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Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a
continuous review of the spontaneous cortical activity, i.e., the electroencephalograph
(EEG) background activity. This needs development of bedside methods for an
automated assessment of the EEG background activity. In this paper, we present
development of the key components of a neonatal EEG background classifier, starting
from the visual background scoring to classifier design, and finally to possible bedside
visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–
16 channels) from 27 infants with birth asphyxia was used for classifier training after
scoring by two independent experts. We tested three classifier designs based on 98
computational features, and their performance was assessed with respect to scoring
system, pre- and post-processing of labels and outputs, choice of channels, and
visualization in monitor displays. The optimal solution achieved an overall classification
accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23
features that make the classifier highly robust to the choice of channels and missing
data due to artefact rejection. Our results showed that an automated bedside classifier
of EEG background is achievable, and we publish the full classifier algorithm to allow
further clinical replication and validation studies.

Keywords: neonatal EEG, EEG monitoring, neonatal intensive care unit, background classifier, support vector
machine, artificial neural network, EEG trend
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INTRODUCTION

Recent developments in neonatal neurological care have led
to a rapid increase in the use of continuous scalp-recorded
electroencephalography (EEG) for brain monitoring. Long term
EEG-monitoring is now used for an individually optimized
neurological treatment at neonatal intensive care units (NICU).
It has been shown to be the best available method to follow
cerebral recovery after birth asphyxia and other forms of brain
injury, as well as the only reliable method for neonatal seizure
detection (de Vries and Hellstrom-Westas, 2005; Murray et al.,
2008; Boylan et al., 2013). Although neonatal EEG surveillance is
becoming a standard of care for many NICUs, its 24/7 clinical
review remains a global challenge (Boylan et al., 2010). To
this end, clinicians have used compressed displays of the EEG
activity, such as amplitude integrated EEG [aEEG (de Vries and
Hellstrom-Westas, 2005)], which enables bedside visual review of
EEG amplitude trends. However, the aEEG only represents one
aspect of the EEG and its interpretation requires special expertise,
interpretation is subjective and qualitative.

The most important challenge in the bedside EEG
interpretation is how to objectively quantify temporal evolution
in the spontaneous brain activity, a.k.a. “background activity”
in the EEG nomenclature. This “EEG background” is known to
be the most informative in assessing acute states or predicting
future outcome of the brain (Monod et al., 1972; Watanabe
et al., 1999; Menache et al., 2002; Murray et al., 2009). Several
background scoring systems have been published over the
years (Watanabe et al., 1999; Murray et al., 2009; Cherian et al.,
2011), and they typically combine visually, i.e., subjectively,
observed EEG characteristics to yield a holistic EEG score for an
epoch that may range between scoring systems, from minutes
to hours.

A number of computational EEG classification algorithms
have been proposed for automated classification of newborn
EEG (Stevenson et al., 2013; Matic et al., 2014; Matić et al.,
2015; Ahmed et al., 2016; Raurale et al., 2019, 2020, 2021; Guo
et al., 2020). They are currently expected to solve many logistic
and other practical limitations in neonatal EEG interpretation
by offering an objective and continuous EEG review that
is harmonized across medical centres. The algorithms are
generally shown to perform well compared to their clinical
benchmarks, however, there is wide variability in their classifier
design, the EEG classification system they have been trained
on, and performance assessment. Some classifiers are based
on heuristically designed computational features that are then
combined using SVM-type classifiers (Stevenson et al., 2013;
Matic et al., 2014; Matić et al., 2015; Ahmed et al., 2016; Raurale
et al., 2019; Guo et al., 2020), while other classifiers are based
on deep learning with less a priori crafting of the feature space
(Raurale et al., 2020, 2021). Most importantly, each new study
tends to advocate the latest algorithm as superior compared to
the ones published earlier and overlook ambiguity in labelling
of the training data resulting from inherent disagreements in the
visual interpretation.

Despite the considerable development of EEG interpretation
algorithms, there is strikingly sparse systematic literature on

the full process that leads from visual EEG scoring to
implementation of the classifier results in a clinical EEG
monitor display. Here, we aimed to systematically assess the
key components in developing a neonatal EEG background
classifier: i) Ambiguity in the EEG background scoring; ii)
the effects of classifier architectures; iii) the effects of post-
processing of either experts annotations and/or classifier outputs;
iv) classifier performance on individual infants, and different
EEG montages; and v) possible alternatives to a clinically
informative visualization of classifier outputs, using examples
from unseen newborn EEG data. We chose to explore
feature-based classifier designs which allow feedback on the
computational EEG characteristics that are found useful for
the classification.

