
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Dong, Hongqun; Tao, Xiaoma; Paulasto-Kröckel, Mervi
Calculation of Phase Diagrams and First-Principles Study of Germanium Impacts on
Phosphorus Distribution in Czochralski Silicon

Published in:
Journal of Electronic Materials

DOI:
10.1007/s11664-021-08861-4

Published: 01/08/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Dong, H., Tao, X., & Paulasto-Kröckel, M. (2021). Calculation of Phase Diagrams and First-Principles Study of
Germanium Impacts on Phosphorus Distribution in Czochralski Silicon. Journal of Electronic Materials, 50(8),
4272–4288. https://doi.org/10.1007/s11664-021-08861-4

https://doi.org/10.1007/s11664-021-08861-4
https://doi.org/10.1007/s11664-021-08861-4


Vol:.(1234567890)

Journal of Electronic Materials (2021) 50:4272–4288
https://doi.org/10.1007/s11664-021-08861-4

1 3

ORIGINAL RESEARCH ARTICLE

Calculation of Phase Diagrams and First‑Principles Study 
of Germanium Impacts on Phosphorus Distribution in Czochralski 
Silicon

Hongqun Dong1   · Xiaoma Tao2 · Mervi Paulasto‑Kröckel1

Received: 21 August 2020 / Accepted: 4 March 2021 / Published online: 21 April 2021 
© The Author(s) 2021

Abstract
Phosphorus (P) is one of the most widely used donor dopants for fabricating a low-resistivity silicon (Si) substrate. However, 
its volatile nature and the relatively small equilibrium segregation coefficient in Si at the melting temperature of Si impede 
the efficient and effective growth of low-resistivity Czochralski (CZ) Si single crystal. The primary objective of this work is 
to theoretically perceive the influence of germanium co-doping on the heavily P-doped Si crystal by means of CALculation 
of PHase Diagrams (CALPHAD) approaches and density functional theory (DFT) calculations. Phase equilibria at the Si-
rich corner of the Si-Ge-P system has been thermodynamically extrapolated based on robust thermodynamic descriptions of 
involved binary systems, where Si-P and Ge-P have been re-assessed in this work. Phase diagram calculation results indicate 
that at a given P concentration (e.g. 0.33 at.% P) Ge co-doping lowers the solidification temperature of the Si(Ge, P) alloys, 
as well as the relevant equilibrium segregation coefficients of P in the doped Si. DFT calculations simulated the formation 
of (i) monovacancy in Si as well as (ii) solutions of Si(P) and Si(Ge) with one dopant substitutionally inserted in 64- and 
216-atom Si cubic supercells. Binding energies were calculated and compared for Ge-Ge, Ge-P and P-P bonds position-
ing at the first nearest-neighbors (1NN) to the third nearest-neighbors (3NN). P-P bonds have the largest bonding energy 
from 1NN to 3NN configurations. The climbing image nudged elastic band method (CL-NEB) was utilized to calculate the 
energy barriers of P 1NN jump in the 64-atom Si cubic supercell with/without a neighboring Ge atom. With Ge present, a 
higher energy barrier for P 1NN jump was obtained than that without involving Ge. This indicates that Ge can impede the 
P diffusion in Si matrix.

Keywords  Germanium co-doping · heavily P-doped Si · equilibrium segregation coefficient · CALPHAD · density 
functional theory · formation energy

Introduction

With the ongoing trend towards multifunction and minia-
turization in electronic devices, contact resistivity associ-
ated power consumption is increasingly pronounced. This, 
together with the demand for low on-resistance of power 
devices, drives the need for lowering the resistivity of 

substrate that can then be utilized to fabricate the epitaxial 
structure. Phosphorus is a favorable dopant species. Despite 
the mature technology in Czochralski (CZ) Si growth, the 
growth of heavily P-doped CZ Si crystal with high yield is 
not without challenges.1

Basically, issues related to crystal growth are provoked by 
the small equilibrium distribution (segregation) coefficient 
(Keq), the highly volatile nature of P, and the retrograde char-
acter of the Si(P) solidus.1–4 The small Keq results in the une-
ven distribution of P along the Si ingot (i.e. concentration of 
P increasing along the crystal body), thus affecting the yield 
of the demanding resistivity level of the CZ Si ingots. This 
phenomenon is marginal in lightly P-doped CZ Si since one 
can optimize the fabrication parameters to achieve a good 
balance between the enrichment of P at crystal/melt interface 
and the loss of P resulted from evaporation. However, the 
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evaporation rate of P increases with increasing doping level, 
which leads to severe loss of P during melting, homogeni-
zation, and crystal pulling stages of CZ Si growth process. 
In addition, the retrograde P solubility in Si results in the 
non-constant Keq values of P at light and high doping levels. 
To precisely control the crystal growth process, the relevant 
Keq values at high P doping levels is indispensable since the 
widely accepted Keq value of 0.35 is no longer applicable to 
the growth of low resistivity P-doped Si crystal. Moreover, 
P atoms enter substitutionally in Si.5–7 Misfit between the 
covalent radii of P and Si introduces the solute strain in the 
crystal thus generating an internal stress.8–10 According to 
Vegard’s law, substitutional P atoms in Si generates a lattice 
contraction with respect to Si crystal.9,11,12 These issues give 
rise to potential challenges in controlling dislocation-free 
silicon crystal growth and fabricating good quality epitaxial 
layer (epi-layer). For instance, when a lightly doped (n −) 
epi-layer is grown on a heavily doped (n +) Si substrate, the 
misfit dislocation can form at the substrate/epi-layer inter-
face.10 Furthermore, the composition gradient drives the dif-
fusion of P from heavily doped substrate towards the lightly 
doped epi-layer during subsequent processing, thus likely 
forming another auto-doped layer between the n + substrate 
and the n − epi-layer.

Co-doping (i.e. using a third element in addition to the 
selected dopant) has been proposed as a solution to the 
aforementioned issues, such as to lower the evaporation 
of the volatile species, to enlarge the Keq value of selected 
dopant, to compensate for the misfit due to atomic size dif-
ferences and to retard the diffusion of dopant.10,13 Germa-
nium (Ge) is a promising dopant in Si since it has the poten-
tial to control the defect formation.10,14 In this respect, Ge 
can be an electrically neutral co-dopant in P-doped Si. To 
explore the Ge influence on the P-doped Si crystal, investi-
gations were performed on the carrier mobility (µ), resistiv-
ity (ρ), Keq and process parameters of Ge-P co-doped CZ 
Si growth.10,15,16 The Hall-measurements on the P-doped 
SixGe1−x (0.93 < x < 0.96) single crystal showed that when 
carrier concentration was higher than 1018 atoms/cm3, the 
obtained µ and resistivity values were comparable to those in 
the P-doped Si.15 The Keq of P in SixGe1−x (0.93 < x < 0.96) 
single crystal significantly depended on the doping level.16 
Kawazoe et al.10 proposed the empirical composition rela-
tionship between P and Ge in CZ Si single crystal (i) to 
avoid the abnormal crystal growth and (ii) to prevent the lat-
tice distortion resulted from high doping level of P.10 These 
studies suggest that Ge is a plausible co-doping candidate 
to grow the low-resistivity P-doped CZ Si crystal; however, 
their results were case dependent. There is no satisfactory 
understanding of the Ge impact on the P behavior in liquid 
and solid Si yet. Consequently, the phase equilibria at the 
Si-rich corner of the Ge-P-Si ternary system is of significant 
importance.

Here, we implemented calculation of phase diagrams 
(CALPHAD) and density functional theory (DFT) calcula-
tions at the Si-rich corner of the Si-Ge-P ternary system to 
reveal the influence of Ge co-doping on the heavily P-doped 
Si. CALPHAD methods in this work serve the purpose of 
evaluating the solidification path of the Si(P, Ge) ternary 
alloy and calculating the Keq of P in relevant Si(P, Ge). DFT 
calculations attempt to discover the effect of Ge on prevent-
ing P diffusion in Si.

