteration.

ε A tolerance value that is used to verify the convergence condition.

x̂lj(ξ) The solution obtained for the decision variable xj(ξ) in the lth iteration of the FW-PH

algorithm from Sub-1 or Sub-2 models.

ẑlij(ξ) The solution obtained for the decision variable zij(ξ) in the lth iteration of the FW-PH

algorithm from Sub-1 or Sub-2 models.
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ŷli(ξ) The solution obtained for the decision variable yi(ξ) in the lth iteration of the FW-PH

algorithm from Sub-1 or Sub-2 models.

r̂lii′k(ξ) The solution obtained for the decision variable rii′k in the lth iteration of the FW-PH

algorithm from Sub-1 or Sub-2 models.

t̂lik(ξ) The obtained solution for the decision variable tik in the lth iteration of the FW-PH algorithm

from Sub-1 or Sub-2 models.

Sets:

θx(ξ), θz(ξ), θy(ξ), θr(ξ), and θt(ξ) Sets of solutions obtained from Sub-1 and Sub-2 models (x̂lj(ξ), ẑ
l
ij(ξ),

ŷli(ξ), r̂
l
ii′k(ξ), and t̂lik(ξ), respectively) under scenario ξ (ξ ∈ Ξ) in

different iterations of algorithm used as the extreme points in Sub-3

model.

Decision variables:

λl Multipliers used in taking the convex combinations of the solutions in the sets θx(ξ), θz(ξ),

θy(ξ), θr(ξ), and θt(ξ) in the lth iteration used in the Sub-3 model.

The FW-PH method for the proposed model can be described as follows:

Step 1: The initial solutions of all decision variables (x̂0
j (ξ), ẑ

0
ij(ξ), ŷ

0
i (ξ), r̂0

ii′k(ξ), t̂0ik(ξ)) are determined

by considering copies of the first-stage decision variables to decompose the problem in to the sub-problems

(Sub-1(ξ)) for each scenario. Notice that the difference between these sub-problems and APRP is the elim-

ination of the non-anticipativity constraints. Therefore, there is no guarantee of obtaining the same values

for the first-stage decision variables under different scenarios. Then, the expected value of the first-stage

decision variables are calculated based on the value obtained for the first-stage decision variables. The dual

variables in the first iteration for each protection depot under different scenarios ω1
j (ξ) are calculated by

ω1
j (ξ) = ρ(x̂0

j (ξ)− x̄
m+1
j ). Also, the solutions x̂0

j (ξ), ẑ
0
ij(ξ), ŷ

0
i (ξ), r̂0

ii′k(ξ), and t̂0ik(ξ) are included in the sets

θx(ξ), θz(ξ), θy(ξ), θr(ξ) and θt(ξ), respectively. The Sub-1 model under each scenario is presented as follows:
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(Sub-1(ξ)) min.
∑
j∈J

Ejxj(ξ) +

(∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)rii′k(ξ)

)
−

(∑
i∈I

Vi(ξ)yi(ξ)

)
(13)

s.t.:
∑
k∈K

∑
i∈N

rii′k(ξ) = yi′(ξ), ∀i′ ∈ I (14)

zij(ξ) ≤ xj(ξ), ∀j ∈ J , i ∈ I (15)∑
i′∈N

rii′k(ξ)−
∑
i′∈N

ri′ik(ξ) = 0, ∀i ∈ N , k ∈ K (16)

∑
j∈J

zij(ξ) = yi(ξ), ∀i ∈ I (17)

ti′k(ξ) +Oi′(ξ) + Ti′ik(ξ) ≤ tik(ξ) +M × (1− ri′ik(ξ)) , ∀i′ ∈ N , i ∈ I, k ∈ K (18)

Ai ≤ tik(ξ) ≤ Bi(ξ), ∀i ∈ I, k ∈ K (19)∑
i∈N

∑
j∈J

rijk(ξ) = 1, ∀k ∈ K (20)