MATERIALS AND METHODS

Overview
The overall design of the present study is shown in Figure 1.
First, we assessed the agreement between human raters, and
the potential to improve it by merging or smoothing grades.
Second, we compared different classifier approaches where
all background scores were either considered simultaneously
(flat) or the classification was done sequentially with an
initial assessing EEG continuity followed by a secondary
grading procedure (hierarchical). Third, we experimented
with different classifier types and training datasets.
Fourth, we examined the effects of post-processing the
classifier output. We then studied the performance of the
proposed classifier at the level of individual EEG channels
and infants. Finally, we used an independent dataset
collected from a different hospital to experiment with the
visualization of classifier outputs for future clinical EEG
monitor display.

EEG Recording and Processing
Recording
We used continuous EEG recordings gathered as a part of a
prospective cohort study between 2014 and 2016 in the NICU
at the Hospital for Sick Children, Toronto, Canada (Pinchefsky
et al., 2019; Kamino et al., 2021). The EEG records were collected
up to the first five postnatal days from 27 neonates with average
postmenstrual age (PMA) of 39.7 weeks (36–41.4) at birth with
clinical signs of neonatal hypoxic-ischemic encephalopathy. The
duration of EEG records ranged from 8 to 102 h (average
40.5 h). The EEG was recorded using either Stellate Harmonie or
Xltek Brain Monitor ICU video-EEG systems (Natus Neurology,
Oakville, Ontario, Canada) at 200, 250, or 256 Hz, with 11 or
20 electrodes positioned according to the international 10–20
placement. The electrode positions used were Fp1, Fp2, F3, F4,
F7, F8, C3, C4, T3, T4, T5, T6, P3, P4, O1, and O2. All EEG was
de-identified before processing further for analyses.

In addition, for pilot testing of the classifier and visualization
in an unseen dataset, we used four long term EEG recordings
from our clinical archive of NICU brain monitoring in
Helsinki Children’s Hospital. Compared to the training dataset,
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FIGURE 1 | The overall design of the present study. (A) The flow diagram shows the steps involved from the newborn EEG recording to annotation and training of
the classifier, and finally a visualization of the classifier output. (B) Schematic overview of classifier experiments presented in this work. (C) Schematic overview of two
hierarchical classification approaches, one based on EEG continuity (left) and the other based on the severity of EEG background (right). As opposed the flat
classifier design, the hierarchical classifiers begin with an initial distinction between continuity (left) or severity (right), followed by classifying only subset of original
background classes. Abbreviations: LOSO: leave one subject out (cross-validation), SVM: support vector machine, MFNN: multilayer feed-forward neural network,
RNN: recurrent neural network.

these additional recordings were performed by different
staff in a different hospital, different recording settings (4
electrodes; F3, F4, P3, and P4), and a different EEG system
(Nicolet, Natus, United States). These cases were selected
based on the evolution observed in their aEEG trends,

which represented typical clinical scenarios in NICU brain
monitoring. The same EEG signals can be also found as
example files together with the classifier algorithms in Github
https://github.com/smontazeriUH/Neonatal-EEGBackground-
Classifier.
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Visual Annotation/Scoring of the EEG Background
Two expert neurologists (E.P. and V.M.; hereafter referred to
as E1 and E2) annotated EEG background activity using a
scoring system with seven different background scores and one
score for epochs to be rejected due to excessive artefacts or
seizures (Table 1). One background score was assigned to each
non-overlapping 5-minute epoch, taken as the predominant
activity type within that epoch, based on visual assessment
of all EEG channels. The experts were fully blinded to
each other’s annotation to allow the assessment of interrater
agreement. Example EEG background patterns are shown in
Figure 2. Scoring was performed using the montage of the
expert’s own choice, which was typically a bipolar montage
(Stevenson et al., 2018).

The scoring system can be considered ordinal, with seven
EEG background scores ordered with increasing severity: Scores
0 and 1 present the expected normal/near-normal cortical
activity during active state and quiet sleep, respectively. Scores
2, 3, and 5 represent increasing abnormality in the continuity,
the key feature in neonatal cortical activity, whereas scores 4
and 6 represent abnormal EEG activity with no reference to
(dis)continuity. In addition, the experts were allowed to reject
the epoch if they were not able to assess its background due to
artefacts or excessive seizures.

