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The urgent need for reliable simulation tools to match the extreme accuracy needed to control tailored quantum
devices highlights the importance of understanding open quantum systems and their modeling. To this end, we
compare here the commonly used Redfield and Lindblad master equations against numerically exact results in
the case of one and two resonant qubits transversely coupled at a single point to a Drude-cut ohmic bath. All the
relevant parameters are varied over a broad range, which allows us to give detailed predictions about the validity
and physically meaningful applicability of the weak-coupling approaches. We characterize the accuracy of the
approximate approaches by comparing the maximum difference of their system evolution superoperators with
numerically exact results. After optimizing the parameters of the approximate models to minimize the difference,
we also explore if and to what extent the weak-coupling equations can be applied at least as phenomenological
models. Optimization may lead to an accurate reproduction of experimental data, but yet our results are important
to estimate the reliability of the extracted parameter values such as the bath temperature. Our findings set general
guidelines for the range of validity of the usual Born-Markov master equations and indicate that they fail to
accurately describe the physics in a surprisingly broad range of parameters, in particular, at low temperatures.
Since quantum-technological devices operate there, their accurate modeling calls for a careful choice of methods.

DOI: 10.1103/PhysRevB.103.214308

I. GENERAL INTRODUCTION

Precision control and measurement of quantum systems
and devices [1,2] have undergone great progress during the
recent years. Important applications of this research field in
both quantum computing [3–5] and quantum heat engines
[6–9] call for in-depth studies of the accuracy of the cor-
responding theoretical models, especially for open quantum
systems, where typically many approximations are utilized to
render the problem computationally solvable [10–19]. Most
typically, Markovian master equations (MEs) are used, having
been historically proven to be simple and effective tools in
many scenarios where open quantum systems appear such as
in the field of quantum optics [20]. The ME approach can be
rigorously justified for the limit of weak coupling and a suit-
able separation of time scales between the system dynamics
and the correlation time of the dissipative reservoir, which,
in turn, depends heavily on the reservoir temperature. The
most commonly used ME approaches include the Redfield
and Lindblad equations [21–23]. The latter is obtained from
the former by an additional secular approximation to neglect
rapidly oscillating terms in the density operator.

However, such models of open quantum systems require a
critical inspection in several important cases of contemporary
science and technology. In quantum information, dissipa-
tion is typically weak for unitary gate operations, but very
high fidelities are pursued, thus setting stringent require-
ments for the accuracy of the theoretical models [24]. For
qubit reset, in contrast [24–30], temporarily strong dissipation
is required at least effectively, possibly leading to nontriv-
ial system-reservoir correlations [24,31], and consequently
potential initialization errors. In quantum thermodynamics,
stronger reservoir coupling combined with finite-time oper-
ation typically gives rise to higher performance in terms of
total power, and hence the parameter regimes of interest may
be very different from those in quantum optics rendering many
previous experimental verifications of the models inapplicable
[32–34]. Importantly, it is known that some widely adopted
models and fundamental physical concepts contradict each
other, e.g., the stationary states contradict thermodynamical
principles [35–37].

Historically, systematic experimental studies on the valid-
ity of the weak-coupling approaches have been challenged
by the lack of systematic and predictable tunability of the
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relevant parameters such as the coupling strength to a broad-
band reservoir. Change in the coupling strength may also
require adjusting the qubit frequency, which, in turn, may
shift the qubit close to a spurious reservoir resonance in an
unpredictable manner. Driving certain transitions may effec-
tively provide a tunable dissipation but renders the system
intractable for the standard approaches assuming a nondriven
system. Redesign and fabrication of a new sample may readily
produce parameters in the desired range, but this is a very slow
and resource-intensive approach.

The recent development of a quantum-circuit refrigerator
(QCR) [38–40] has introduced the solid-state-qubit commu-
nity to a simple device that provides orders-of-magnitude
tunability in the system-reservoir coupling strength with mini-
mal effect on the system parameters. Thanks to this tunability,
the QCR has thus far been used to observe the Lamb shift
arising from a broadband reservoir of an engineered quantum
system [41] and has the potential to enhance, for exam-
ple, qubit initialization [42], quantum-thermodynamic devices
[43], quantum-state-engineering protocols [44–47], and syn-
thetic quantum matter [48–50]. Together with the generally
expanding experimental toolbox for quantum technology,
QCR motivates us to benchmark the validity and accuracy of
widely used approximate methods for open quantum systems
against numerically exact solutions. Our theoretical study may
thus work as a road map for various future experiments in the
pursuit of computationally feasible and accurate models.

In parallel to these developments, advanced descriptions of
reduced open quantum dynamics have been formulated and
applied to a variety of systems. These approaches are based on
a nonperturbative representation of the reduced density matrix
in terms of path integrals pioneered by Feynman and Vernon
[10,51]. Accordingly, path-integral Monte Carlo techniques
have been shown to provide insight into subtle qubit-reservoir
correlations in regimes not accessible by other means [52].
Often more efficient and with a broader range of applicability
are stochastic representations of the path-integral dynamics
[53,54], in particular, the stochastic Liouville–von Neu-
mann equation (SLN) [33,55–57] and its version for ohmic
dissipation [stochastic Liouville equation with dissipation
(SLED)] [58,59].

This paper is organized as follows: After this general in-
troduction to the field of research, we proceed in Sec. II to
discuss in an introductory manner the different master equa-
tions used in our study, and we especially elaborate on the
Born-Markov approximation. In Sec. III, we introduce the
microscopic Hamiltonian and define the error functional we
use to study the difference between the evolution operators
given by the different approaches. Sections IV and V pro-
vide our most important numerical results on the single- and
two-qubit cases, respectively. Appendixes A and B provide
mathematical details of the master equations used and the
numerically exact stochastic method.

II. INTRODUCTION TO THE MODELS USED

The formal requirements needed to achieve consistency
between the Lindblad approach and the corresponding full
microscopic model have been thoroughly studied [12,60]. Im-
portantly, the dissipator terms in both Redfield and Lindblad

equations do not directly correspond to any Hamiltonian oper-
ator of the microscopic model. They are rather a compact and
approximate representation of the processes which amount to
lowest-order emission and absorption of energy quanta.