∑
i′∈N

rji′k(ξ) + ri′ik(ξ) ≤ zij(ξ) + 1, ∀i ∈ I, j ∈ J , k ∈ K (21)

xj(ξ), zij(ξ), yi(ξ) ∈ {0, 1}, ∀i ∈ I, j ∈ J , k ∈ K (22)

rii′k(ξ) ∈ {0, 1}, ∀i, i′ ∈ N , k ∈ K (23)

tik(ξ) ≥ 0, ∀i ∈ I, k ∈ K (24)

Step 2: In this step, a series of sub-problems are constructed based on a scenario decomposition of

the APRP model, by considering the Lagrangian relaxation of non-anticipativity constraints. The solutions

obtained from Sub-2 model are added to the sets θx(ξ), θz(ξ), θy(ξ), θr(ξ) and θt(ξ). Determining sets of

solutions for each set of decision variables by considering the non-anticipativity constraint as relaxed (or soft)

constraints is the main aim of this step.

(Sub-2(ξ)) min.
∑
j∈J

Ejxj(ξ) +

(∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)rii′k(ξ)

)
−

(∑
i∈I

Vi(ξ)yi(ξ)

)
+

∑
j∈J

ωmj (ξ)(xj(ξ)− x̄mj ) (25)

s.t.: (14)− (24)

Step 3: Next, an augmented Lagrangian reformulation of Sub-2 with inner approximation convex hull of

the constraint set (Sub-3) is employed. Considering the inner approximation convex hull of the constraint set

and, as a result, relaxing the integrality requirements of decision variables, ensues the convergence behavior

of the algorithm, as demonstrated in Boland et al. (2018). In this case, the convex hull is determined by

12



the solutions from Sub-1 and Sub-2 models according to the sets θx(ξ), θz(ξ), θy(ξ), θr(ξ) and θt(ξ). The

cardinality of these sets are the same as each other in different iterations. The Sub-3 model under each

scenario is as follows:

(Sub-3(ξ)) min.
∑
j∈J

Ejxj(ξ) +

(∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)rii′k(ξ)

)
−

(∑
i∈I

Vi(ξ)yi(ξ)

)
+

∑
j∈J

ωmj (ξ)xj(ξ) +
ρ

2

∑
j∈J

(xj(ξ)− x̄mj )2

 (26)

s.t.: xj(ξ) =

|θx|∑
l=0

λlx̂
l
j(ξ), ∀j ∈ J (27)

zij(ξ) =

|θz|∑
l=0

λlẑ
l
ij(ξ), ∀i ∈ I, j ∈ J (28)

yi(ξ) =

|θy|∑
l=0

λlŷ
l
i(ξ) ∀i ∈ I (29)

rii′k(ξ) =

|θr|∑
l=0

λlr̂
l
ii′k(ξ) ∀i′ ∈ N i ∈ N , k ∈ K (30)

tik(ξ) =

|θt|∑
l=0

λlt̂
l
ik(ξ) ∀i ∈ I, k ∈ K (31)

|θx|∑
l=0

λl = 1 (32)

0 ≤ xj(ξ) ≤ 1, 0 ≤ zij(ξ) ≤ 1, 0 ≤ yi(ξ) ≤ 1, 0 ≤ rii′k(ξ) ≤ 1,

tik(ξ) ≥ 0, 0 ≤ λl ≤ 1 (33)

4. Scenario generation scheme

In this study, we considered a bushfire emergency inspired by an actual event in the south region of

Hobart, Tasmania (Australia), which is shown in Figure 2. In the problem under study, the selected area

was divided into a grid, with a number assigned to each cell, as depicted in Figure 2.

A square subregion has been selected, and assets and potential locations for the protection depots have

been determined. To generate more realistic scenarios, a list of variables at different levels have been consid-

ered, as depicted in Table 2. Some parameters of the proposed model, such as the time window upper bound

and utility value, are affected by these sources of uncertainty. A combination of these sources of uncertainty is

considered to determine these parameters. These sources of uncertainty have different scales. Therefore, they

are normalized to be scaleless and used to generate the parameters for each scenario. The wind speed, month’s

rainfall, and month’s max temperature are normalized to lie between [1,2], and fire-starting times are normal-
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Algorithm 1: Frank-Wolfe Progressive Hedging algorithm for APRP