Persistence of worse/higher scores during an infant’s NICU
stay correlates with increasing abnormality in the long-term
outcomes (Murray et al., 2009). However, this scoring system
can also be perceived as a mixture of two dimensions: One
dimension considers amplitude (scores 0, 4, and 6), while
the other dimension considers continuity (scores 0, 1, 2, 3,
and 5). These two dimensions challenge unequivocal ordering
of the scores as needed in the bedside-ready visualizations
later.

Score Merger and Smoothing
In assessing interrater agreement (Figure 3), we found most
confusion to arise between scores 0, 1, and 2. These scores
are clinically less informative in the monitoring context as they
characterize different vigilance states in a recovered or healthy
newborn infant. Hence, they were merged to yield five scores.

TABLE 1 | Scoring system used in the EEG background annotation
(Tsuchida et al., 2013).

Score Description

0 Continuous

1 Tracé alternant: IBI voltage ≥ 25 µV with IBI duration ≤ 6 s

2 Tracé alternant: IBI voltage ≥ 25 µV with IBI duration > 6 s

3 Tracé discontinú: IBI voltage < 25 µV

4 Depressed and undifferentiated: persistent low-voltage background
activity with amplitude between 5 and 15 µV and without normal
features

5 Burst suppression: IBI voltage < 5 µV

6 Very low voltage: voltage < 5 µV or with no discernible cerebral
activity

IBI, inter-burst interval.

In addition, we applied temporal smoothing on annotations to
remove noise (Supplementary Figure 2D) in the annotation
time series. To this end, we tested different lengths of smoothing
window from 3 to 13 epochs and found a window with five epochs
(25 min) to give the best classifier performance.

Merging Expert Annotations for a Combined
Classifier
The final classifier model was trained using scores from both
experts to include information from both their consensus as
well as disagreements. To this end, we trained each classifier
using either consensus epochs (CONS) and all the epochs (ALL).
The second approach forces the classifier to use all available
information, giving more weight to consensus epochs while
also retaining score information from epochs with disagreement
between experts. To evaluate classifier performance, we evaluated
the models against scores from consensus epochs as well as scores
from each expert separately.

Pre-processing
The continuous EEG signal was pre-processed with an automated
pipeline. First, all the EEG channels were scanned visually to find
and discard very poor quality signals (e.g., detached electrodes),
followed by automated scanning for high-amplitude values or
flat signals (constant value). All samples exceeding an amplitude
of ± 500 µV were detected as artefacts. Third, each EEG signal
was band-pass filtered at 0.5–35 Hz with a 5th order Chebyshev
Type II filter. Fourth, signals were resampled to 64 Hz with
an anti-aliasing filter, and segmented into 5-min long non-
overlapping epochs (discrete signal length of 19,200 samples)
corresponding to the visual annotations. Fifth, we rejected a
channel in an epoch if at least 25% of the signal in the given
channel was detected as artefacts (0.32%; N = 715). We rejected
the whole epoch if at least 50% of the channels were rejected
(0.24%; N = 30).

Feature Extraction
All features were computed initially for the referential
derivations, and features for additional bipolar derivations
(F3-P3, F4-P4, and P3-P4) were computed for montage
comparisons. We computed altogether 98 computational
features for each derivation and epoch of EEG data to capture
aspects of amplitude, complexity and oscillatory behaviour.
The feature set was gathered from a large number of previous
publications and implemented into Matlab locally in our
laboratory. For a full list of features, their classification and
literature references, please see Supplementary Table 3. All
feature algorithms can be found in Github1. Features were
initially calculated on each channel within a 5-min epoch and
then summarised across channels using the median.

Classifier Designs and Training
Overview
Three classifier designs were trained and assessed, all of them
using the same computational features. The ultimate “proposed

1https://github.com/smontazeriUH/Neonatal-EEGBackground-Classifier
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FIGURE 2 | Representative example epochs of the seven scores in the visual EEG background classification.