A Brief Review of Previous Work on Phase 
Equilibria

To date, neither phase equilibria nor thermodynamic proper-
ties of the Ge-P-Si ternary system is available. Nevertheless, 
phase diagrams of the involved three binary end-member 
systems, namely, Ge-Si, Ge-P and Si-P, have been experi-
mentally and thermodynamically studied.2,3,17–26 The Ge-Si 
system has a continuous solid solution phase diagram. The 
first review and thermodynamic evaluation of its phase 
equilibria was reported by Olesinski et al.17 Then in 1992, 
Bergman et al.18 determined the partial enthalpy of Si in the 
Si-Ge liquid state at 1327 K in the concentration range of 
0 < xSi < 0.03. Based on the derived excess Gibbs energy of 
liquid over the entire composition range, they performed the 
thermodynamic investigation on the Si-Ge phase diagram 
that agreed well with the assessment work published in Ref. 
17. The thermodynamic description of Si-Ge is included in 
the work of Scientific Group Thermodata Europe (SGTE) 
where the modification has been built upon the combination 
of Refs. 17 and 18. In this work, the thermodynamic param-
eters for the Ge-Si system are directly taken from the SGTE 
Solution database version 4.9 (SSOL4).19

Among these three binary systems, the Si-P system has 
been subjected to the most extensive theoretical investiga-
tions.2,3,20–23 The first thermodynamic evaluation of this 
system was achieved by Olesinski et al.20 They proposed 
the equilibrium phase diagram of the Si-P binary system 
covering the entire composition range. In 2009, Tang et al. 
developed a thermodynamic database for fabricating solar 
cell grade silicon materials (SOG-Si). That database covered 
the reassessment of the Si-rich corner phase equilibria of the 
Si-P system.21 Arutyunyan et al.23 optimized the thermody-
namic description of phases at the Si-rich side as well by 
using their in-house software. Jung and Zhang2 conducted 
the first complete thermodynamic assessment of the Si-P 
system. Later, Liang and Schmid-Fetzer3 thermodynami-
cally reoptimized the description of the Si-P system through 
critically reviewing all available original experimental data. 
In addition to SiP, they introduced a second intermediate 
compound SiP2 in the Si-P phase diagram. The challenge of 
reproducing all the measured solidus and solvus of Si has 
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been highlighted. Because of the largely scattered solubility 
of P in Si solid, they developed two alternative sets of self-
consistent thermodynamic parameters.3 There is no doubt 
that these independent sets of thermodynamic descriptions 
for Si-P can serve their individual targets. However, no clear 
definition is available for the lattice stability of metastable 
diamond structural P (P_diamond). It is critical for the 
description of the Gibbs free energy of the relevant diamond 
solution phases, such as Si(P) and Ge(P). In this work, DFT 
calculations were conducted to derive the lattice stability 
of metastable P_diamond. Accordingly, the modification of 
Si-P is performed.

The Ge-P binary is not less complex than the Si-P system. 
Regarding the temperature-composition (T − x) phase dia-
gram of the Ge-P binary system, it was initially constructed 
based on differential thermal analysis (DTA) results of 12 
bulk alloys (i.e. 10 at.%, 20 at.%, 30 at.%, 40 at.%, 45 at.%, 
50 at.%, 55 at.%, 60 at.%, 65 at.%, 75 at.%, 80 at.% and 90 
at.% P).24 These alloys were prepared by melting at 960°C 
for 10–12 h under elevated argon pressure, and subsequently 
annealed at unspecified temperature for 300 h. DTA were 
then carried out in a structured chamber into which inert gas 
(nitrogen and argon) was introduced under a certain pressure 
(unspecified in Ref. 24). The acquired heating curves were 
adopted to construct the T − x diagram in the temperature 
range of 400–1000°C. The T − x diagram includes the liqui-
dus boundaries and two invariant reactions, i.e. (i) peritectic 
reaction of liquid + Ge → GeP at 725°C (liquid composi-
tion ~ 63 at.% P), and (ii) an undefined invariant reaction 
involving liquid, P and GeP. Although the sample prepara-
tion process has been introduced in detail by Goncharov 
et al.,24 they did not clarify whether the constructed T − x 
phase diagram of Ge-P was referring to a constant pres-
sure. In their later publication,25 in addition to the DTA 
results, they have reported the data measured via a static 
manometric method. Based on the measured data and ther-
modynamic analysis of the interaction of components, Ugai 
et al.25 constructed the pressure–temperature-composition 
(P − T − x) diagram of the Ge-P binary system that was pro-
jected on the T − x, P − T and P − x planes. The solid solu-
bility of P in Ge_diamond has been determined by means 
of microhardness measurements 26 and Hall effect measure-
ments.27 Abrikosov et al.26 investigated the solubility of P 
in Ge_diamond at 500°C, 600°C, 700°C, 800°C, 850°C and 
900°C. Samples that have been made of single-crystal Ge 
(impurity level under 10−5%) and P_red (99.95%P), were 
annealed at a given temperature for 320–1000 h to achieve 
the equilibrium. By combining microstructural and chemi-
cal analyses with microhardness measurements, they pro-
posed the solubility boundary of P in Ge_diamond. It was 
found that the maximum P solubility in Ge_diamond was 
0.45 at.% P at 600°C. However, the equilibrium solid solu-
bility of P in Ge at 670°C was 0.12 at.% according to the 

supersaturated Ge(P) solid solution decomposition investi-
gation.28 Hall effect measurements were conducted on the 
P-doped CZ Ge single-crystal to study the solubility of P 
in Ge_diamond in the temperature range of 300–880°C.27 
Before characterizing the Hall carrier concentration, Fis-
tul et al. have pretreated samples by annealing at 800°C for 
2 h and quenching in ethylene glycol (with the cooling rate 
of 200°C/s). Besides, the measurement error has been con-
trolled to be under 5% by adopting proper shape of sample 
and high magnetic fields (16 kA/m). Based on the collected 
kinetic annealing curves, Fistul et al. have found that P in 
Ge_diamond exhibited retrograde solubility. The maximum 
concentration of P in Ge_diamond was 7 × 1019 atom/cm3 
(or, ~ 0.16 at.% P) at 800°C,27 rather than the previously 
reported 0.45 at.% at 600°C.26 Nevertheless, the P solubil-
ity in Ge at 650°C was ~ 4.7 × 1019 atom/cm3 (or, ~ 0.11 at.% 
P), which is in good agreement with the experimental data 
(0.12 at.%) in Ref. 27.

Thermodynamic properties of GeP have been relatively 
well studied.29–39 Ugai et al.31 measured the low tempera-
ture heat capacity of GeP by means of a calorimeter in tem-
perature range of 6.99–304.83 K. The high temperature heat 
capacity of GeP has never been experimentally measured. 
The Cp expression of GeP above room temperature was esti-
mated in literature.32–34 For instance, in the first compilation 
of thermodynamic properties of inorganic compounds, Barin 
et al.32 estimated the heat capacity of GeP (298–1700 K) to 
be Cp = 43.3 + 0.0113 ⋅ T − 5.23 ⋅ 105 ⋅ T−2  J mol−1 K−1. In 
other versions of the compilations, it has been modified to 
be Cp = 45.4 + 0.0113 ⋅ T − 5.2 ⋅ 105 ⋅ T−2  J mol−1 K−1.33,34 
However, these compilations provide the identical enthalpy 
of formation and entropy of GeP at 298.15 K (i.e. ΔH0

298
 

and S0
298

).32–34 Zumbusch et  al.29 and Süss et  al.30 have 
determined the dissociation pressure of GeP in the tem-
perature ranges of 773–832 K and 773–973 K, respectively. 
However, we noticed an error for the unit of the y-axis 
in the decomposition pressure graph, i.e. Fig. 3 in Ref. 
30. It is in Pa rather than in kPa. One reason is that the 
experimental data from [2930] was in the level of 104 Pa. 
Those data were superimposed in Fig. 3 of Ref. 30; how-
ever, they were presented in the range of 104–105  kPa 
rather than 10–102 kPa. The error was also evidenced by 
proposed expression of the total dissociation pressure of 
GeP as a function of temperature.30 Zumbusch et al.29 and 
Süss et al.30 also calculated ΔH0

298
 and S0

298
 of GeP accord-

ing to the reactions: 4GeP = 4Ge(s) + P4(g) at 540°C and 
Ge(s) + P(s, white) = GeP(s) and, Ge(s) + 1/4P4(g) = GeP(s) 
and P4(g) = 2P2(g), respectively.