Input ( ρ, ε, kmax)
m ← 0
ωmj (ξ) ← 0
θx(ξ) ← [], θz(ξ) ← [], θy(ξ) ← [], θr(ξ) ← [], θt(ξ) ← []
Step 1:
for ξ ∈ Ξ do

Optimize Sub-1 model under each scenario and determine the initial values of the decision
variables (x̂0

j (ξ), ẑ
0
ij(ξ), ŷ

0
i (ξ), r̂0

ii′k(ξ), t̂0ik(ξ));

Calculate the mean value of the first stage decision variables according the obtained solutions from
Sub-1 model (x̄m+1

j ←
∑
ξ∈Ξ

p(ξ)x̂0
j (ξ));

Update the set of obtained solutions for each decision variable:
θx(ξ) = θx(ξ) ∪ {x̂0

j (ξ)};
θz(ξ) = θz(ξ) ∪ {ẑ0

ij(ξ)};
θy(ξ) = θy(ξ) ∪ {ŷ0

i (ξ)};
θr(ξ) = θr(ξ) ∪ {r̂0

ii′k(ξ)};
θt(ξ) = θt(ξ) ∪ {t̂0ik(ξ)};
Update the weight based on the obtained solutions from Sub-1 model by
ωm+1
j (ξ) ← ωmj (ξ) +ρ(x̂0

j (ξ)− x̄
m+1
j );

condition← false;
while condition is false do

for ξ ∈ Ξ do
m = m+ 1;
Step 2:
Optimize Sub-2 model under each scenario and determine updated trial solutions
(x̂mj (ξ), ẑmij (ξ), ŷmi (ξ), r̂mii′k(ξ), t̂mik(ξ));

Update the set of obtained solutions for each decision variable:
θx(ξ) = θx(ξ) ∪ {x̂mj (ξ)};
θz(ξ) = θz(ξ) ∪ {ẑmij (ξ)};
θy(ξ) = θy(ξ) ∪ {ŷmi (ξ)};
θr(ξ) = θr(ξ) ∪ {r̂mii′k(ξ)};
θt(ξ) = θt(ξ) ∪ {t̂mik(ξ)};

Step 3:
for ξ ∈ Ξ do

Optimize Sub-3 model under each scenario and determine updated proximal solutions
(x̃j(ξ), z̃ij(ξ), ỹi(ξ), r̃ii′k(ξ), t̃ik(ξ));

Calculate the mean value of the first stage decision variables according the obtained proximal
solutions from Sub-3 model by x̄m+1

j ←
∑
ξ∈Ξ

p(ξ)x̃j(ξ);

Update the weights based on the obtained solutions from Sub-3 model by
ωm+1
j (ξ) ← ωmj (ξ) +ρ(x̃j(ξ)− x̄m+1

j );

if
√∑
ξ∈Ξ

p(ξ)
∥∥x̃j(ξ)− x̄mj ∥∥2

2
< ε OR m = kmax then

condition← true;

Result: ((x̃j(ξ), z̃ij(ξ), ỹi(ξ), r̃ii′k(ξ), t̃ik(ξ))ξ∈Ξ, x̄mj )

14



Figure 2: Selected area for the problem with assigned numbers

ized within values [1,3]. The normalized values of these coefficients are reported in Table 3. If the source of un-

certainty affects the intensity of the wildfire in the same direction, then the corresponding coefficients are cal-

culated by Coefficient = (Level of uncertainty source−minimum value)/(maximum value−minimum value).

If there is a reverse effect on the intensity of a wildfire, the corresponding coefficients are obtained according

to the following equation:

Coefficient = (maximum value− Level of uncertainty source)/(maximum value−minimum value).

Table 2: Sources of uncertainties related to the bush fire event

Source of Uncertainty Levels
Wind direction West (W), Northwest (NW), Southwest (SW)

Wind speed (km/h) 55, 85, 115
Month’s rainfall (mm) 9, 53, 115

Month’s max temperature (oC) 16, 26, 36
Fire starting point 1, 7, 13, 19, 25, 31

Fire starting time
Working hour, Non-school holiday
(WN)- Non-working hour (N)- Working
hour, School holiday (WH)

The related data and selected levels have been extracted according to the reported historical data in the

period of Dec 2015 to Jan 2017 from the Australian government (Bureau of Meteorology) website1. Based

on these levels, a collection of scenarios was generated. The scenario sets that form each instance generated

were randomly sampled from this set (with 1458 scenarios).