The Born-Markov (BM) approximation is at the heart of
the Redfield equation. Here, one applies the lowest-order non-
trivial perturbation theory for the system-reservoir coupling,
where the effect of the system-reservoir correlations on the
evolution are neglected. In addition, one effectively applies
coarse graining over time scales much longer than the charac-
teristic time scale of the system Hamiltonian and assumes that
the correlation time of the reservoir is much shorter than the
resulting decay time. In addition to the above BM approxima-
tion, an additional assumption of a separable coupling forms
the basis of the standard Redfield master equation.

For a broadband reservoir, the correlation time is of the or-
der of the thermal time h̄β = h̄/(kBT ), where h̄ is the reduced
Planck constant, kB is the Boltzmann constant, and T is the
reservoir temperature. Thus the BM approximation does not
necessarily imply a white-noise limit. In fact, the separation of
time scales characterizing the BM approximation is typically
considered between the reservoir correlation time and the time
scales of relaxation and dephasing processes caused by the
system-reservoir interaction.

The reduced dynamics induced by the Redfield equation
lacks a fundamental property of quantum channels: It is not
completely positive. Even negative eigenvalues of the reduced
density operator itself may appear. Neglecting quickly oscil-
lating components of the density operator, a method generally
referred to as the secular approximation, remedies this short-
coming and leads to the Lindblad equation. However, this
advantage comes at the price of an additional condition of
validity, namely, the level spacings of the system must greatly
exceed the decay rates. This is typically a stricter requirement
than the weak-coupling assumption in the BM approximation,
and consequently, the Redfield equation may in many cases
provide a more accurate model although not guaranteeing
complete positivity. We note that recently this shortcoming
has been remedied by the derivation of a Lindblad-like mas-
ter equation based on expansion in terms of the correlation
between the bath and the system instead of the coupling
strength [61].

The secular approximation discussed above also includes a
subtlety sometimes overlooked in the literature. Namely, the
basis in which the secular approximation is carried out defines
also the basis in which the dissipative transitions take place.
This effect is pronounced in driven or multipartite systems,
where one may, for example, choose a local approach, where
the basis is chosen as the instantaneous eigenbasis of the indi-
vidual constituents of the multipartite system, or the global
approach, where one uses the eigenbasis of the full multi-
partite Hamiltonian taking into account its possible temporal
trajectory [35–37,62–66]. A temporally local approach in the
case of external driving has been observed to lead to unphys-
ical results, for example, in Cooper pair pumping [67–70],
and constitutes an interesting research direction. In this
paper, however, we focus on nondriven systems and bench-
mark the validity of the local and global Lindblad equations
and the Redfield equation against numerically exact qubit
dynamics.
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Exact methods beyond the BM family of open-quantum-
system approaches are well established [10,51,54,58,59,71]
but more complicated and computationally expensive. Beyond
the Born approximation, reservoirs which are Gaussian can
still be fully characterized by a two-time correlator. A some-
what loose but intuitively appealing characterization of this
generalization can be given as follows: Gaussianity beyond
the Born approximation implies that the high-order emission
and absorption terms become relevant but are reducible in
the spirit of Wick’s theorem. This scenario enables an exact
description of the corresponding quantum dynamics through
path integrals in the form of the Feynman-Vernon influence
functional [10,51,71]. The influence functional is a nonlo-
cal functional of the paths describing the propagation of the
reduced density operator, and hence challenging to solve
numerically. This inconvenience can be circumvented by a
stochastic unraveling of the influence functional [54] in a
similar fashion to the Hubbard-Stratonovich transform. Thus
one obtains a time-local master equation for the reduced sys-
tem density operator which is of a computational complexity
equal to that of the weak-coupling equations except that it
is subject to two noise terms in the general case, or a single
noise term in the case of ohmic dissipation [58,59]. We use
the latter approach, referred to as stochastic Liouville equation
with dissipation (SLED), as a benchmark to check the validity
of the above-discussed BM approaches. The SLED has been
proven to combine high numerical efficiency with high ac-
curacy in broad ranges of parameter space together with the
versatility to be adapted easily to various systems; see, e.g.,
Refs. [33,56]. The existence of the noise terms necessitates
that one ensemble-average the density operators obtained for
individual noise realizations to obtain the system density oper-
ator, which renders this method computationally much heavier
than the weak-coupling approaches. Nevertheless, parallel
computing can be utilized to obtain exact dynamics of low-
dimensional open quantum systems.

The above methods based on stochastic equations are not
the only numerically exact methods of simulation of dy-
namics of the open quantum systems. There are frequently
used techniques such as hierarchical equations of motion
(HEOMs) [72,73], the quasiadiabatic propagator path inte-
gral (QUAPI) [74,75], and the time-evolving density matrix
using orthogonal polynomials algorithm (TEDOPA) [76,77].
All exact methods provide identical answers within the nu-
merical accuracy, which justifies our choice of SLED in the
parameter regime considered in this paper. In this paper we
use SLED because it was previously benchmarked [24] and
we find it well suitable for the considered system and range of
parameters.

III. MICROSCOPIC HAMILTONIAN AND ERROR
OF PERTURBATIVE PROPAGATION

In this paper, we study single- and two-qubit systems em-
bedded in a large number of reservoir degrees of freedom,
a situation that generically appears in solid-state implemen-
tations. A typical realization of this scenario consists of
electromagnetic modes interacting with a superconducting or
a semiconductor qubit system, thus causing decoherence in
the latter. If the quantum fluctuations caused by these reservoir

modes are Gaussian in nature, they can be modeled by a set
of harmonic oscillators bilinearly coupled to the qubit system.
Accordingly, we assume a general Hamiltonian of the form

Ĥ = ĤS +
∑

k

h̄�kb̂†
kb̂k + q̂ξ̂ , (1)

where ĤS is the Hamiltonian of a single- or two-qubit system,
q̂ is the system part of the system-reservoir coupling operator,
and the corresponding reservoir operator is given by

ξ̂ =
∑

k

gk (b̂†
k + b̂k ). (2)

For this type of model, the effective impact of the reservoir on
the qubit system is characterized by the reservoir temperature
1/β and the weighted spectral density J (ω) = π