Olesinski et al.40 summarized and reviewed the phase 
equilibria24–28 and thermodynamic properties29–32 of the 
Ge-P system that were published before 1985. They assessed 
the steady-state temperature-composition (T − X) phase dia-
gram of Ge-P at 4600 kPa40 with respect to the reported data 
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in literature.25,29,30,32 For instance, the liquidus boundary of 
Ge-P phase diagram at 4600 kPa has been determined based 
on the determined liquidus data from.25 However, Olesinski 
et al.40 has stated that the evaluated phase diagram was valid 
only on the condition of that the pressure should guarantee 
the melting of P rather than sublimation in the given tem-
perature ranges. For instance, the pressure should be no less 
than 4300 kPa, as proposed in Ref. 24. In addition, the solid 
solubility of P in Ge_diamond was ignored in Ref. 40. In 
view of this, the re-assessment of the Ge-P phase diagram 
is essential to reproduce the Ge(P) solidus.

Calculation Methods

CALPHAD

In the present work, the phase equilibria of the Ge-P-Si ter-
nary system are thermodynamically extrapolated by com-
bining the Ge-Si database from SGTE,19 the currently opti-
mized Ge-P and Si-P descriptions. The lattice stability of the 
element i (i = Ge, P and Si) is attributed to the enthalpy of its 
stable state at 298.15 K and 100 kPa, HSER

i
 , as recommended 

by SGTE.41 The Ge-P-Si ternary system includes three solu-
tion phases (i.e. liquid, Si_diamond and Ge_diamond), as 
well as three intermetallic compounds (namely, GeP, SiP and 
SiP2). An ordinary substitutional solution model is applied to 
describe these solution phases. Thermodynamic parameters 
were evaluated using the PARROT optimization module in 
the 2018b version of the Thermo-Calc software package.42

The molar Gibbs energy of a solution phase � can be 
represented as a sum of the Gibbs energy for the involved 
components i, the ideal entropy term describing a random 
mixing of components, and the excess Gibbs energy describ-
ing the deviation from the ideal behavior, i.e.,

where R is the gas constant, T is the absolute temperature, 
xi is the molar fraction of component i (i = Ge, P, Si), oG� 
denotes the molar Gibbs energy of i, with reference state of 
� . The term exG� describes the excess Gibbs energy that has 
not been represented by the first two terms. For the involved 
binary systems (i.e. Ge-P, Ge-Si, and P-Si), the molar excess 
Gibbs energies, Bin.exG� , were expressed as:

For solution phases in binary systems, the Redlich–Kister 
(RK) power series has been adopted to describe the compo-
sition dependence for the binary interaction parameters Lv

ij
:

(1)G� =
∑

i

xo
i
G

�

i
+ RT

∑

i

xi ln
(

xi
)

+ex G�

(2)
Bin.exG𝜙 =

∑

i

∑

j>i

xixj𝛼ij

The values of Lv
Ge,Si

 were directly cited from,19 Lv
Si,P

 and 
Lv
Ge,P

 of both liquid and diamond solution phases have been 
optimized in this work. For the Ge-P-Si ternary system, no 
ternary interaction parameters (Li,j,k) are evaluated in the 
present work since no experimental data are available. The 
ternary molar Gibbs energy Tern.exG� is extrapolated from 
contributions of the three binary subsystems. To add these 
contributions together, several methods have been devel-
oped by applying certain geometric principles, for instance, 
Muggianu method, Kohler method and Toop method.43–46 
In this work, Ge and Si are chemically similar, however, P 
has very different chemical behavior concerning chemical 
behaviors of components Ge and Si. Therefore, an asym-
metric method (i.e. Kohler-Toop module) has been adopted 
as recommended by Refs. 43–46. Here, P is defined as the 
Toop constituent. Ge and Si are specified as the Kohler con-
stituents. Accordingly, the excess Gibbs energy of ternary 
solution phase is written as:

Regarding the three intermetallic compounds, descrip-
tions of SiP and SiP2 are directly cited from,3 and that 
of GeP is thermodynamically assessed in this work, as 
described by following:

Evaluated expression of Cp above room temperature 
in Refs. 32–34 generate slightly smaller values (40.79 J/
mol K32 and 42.89 J/mol K33,34) than the experimentally 
determined Cp of GeP at 298.15 K (44.35 J/mol K) by Ref. 
31. In this work, the evaluated expression from33,34 has been 
directly adopted, as the discrepancy between evaluated val-
ues and measured data was acceptable. Formation enthalpy 
of GeP at 0 K and normal atmosphere has been widely stud-
ied via DFT calculations in several open database platforms, 
such as Open Quantum Materials Database (OQMD),37 
Material Project38 and Aflow,39 as summarized in Table I. 
However, various lattice parameters and band gaps have 
been adopted to calculate the total energy of GeP by those 
platforms. This, together with the various pseudopentials 
of ground state of Ge and P, can partially interpret the large 
discrepancy among the theoretically calculated formation 
enthalpy (ΔH). As such, the comparison of these calculated 
data was impossible. On the other hand, the DFT calculated 

(3)�i,j =
∑

v

(xi − xj)
vLv

i,j

(4)

ex
G

� = xGexP

[

(

xGe − xP − xSi

)v

L
v

Ge,P

]

+ xPxSi

[

(xP − xSi − xGe)
v
L
v

P,Si

]

+ xGexSi

[(

xGe − xSi +

(

xGe − xSi

)

(

xGe + xSi

) ⋅ x1

)v

L
v

Ge,Si

]

(5)

G
0

GeP
=

(

ΔH0

298
+

T

∫
T=298

C
p
dT

)

− T

(

S
0

298
+

T

∫
T=298

(

C
p

T

)

dT

)
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total formation energies can serve as a starting point when 
no experimental data are available. For GeP, the experimen-
tally measured standard formation enthalpy of GeP in Refs. 
29–31 are in good agreement, as listed in Table II. Accord-
ingly, the measured ΔH0

298
 and S0

298
 at 298.15 K in Refs. 29 

and 31 have been utilized to derive the Gibbs energy of GeP. 
In order to reproduce the dissociation of GeP, the formation 
enthalpy of GeP at 298.15 K has been slightly modified.

Density Functional Theory Calculation

Density functional theory calculations have been applied 
to find the formation energy of the GeP compound, mono-
vacancy formation energy of Si, substitutional solute ener-
gies of dopants (P and Ge) in Si, and the 1st, 2nd, and 3rd 
neighbored di-doping formation energies. The calculation 
was performed by using the projector augmented wave 
(PAW) method,49,50 as implemented in the highly efficient 
Vienna ab  initio simulation package (VASP).51,52 GGA 
was used for the exchange-correction functional. In this 
work, total energy of GeP (with a space group of Cs/m) 
has been calculated by using crystal constants from Ref. 48 
It is reported as high quality in ICSD. Regarding energies 
related to Si_diamond structure, two sets of cubic supercells, 
64 atoms (2 × 2 × 2) and 216 atoms (3 × 3 × 3), have been 
utilized in relevant simulations. The total energies of each 
supercell have been converged to less than 0.1 meV with 
respect to electronic, ionic and unit cell degrees of freedom 
by using the constant planewave energy cutoff of 600 eV. 
The 7 × 7 × 7 and 3 × 3 × 3 k-point meshes were chosen to 
integrate the supercell structure of 64 and 216 atoms over the 
Brillouin zone, respectively. These k-points were determined 
to be sufficiently large to perform the relevant calculations.

In order to gain insight into the Ge impact on the dif-
fusional difficulty of P in a Si matrix, the climbing image 
nudged elastic band method (CI-NEB)53,54 has been 
employed to find the so-called minimum-energy pathways 
(MEPs) for P migration as a sequence of intermediate 

configurations. The supercell with 64 atoms was used for the 
1NN P atomic jumping geometry calculations. The ground 
state energies were determined by GGA level of theory. Five 
intermediate images between nearest local-energy mini-
mum configurations were used in NEB calculation to find 
the energy barrier for the nearest neighbor P diffusion with/
without co-existing Ge.

Results and Discussion

Thermodynamic Evaluation of the Ge‑P‑Si System

In this work, the thermodynamic optimizations were con-
ducted on the Ge-P system and the Si-rich side of the Si-P 
system. The experimental data of phase equilibria in Ge-P 
from Refs. 24 and 25 were measured under different pres-
sures. Thus, the current optimization of the Ge-P phase dia-
gram was started by reproducing the more reliable decompo-
sition pressure of GeP.29,30 Subsequently, the parameters of 
the liquid phase were optimized based on the experimentally 
measured invariant reactions, i.e. three-phase equilibrium 
of liquid-Ge-gas and liquid-GeP-gas.31 The solubility of P 
in solid Ge was the last term brought into the optimization.