Algorithm 2: Scenario generation procedure

Phase 1: A grid is formed on the selected area and a number is assigned to each cell.
Phase 2: Fire spread patterns are determined based on fire starting cell and the wind direction.
Phase 3: The time window upper bound, service and travel times, and asset values are obtained by
using equations (34)-(37), respectively.

The fire spread patterns are defined, considering the ignition cell and the wind direction. For example,

in the case of an NW wind, the fire spread patterns associated with the entering cell are shown in Figure

1http://www.bom.gov.au/climate/dwo/201606/html/IDCJDW7021.201606.shtml
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Table 3: Specified coefficients for real simulation of time limit for asset protection during an escaped fire

Source of uncertainty Levels Coefficient

Temperature (oC)
16 1
26 1.5
36 2

Total rain in a month (mm)
9 2
53 1.6
115 1

Wind speed (km/h)
55 1
85 1.5
115 2

Escaped fire time
Working hours, Non-school holiday (WN) 3

Non-working hours (N) 1
Working hours, School holiday (WH) 2

3. Furthermore, the upper limits of time windows and the affected area are defined according to the wind

direction. As an example, this is reported in Figure 4 for an NW wind case. Finally, to achieve the time

window upper bound in the ith asset under scenario ξ locating at a cell (Bi(ξ)), we consider.

Bi(ξ) = ITBCi × α1 × TC(ξ)× α2 × TRC(ξ)× α3 ×WSC(ξ), ∀i ∈ I, ξ ∈ Ξ (34)

where ITBCi is the initial time bound for the ith asset determined based on wind direction, fire entering

node and the cell that contains this asset. TC, TRC, WSC are temperature, total rainfall, and wind speed

coefficients. Terms α1, α2 and α3 are weights to determine the impact of each source of uncertainty on the

value of the time window upper bound for each asset.

In each scenario, the travel times to the assets in threatened cells are determined by predefined travel

time coefficients that depend on the fire entering the cell and the wind direction. The travel time between

assets are determined using the following equation (35):

Tijk(ξ) = Ittijk × TTCij(ξ), ∀i ∈ N , ξ ∈ Ξ (35)

where, Ittijk is the initial travel time between two assets by vehicle k and TTCij(ξ) is the travel time

coefficient for each scenario. Moreover, by using equation (36), the protection time for an asset locating at

a cell (Oi), in various scenarios is determined using

Oi(ξ) = ISTi × β1 × TC(ξ)× β2 × TRC(ξ), ∀i ∈ I, ξ ∈ Ξ (36)

where ISTi is the initial expected servicing time to protect an asset i and reported in Table 4.The term β1

and β2 are the weight of the temperature and total rainfall factors in determining the operation time.
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(a) Fire escaping from cell #1 (b) Fire escaping from cell #7 (c) Fire escaping from cell #13

(d) Fire escaping from cell #19 (e) Fire escaping from cell #25 (f) Fire escaping from cell #31

Figure 3: Escaped fire spreading pattern in case of wind direction of NW.

Finally, the asset utility value is calculated by equation (37).

Vi(ξ) = IVi × FTCi(ξ), ∀i ∈ I, ξ ∈ Ξ (37)

where IVi is the initial utility value of an asset i which is assumed to be as reported data in Table 3, and

FTCi(ξ) is the fire time coefficient for each scenario. As previously mentioned, the initial utility value is

determined based on monetary aspects, the asset importance, and residential population by equation (38)

IVi =δ1 ×monetary aspect of the ith asset+ δ2 × importance of the ith asset+

δ3 × residential population of the ith asset ∀i ∈ I, (38)

where δ1, δ2 and δ3 are the weights of monetary, importance, and residential population factors in calcu-

lating the value of each asset.
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(a) Fire escaping from cell #1 (b) Fire escaping from cell #7

(c) Fire escaping from cell #13 (d) Fire escaping from cell #19

(e) Fire escaping from cell #25 (f) Fire escaping from cell #31

Figure 4: Time window upper bound for protection in the case of wind direction of NW. ”-” illustrates the fire does not spread
to theses cells under each scenario.
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Table 4: Specified initial values for assets servicing time bound, servicing time and their values