∑
k g2

kδ(ω −
�k )/h̄. Below, we assume an Ohmic-type distribution with a
high cutoff frequency ωc such that we obtain in the continuum
limit

J (ω) = ηω(
1 + ω2/ω2

c

)2 . (3)

The usual Drude cutoff term appears in squared form here
to avoid divergences of the total noise power of the reser-
voir. Ohmic-type reservoirs can be found in a broad class
of qubit systems, particularly in superconducting devices.
In experiments, they may accurately capture qubit-reservoir
interactions only in the moderate- to high-frequency range,
whereas at very low frequencies non-Ohmic behavior is typ-
ical and system dependent, for example, in the form of 1/ f
noise. Assuming a well-calibrated system, however, the latter
are of minor relevance on the time scales of qubit control and
error correction and are thus not studied in this paper. Here,
we rather present a detailed analysis of perturbative weak-
coupling treatments in describing with sufficient accuracy the
dissipative qubit dynamics in comparison with exact results.

In order to quantify the difference in the numerical perfor-
mance between the perturbative and the exact methods, we
introduce the superoperator T (t ), which transforms an initial
reduced system density matrix ρS(0) to that at time t as

ρ̂S(t ) = T (t )ρ̂S(0). (4)

We estimate the accuracy of the BM approaches by calculat-
ing the distance


(t ) = ||T BM(t ) − T SLED(t )||/2 (5)

between normalized evolution superoperators of the BM type
and of the corresponding numerically exact solution obtained
with the SLED. The normalization of a superoperator A is
defined as A = A/||A||, where the Frobenius norm || · || is
given by

||A|| =
√√√√ N2∑

i=1

N2∑
j=1

|Ai j |2, (6)

with Ai j being the matrix elements of A in the chosen basis
and N denoting the dimension of the system Hilbert space, i.e.,
N = 2 for the single-qubit system and N = 4 for the two-qubit
system.
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In the case of time-independent Hamiltonians, the evolu-
tion superoperator corresponding to a BM master equation can
be formally represented as

T (t ) = eLt , (7)

where L is the Liouvillian superoperator of the open quantum
system defined by ρ̇S(t ) = LρS(t ) and including the nonuni-
tary dissipative terms of the master equation. The nonunitary
evolution superoperator TSLED(t ) [see Eq. (4)] for the numeri-
cally exact SLED solution is constructed by solving the SLED
using N2 linearly independent initial conditions for the density
operator ρ̂S(0).

Furthermore, a temporally independent figure to quantify
the accuracy of a BM evolution is obtained by the maximum
distance from the SLED defined as


max = max
t∈[0,∞)


(t ), (8)

Since we are considering a nondriven decaying system, the
maximum is attained in practice at a finite time.

In a physical setup, the parameters which enter the above
models are typically not known a priori, but are adjusted
after obtaining information from the system. Hence we also
carry out a study where we minimize 
max by optimizing the
parameters of the system and the bath and those determining
their interaction. This optimization procedure may be inter-
preted as a simulation of a typical experimental situation in
which the measurement data correspond to those of the SLED
and the system parameters and dissipation rates are extracted
to fit a BM model for the open quantum system (assuming
structurally the same system and a system-reservoir coupling
Hamiltonian). However, our detailed analysis demonstrates
below that such a procedure may not always provide accurate
predictions of the parameter values, especially in the case
of moderate or strong system-reservoir coupling or if the
interaction parameters with the reservoir are tuned during the
evolution. One should be even more cautions about making
extrapolations of experimental data deep into unmapped pa-
rameter regimes based on the fits.

IV. SINGLE-QUBIT RESULTS

We start with the single-qubit case, where the system
(Fig. 1(a))

ĤS = h̄ωqσ̂
+σ̂− (9)

is coupled to the bath through the operator q̂ = σ̂+ + σ̂− =
σ̂ x with the parameter κ = 2h̄ηωq controlling the coupling
strength to the bath. Here, σ̂+ = (σ̂−)† = |e〉〈g|, where |g〉
and |e〉 are the ground and the excited state of the qubit,
respectively.

In Fig. 2 we show the distance 
max for the BM solu-
tions (Redfield and Lindblad) calculated for dimensionless
parameters κ/ωq and ωq h̄β. As expected their performance
deteriorates with increasing qubit-reservoir coupling, where
the Redfield solution covers a broader domain with acceptable
accuracy.

What is not expected at first glance is that the accuracy
of BM approaches deteriorates with the decrease in the bath
temperature while staying in the weak-coupling regime κ �

FIG. 1. (a) Single- and (b) two-qubit system coupled to the ther-
mal bath, or reservoir, with the spectral density J (ω) and temperature
T . The parameter κ characterizes the coupling strength between the
qubits and the reservoir, saturating to the decay rate in the zero-
coupling limit. The angular frequencies of the qubits are denoted
by {ωk}k=q,1,2. In the case of the two-qubit system, the qubits are
coupled to each other with the coupling strength determined by a
parameter g.

ωq. A possible reason for this could be disregarding the Lamb
shift, which should be significant in the low-temperature case.
In order to verify this, we perform BM calculations including
the Lamb-shifted qubit frequency �q given by the following
expression [10,24]:

�q = ωeff

{
1 + 2K

[
Re ψ

(
i
h̄βωeff

2π

)
− ln

(
h̄βωeff

2π

)]}1/2

,

(10)

(a) (b)

FIG. 2. (a) and (b) Maximum value of the distance 
max obtained
with nonoptimized values of κ , β, and the qubit angular frequency
ωq. The nonunitary temporal-evolution superoperator TSLED(t ) [see
Eq. (4)] is constructed numerically by solving the SLED using
initial states ρ̂x

SLED(0) = |σx,+〉〈σx, +|, ρ̂
y
SLED(0) = |σy, +〉〈σy,+|,

ρ̂z
SLED(0) = |σz, +〉〈σz, +|, and ρ̂I

SLED(0) = 1
2 Î , where |σi, +〉 is the

excited eigenstate of the σ̂i operator with i = x, y, z and Î is the
identity operator. The number of samples in the SLED solutions is
Ntraj = 105, and we have used the cutoff frequency ωc/ωq = 50. For
each pair {κ, β}, the trace distance is calculated for times [0, 10κ−1

T ],
where κT = κ coth(h̄βωq/2).
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(a) (b)

FIG. 3. (a) and (b) Maximum value of the distance 
max obtained
with nonoptimized values of κ , β, and the Lamb-shift-corrected qubit
angular frequency �q [see Eq. (10)].

where ψ (x) is the digamma function, ωeff =
G(ωq/ωc)K/(1−K )ωq, K = κ/(2πωq), G = [�(1 − 2K )
cos(πK )]1/[2(1−K )], and �(x) is the gamma function. Note that
for simplicity, we do not differentiate here between the Lamb
and Stark shifts, but refer to the total environment-induced
frequency shift of the system as the Lamb shift.