Figure 1 illustrates the decomposition pressure of GeP 
obtained in this work, along with the experimental data from 
Refs. 29 and 30. The calculated decomposition temperatures 
under various pressure conditions fit well with the experi-
mentally determined values. The measured three-phase equi-
libria (i.e. liquid-Ge-gas, and liquid-GeP-gas) were depicted 
on the pressure–temperature and pressure-composition pro-
jections. As shown in Fig. 2, a satisfactory agreement has 
been obtained between those experimental results and cal-
culated data of this work.

Table II   Thermodynamic properties of Ge1P1 at 298  K, including 
data published in literature, and calculated in this work based on 
assessed thermodynamic parameters

a Enthalpy of formation of Ge1P1 refers to Ge_diamond and P_white 
structures.

Enthalpy of formation 
ΔH0

298
 (kJ/mol atom)a

Entropy S0
298

 (kJ/
mol atom)

Ref.

− 12.56 – Experimental29

− 10.5 31.5 Reviewed35

− 12.19 ± 1.5 27.64 ± 3.32 Experimental30

– 26.42  Experimental31

− 13.6 30.54 32–34
− 13.82 25.57 CALPHAD, this work

Fig. 1   Decomposition pressure of GeP: GeP(s) = Ge(s) + P (gas). 
X-axis is the total phosphorus pressure, with majority gas species of 
P2 and P4.
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Figure 3a and b show the calculated phase diagrams 
of Ge-P along with the published data of phase equilib-
ria.24–28,40 Less weight was given for data determined by 
microhardness in Ref. 26 that are much higher than all 
the others.27,28 The phase diagram at 4600 kPa (Fig. 3a) 
has been calculated in which the liquidus evaluated by 
Olesinski et al.40 was superimposed. Results from Ref. 
24 were also plotted on Fig. 3a for providing available 
experimental points in the literature, as that has been done 
in Ref. 40. Comparing the evaluated liquidus by Olesin-
ski et al.,40 the liquidus calculated in this work is slightly 
closer to the P edge. Nevertheless, such deviation should 
be ascribed to the different lattice stabilities of elements 
adopted in this work41 and that reported in Ref. 40. This 
is evidenced by the different melting temperature of P_red 
at 4600 kPa. For instance, P_red had a melting point of 
593°C in Ref. 40, while it is 578.9°C according to SGTE41 
adopted in this work. Figure 3b shows the Ge-rich side of 
the Ge-P binary phase diagram under normal atmosphere. 
The calculated single-phase boundary (SPB) of the solid 
solution phase, i.e. Ge_diamond (hereinafter, denoted 
as Ge(P)), agreed well with the measured solid solubili-
ties of P in Ge_diamond.27,28 It is evident that a set of 
self-consistent thermodynamic parameters of Ge-P was 
achieved here. Therefore, the phase diagram of Ge-P at 
normal atmosphere has been extrapolated based on the 
Ge-P thermodynamic description acquired in this work, 
as shown in Fig. 3c.

Regarding the solid solubility of P in Si_diamond (here-
inafter denoted as Si(P)), there are extensive thermodynamic 
calculations and experimental measurements.2,3,21–23,55–60 
The determined P solubility boundaries in Si solid scattered 
largely. The experimental phase equilibria have been criti-
cally reviewed by Jung et al.2 and Liang et al.3 Hereby, no 
space is taken for repeating the review in this paper.

As described in “A Brief Review of Previous Work on 
Phase Equilibria” section, the Si-rich side of the Si-P sys-
tem requires a re-optimization owing to the reliable lattice 
stability of metastable P_diamond. In this work, the ther-
modynamic parameters of Si(P) and liquid solution have 
been re-optimized with reference to the work of Liang and 
Schmid-Fetzer3 owing to their insight evaluation into the 
original experimental works. Here, the author also initially 
attempted to divide the measured P solubility limits in Si_
diamond into two groups as the strategy applied by Liang 
and Schemid-Fetzer.3 Accordingly, two sets of parameters 
(Model I and II) were achieved to reproduce the scattered 
single-phase boundary of the Si(P) solution phase. As illus-
trated in Fig. 4, these calculated P solubility boundaries are 
in satisfactory agreement with each group of the reported 
data, except for data from Ref. 26. The P solubility in Si_dia-
mond determined by microhardness measurements26 repre-
sented the lowest solubility boundary among those reported 
data. During this optimization, a small weight has been 
given to data from Ref. 26 since the technique was consid-
ered inadequately sensitive.61

Fig. 2   Three-phase equilibrium, i.e. liquid-Ge-gas and liquid-GeP-
gas, projected on the temperature–pressure and pressure-composition 
planes. In the graph, L denotes the liquid phase. The vertical dash-

dotted lines represent the delimitation of these three-phase equilib-
rium region based on pressure variations.
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On the other hand, the experimental data, representing the 
highest solubility limits,56,57,60 was rooted from the Si-P-O 
ternary system rather than the pure Si-P binary system. The 
oxygen originated either from the starting material56,57 or the 
subsequent annealing process.60 For instance, the slightly 
oxidizing atmosphere (90% N2 + 10% O2) was applied 
during the high-temperature heat treatment processes in 
Ref. 60. The Hall measurement is less accurate for high-
temperature species since the concentration of electrically 
inactive phosphorus increases with temperature due to the 
phosphorus diffusion in silicon. This phenomenon becomes 
significant when the temperature is above 750°C.60 Conse-
quently, we adopted a third model to reproduce the P solu-
bility boundary in Si solid, i.e. the solvus determined by 
Hall measurement (at relatively low temperature)58,59 and the 

solidus determined by DTA.22 The calculated boundary was 
superimposed in the inserted graph of Fig. 4. The published 
experimental data were relatively well reproduced. Model III 
thus represented the most reliable set of description in this 
work. It has been utilized in the thermodynamic extrapola-
tion of the Ge-P-Si equilibrium phase diagram.

In the CZ Si growth process, the typical gas pressure is in 
the range of 1.5–5 kPa.1 The decomposition temperatures of 
1:1 ratio phosphide in both Ge-P and Si-P systems decrease 
with lowering total pressure. It is, therefore, of great impor-
tance to extrapolate the phase diagrams of Ge-P and Si-P to 
relevant process pressure, for instance 5 kPa.

Figure 5 shows the calculated phase diagrams of Ge-P and 
Si-P at 1.5 and 5 kPa. The diamond solid and gas two-phase 
equilibrium region presented in both systems. The three-phase 

Fig. 3   (a) Phase diagram of Ge-P at 4600  kPa superimposed with 
experimental data from Ref. 24 and evaluated data from Ref. 40, 
(b) Ge-rich side of Ge-P phase diagram at normal atmosphere 
(p = 101.325  kPa) with comparison between calculated SPB of Ge_
diamond and experimentally determined P solubility in Ge_diamond 

(i.e., blue asterisk,26 blue plus,27 blue diamond28) and (c) full phase 
diagram of Ge-P at normal atmosphere (p = 101.325  kPa). Here, 
Ge(P) represents the solid solution phase of Ge_diamond in Ge-P 
binary system (Color figure online).
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equilibria of phosphide-liquid-diamond were replaced by 
phosphide-gas-diamond in both systems as pressure lowered to 
5 kPa. The temperature window for liquid-diamond two-phase 
co-existing regions shrank under such low-pressure condition, 
so did the solid solubility limit of P in both Si(P) and Ge(P) 
solids. These phenomena get more pronounced with further 
decreasing pressure, as shown in the relevant phase diagrams 
at 1.5 kPa in Fig. 5b and d. These issues complicate the control 
of the growth process of heavily P-doped CZ Si single crystal. 
For instance, the evaporation of P starts at lower temperature 
when a lower pressure condition is applied.