Asset ISTi IVi Asset ISTi IVi
1 15 189 11 4 185
2 5 145 12 12 193
3 20 141 13 21 177
4 6 121 14 15 104
5 12 112 15 18 138
6 18 131 16 11 171
7 6 173 17 7 173
8 4 179 18 16 122
9 15 170 19 9 127
10 22 102 20 11 167

5. Computational study

In this section, the validity of the proposed model, the need for considering uncertainty, and the validity of

the FW-PH algorithm are examined. Data for the parameters used for the computational study can be found

in https://github.com/bashirimahdi/Asset_protection_routing. The computations were performed on

a 3.5 GHz workstation with 32 GB RAM and 6 cores operating on Windows 10 (64-bit), using CPLEX.

In our model, the decisions related to location and routing are determined simultaneously. To show the

importance of integrated decision making, we suppose that the location decision has been made separately,

and we evaluate it in two different location decisions of [0 1 0 0] and [0 0 1 1] called (a) and (b), respectively.

Then, the model is optimized with predefined locations. The results of routing costs and obtained values are

compared in Figure 5 for both cases of (a) and (b). Although the routing part of the model is optimized in

both cases, the extent to which it can be optimized depends on the first stage decision, providing evidence

of the necessity of integrated decision-making, as considered in the proposed model.

Figure 5: Routing cost and values obtained when the first-stage variables are equal to [0 1 0 0], [0 0 1 1], respectively

The results show how the routing cost increases and the obtained value decreases if the first and second

19

https://github.com/bashirimahdi/Asset_protection_routing


stage variables are determined separately.

5.1. Performance of FW-PH

The APRP model was solved using CPLEX, and the first-stage decision variables obtained and respective

computational times are compared with those of the FW-PH algorithm. Also, CPLEX is used in the FW-PH

algorithm for solving the corresponding sub-problems (Sub-1, Sub-2, and Sub-3). This analysis is applied

considering different numbers of scenarios, and the results are reported in Table 5. The computational time

of CPLEX (TimeC) and the FW-PH algorithm (TimeFW−PH) are reported. In this table, DisFS shows

the Hamming distance between the first stage decision variables that are obtained by CPLEX (which are

integers) and the FW-PH algorithm. The results illustrate that the FW-PH algorithm finds the optimal

solution accurately for those instances that can be solved to optimality using CPLEX. Moreover, CPLEX

can not find the optimal solution in 10000 seconds when the numbers of scenarios increase. In addition, the

results show that the efficiency of the FW-PH algorithm increases when increasing the numbers of scenarios.

Table 5: Comparison between CPLEX and Progressive Hedging

J K S TimeC TimeFW−PH DisFS(%) J K S TimeC TimeFW−PH DisFS(%)

4 2

5 3.46 4.14 0.00

10 3

5 43.92 61.98 0.00
10 5.13 55.98 0.00 10 51.47 50.61 0.00
20 57.04 211.82 0.00 20 2436.56 102.78 0.00
30 10000 231.80 - 30 10000 647.77 -
40 10000 273.86 - 40 10000 818.45 -
50 10000 231.856 - 50 10000 1085.77 -
60 10000 254.050 - 60 10000 3297.29 -
70 10000 377.83 - 70 10000 3893.09 -
80 10000 275.66 - 80 10000 7841.97 -

7 2

5 9.12 13.97 0.00

10 4

5 29.06 54.46 0.00
10 17.87 14.10 0.00 10 32.69 57.20 0.00
20 711.59 24.43 0.00 20 3579.74 114.85 0.00
30 10000 71.27 - 30 10000 1887.29 -
40 10000 117.07 - 40 10000 1640.36 -
50 10000 1900.36 - 50 10000 2080.28 -
60 10000 2360.80 - 60 10000 7394.83 -
70 10000 2126.24 - 70 10000 8087.93 -
80 10000 2979.51 - 80 10000 18084.75 -