Figure 3 shows the distance between the SLED and BM
solutions with the Lamb-shifted qubit frequency taken into
account. The performance of the weak-coupling approaches
is significantly improved, and the regime of their applicability
is extended to lower temperatures.

We also provide an optimized BM solution by finding for a
given set of parameters those values for {κopt, βopt, ω

opt
q } that

minimize the maximal value of the distance 
max, i.e., 
opt
max =


max(κopt, βopt, ωopt ). Technically, the optimization is carried
out using the Powell minimization method available as one of
the standard methods in the SCIPY numeric library [78].

It is an interesting question whether the optimization
procedure can capture the Lamb shift originating from the
interaction with the environment. In order to answer this, we
compare the correction to the qubit frequency obtained by
the optimization procedure ωq − ω

opt
q with the analytically

predicted Lamb shift ωq − �q. This comparison is shown in
Fig. 4. Apparently, the corrections are consistent with each
other only in the weak-coupling regime κ/ωq � 0.1.

Figure 5 displays areas of acceptable accuracy of nonop-
timized and optimized BM methods, where we consider a
maximal distance of 
max = 0.1 as a threshold. While we
confirm that the nonoptimized BM solutions without the
Lamb-shift correction are limited by sufficiently elevated tem-
peratures h̄βωq � 1 and low coupling strengths between the
bath and the qubit κ/ωq � 1, we find that the optimized BM
solutions as well as BM solutions with the Lamb shift taken
into account approximate the SLED solution quite well even
at lower temperatures up to h̄βωq ≈ 10. This implies that the
dynamics of the qubit can be effectively, i.e., by properly
tuned parameters, captured by Markovian dynamics in the
weak-coupling limit. However, in a broad range the values of
these optimized parameters differ substantially from the bare
ones (see Figs. S1– S3 of the Supplemental Material [79])
and even physically cannot always be considered as mean-
ingful. In fact, they are outside the range of formal validity of
the underlying approximations of the BM approaches and/or

(a) (b)

FIG. 4. (a) and (b) Correction to the qubit frequency obtained by
the optimization procedure ωq − ωopt

q (solid lines) and the analyti-
cally predicted Lamb shift ωq − �q (dashed lines).

are not reasonable given typical experimental setups. More
specifically, the optimization parameters should be trusted
only in the weak-coupling regime κ � 0.3ωq.

V. TWO-QUBIT RESULTS

Let us consider here two linearly coupled qubits described
by the system Hamiltonian (Fig. 1(b))

ĤS = h̄ω1σ̂
+
1 σ̂−

1 + h̄ω2σ̂
+
2 σ̂−

2 + h̄g

2
σ̂ x

1 σ̂ x
2 , (11)

where the angular frequency of qubit k is denoted by ωk and
the qubit-qubit coupling strength is denoted by g. In the total
Hamiltonian, only the first qubit denoted by the subscript 1 is
coupled to the bath through the operator q̂ = σ̂ x

1 . We consider
two types of weak-coupling treatments: For weak qubit-qubit
coupling, one typically uses the local Lindblad (LL) master
equation, where the dissipators induce transitions between the
eigenstates of the bare qubit 1. In contrast, the global Lindblad
(GL) master equation describes transitions in the two-qubit
eigenbasis.

For LL, the master equation of the reduced density operator
of the two-qubit system is expressed as

d ρ̂S

dt
= − i

h̄

[
ĤS, ρ̂S

] + κ

2
[N (ω1) + 1][2σ̂−

1 ρ̂Sσ̂
+
1

− {σ̂+
1 σ̂−

1 , ρ̂S}] + κ

2
N (ω1)[2σ̂+

1 ρ̂Sσ̂
−
1 −{σ̂−

1 σ̂+
1 , ρ̂S}],

(12)

where N (ω) = 1/[exp(h̄βω) − 1] is the bosonic occupation.
Further analytical progress is possible if one applies the

rotating-wave approximation, i.e., if one replaces the qubit-
qubit coupling term σ x

1 σ x
2 in the Hamiltonian by h̄(σ̂+

1 σ̂−
2 +

σ̂−
1 σ̂+

2 )g/2. Consequently, we arrive at the following equation
of motion, which is expressed, for simplicity, in the zero-
temperature limit:

d2〈σ̂−
2 〉

dt2
+

(
iδ12 + κ

2

)d〈σ̂−
2 〉

dt
+ g2

4
〈σ̂−

2 〉 = 0, (13)

where δ1,2 = ω1 − ω2 is the detuning between the qubits.
Thus the exponential relaxation of the system is characterized
by two complex-valued decay rates λ1 and λ2, which, in the
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(a) (b) (c)

FIG. 5. Diagrams showing the maximal error contour lines 
max = 0.1 in the case of a single qubit coupled to the environment. From left
to right, we have the nonoptimized (a), Lamb-shift-corrected (b), and optimized (c) Lindblad (green) and Redfield (blue) data.

case of resonant qubits δ1,2 = 0, turn out to be

λ1,2 = κ

4
± 1

2

√
κ2

4
− g2. (14)

Accordingly, in the case of weak damping, κ � g, qubit 2
displays underdamped oscillations towards its bare ground
state with the amplitude relaxation rate κ/4. In the opposite
limit, κ � g, a separation of time scales occurs, where one
of the resulting rates, κ/2, by far exceeds the other, g2/(2κ ).
The latter rate determines the full equilibration time scale of
the system. From a simulation point of view, this phenomenon
implies that the computation of the asymptotic long-time be-
havior requires significant computational resources. Hence,
instead of simulating the full-length equilibration dynamics
of the system, we monitor the quantum evolution only for a
fixed time interval [0, T ], where we use T = 2 × 103/ω1, and
subsequently analyze whether the system converged into its
steady state or not. To this end, we compute the least negative
eigenvalue λmin of the Liouvillian and compare T with the
relaxation time estimated by −3/ Re(λmin). If T exceeds the
relaxation time, we conclude that the system has reached
equilibrium.