FIGURE 3 | Visual annotations. (A) Distribution plot (in percent) of visual annotations for two experts, E1 and E2. (B) Confusion matrix between E1 and E2 for
classification of 7-score and, (C) for classification of 5-score after combining scores 0, 1, and 2 into one score. The absolute values present the number of epochs
corresponding to each score and the percentages of each column sum up to one.

classifier” is also published in Github (see text footnote 1). The
classifiers were based on (i) support vector machine (SVM), (ii)
multilayer feedforward neural network (MFNN) or (iii) recurrent

neural network (RNN). The first two do not consider linkages
over consecutive epochs, while the last one captures long-term
dependencies in signal (or annotation) sequences. Intuitively, it
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is reasonable to expect that some level of temporal correlation
exists in neonatal EEG that is characterized by gradual evolution
rather than abrupt changes of EEG states. The common clinical
practice of EEG scoring is also trained to favour smooth changes
in background scores, which implicitly introduces temporal
correlation to the score sequences. In addition, we tested whether
merging annotations to a smaller number of scores would
improve classifier performance. In all classifier builds, the input
features were normalized at each training iteration to z-scores.
Classification performance was assessed using leave-one-subject-
out (LOSO) cross-validation which splits the data into train and
test sets based on the subjects without any overlap between
training and testing data. In LOSO cross-validation each fold is
one subject’s data.

SVM Classifier
The SVM was implemented using the fitcecoc function in
Matlab (version R2019a). This function trains the multiclass
error-correcting output codes (ECOC) model using K(K − 1)/2
binary SVMs. These binary SVMs use the one-vs-one coding
design, where K is the number of unique class labels. We
used linear kernel for SVMs since in initial testing we found
no significant improvement for other kernels over the linear
kernel. Hyperparameters of the SVM were optimized by Bayesian
optimization within an internal fivefold cross-validation.

MFNN Classifier
A multilayer feed-forward neural network (MFNN) was
developed with linear input layer and two hidden layers and
output layer with hyperbolic tangent sigmoid transfer functions
(Supplementary Figure 1). The neurons in adjacent layers are
fully connected with weights and biases while the neurons in
the same layer are not interlinked. The optimum number of
hidden nodes is very difficult to determine and needs extensive
experience. In this work, it was found that by choosing the
number of hidden nodes as shown in Supplementary Figure 1,
accurate results could be obtained. Classification output for each
input sample corresponds to the maximum valued label after
using the softmax function of the output of the MFNN.

Backpropagation learning (BP) with the stochastic gradient
descent algorithm was used for the supervised training process
of the MFNN. In order to prevent the classifier from overfitting,
we kept 10% of the data in the train folds of LOSO aside from
training to use as an inner validation set. Weights were updated
in batch mode with a dynamic set of learning rate (LR) and a
constant momentum factor (MF). Employing MF would help the
training procedure escape local minima and reduce the likelihood
of instability (Basheer and Hajmeer, 2000). LR value at the first
iteration of the training was set to 0.1 and after a set of 6,000
training iterations, it was scheduled to be reduced by 75%. MF
value was set to a constant value of 0.8. The training process
terminated after 120 000 iterations or if the Root Mean Square
Error (RMSE) on the training pattern was less than 1× 10−3.

RNN Classifier
The RNN model was developed based on the proposed MFNN.
The second hidden layer of the proposed MFNN is connected

to one feed-backward layer characterized by one step time delay
as demonstrated in Supplementary Figure 1. The idea of using
RNN was to consider information lying in the sequence of epochs
such that the previous epoch provides useful information for the
classification of the current epoch. Real-Time Recurrent Learning
(RTRL) was used for supervised training of the RNN (Williams
and Zipser, 1989). In RTRL learning, the weights at iteration K
are modified by the errors back propagated from iteration K+1
through the recurrent layer. Weights in the forward path of RNN
initialized to the weights from trained MFNN classifiers (used
as pre-trained weight initialization) and weights in the backward
path initialized to small random numbers. During the training, all
the layers fine-tuned with a very small LR set for each unique class
of output independently based on the distribution of that class.

Classification Approaches
We tested both flat and hierarchical classification approaches. In
a flat classification approach, no inherent hierarchy between the
scores is considered and the output relies on a single decision
of the classifier including all the scores. The flat classification
was tested with all the three types of classifiers (SVM, MFNN,
and RNN). In a hierarchical approach, in turn, the seven initial
EEG scores are grouped into three new scores based on their
phenomenological properties or clinical inference. To this end,
we used two strategies illustrated in Figure 1C. The first strategy
was grouping the scores according to “continuity” of the signal,
and the second strategy was grouping the scores according to the
clinical inference of “severity” of the score (normal, moderate,
and severe). Using hierarchical approaches disrupts the sequence
of epochs while the RNN requires ordered sequential inputs.
Therefore, hierarchical approaches are only applied to SVM
and MFNN classifiers and only a flat classification approach is
implemented for RNN. We also used the Synthetic Minority
Oversampling Technique (SMOTE), with k = 10, to compensate
for the imbalanced distribution of scores (Chawla et al., 2002).