10 2

5 11.10 19.39 0.00

15 2

5 13.63 20.53 0.00
10 59.96 42.77 0.00 10 97.78 85.30 0.00
20 10000 105.44 - 20 10000 205.33 -
30 10000 267.80 - 30 10000 1358.51 -
40 10000 354.42 - 40 10000 2033.34 -
50 10000 622.75 - 50 10000 1754.63 -
60 10000 3806.91 - 60 10000 1698.49 -
70 10000 1286.17 - 70 10000 5682.24 -
80 10000 1658.93 - 80 10000 6856.99 -

- : optimal first-stage decision variables were not found by CPLEX in 10000 seconds

The objective value and solution time obtained via CPLEX and the FW-PH for the APRP model under
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different numbers of scenarios are reported in Table 6. In this table, UBC is the best objective value obtained

by CPLEX within 10000 seconds, and TimeC reports the solution time of CPLEX. Also, the lower bound

(LBC) obtained by CPLEX is reported in this table. UBFW−PH is the objective value achieved by rounding

and fixing the first stage-decision variables obtained using FW-PH in the Sub-3 model and optimizing it

(which can be done independently for each scenario and recombined to obtain an upper bound for the APRP

model). The lower bound obtained using FW-PH (LBFW−PH) is also reported. This lower bound is equal to

the expected value of obtained objective values from the Sub-3 model under each scenario. The computational

time of the algorithm (TimeFW−PH) is reported in this table. The gap between UBFW−PH and ObjC is

calculated by Gap = (UBFW−PH − UBC)/UBC × 100% and reported in Table 6. Also, the gap between

UBFW−PH and LBFW−PH is calculated by GapFW−PH = (UBFW−PH − LBFW−PH)/LBFW−PH × 100%

and is also reported. The results show that the FW-PH algorithm can find optimal or near-optimal solutions

in a reasonable computational time (634.78 seconds on average) when the number of scenarios increases.

In contrast, the commercial solver can find optimal solutions for 10 cases within 10000 seconds, and the

solution time of the commercial solver increases exponentially with the number of scenarios. Therefore, using

the FW-PH algorithm is particularly more efficient in cases with a large number of scenarios. Also, the

lower bound obtained by the FW-PH algorithm is almost equal to UBFW−PH in all cases. While it is not

guaranteed in theory, the employment of the FW-PH algorithm for our APRP model have always displayed

convergence to a primal optimal solution in our numerical experiments.

Moreover, the total difference between the value of first stage-decision variable under each scenario and

their mean value (
∑
j∈J

∑
ξ∈Ξ

|x̃j(ξ)− x̄j | is reported in Table 7, which can be understood as a measure of primal

infeasibility. The results show that the differences between the obtained first stage decisions under each

scenario and their corresponding mean value is sufficiently small. Therefore, also taking into account the

information in column DisFS (Table 5), it can be concluded that the algorithm can find solutions for the

first stage decision variables that are feasible to the APRP model.

5.2. Necessity of considering uncertainty

Figure 6 provides a schematic representation of an arbitrary solution in which two locations from 7

potential locations are selected for establishing protection depots. Also, the routes corresponding to each

vehicle under five different scenarios are indicated in this figure. The parameters, including utility values, the

time window upper bound, traveling and protecting times, are different for these scenarios. As shown in this

figure, one protection depot is established, and two available vehicles are assigned to this protection depot.

The assets selected for protecting are different for each scenario based on the trade off between the routing

cost and the utility obtained by visiting an asset considering the risk of damage. As previously mentioned,

in a disaster situation, protecting assets and keeping people safe are more important than travelling cost.

Therefore, valuable assets might be selected for protection, although they are far from a depot.