According to this procedure, we study the accuracy of
the LL equation, the GL equation, and the Redfield equation
(see Appendix A for details on the weak-coupling equations).
For the sake of clarity, we focus on resonant qubits ω1 = ω2

throughout this section. In the opposite case, |ω1 − ω2| � g,
the coupling between the qubits appears as a weak pertur-
bation to the local eigenstates, and it is expected that the
effect of the reservoir, which directly interacts with the first
qubit, may be described using the weak-coupling approaches
for the second qubit even in the regime κ � g, provided that
κ � ω1, ω2.

For which parameters does one expect that the weak-
coupling approaches provide reliable predictions? In order to
justify the secular approximation, the coupling strength to the
reservoir characterized by κ should be very weak compared
with the smallest distance between the energy levels of the
Hamiltonian (11), which is equal to g for the qubits in reso-
nance. Thus for our case of resonant qubits, we expect the GL
equation to be valid only for κ � g. The Redfield equation

partially cures this deficiency since it relies only on the BM
approximations but does not invoke the secular approxima-
tion. Strictly speaking, all three approaches call for h̄κβ � 1
to justify the Markov approximation (see Appendix A for
details).

Figure 6 shows the maximum distance between the SLED
solution and each weak-coupling approach, 
max, as a func-
tion of the qubit-bath and qubit-qubit coupling strengths,
κ and g, respectively, for high (h̄ω1β = 0.1) and inter-
mediate (h̄ω1β = 1) temperatures. We observe that in the
high-temperature regime the Redfield equation reproduces the
exact dynamics for the whole considered range of parameters,
whereas the Lindblad approaches based on secular approx-
imations have significant limitations. As expected, the GL
approach is valid only in the region g � κ , while the LL
is the most accurate for κ/ω1, g/ω1 � 1. The poor perfor-
mance of the GL equation is due to the neglected slowly
oscillating terms with the frequency of order g owing to
the secular approximation. These terms appear due to the
splitting of the resonant qubit levels, which implies that the
resonant situation is the most problematic one, whereas for
nonresonant qubit systems with all the levels sufficiently sep-
arated, the accuracy of the GL equation is expected to be
higher. Interestingly, the situation is different at intermediate
temperatures h̄βω1 = 1 even for the Redfield treatment as
shown in Fig. 6(d). The solutions given by the SLED and
the BM approaches are noticeably different, which is largely
explained by the lack of a Lamb shift for the weak qubit-bath
coupling and by the violation of the BM conditions for strong
coupling.

We anticipate that the above-observed discrepancies be-
tween the Born-Markov approaches and the SLED solution at
low temperatures are caused by the disregard of the Lamb shift
which is induced in the system by the dissipative environment.
To study the Lamb shift, we take into account the corre-
sponding coherent correction to the system Hamiltonian. For
the Redfield equation, this correction is given by Eq. (A20),
and in general, it does not commute with the bare system
Hamiltonian. For consistency with the secular approximation
to the Redfield equation, however, we take into account only
the diagonal terms of this correction in the GL equation,
resulting in Eq. (A21). For the LL approach we calculate the
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Distance 
max for nonoptimized values of parameters at the (a)–(c) high temperature h̄ω1β = 0.1 and (d)–(f) intermediate
temperature h̄ω1β = 1. The number of samples in the SLED solutions is Ntraj = 104, and we have used the cutoff frequency ωc/ω1 = 50.
For each pair {g, κ}, the distance is calculated for times [0, 2 × 103ω−1

1 ]. The white color corresponds to the range of parameters for which the
steady state has not been achieved.

Lamb shift using (A21) such that the system Hamiltonian
and its eigenstates correspond to those of uncoupled qubits.
Due to this approximation only the first qubit, which is cou-
pled to the dissipative environment, acquires the Lamb shift.
In the high-temperature regime h̄βω1 = 0.1, taking account
of the Lamb shift does not lead to any significant differences
in the maximum distance between the SLED solution and the
BM approaches. Here, 
max almost coincides with Fig. 6(a).
However, for the intermediate temperature, taking account
of the Lamb shift significantly improves the accuracy of all
BM approaches as revealed by comparing the Lamb-shift-
corrected data in Fig. 7 with that without the Lamb shift in
Fig. 6.

Next, we optimize the parameters of the two-qubit system
and the bath used in the BM equations in order to minimize
the distance 
max with respect to the SLED solution. Here, the
Lamb shift has a generic form of a 4 × 4 Hermitian correction
to the Hamiltonian. Since an implementation of a reliable
optimization with respect to the corresponding ten parameters
together with an involved interpretation of the results appears
challenging, we optimize only with respect to the bath param-
eters β and κ . The optimized distance 


opt
max as a function of

the coupling parameters g and κ is shown in Fig. 8 for high

and intermediate temperatures. For the high temperature, the
optimization seems to noticeably improve the accuracy of the
BM approaches only in the strong-coupling regime, where,
unfortunately, the BM approaches are inapplicable. For the
intermediate temperature, significant improvement is visible
also for weak coupling.

Figure 9 provides 
max at a low temperature of
h̄βω1 = 5. Owing to the large number of samples needed at
this temperature to reach numerical convergence for SLED,
we fix g = 0.1 × ω1. With these parameters, the nonoptimized
purely dissipative weak-coupling approaches fail to describe
the dynamics of the system even for κ � g � ω1, whereas the
Lamb-shifted and the optimized solutions display much bet-
ter performance, at least in certain parameter ranges, thanks
to properly accounting for the Lamb shift caused by the
environment.