Post-processing and Feature Evaluation
Classifier performance can be improved significantly by
postprocessing (Ansari et al., 2016). A random misclassification,
seen as single epoch spikes in the score time series
(Supplementary Figure 2D) could be tempered by applying
a temporal smoothing that aims to emulate the relatively
smooth (tens of minutes to hours) state transitions in the
real-world situations.

Features were evaluated using feature selection methods to
find out their relative impact of each feature for classification
accuracy. We scanned through four different artefact thresholds
(0, 10, 25, and 50%) to also find out whether features are
differentially sensitive to increasing level of artefacts in the
EEG data. The Genetic Algorithm was utilized in a wrapper
approach to search for the optimal feature subset (John et al.,
1994). This algorithm is considered effective and powerful global
search tool for finding feature subsets from large-scale and
poorly understood feature spaces (Siedlecki and Sklansky, 1993;
Emmanouilidis et al., 2000; Kudo and Sklansky, 2000; Oliveira
et al., 2003). The wrapper approach operates in the context of
the learning model and involves the computational overhead
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because of evaluating each candidate feature subsets by model.
In our analysis, each feature selection searched between 5,000
combinations of different feature subsets, where every subset
has different numbers of features. The following settings were
applied for the feature selection: (1) population size is 100 sets
each containing different numbers of features. Thus, each feature
can be selected a maximum of 100 times; (2) two-point crossover
rate is 0.6; (3) mutation rate is 0.1; (4) stopping condition
is 50 generations.

Performance Measures and Statistical Analysis
The performance of the classification was assessed using
percentage of accuracy and F1-score metrics for macro and
weighted averages (M-Acc, M-F1 score, W-Acc, and W-F1 score),
across all infants (LOSO-folds). The 95% confidence interval
(CI95%) from bootstrap resampling (nresampling = 1,000) was used
to declare the statistical significance in accuracy and Cohen’s κ

between classifiers.
The output of each trained classifier was compared to the

annotations of the human experts by measuring inter-rater
agreement using Cohen’s κ. The classifiers trained on the
smoothed combined scores which outperform other strategies
were compared to the annotations of the human experts by
measuring the pairwise κ. The overall agreement between human
annotation (E1 and E2) and a composite of a human expert and a
classifier was evaluated to determine whether the predicted scores
are non-inferior to the human expert considering the subjectivity
of human annotation.

RESULTS

Visual Annotations and Interrater
Agreements
The final annotation dataset from both experts consisted of
13,200 epochs (approximately 1,100 h) of EEG. As expected, the
distribution of scores was somewhat skewed toward the lower
value scores that indicate better brain function (Figure 3A). The
number of epochs rejected as ungradable by E1 and E2 were 384
and 1,313, respectively.

The inter-rater agreement using all seven background scores
was moderate (κ = 0.41). A closer inspection of the confusion
matrix Figure 3B between E1 and E2 shows two clusters of
disagreements: there was more overlap within the group of scores
referring to normal or near normal EEG (scores 0–2) as well
as the group of scores referring to more severe EEG (scores
3–6). On top of that, there was also an overall tendency of
one expert (E2) to assign lower background scores compared
to the other expert (p < 0.001, paired t-test). This suggests
ambiguity among neighbouring scores, which could be handled
by merging such scores for a better classification performance.
To this end, we considered the clinical interpretation of each
subscore: Since the normal/subnormal scores (0, 1, and 2) all have
the same overall clinical interpretation of favourable recovery
(Murray et al., 2009), we decided to create an alternative 5-
score system by merging them into one score. Indeed, the new
5-score scoring gave a considerably higher interrater agreement

of κ = 0.60. In the following, we therefore decided to train
and test each classifier for both the original 7-score and the
revised 5-score. In addition, the annotations were smoothed with
a moving window of five epochs (Supplementary Figure 2D for
an example) which increases the inter-rater agreement (κ = 0.60
to 0.62) (Figure 4A).