The effect of the number of available vehicles on the expected value of perfect information (EVPI) and

the value of the stochastic solution (VSS) indices are shown in Figure 7. The EVPI gap and VSS gap are
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(a) First scenario (b) Second scenario

(c) Third scenario (d) Fourth scenario

(e) Fifth scenario

Figure 6: Obtained solutions from the proposed model under different scenarios.
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Table 6: Computation results for different numbers of scenarios and potential number of locations for establishing protection
depots

J S UBC LBC TimeC UBFW−PH LBFW−PH TimeFW−PH Gap(%) GapFW−PH(%)

4

5 -564.98 -564.98 8.77 -564.98 -564.98 7.25 0.00 0.00
10 -546.75 -546.75 27.82 -546.75 -546.75 39.12 0.00 0.00
20 -539.91 -539.91 1727.79 -539.91 -539.91 177.24 0.00 0.00
30 -540.51 -596.96 10000 -540.51 -540.51 178.44 0.00 0.00
40 -528.41 -589.76 10000 -530.48 -530.49 195.28 0.38 0.00
50 -542.69 -603.63 10000 -542.70 -542.70 158.86 0.00 0.00

7

5 -560.88 -560.88 10.48 -560.88 -560.88 14.28 0.00 0.00
10 -556.74 -556.74 18.60 -556.74 -556.74 27.80 0.00 0.00
20 -548.59 -562.15 10000 -548.59 -548.59 56.74 0.00 0.00
30 -545.60 -591.51 10000 -545.87 -545.87 139.25 0.05 0.00
40 -535.62 -592.56 10000 -535.95 -535.96 215.54 0.00 0.00
50 -544.36 -623.44 10000 -544.36 -544.36 3728.75 0.00 0.00

10

5 -582.74 -582.74 14.40 -582.74 -582.74 26.99 0.00 0.00
10 -568.78 -568.78 55.22 -568.78 -568.78 72.54 0.00 0.00
20 -554.40 -571.86 10000 -554.40 -544.40 250.73 0.00 0.00
30 -551.74 -638.26 10000 -551.74 -551.74 515.96 0.00 0.00
40 -540.61 -628.28 10000 -540.63 -540.63 654.14 0.00 0.00
50 -549.67 -639.60 10000 -549.69 -549.69 1163.99 0.00 0.00

15

5 -605.17 -605.17 19.01 -605.17 -605.17 36.43 0.00 0.00
10 -576.80 -576.80 95.83 -576.80 -576.80 145.25 0.00 0.00
20 -559.59 -606.04 10000 -559.59 -559.59 429.97 0.00 0.00
30 -552.94 -639.58 10000 -553.33 -553.33 1848.51 0.07 0.00
40 -542.95 -635.01 10000 -542.95 -542.95 2743.43 0.00 0.00
50 -545.45 -641.83 10000 -552.12 -552.47 2408.25 1.22 0.06

Average 634.78 0.07 0.00

calculated by using the following equations, respectively.

EV PIGap =
zHN − zWS

zWS
× 100 (39)

V SSGap =
zEEV − zHN

zHN
× 100 (40)

where zHN is the objective value of two-stage stochastic programming model. zEEV and zWS are calcu-

lated by using equations (41) and (42),respectively.

zWS = Eξ

Min
∑
j∈J

ECj × xj(ξ) +
∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)× rii′k(ξ) +
∑
i∈I

Vi(ξ)× yi(ξ)

 (41)

s.t: (2)-(12)

zEEV = Min
∑
j∈J

ECj × x̄j + Eξ

(∑
i∈N

∑
i′∈N

∑
k∈K

Cii′k(ξ)× rii′k(ξ)

)
− Eξ

(∑
i∈I

Vi(ξ)× yi(ξ)

)
(42)
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Table 7: Total error in the solutions obtained by the FW-PH algorithm

J S
∑
j∈J

∑
ξ∈Ξ

|x̃j(ξ)− x̄j | J S
∑
j∈J

∑
ξ∈Ξ

|x̃j(ξ)− x̄j |

4

5 2.670× 10−8

10

5 2.988× 10−6

10 2.567× 10−5 10 0.001
20 0.0003 20 0.003
30 0.0007 30 0.0003
40 0.0007 40 0.001
50 0.0002 50 0.001

7

5 2.965× 10−6

15

5 5.128× 10−6

10 0.0007 10 6.733× 10−6

20 9.896× 10−6 20 6.941× 10−5

30 1.636× 10−5 30 0.0001
40 2.863× 10−5 40 0.001
50 0.06 50 0.003

(a) EVPI gap for different numbers of vehicles (b) VSS gap for different numbers of vehicles

Figure 7: The effects of the available number of vehicles on EVPI and VSS indices

s.t: (2)-(12)

In equation (42), x̄j are the optimal values of the first stage decision variables extracted from solving a

deterministic model with average values of uncertain parameters. Then x̄j are considered as fixed parameters

in equation (42). Figure 7(a) shows that the decision-maker is willing to pay less to obtain perfect information

as the number of vehicles increases. Therefore, in the case of sufficient resources, perfect information is not

as valuable.