For the Ge-P-Si ternary system, it was thermodynami-
cally extrapolated based on the thermodynamic descriptions 
of the binary end-member systems, i.e. Ge-P was according 
to SGTE,19 Ge-P and Si-P were according to the current 
results. As no experimental investigation available, analyti-
cal methods were not attempted to assess the ternary interac-
tion parameters. The geometric model has been utilized to 
extrapolate the thermodynamic description of the ternary 
solutions (i.e. Si(Ge, P) and liquid phases). In this work, 
the Kohler–Toop model was the optimal model, in order to 
treat the very different chemical behavior of P from those of 
Ge and Si. The obtained thermodynamic parameters of this 
work are listed in Table III.

Impacts of Ge

Impacts on Heavily P‑doped Si during Growth

The solidus lines of Si in Fig.  5c and d indicate that 
the maximum equilibrium P solubility in Si is around 

0.478–0.68  at.% under the typical gas pressure range 
(1.5–5 kPa) of the CZ Si growth process. These mole 
fraction values correspond to a P atom density of around 
2.39 × 1020–4.85 × 1020  atoms/cm3. The conversion 
between mole fraction (xp) and atom density (Xp) is as 
follows:

where NA is the Avogadro constant, MSi1−xPx
 is the 

atomic mass of the Si solution in g/mol that is derived 
from atomic mass of P and Si in this work, i.e. 
MSi1−xPx

= (1 − x)MSi + xMP . The density of Si, �Si , in g/cm3 
is adopted for the conversion, for the following reasons: (i) 
negligible effect of P dopant level (i.e. ≤ 1018 atoms/cm3) on 
the Si density12 and (ii) no experimentally measured density 
of Si at high P doping level.

Despite the small solid solubility of P in Si, the 
P-doped CZ Si crystal with resistivity under 1 mΩ cm has 
been achieved. For instance, Chiou9 incorporated about 
1.11 × 1020 atom/cm3 P in CZ Si crystal and obtained a resis-
tivity value of 0.71 mΩ cm. The equilibrium P concentration 
in Si solid presented in Fig. 5c and d suggests the potential to 
further lower the resistivity by incorporating higher P level 
in Si crystal. For example, to achieve a resistivity value of 
0.5 mΩ cm, it requires dissolving around 1.65 × 1020 atom/
cm3 (or 0.33 at.%) P in Si, according to the free-access resis-
tivity-composition converter.62 This P doping level creates a 
lattice contraction of around 2.97 × 10−4, as the lattice strain 
of substitutional solution is9,12 

(6)Xp =

(

xP ⋅ NA ⋅ �Si
)

MSi1−xPx

Fig. 4   Calculated Si-P phase diagram at 100 kPa, along with experimental phase equilibria data and the enlarged section at Si-rich side.
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Here Δa is the modified lattice constant with increasing 
dopant concentration, aSi is the lattice constant of undoped 
Si (0.5431 nm). For dopants occupying the substitutional 
sites, the solute lattice contraction (+) or expansion (−) 
coefficient β is determined by the covalent radii of dopants 
(rdopant) and that of Si (rSi), as well as the number of Si atoms 
per cm3 (XSi is 5 × 1022 atom/cm3)13 

The covalent radii of Ge, P and Si are: 0.122  nm, 
0.11  nm, 0.1173  nm, respectively.12,13,16 The coef-
ficients β of Ge and P in Si are hereby obtained: 
βP is around 1.17 × 10−24  cm3/atom, and βGe is 

(7)� = Δa∕aSi = �XP

(8)� =
1

3

[

1 −

(

rdopant

rSi

)3
]

1

XSi

around − 8.91 × 10−25 cm3/atom. Using these coefficients 
of β, the concentration of Ge that is required to compen-
sate the lattice strain introduced by 1.65 × 1020 atoms/
cm3 P in Si can be derived via XGeβGe = XPβP. Here, the 
required concentration of Ge is around 2.17 × 1020 atoms/
cm3 (or around 0.45 at.%, referring to Eq. 6).

Using the extrapolated thermodynamic database of 
Ge-P-Si ternary system, isopleth along 0.33 at.% P at Si-
rich side of Si99.67P0.33-Ge99.67P0.33 (at.%) has been calcu-
lated. As presented in Fig. 6a, at constant P doping level 
(0.33 at.%) the solidification temperatures of the Si(Ge, 
P) ternary alloys decreased with increasing Ge contents. 
For instance, a slightly lower solidification temperature 
(1394.25°C) was obtained for SiGe0.45P0.33 compar-
ing with that of the binary alloy SiP0.33 (1399.95°C). In 
addition, the single phase boundaries of Si(Ge, P) in the 

Fig. 5   Calculated Ge-rich side of the Ge-P phase diagram at 5 kPa (a) 
and 1.5 kPa (b), as well as calculated Si-rich side of the Si-P phase 
diagram at 5 kPa (c) and 1.5 kPa (d). Here Ge(P) and Si(P) represent 

the solid solution phase of Ge_diamond and Si_diamond in Ge-P and 
Si-P binary system, respectively.
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isopleth also reveal that for 0.33 at.% P the incorporated 
Ge concentration limits at 3.369 at.%.

For a binary system, it is straight forward to get the Keq 
value from the relevant phase equilibrium, i.e. Keq = CL/CS, 
CL and CS are the dopant concentrations on the liquidus and 
solidus lines at a given temperature. Concerning the Keq of 
P in Si(P, Ge), phase diagram calculation works as well. 
Firstly, a vertical section that crosses the doping concentra-
tion of interest is calculated. The solidification temperature 
of that alloy is then obtained. Subsequently, a corresponding 
isothermal section will be calculated. The liquid composi-
tion that equilibrates with the solid can be directly taken by 
selecting the relevant tie-line in the liquid–solid two-phase 
equilibrium field (as depicted in Fig. 6b), and then the Keq of 
the dopant at his doping level (e.g. 0.33 at% P in this work) 
and temperature is acquired. Table IV lists the K values from 
literature and the current calculation by using the extrapo-
lated Ge-Si-P ternary thermodynamic description.

The Keq values of P in Si at around melting point of Si 
obtained in this work are comparable with other theoretical 
data.3,22,58 However, all the calculated values are way too 
small than the widely accepted effective segregation coef-
ficient (Keff of 0.35).56 The reason of such difference can be 
partially interpreted by the well-known Barton–Prim–Sli-
chter equation63 and the modifications.4,64 The Keff is deter-
mined not only by the Keq but also by the concentration 
dependent properties of the dopants (e.g. diffusivity in melt, 
evaporation rate) and the process parameters (e.g. pulling 
rate, angular velocity of crystal rotation). In addition, the 

impurities of oxygen and carbon are unavoidable during CZ 
Si growth process. The dissolved oxygen impacted the solu-
bility level of P in Si,65 as also discussed in the last section. 
Furthermore, the thermal donors, associated with interstitial 
oxygen in CZ Si and formed during cooling process in tem-
perature range of 400–500°C, contribute to the free carrier 
concentration,66 thus influencing the accuracy derivation of 
dopants K values via resistivity methods. The influence of 
oxygen on the heavily P-doped CZ Si will be exploited in 
another publication.

There is limited data available regarding the Keff of P 
in SixGe1−x

16,67–69 Refs. 67 and 68 reported the Keff values 
of lightly P-doped Ge-rich SiGe crystal (Si0.05Ge0.95); how-
ever, the P concentration was not specified. Yonenaga et al.69 
evaluated the Keff of P in Si-rich CZ SiGe crystal based on 
(i) the carrier concentrations in the melts and the grown 
crystal via relation Keff = CS/CL, or (ii) the carrier concen-
trations at the position of growth initiation of the crystal 
(CS0) and carrier concentration at grown SiGe with a solidi-
fication ratio (f) of 0.5 (CS) via normal freezing equation 
CS = CS0Keff(1 − f )keff−1.16 They reported a dramatic increase 
of the Keff (listed in Table IV).16 Those values were not with-
out doubt since the oxygen concentration was unignorable, 
for instance, it was 9 × 1017 atoms/cm3 in their un-doped 
crystal.16

In this work, the comparison with Keff values reported 
in Ref. 16 were not attempted. Instead, the Keq of P vary-
ing with the Ge fraction in Si1−xGex was calculated (Fig. 7) 
by referring to the alloy concentrations utilized in Ref. 

Table III   Thermodynamic 
parameters obtained in this 
work

Values are in SI units. Parameters assessed in present calculation are listed in the table; the other param-
eters were directly cited from the literature, i.e. Ge-Si from Ref. 19 and Si-P from Ref. 3. Data for pure ele-
ments are taken from SGTE (http://​www.​sgte.​org/).