Optimal Classifier
Flat vs Hierarchical Classification Approaches
The results comparing different classifier approaches are
detailed in Supplementary Table 1. Results show no significant
differences in performance between the flat approach and
any of the hierarchical approaches (bootstrap average class
accuracy: SVM–Flat CI95%: 87.1–87.6; Continuity CI95%: 86.8–
87.2; Severity CI95%: 86.4–87.1). We, therefore, decided to
only use the flat approach in further experiments as it is less
computationally intensive.

Merging Expert Annotations Into a Unified Classifier
We trained and tested classifiers by using either consensus epochs
alone (CONS), or by using all annotations (ALL). The latter was
accomplished by training the classifier twice, using both sets of
annotations, hence considering disagreement labels as well, but
giving twice the weight to consensus labels. The first approach
limits the dataset to epochs with consensus only (total N = 7396;
on average 7,122 in each training fold), and consequently disrupts
the sequence of epochs, precluding use of RNN classifiers.

In general, the classifier performance was higher against
consensus annotations, irrespective of whether the classifier was
initially trained using CONS annotations vs ALL annotations
(Supplementary Figure 2). The performance of SVM and MFNN
classifiers was mostly comparable, however, MFNN performed
better in terms of macro f1-score. The RNN classifier was
generally poorer, which is likely due to the sensitivity of ANNs
to data conflicts (Versaggi, 1995; Raggad, 1996) in the multi-rater
annotations (Supplementary Figure 2).

Post-processing With Score-Merger and Smoothing
The confusion matrices of both expert annotations (Figure 3)
and classifier outputs (Supplementary Figure 2) suggest that
the majority of ambiguity arises from neighbouring scores. In
particular, there are also clinical reasons to combine at least
the first three (0,1,2) scores with shared clinical information
value in the monitoring context. To this end, we measured
changes in classification accuracy from adopting a 5-score scoring
system (m = 13200 available epochs, Figure 3). Comparison
of a range of smoothing windows indicated the best classifier
performance when using median smoothing with a window of
seven consecutive epochs (Figure 4). The overall performance of
all classifiers improved considerably when reducing the number
of scores and applying temporal smoothing.

The Proposed Optimal Classifier
The results from the SVM, MFNN and RNN classifiers trained on
ALL annotations were mostly comparable, and generally better
than classifiers trained with CONS annotations (almost 10% in
terms of f1-score, Figure 4 and Supplementary Table 2). We

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 675154

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-675154 May 25, 2021 Time: 14:13 # 8

Moghadam et al. Classifier for Neonatal EEG Background

FIGURE 4 | Effects of post-processing. (A) Confusion matrix between experts 5-score scores after smoothing. Note the significant increase in agreement as
compared to Figure 3. (B) Confusion matrix for SVM classifier from ALL annotation approach based on 5-score with smoothing. (C) Comparison of classifiers’
performances without (solid line) and after with (stippled line) smoothing. Note the generally higher performance after smoothing. In the right most graph, the
horizontal lines depict comparison to the human interrater agreement levels using 7-score (κ = 0.41; black stippled line), smoothed 7-score (κ = 0.44; black solid
line), 5-score (κ = 0.60; green stippled line), and smoothed 5-score (κ = 0.62; green solid line), respectively.

found the best performance with a SVM classifier trained on
ALL annotations, 25% threshold for excluding epochs, a 5-score
classification system with temporal smoothing on both the input
annotations and classifier output.

Classifier Output vs Human Inter-Rater
Agreement
In principle, classifier performance should not be less than
the degree of inter-rater agreement between human expert

annotations. Human interpretation is bound to be imperfect, due
to possible inconsistencies in the human perception, or due to
genuine ambiguities in the signal itself with respect to the given
classification task. In the absence of an absolute ground truth in
the EEG scores, it may be useful to benchmark the classifier also
to the level of human performance (inter-rater agreement). As
shown in Figure 4C, the agreement between the best performing
classifiers and the human experts were higher than the agreement
between human experts.
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FIGURE 5 | Feature selection results. (A) The average number of times each feature was selected through all artefact rejection thresholds. Colouring refers to the
feature categories (B) The overall accuracy of SVM classifiers as the number of features is increased (also Supplementary Table 3). Results are shown for different
artefact rejection thresholds.