Although the optimized weak-coupling model may rela-
tively accurately yield the exact dynamics, it may still be,
depending on the parameters, that it misses important physics
which may render the extracted parameter values question-
able. Fortunately, this is not the case in our study except for the
highest considered qubit-bath coupling strengths as we further
discuss in the Supplemental Material [79].
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(a) (b) (c)

FIG. 7. Distance 
opt
max for optimized values of parameters at the (a)–(c) high temperature h̄ω1β = 0.1 and (d)–(f) intermediate temperature

h̄ω1β = 1. The white color corresponds to the range of parameters for which the steady state has not been achieved.

VI. SUMMARY AND CONCLUSIONS

Let us summarize our main results. For a single qubit with
angular frequency ωq and realistic microscopically derived
model parameters, we find that the approximate approaches
are valid (
max < 0.1) only at high bath temperatures, T �

1.5 × h̄ωq/kB (ωq h̄β � 0.7), and for low relaxation rates,
κ < 0.1 × ωq, for the Lindblad approaches and slightly
greater values κ < 0.3 × ωq for the Redfield approach. The
optimization of the system parameters allows us to expand
the validity of these approaches to lower temperatures, at

(a) (b) (c)

(d) (e) (f)

FIG. 8. Distance 
opt
max for optimized values of parameters at the (a)–(c) high temperature h̄ω1β = 0.1 and (d)–(f) intermediate temperature

h̄ω1β = 1. The white color corresponds to the range of parameters for which the steady state has not been achieved.
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(a) (b) (c)

FIG. 9. Distance 
max for nonoptimized purely dissipative (blue), Lamb-shifted (orange), and optimized (green) values of parameters at
the low temperature h̄ω1β = 5, g = 0.1 × ω1. The number of samples in the SLED solutions is Ntraj = 5 × 105, and we have used the cutoff
frequency ωc/ω1 = 50. For each value of κ , the distance is calculated for times [0, 103ω−1

1 ].

least down to T ≈ 0.1 × h̄ω1/kB (ωq h̄β ≈ 10), in the weak-
coupling regime κ � ωq.

Note that whereas the nonoptimized results provide us
information on the implications of the approximations carried
out to arrive from the microscopic model to the approximate
master equations, the optimized results may be considered as
a test of the accuracy of the approaches as phenomenological
models. In typical experiments, the latter case is important
since the microscopic parameters may be inaccessible.

In the two-qubit case and at high bath temperatures, T �
10ω1/kB (ω1h̄β � 0.1), we find that the Redfield equation
is valid (
max < 0.1) in the whole parameter range stud-
ied (ω1/100 < κ, g < ω1 and κ � 10g2/ω1). Interestingly, the
global Lindblad approach is valid only for large enough
qubit-qubit coupling g � 40κ , whereas the local approach is
valid only for κ � 0.03 × ω1 and g � 0.6 × ω1. Optimiza-
tion of the model parameters extends validity of the local
Lindblad method to intermediate qubit-qubit coupling g � ω1

and does not significantly change the validity bounds of the
other approximate approaches. At intermediate and low T ,
we find 
max > 0.1 essentially in the whole parameter range
considered.

With decreasing temperature, we observe a dramatically
increasing deviation between the nonoptimized approximate
and the exact dynamics. Optimization cures this discrep-
ancy at weak coupling, but peculiarly, the point κ ≈ g seems
problematic for weak-coupling approaches. We attribute this
behavior to the failure of the BM equations to correctly cap-
ture the effect of the environment on the modes of the system
in this point of critical damping for the qubit with an indirect
coupling to the bath through the other qubit.

We conclude that as expected, the nonoptimized BM equa-
tions provide accurate dynamics only for weak coupling and
high enough temperature for both single- and two-qubit sys-
tems. This, in turn, excludes them as sufficiently reliable
tools for many important experimental scenarios. For super-
conducting qubits, we may have, for example, ωq ≈ 2π ×
10 GHz and T ≈ 40 mK, and hence ωq h̄β ≈ 10.

Using the optimization procedure, we demonstrated that
the dynamics of the systems can be described by BM equa-
tions in broader ranges of parameters. However, the fitting of
experimental data with BM equations beyond their regimes

of validity may, in some cases, yield physically misleading
parameter values for the system, the bath, and their coupling
strengths.

In this paper, we have focused on comparing the most
common BM methods examining their accuracy in different
coupling and temperature regimes, which is most relevant for
applications. Consequently, we did not focus on quantifying
the nature and origin of non-Markovian effects, naturally
present in the numerically exact dynamics. The microscopic
origins of non-Markovian effects in open quantum systems
constitute a highly nontrivial and interesting research question
[17,80,81] that deserves further study.
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APPENDIX A: BORN-MARKOV MASTER EQUATIONS

The Liouville–von Neumann equation which describes the
dynamics of the density operator of the total system has the
form

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂]. (A1)

We eliminate the bath and system Hamiltonian from the above
equation by moving to the interaction picture:

d ˆ̃ρ

dt
= − i

h̄
[q̂(t )ξ̂ (t ), ˆ̃ρ], (A2)
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where

ρ̂ = exp
[
− it

h̄

(
ĤB + ĤS

)]
ˆ̃ρ exp

[ it

h̄

(
ĤB + ĤS

)]
, (A3)

ξ (t ) =
∑

k

gk
(
b̂†

keiωkt + b̂ke−iωkt
)
, (A4)

and

q̂(t ) =
∑
nm

qnmei(εn−εm )t/h̄|n〉〈m|. (A5)

Here, |n〉 is the nth eigenstate of the system Hamiltonian ĤS,
which corresponds to the eigenvalue εn. We follow the stan-
dard procedure and solve the density operator time evolution
iteratively from (A2). Taking the iteration to second order, we
reach the formal expression

ˆ̃ρ(t ) = ˆ̃ρ(0) − i

h̄

∫ t

0

[
q̂(t ′)ξ̂ (t ′), ˆ̃ρ(t ′)

]
dt ′

= ˆ̃ρ(0) − i

h̄

∫ t

0

[
q̂(t ′)ξ̂ (t ′), ˆ̃ρ(0)

]
dt ′

− 1

h̄2

∫ t

0

∫ t ′

0

[
q̂(t ′)ξ̂ (t ′),

[
q̂(t ′′)ξ̂ (t ′′), ˆ̃ρ(t ′′)