Defined functions and phases notation Parameters

Liquid: (Ge, P, Si) L
0,Liq

Ge,P
= +6072.19334

L
1,Liq

Ge,P
= −1934.50901

L
2,Liq

Ge,P
= +1832.59877

L
0,Liq

Si,P
= −46554.9965 + 20.649 ⋅ T

L
1,Liq

Si,P
= +4361.9054

Diamond: (Ge, P, Si) G
Dia
P

= +43106.57 + 2.092 ⋅ T + G
White
P

L
0,Dia

Ge,P
= −20127.5383 + 22.5340702 ⋅ T

L
1,Dia

Ge,P
= −1893.20478

L
0,Dia

Si,P
= −85396.4302 + 51.02066 ⋅ T  (Model I)

L
0,Dia

Si,P
= +67800.6726 − 2.28973 ⋅ T  (Model II)

L
1,Dia

Si,P
= +100963.105 (Model II)

L
0,Dia

Si,P
= +453760.054 − 2.38539 ⋅ T  (Model III)

L
1,Dia

Si,P
= +489945.4 (Model III)

GeP: (Ge)1(P)1 G
GeP
Ge:P

= −40512.49493 + 257.5408 ⋅ T − 45.4 ⋅ T ⋅ LN(T)

− 0.005648 ⋅ T2 + 2.615 ⋅ 105 ∗ T
−1

http://www.sgte.org/


4283Calculation of Phase Diagrams and First-Principles Study of Germanium Impacts on Phosphorus…

1 3

16. The results demonstrated that: (i) at constant P doping 
level, the Keq of P decreased with increasing Ge fraction 
in the Si1−xGex crystal; (ii) at a constant Ge fraction, the 
higher the P doping level, the smaller Keq of P one gets. As 
shown in Fig. 7, the Keq values of P are greatly dependent 
on the Ge fraction. It is observed that the Keq value of P 

in Si(P, Ge) can increase with increasing P concentration 
as long as Ge fraction changes accordingly, for instance, 
under the condition that x(Ge) is less than 0.043 at the P 
doping level of 6 × 1019 atoms/cm3, and x(Ge) is higher 
than 0.046 at the P doping level of 8 × 1017 atoms/cm3.

Fig. 6   Calculated phase diagram of Ge-P-Si at 5 kPa: (a) is isopleth 
of 0.33 at.% P at Si-rich side, the region near point A was schemati-
cally illustrated in the inserted figure, and (b) is the Si-rich corner of 

the isothermal section of Si-Ge-P at 1393.98°C, 5 kPa. Here Si(Ge, 
P) is the Si_diamond solid solution phase that has certain solubility 
of both Ge and P.
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Table IV   Segregation coefficients of P in Si, and SiGe crystal

Ka
eq or Kb

eff of P in Si Applied measurement method Ref.

P in Si 0.04a Four undetailed methods: Conductivity measurements, melting and recrystallization of a 
doped crystal, measurement of the impurity content as a function of distance along the 
crystal, and radioactive tracers

70

0.35a Radiochemical analysis and conductivity measurements 71
0.35b Radiochemical analysis. Evaporation of P during crystal growth were ignored, CZ growth 

crystal
72

0.35a Evaluation, widely cited 56
0.42b Electrical resistivity, Pulling rate: 1.8 mils/s, CZ growth crystal 73
0.32b Electrical resistivity, Pulling rate: 1.0 mils/s, CZ growth crystal
0.35b Spark source mass spectroscopy and/or neutron activation analysis for doping concen-

tration in Si ingot (CS), and emission spectroscopy or atomic absorption for dopants 
concentration in residual melt of growth (CL). CZ growth crystal

74

0.123a Calculated, experimental data by Hall measurement 58
0.09a Phase diagram, measured 22
0.038a Phase diagram, thermodynamic calculation, Model I 3
0.157a Phase diagram, thermodynamic calculation, Model III, at 100 kPa This work
0.156a Phase diagram, thermodynamic calculation, Model III, at 5 kPa

P in SiGe 0.8, ~ 0.6, 0.9–1b Hall effect measurements, heavily doping up to 1020 atoms/cm3, no exact data given, CZ 
crystal, Ar flow, 100 kPa. K correspond to Si1−xGex, with x = 0.2, 0.1, 0.05

69

0.31, 0.76b Hall measurements, P concentrations at the position of growth initiation (8 × 1017 and 
6 × 1019 atoms/cm3), CZ growth crystal, Ar flow, 100 kPa

16

0.093b Resistance measurements, P (unknown doping level) in crystal SixGe1−x (x = 0.05). Verti-
cal Bridgman method and Zone melting

67,68

Ge-P in Si 0.1045a Co-doping level: 0.33 at.% P + 0 at.% Ge, at 5 kPa and 1399.95°C Calculated, this work
0.0933a Co-doping level: 0.33 at.% P + 0.33 at.% Ge, at 5 kPa and 1395.82°C
0.0895a Co-doping level: 0.33 at.% P + 0.45 at.% Ge, at 5 kPa and 1394.25°C
0.0824a Co-doping level: 0.33 at.% P + 0.69 at.% Ge, at 5 kPa and 1391.01°C

Fig. 7   Calculated equilibrium segregation coefficient of P at concentration of 6 × 1019 atoms/cm3 and 8 × 1017 atoms/cm3 dependent on the Ge 
fraction in Si1−xGex.



4285Calculation of Phase Diagrams and First-Principles Study of Germanium Impacts on Phosphorus…

1 3

The Keq values of P (0.33 at.%) with respect to different 
Ge co-doping level were theoretically calculated using the 
currently extrapolated Ge-P-Si thermodynamic database. 
The relevant solidification temperatures were directly read 
from the isopleth of 0.33 at.% P (Fig. 6a). At this P doping 
level (0.33 at.%), the Keq values of P in Si(P, Ge) decreased 
with increasing Ge co-doping concentrations.

Impacts on P Distribution in Si Matrix

To understand the role of Ge in P distribution in the Si 
matrix, the current DFT calculations simulated the mono-
vacancy formation energy of un-doped Si, the formation 
energy of substitutional Si(P) and Si(Ge) solutions, as well 
as the binding energies of two like (P-P, Ge-Ge) and dislike 
(Ge-P) dopants positioning as 1NN, 2NN and 3NN in the 
Si matrix. Generally, the formation energy can be derived 
from the equation:

Accordingly, the vacancy formation energy of Si without 
solute atoms ΔEV

f
 is determined by the energy difference of 

the perfect structure and that of monovacancy:

where N is the total atoms in the supercells, Va1 indicates 
one vacancy on the Si lattice site. ESiN−1Va1

 and ESiN
 cor-

respond to the total energy of the supercell including one 
vacancy and that of perfect cell.

The formation reaction for the Si-based solid solution 
with substitutional dopants is:

One can obtain the substitutional formation energy of a 
single dopant in Si matrix:

Here, ESiN−1X1
 is the total energy of the cell including one 

dopant, and EX is the energy of an isolated dopant atom. 
Table V summarizes the formation energies derived from 
total energies obtained by using GGA exchange–correla-
tion potential. The monovacancy formation in Si obtained 
in this work is comparable with data from previous DFT 
studies,75,76 i.e. at 0 K for the neutral vacancy,ΔESiVa1

f
 is in 

the range of 3.4–4.4 eV. Therefore, the reliability of cur-
rent calculation was verified. Values listed in Table V 
show that of the calculated formation energy of the Si(Ge) 
substitutional solution is less than that of Si(P). It implies 
a higher tendency to form the Si(Ge) solution phase than 

(9)Eformation = Eproducts − Ereactants

(10)ΔE
SiVa1
f

= ESiN−1Va1
−

N − 1

N
ESiN

(11)NSi + 1X = SiN−1X1 + 1Si

(12)ΔE
SiX1

f
= ESiN−1X1

−
N − 1

N
ESiN

− 1 ⋅ EX

to form the Si(P) solution phase, which is supported by the 
significantly larger solubility of Ge in Si solid phase com-
paring with that of P.