Feature Evaluation
Feature selection was carried out using the unified SVM classifier
trained on ALL annotations. Comparison of four different
artefact rejection thresholds (i.e., 0, 10, 25, and 50%) showed
that artefacts do affect the features selected for an optimal
classifier: The average number of features selected with the
artefact thresholds of 0, 10, 25, and 50% were 37 (IQR: 16–
62), 31 (IQR: 15–54), 50 (IQR: 18–83) and 51 (IQR: 14–83),
respectively. Importantly, 23 out of 98 features were robust
enough to survive in over half of the times through all artefact
rejection thresholds; this suggests that a set of heuristic features
are highly robust to common NICU artefacts in the EEG data
(Figure 5A). When adding features to the model one at a
time, there was a clear ceiling effect after only a few features
(Figure 5B), and the rejection threshold 25% appeared to provide
consistently best classifier performance. The top five features
with 25% rejection threshold were: the standard deviation of
the amplitude modulation, activation synchrony index, the
average of the amplitude modulation, the average slope of the
multiscale entropy curve, and power in 9–11 Hz sub-band.
Notably, the overall classifier performance tended to deteriorate
when more than three thirds of the feature set were included.
See Supplementary Table 3 for detailed results of the feature
selection process over all the four thresholds.

Classifier Performance in Individual
Channels and Infants
Comparison of classifier performances between individual
electrodes showed that there is spatial variation in accuracy
(Figure 6). However, the differences are relatively minor, which is
likely due to the significant contribution of the common reference
electrode, as well as the global nature of background activity.
We then assessed the performance of bipolar derivations that are
typically recorded in the few channel aEEG monitoring. All three
bipolar derivations yielded a mutually comparable classification
accuracy of 88–90% (Figure 6B), which was only a few percent
lower compared to the monopolar recordings (Figure 6A). The
slightly lower performance of bipolar derivations is perhaps

caused by the training of the algorithm using monopolar signals.
Notably, the even performance across channels and derivations
suggests that an algorithm could achieve a very high accuracy
even when reducing the number of recording electrodes down
to one electrode with sufficient signal quality.

As clinical work involves treating single individuals, it was
essential to evaluate the classifier performance at the level of
individual infants (Figure 6C). When comparing the classifier
accuracy to the EEG epochs with consensus scoring, the accuracy
ranged from about 80 to 100%. A little more variance was
observed when comparing classifier to each expert alone, with
accuracy ranging from about 74 to 100%. The classifier accuracy
was above 90% in two thirds of the infants.

Visualization of the Classifier Output
An essential part of bedside implementation is to visualize the
classifier output in an intuitive and transparent manner. Ideally,
the visualization needs both the classifier output, and an estimate
of its certainty to inform the clinician of, e.g., ambiguity in the
EEG signal for biological or technical reasons. To this end, we
visualized classifier outputs in two different ways: a heatmap
output and background trend output. In the heatmap output,
colours from “hot” colormap are used to depict probability (i.e.,
posterior in the SVM classifier) of each score. In a background
trend (BT) output, a continuous signal is estimated by taking a
weighted average of probability values. A moving average filter
with window length of three epochs is then used to smooth the
estimated signal. The output uncertainty is demonstrated in this
visualisation with highlighted areas around the BT line.

As shown in Figure 7, there may be substantial periods
when the EEG falls between neighbouring classes in both the
automated classifier assessment and the scorings by different
experts. In addition, we noted in many cases that the classifier
tends to consider score 4 as an extension of the normal/near-
normal background (scores 0, 1, and 2) rather than a continuum
between scores 3 and 5.

Finally, we carried out a proof of concept testing of classifier
generalization and result visualization by using a set of four
infant recordings from a different medical centre, recorded with
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FIGURE 6 | Comparison of classifier accuracies in all channels and individuals. (A) 16 channels with monopolar montages. (B) Bipolar montages. Where in six
infants with only 8-channel recording these montages are Fp1-C3, Fp2-C4 and C3-C3, and for 21 infants with 16-channel recording these montages are F3-P3,
F4-P4, P3-P4. (C) Per infant classification accuracy vs consensus, E1 and E2 annotations. The infants are here ordered according to their mean classifier accuracy.
All performance measures in this figure are given for the optimal classifier.

a different EEG system, as well as different electrode types and
configurations. The EEG background evolution in the classifier
output was visually compared to the concurrent evolution of
aEEG patterns to provide the clinically most transparent and
intuitively understandable assessment. As shown in Figure 8, the
classifier output depicts graded evolutions in cortical activity,
which are closely in line with the traditional clinician reading
of aEEG trends. At the same time, however, the classifier often
tends to suggest that score 4 is closer to score 0–2 than somewhere
between scores 3 and 5.