]]
dt ′dt ′′

(A6)

with the intent of substituting a (possibly approximate) ana-
lytic solution for the inner integration. For this purpose, one

typically also assumes a factorized initial state

ˆ̃ρ(0) = ˆ̃ρS(0) ⊗ ρ̂B, (A7)

where ˆ̃ρS = TrB ˆ̃ρ and ρ̂B = TrS ˆ̃ρ are the reduced density
operators of the system and the bath, respectively. Moreover,
if the coupling is weak, it is reasonable to assume that the
correlations of the bath decay on a time scale τB much shorter
than the relevant time scales in the interaction picture (relax-
ation and dephasing times). Assuming the differences t − t ′
and t − t ′′ do not exceed this range, and assuming the rates
are properly described as second-order effects, one can make
the approximation

ˆ̃ρ(t − τ ) ≈ ˆ̃ρS(t − τ ) ⊗ ρ̂B (A8)

on the terms ˆ̃ρ appearing on the right-hand side of Eq. (A6):
Neglecting system-reservoir correlation effects at this point
means neglecting effects of higher order in the interaction
than second order. This constitutes the Born approximation
on the coupled system-reservoir dynamics. Note that for fac-
torizing initial states the Born-approximated dynamics cannot
reveal even weak system-reservoir correlations unless the
right-hand side of Eq. (A6) is evaluated in the full Liouville
space.

Substituting (A8) into (A6) and taking into account that
〈ξ̂ 〉 = TrB(ρ̂Bξ̂ ) = 0, we obtain

d ˆ̃ρS

dt
= − 1

h̄2

∫ t

0
{[q̂(t )q̂(t ′) ˆ̃ρS(t ′) − q̂(t ′) ˆ̃ρ(t ′)q̂(t )]〈ξ̂ (t )ξ̂ (t ′)〉 + [ ˆ̃ρS(t ′)q̂(t ′)q̂(t ) − q̂(t ) ˜̂ρS(t ′)q̂(t ′)]

〈
ξ̂ (t ′)ξ̂ (t )

〉}dt ′

= − 1

h̄2

∫ t

0
{[q̂(t )q̂(t − τ ) ˆ̃ρS(t − τ ) − q̂(t − τ ) ˆ̃ρ(t − τ )q̂(t )]〈ξ̂ (t )ξ̂ (t − τ )〉 (A9)

+ [ ˆ̃ρS(t − τ )q̂(t − τ )q̂(t ) − q̂(t ) ˜̂ρS(t − τ )q̂(t − τ )]〈ξ̂ (t − τ )ξ̂ (t )〉}dτ,

where 〈ξ̂ (t )ξ̂ (t − τ )〉 = TrB[ξ̂ (t )ξ̂ (t − τ )ρ̂B] is the bath correlation function. If the bath correlation function decays in a time
scale τB, which is much shorter than any system time scale τS, one can approximate it with a function peaked at τ = 0. In
this limit, one typically makes the Markov approximation and assumes that ˆ̃ρS(t − τ ) ∼ ˆ̃ρS(t ) in the region τ � τB where the
correlation function is appreciably different from zero. The time scale of the system in the interaction picture is again given
by relaxation and dephasing, i.e., τS ≈ κ−1, where the rate κ characterizes the strength of the bath coupling. However, one
cannot make a similar approximation for the operator q̂(t − τ ) as it obtains an oscillating phase of the form ei(εn−εm )t/h̄. For a
bath in a thermal equilibrium with a smooth, broadband spectrum, the width of the correlation function is determined by the
inverse temperature τB ∼ h̄β. Based on the above, the Markov approximation holds if h̄κβ � 1. This is essentially the same
condition used to justify the Born approximation. If the times t under consideration obey t � h̄β, one can extend the limits of
the integration in Eq. (A9) to infinity, neglecting an initial slip which is typically insignificant. Thus one obtains

d ˆ̃ρS

dt
= − 1

h̄2

∫ +∞

0
{[q̂(t )q̂(t − τ ) ˆ̃ρS(t ) − q̂(t − τ ) ˆ̃ρS(t )q̂(t )]〈ξ̂ (t )ξ̂ (t − τ )〉

+ [ ˆ̃ρS(t )q̂(t − τ )q̂(t ) − q̂(t ) ˜̂ρS(t )q̂(t − τ )]〈ξ̂ (t − τ )ξ̂ (t )〉}dτ. (A10)

In the literature, this is referred to as the Born-Markov mas-
ter equation of the reduced system density operator. In the
Schrödinger picture, each of the individual terms describes
a particular form of simultaneous propagation of system and
reservoir between two interactions, graphically represented
in the Feynman diagrams of Fig. 10. We remark that the
justification of the Born approximation from the inequality

h̄κβ � 1 alone is not fully rigorous. For the typical case of
reservoirs with a smooth and monotonically rising density of
states, higher-order corrections seem to be irrelevant at tem-
peratures low enough compared with energy splittings of the
system [82].

Performing integration over τ in Eq. (A10) and neglecting
the correction to the coherent part of the Hamiltonian (the
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FIG. 10. Schematic Feynman diagrams of processes implied in
Markovian master equations. Solid lines represent system propa-
gation; wiggly lines represent reservoir (de-)excitations. Diagrams
(a) and (b) are self-energy-like corrections to the left or right ap-
plication of the system Hamiltonian; (c) represents real emission or
absorption. The partial trace implied by the reduced density matrix
prevents the appearance of open in- or outgoing reservoir lines.