The binding energy for two substitutional solute dopant 
atoms in Si is obtained from:

In Eq. 13, iNN denotes the 1st to 3rd nearest neigh-
bors. X1 and X2 are the substitutional dopant atom Ge and 
P. Table VI lists the binding energies of P-P, Ge-Ge and 
Ge-P derived by following Eq. 13. The binding energy 
between Ge and Ge atoms at the 1NN position is smaller 
than the binding energies of Ge-Ge at 2NN and 3NN posi-
tions. It is apparent that Ge atoms tend to gather in the Si 
matrix. Examining the results of the binding energies of 
Ge-P bonds, one can notice that Ge-P bonds distributing at 
1NN and 2NN positions are more energetically favorable 
than at 3NN; however, for P-P bonds the opposite tendency 
is observed. In addition, binding energies of P-P bonds are 
higher than those of Ge-P and Ge-Ge bonds for each level 
of neighboring bonds position. This suggests that the P 
atoms are energetically favorable to interact with Ge atoms 
rather than to cluster in the Si matrix. The Ge co-doping in 
P-doped Si can then provide the drag-and-drop effect, and 
thus to homogenize the P distribution in Si solid.

(13)ΔEiNN
b

(

X1X2

)

= ESiN
+ ESiN−2X1X2

− ESiN−1X1
− ESiN−1X2

Table V   Formation energy for monovacancy in Si, and Si-based solid 
solution with P and Ge

Formation energy 64-atom supercell, 
unit: eV

216-atom 
supercell, 
unit: eV

ΔE
SiVa1
f

3.6448 3.8690

ΔE
SiGe1
f

0.0837 0.0701

ΔE
SiP1
f

0.2557 0.2023

Table VI   Calculated binding energies in this work

Binding energy 64-atom supercell, unit: 
eV

216-atom 
supercell, unit: 
eV

ΔE1NN
b

(GeGe) − 0.0122 0.0016

ΔE2NN
b

(GeGe) 0.0040 0.0184

ΔE3NN
b

(GeGe) – 0.0144

ΔE1NN
b

(PP) 0.0409 0.1238

ΔE2NN
b

(PP) 0.1005 0.1985

ΔE3NN
b

(PP) – 0.1120

ΔE1NN
b

(GeP) − 0.0009 0.0067

ΔE2NN
b

(GeP) 0.0073 0.0128

ΔE3NN
b

(GeP) – 0.0194
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P diffusion in Si poses a technological difficulty in 
forming well-defined doped regions for devices. In order 
to check the impact of Ge on the migration of P atoms in 
the Si matrix, the CL-NEB calculations were performed to 
simulate the migration barriers for a 1NN P jump in the 
64-atom Si cubic supercell. The calculations were executed 
with/without a Ge atom occupying a site that also forms the 
nearest neighbor bond with the same corner atom as P neigh-
boring. The barrier energies of the P diffusion between 1NN 
position are depicted in Fig. 8a. The migration of P atoms 
in the Si matrix is illustrated in Fig. 8b. Curves in Fig. 8a 
demonstrates that the barrier energy of P diffusion with 
Ge presented is larger than that of the case without involv-
ing Ge, which is in agreement with previous experimental 
research on stability of the P-Va pair in n-doped Si1−xGex.77 
This justifies our conclusion that Ge co-doping can slow P 
diffusion in Si solid.

Conclusion

This work investigated the Ge influence on the P distri-
bution in Si based on thermodynamic considerations by 
analyzing results from CALPHAD approaches and DFT 
calculations. Phase diagrams of Ge-P and Si-P binary 
systems were thermodynamically re-assessed. Thermo-
dynamic description of the Si-P-Ge ternary system has 
thus been theoretically extrapolated. It was then utilized to 
calculate the isopleth diagram of SiPx-GePx (x = 0.33 at.%) 
and isothermal sections of Si-Ge-P at 5 kPa. Accordingly, 
the Ge impacts on the solidification temperature and Keq 
of P in doped Si have been studied based on the calculated 
diagrams. It was found that at constant P concentration 
(0.33 at.%) the solidification temperature of Si(Ge, P) 
decreased with increasing Ge concentration, so did the Keq 
of P. DFT calculations performed on the formation energy 
for monovacancy of Si crystal and substitutional Si-dopant 

solutions, i.e. Si(Ge) and Si(P), and the binding energy of 
P-P, Ge-Ge and Ge-P bonds loacted at 1NN, 2NN and 3NN 
positions. Comparing with P-P bonds, both Ge-Ge and 
Ge-P bonds have larger binding energy at all the three con-
figurations. The energy barriers of P migration between 
the 1NN bond were calculated by DFT-NEB. The higher 
energy barriers were obtained when neighbored by a Ge 
atom than that without Ge occupying a site of another1NN 
bond. These results led to the conclusion that in heavily 
P-doped Si, Ge does not have the capability to improve 
the even distribution of P along the Si ingot during crystal 
growth process, nevertheless, Ge co-doping in the solid 
state of the P-doped Si crystal can reduce the P atoms 
gathering and its diffusion in Si and thus to stabilize the 
P-doped Si structure.

Acknowledgments  This work is part of the POSITION-II project 
funded by the ECSEL Joint Undertaking under grant number Ecsel-
783132-Position-II-2017-IA. www.​posit​ion-2.​eu. The authors would 
like to acknowledge the Innovation Funding Agency Business Finland 
for their financial support. Dr. Jari Paloheimo and Dr. Heikki Holmberg 
from Okmetic Oy, Finland, are acknowledged for useful discussions. 
One of the authors, Dr. Xiaoma Tao, acknowledges the support from 
National Natural Science Foundation of China [Grants Nos. 51661003 
and 51961007], and the Guangxi Natural Science Foundation [Grant 
No. 2018GXNSFAA281254].

Funding  Open access funding provided by Aalto University.

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 

Fig. 8   DFT NEB calculation for P atom 1NN jump in Si crystal (a), as well as the schematic graph of initial of P atom (b) and the final stages of 
P atom migration along the 1NN bond where Ge occupying one of the other 1NN neighbor (c).

http://www.position-2.eu


4287Calculation of Phase Diagrams and First-Principles Study of Germanium Impacts on Phosphorus…

1 3

permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 M. Tilli, M. Paulasto-Krockel, M. Petzold, H. Theuss, T. Motooka, 
and V. Lindroos, Handbook of silicon based MEMS materials and 
technologies, 3rd ed. (Amsterdam: Elsevier, 2020), p. 19.

	 2.	 I.H. Jung and Y. Zhang, JOM 64, 973 (2012).
	 3.	 S.M. Liang and R. Schmid-Fetzer, J. Phase. Equilibria. Diffus. 

35, 24 (2014).
	 4.	 M. Porrini, R. Scala, and V.V. Voronkov, J. Cryst. Growth 460, 

13 (2017).
	 5.	 G.L. Pearson and J. Bardeen, J. Phys. Rev. 75, 865 (1949).
	 6.	 K.D. Weeks, S.G. Thomas, P. Dholabhai, and J. Adams, Thin Solid 

Films 520, 3158 (2012).
	 7.	 M. Lee, H.Y. Ryu, E. Ko, and D.H. Ko, ACS Appl. Electron. 

Mater. 1, 288 (2019).
	 8.	 J.R. Carruthers, R.B. Hoffman, and J.D. Ashner, J. Appl. Phys. 

34, 3389 (1963).
	 9.	 H.D. Chiou, J. Electrochem. Soc. 147, 345 (2000).
	10.	 S. Kawazoe, Y. Narushima, T. Kubota, and F. Ogawa, Process 

for production of silicon single crystal, and highly doped N-type 
semiconductor substrate. U.S. Patent No. 8,747,551. Washington, 
DC: U.S. Patent and Trademark Office, 2014-6-10.

	11.	 G. Celotti, D. Nobili, and P. Ostoja, J. Mater. Sci. 9, 821 (1974).
	12.	 Y. Okada, Properties of crystalline silicon, ed. R. Hull (London: 

INSPEC, 1999), p. 91.
	13.	 Y.T. Lee, N. Miyamoto, and J. Nishizawa, J. Electrochem. Soc. 

122, 530 (1975).
	14.	 J. Vanhellemont, J. Chen, J. Lauwaert, H. Vrielinck, W. Xu, D. 

Yang, J.M. Rafí, H. Ohyama, and E. Simoen, J. Cryst. Growth 
317, 8 (2011).