In contrast, Figure 7b shows that the importance of considering uncertainty increases with an increas-

ing number of vehicles until the number of vehicles exceeds some critical value. It can be concluded that

considering uncertainty does not significantly affect when the number of resources is small. However, its

importance increases with increasing resources until some critical point is attained, after which considering

uncertainty does not have a significant effect. Therefore, the proposed model and consideration of uncer-

tainty have greater importance in settings where the resources are limited. In practice, the lack of resources is
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both critical and commonplace, and thus by considering uncertainty, deployment decisions can be improved

significantly.

(a) EVPI index under different values of establishment cost (b) VSS index under different values of establishment cost

Figure 8: EVPI and VSS indices under different values of establishment cost

The EVPI and VSS indices under different establishment cost values are shown in Figure 8. The VSS

index decreases with increases in the value of establishment cost. On the other hand, in the face of a limited

budget and high establishment costs, depot location decisions are very similar with or without considering

uncertainty.

The EVPI depends on the relationship between the establishment cost and other terms in the objective

function, such as routing costs. On the other hand, when the establishment cost is considerably higher than

the utility obtained from protecting the assets, the decision-maker is unwilling to pay much to obtain perfect

information. It can be observed that the model is most beneficial under conditions with small or medium

establishment costs.

6. Managerial insights and conclusions

In this paper, a two-stage stochastic programming model is proposed for the asset protection routing

problem. The first-stage decision determines the locations for establishing protection depots. The need for

considering uncertainty in this problem is demonstrated by using EVPI and VSS indices. It is concluded that

the proposed model is more beneficial when the number of vehicles is small and the establishment cost is not

too high. Also, the importance of considering the uncertainty of parameter values increases with increasing

travel times between nodes.

As previously noted, the computation time of SMIP models increases as the number of scenarios increases.

Scenario-based decomposition methods present a means for dealing with this issue and reducing the com-

putation time of two-stage and multi-stage stochastic programming models. PH is one of the well-known

scenario-based decomposition methods, but it cannot guarantee convergence to the global optimal solution

of a SMIP. In recent years, researchers focused on this issue, and new algorithms based on a combination
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of PH and other algorithms were proposed. In this paper, an algorithm based on combining PH and the

Frank-Wolfe method was used to solve the proposed model. The computation results show the adequate

performance of the FW-PH algorithm for the APRP problem. Furthermore, the computational time of this

algorithm is significantly smaller than the computational time of the commercial solver employed (CPLEX).

In situations where a wildfire becomes impossible to control, it is prudent to utilize resources to undertake

protective tasks to mitigate the risk of losing community assets. By anticipating multiple scenarios, resources

can be located to minimize the expected travel distances to assets where protection activities are required.

As a managerial insight, a similar model and solution method can be used in other disaster situations such

as floods, hurricanes, and other natural disasters that allow for response preparation time to be issued from

warnings such as meteorological reports or satellite surveys. Using the proposed approach, relief organizations

can locate protection centers and hopefully make relief operations more efficient while mitigating the damages

incurred by the disaster.

The results of our numerical studies show that the proposed approach performs better than the equivalent

deterministic model. Its value becomes more prominent as the level of uncertainty increases, which is an

essential insight for relief organizations as they usually experience a high level of uncertainty. Furthermore,

the value of the stochastic approach is more relevant when the establishment costs of the depots are low.

Thus the approach is particularly pertinent in emergency or disaster situations where low-cost temporary

bases have to be set up speedily.

Moreover, there are significant benefits to the proposed approach for protecting assets in a two-stage

stochastic programming framework in the face of limited resources. In such conditions, it is suggested that

the location of relief centers is planned to maximize the total value of assets protected in a disaster. Extending

this problem by simultaneously considering other criteria and issues relating to fire fighting stations in addition

to asset protection is suggested as a direction for future study.
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