Lamb shift), one obtains the Redfield master equation. By
making a transformation back to the Schrödinger picture, the
Redfield equation can be written in the eigenbasis of the
Hamiltonian ĤS as

ρ̇ jk = iω jkρ jk −
∑
lm

R jklmρlm, (A11)

where

Rjklm = 1

2h̄2

{
δkm

∑
n

S(ωnl )q jnqnl + δ jl

∑
n

S(−ωmn)qmnqnk

− [S(ω jl ) + S(−ωmk )]q jlqmk} (A12)

and qnm = 〈n|q̂|m〉, ωnm = ωm − ωn, ĤS|n〉 = h̄ωn|n〉, and
S(ω) is the Fourier image of the bath correlation function:

S(ω) =
∫ +∞

−∞
〈ξ̂ (t )ξ̂ (t − τ )〉eiωτ dτ = 2h̄J (ω)

1 − e−h̄βω
. (A13)

The last equation holds for the bath in the thermal equilibrium.
The Lindblad equation is obtained from the Redfield

equation written in the interaction picture using the secular
approximation. For a system with a nondegenerate spectrum
the Lindblad equation, restricted to diagonal states in the
eigenbasis of the Hamiltonian ĤS, reads

ρ̇nn =
∑

m

[�m→nρmm − �n→mρnn], (A14)

where we have denoted reservoir-induced transition rates be-
tween the eigenstates by

�m→n = |qnm|2
h̄2 S(−ωmn). (A15)

Thus the diagonal density matrix elements are decoupled
from the off-diagonal ones. The temporal evolution of the
off-diagonal terms can also be calculated, and we find that
they approach the steady state as

ρ̇nm = iωnmρnm − (
γnm + γ φ

nm

)
ρnm, (A16)

where the losses in the phase coherence are caused by
relaxation,

γnm = 1

2

∑
k 
=n,m

[�n→k + �m→k], (A17)

and pure dephasing,

γ φ
nm = 1

2h̄2 S(0)[qnn − qmm]2, (A18)

between the states |n〉 and |m〉.
Alternatively, one may represent the time dependence

of the interaction picture operators q̂(t ) and q̂(t − τ ) in
Eq. (A10) through eigenoperators [12] of the superoperator
[HS, ·]. For a harmonic oscillator, for example, these are the
raising and lowering operators. Thus the secular approxima-
tion leads to neglecting the terms in Eq. (A10) that oscillate
at the system frequencies and keeping those terms which are
constants with respect to t . This procedure is meaningful
only if the damping is weak enough to permit a significant
number of oscillation cycles between emission events, i.e., if
the relaxation and dephasing rates are lower than all transition
frequencies. This approach leads directly to the commonly
used general form of a Lindblad master equation,

d ˆ̃ρS

dt
= − i

h̄
[H, ˆ̃ρS] +

∑
α

γα

(
Lα

ˆ̃ρSL†
α − 1

2

{
L†

αLα, ˆ̃ρS
})

.

(A19)

In the case of weakly interacting qubits, the introduction of yet
another small parameter g complicates both the determination
of eigenoperators and the application of the secular approxi-
mation. If g is small, the assumptions used in the construction
of the Lindblad master equation are easily violated. However,
in the case where g is even smaller than the relaxation and
dephasing rates, one may altogether neglect it in the construc-
tion of the Lindbladian, which leads to the local Lindblad
approach.

Lamb shift

In deriving the above equations (A11), (A14), and (A16),
we neglected a coherent contribution to the Hamiltonian, the
Lamb shift, which is important in the low-temperature limit.
This coherent correction can be found by carrying out an
integration over τ in Eq. (A10) yielding

ĤLS = − 1

2π h̄2

∑
klm

PV
∫

qklqlm|k〉〈m|
ω − ωlm

S(ω)dω, (A20)

where PV stands for the principal value of the integral. We
note that this correction, in general, does not commute with
the bare Hamiltonian of the system ĤS. If we apply the
rotating-wave approximation in order to obtain the Lindblad
equation, only diagonal terms of the correction survive since
the off-diagonal terms oscillate in the interaction picture. Con-
sequently, we obtain

Ĥ rw
LS = − 1

2π h̄2

∑
lm

PV
∫ |qml |2|m〉〈m|

ω − ωlm
S(ω)dω. (A21)

APPENDIX B: STOCHASTIC LIOUVILLE EQUATIONS

The time evolution is solved from the stochastic Liouville-
von Neumann (SLN) equation, which can be written into the
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form

ih̄
d ρ̂S

dt
= [ĤS, ρ̂S] − ζ [q̂, ρ̂S] − h̄

2
ν{q̂, ρ̂S}, (B1)

where ζ and ν are complex noise terms that arise from
exact treatment of the coupling in the path-integral formal-
ism. Together with the anticommutator, these terms result in
nonunitary time evolution for individual samples, i.e., real-
izations of the noise terms. However, by making a stochastic
average, the non-Hermitian parts of the density operator van-
ish. Also the trace of the density operator is unity on average.
The noise terms obey the correlation functions

〈ζ (t )ζ (t ′)〉 = Re L(t − t ′), (B2)

〈ζ (t )ν(t ′)〉 = 2i

h̄
�(t − t ′) Im L(t − t ′) + iμδ(t − t ′)

= −iχR(t − t ′) + iμδ(t − t ′), (B3)

〈ν(t )ν(t ′)〉 = 0. (B4)

Above, the bath correlation function

L(t − t ′) = h̄

π

∫ +∞

0
dωJ (ω)

{
coth

(
h̄βω

2

)
cos[ω(t − t ′)]−

i sin[ω(t − t ′)]
}
, (B5)

and we have defined the classical response function

χR(t ) = −2

h̄
�(t ) Im L(t ) (B6)

and

μ =
∫ +∞

−∞
dtχR(t ). (B7)

In the case of the ohmic spectral density with a Drude cutoff,
defined in (3) where the cutoff frequency ωc is much larger
than any other frequency in the system, one can write the SLN
equation into the form of the stochastic Liouville equation
with dissipation (SLED),

ih̄
d ρ̂

dt
= [ĤS, ρ̂] − iη

h̄β
[q̂, [q̂, ρ̂]]

+ iη

2h̄
[q̂, {[ĤS, q̂], ρ̂}] − ζ [q̂, ρ̂S], (B8)

where ζ (t ) is a stochastic Gaussian process with the following
correlation function:

〈ζ (t )ζ (t ′)〉

= h̄

π

∫ +∞

0
dωJ (ω)

[
coth

(
h̄βω

2

)
− 2

h̄βω

]
cos[ω(t − t ′)].

(B9)

Notice that the assumption of the large cutoff frequency is
used only in the noise process ν; the cutoff frequency is still
present in the autocorrelation function of ζ . As a consequence
of this approximation, the two complex noise terms in the
SLN equation have been reduced into a deterministic part and
a single real-valued noise term.
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