	15.	 I. Yonenaga, Jpn. J. Appl. Phys. 45, 2678 (2006).
	16.	 I. Yonenaga and T. Ayuzawa, J. Cryst. Growth 297, 14 (2006).
	17.	 R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagrams. 

5, 180 (1984).
	18.	 C. Bergman, R. Chastel, and R. Castanet, J. Phase Equilib. 13, 

113 (1992).
	19.	 SGTE Solutions Database Version 4.9 (SSOL4).
	20.	 R.W. Olesinski, N. Kanani, and G.J. Abbaschian, Bull. Alloy 

Phase Diagrams 6, 130 (1985).
	21.	 K. Tang, E.J. Øvrelid, G. Tranell, and M. Tangstad, in Crystal 

Growth of Si for Solar Cells, ed. by K. Nakajima and N. Usami 
(Springer, Berlin 2009), p. 219.

	22.	 J. Safarian and M. Tangstad, J. Mater. Res. 26, 1494 (2011).
	23.	 N.A. Arutyunyan, A.I. Zaitsev, and N.G. Shaposhnikov, Russ. J. 

Phys. Chem. A 85, 911 (2011).
	24.	 E.G. Goncharov, L.I. Sokolov, and Y.A. Ugai, Zh. Neorg. Khim. 

20, 2452 (1975).
	25.	 Y.A. Ugai, L.I. Sokolov, E.G. Goncharov, and V.R. Pshestanchik, 

Russ. J. Inorg. Chem. 23, 1048 (1978).
	26.	 N.K. Abrikosov, V.M. Glazov, and C.Y. Liu, Russ. J. Lnorg. 

Chem. 7, 429 (1962).
	27.	 V.I. Fistul, A.G. Yakovenko, A.A. Gvelesiani, V.N. Tsy-gankov, 

and R.L. Korchazhkina, Izv. Akad. Nauk SSSR Neorg. Mater. 11, 
539 (1975).

	28.	 N.D. Zakharov, V.N. Rozhanskij, and R.L. Korchazhkina, Fiz. 
Tverd. Tela. 16, 1444 (1974).

	29.	 M. Zumbusch, M. Heimbrecht, and W. Biltz, Z. Anorg. Allg. 
Chem. 242, 237 (1939).

	30.	 B. Süess, K. Hein, and J. Korb, Z. Anorg. Allg. Chem. 494, 115 
(1982).

	31.	 Y.A. Ugai, A.F. Demidenko, V.I. Koshchenko, V.E. Yachmenev, 
L.I. Sokolov, and E.G. Goncharov, Inorg. Mater. 15, 578 (1979).

	32.	 I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical 
Properties of Inorganic Substances (Supplement), 1st ed. (Ber-
lin: Springer, 1977), p. 293.

	33.	 O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermo-
chemical properties of Inorganic Substance, 2nd ed. (Berlin: 
Springer, 1991).

	34.	 M. Binnewies and E. Milke, Thermochemical Data of Elements 
and Compounds, 2nd ed. (Weinheim: Wiley-VCH, 1999), p. 
261.

	35.	 D.R. Lide, in CRC Handbook of Chemistry and Physics (CRC 
Press, Boca Raton, FL, Internet Version, 2005), p. 5.

	36.	 M.E. Schlesinger, Chem. Rev. 102, 4267 (2002).
	37.	 S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. 

Aykol, S. Rühl, and C. Wolverton, Npj Comput. Mater. 1, 15010 
(2015).

	38.	 A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, 
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, 
APL Mater. 1, (2013).

	39.	 S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. 
Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. 
Mehl, H.T. Stokes, D.O. Demchenko, and D. Morgan, Comput. 
Mater. Sci. 58, 218 (2012).

	40.	 R.W. Olesinski, N. Kanani, and G.J. Abbaschian, Bull. Alloy 
Phase Diagrams 6, 262 (1985).

	41.	 A.T. Dinsdale, Calphad 15, 317 (1991).
	42.	 J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sund-

man, Calphad 26, 273 (2002).
	43.	 M. Hillert, Calphad 4, 1 (1980).
	44.	 P. Chartrand and A.D. Pelton, J. Phase Equilib. 21, 141 (2000).
	45.	 A.D. Pelton, Calphad 25, 319 (2001).
	46.	 H. Lukas, S.G. Fries, and B. Sundman, Computational Thermo-

dynamics: The Calphad Method, 1st ed. (Cambridge: Cambridge 
University Press, 2007), p. 112.

	47.	 T. Wadsten, Acta Chem. Scand. 21, 593 (1967).
	48.	 K. Lee, S. Synnestvedt, M. Bellard, and K. Kovnir, J. Solid State 

Chem. 224, 62 (2015).
	49.	 P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).
	50.	 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
	51.	 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
	52.	 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
	53.	 G. Henkelman, B.P. Uberuaga, and H. Jonsson, J. Chem. Phys. 

113, 9901 (2000).
	54.	 G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).
	55.	 B. Giessen and R. Vogel, Z. Metallkd. 50, 274 (1959).
	56.	 F.A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
	57.	 E. Kooi, J. Electrochem. Soc. 111, 1383 (1964).
	58.	 V.E. Boeisenko and S.G. Yudin, Phys. Status Solidi A 101, 123 

(1987).
	59.	 D. Nobili, D., in Semiconductor Silicon: Proceedings of the Sixth 

International Symposium on Silicon Materials Science and Tech-
nology (1990), p. 550.

	60.	 S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, D. Nobili, and 
L. Moro, Phys. Rev. B 53, 7836 (1996).

	61.	 A.N. Christensen, F. Leccabue, C. Paorici, in Crystal Growth 
and Characterization of Advanced Materials-Proceedings of the 
International School on Crystal Growth and Characterization of 
Advanced Materials (World Scientific Publishing Cp. Pte. Ltd. 
1988), p. 315.

	62.	 Siegert Wafer, Resistivity calculator for Silicon, https://​www.​siege​
rtwaf​er.​com/​calcu​lator.​html. Accessed 20 June 2020.

	63.	 J.A. Burton, R.C. Prim, and W.P. Slichter, J. Chem. Phys. 21, 1987 
(1953).

	64.	 S. Pizzini, in Physical Chemistry of Semiconductor Materials and 
Processes, ed. by S. Pizzini (John Wiley & Sons, 2015), p: 265.

http://creativecommons.org/licenses/by/4.0/
https://www.siegertwafer.com/calculator.html
https://www.siegertwafer.com/calculator.html


4288	 H. Dong et al.

1 3

	65.	 M. Porrini, V.V. Voronkov, and A. Giannattasio, ECS J. Solid 
State Sci. Technol. 8, 12 (2019).

	66.	 Y. Hu, H. Schøn, E.J. Øvrelid, Ø. Nielsen, and L. Arnberg, AIP 
Adv. 2, (2012).

	67.	 A. Barz, P. Dold, U. Kerat, S. Recha, K.W. Benz, M. Franz, and K. 
Pressel, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 
Process. Meas. Phenom. 16, 1627 (1998).

	68.	 P. Dold, A. Barz, S. Recha, K. Pressel, M. Franz, and K.W. Benz, 
J. Cryst. Growth 192, 125 (1998).

	69.	 I. Yonenaga, J. Cryst. Growth 275, 91 (2005).
	70.	 R.N. Hall, J. Phys. Chem. 57, 836 (1953).
	71.	 J.A. Burton, Physica 20, 845 (1954).
	72.	 J.A. James and D.H. Richards, Int. J. Electron. 3, 500 (1957).
	73.	 H.R. Huff, T.G. Digges Jr, and O.B. Cecil, J. Appl. Phys. 42, 1235 

(1971).

	74.	 J.R. Davis, A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choud-
hury, J.R. Mccormick, and H.C. Mollenkopf, IEEE Trans. Elec-
tron. Dev. 27, 677 (1980).

	75.	 B.T. Puchala, Modeling Defect Mediated Dopant Diffusion in Sili-
con (Doctoral Dissertation, University of Michigan, 2009).

	76.	 K. Sueoka, E. Kamiyama, and J. Vanhellemont, J. Appl. Phys. 
114, (2013).

	77.	 S.L. Sihto, J. Slotte, J. Lento, K. Saarinen, E.V. Monakhov, A.Y. 
Kuznetsov, and B.G. Svensson, Phys. Rev. B 68, (2003).

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