The first infant (case 1) shows a typical evolution after birth
asphyxia, starting from an essentially inactive EEG which is
gradually and smoothly replaced by recovering, better forms of
background activity. The longer period of burst suppression is
clearly seen in the classifier output, however, it is not seen in the
aEEG trend due to the very commonly seen (Toet and Lemmers,
2009; Marics et al., 2013) artefactual elevation of the lower aEEG
boundary. The fourth quarter of the figure shows a relatively
low amplitude non-fluctuating activity in the aEEG, which is
nicely depicted in the classifier output of grade 3–4, with a wider
uncertainty around it.

The second infant (case 2) is a typical case seen after
appropriate recovery or milder incidents. It shows mostly
normal/near-normal background pattern that fluctuates between
fully continuous and varying levels of discontinuity. The classifier
output suggests most strongly the highest score, with a low
probability of the increased intermittency. This information is
beyond the reading that can be seen from the aEEG trend which
only suggests a fluctuating [a.k.a. cycling (Osredkar et al., 2005;
Thoresen et al., 2010)] activity within normal amplitudes.

The third infant (case 3) shows a sudden drop in cortical
activity, which was here for an unknown cause, but it can
be due to a range of medical incidents (e.g., medication,
hypoglycemia, hypoxia, cerebral bleeding) (Olischar et al., 2004;
Ter Horst et al., 2004; Weeke et al., 2017). The EEG activity
exhibited genuine burst suppression for a brief time as also
reflected in the aEEG trend. This was rapidly replaced by low
amplitude activity (score 4), and then by several hours of nearly
normal EEG pattern with somewhat increased discontinuity
(shown with the lower probability of score 3). Notably, the
aEEG trend reflects this background evolution generally well;
However, aEEG trend does not disclose the prolonged increased
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FIGURE 7 | Visualization of SVM classifier outputs for an example subject with 88 h of data. (A) A heatmap visualisation that depicts the time course of normalized
probability for each score. (B) Visualization of a background trend (BT) shows the weighted average of probability values (black line) as well as the uncertainty of the
classification at each epoch (grey shade). The blue and green lines indicate the individual annotations from experts E1 and E2, respectively.

discontinuity that has predictive clinical value (Watanabe et al.,
1999; Murray et al., 2009).

The fourth infant (case 4) exhibits aEEG activity that appears
to be somewhat lower than typical, until it suddenly drops to
nearly inactive for an unknown cause. Until suppression, the
classifier depicts some level of probability for multiple classes,
especially for score 0–2 and score 4. The BT line shows wider
uncertainty and a mean value near score 3. While this indicates
that EEG activity is in the border zone, it also demonstrates
a case where two-dimensional scoring system (amplitude vs
continuity; see methods for discussion) results in problems with
one-dimensional visualization.

DISCUSSION

Our findings show that automated classification of neonatal
EEG background activity is possible with high accuracy, even
at the level of individual infants. The process of developing
such classifier algorithms involves a longer chain of steps,
starting from the bedside EEG recordings until the classifier is
implemented in the bedside monitoring display. Our results are
generally consistent with prior studies showing that automated
classification of neonatal EEG background is possible with
reasonable level of accuracy (Stevenson et al., 2013; Matic
et al., 2014; Matić et al., 2015; Ahmed et al., 2016; Raurale
et al., 2019, 2020, 2021; Guo et al., 2020). We extend the
prior literature by systematically characterizing the steps in
classifier development, and describing the impact of choices
made by clinicians and engineers at key steps of the process.
While modern development of machine learning algorithms has

become by and large a “black box” exercise (Chen et al., 2019;
Roy et al., 2019; Borjali et al., 2020), developing tools for future
evidence based medicine would call for more transparency. For
example, exposing the bottlenecks, sensitivities, ambiguities and
points with robustness will greatly benefit future development
of automated methods in EEG analyses. Our choice to use
feature-based methods rather than deep learning methods (e.g.,
CNN) was motivated by the need to learn of the weakest
links in the process chain, before and after the technical
classifier solution.

Comparison With Prior Literature
The estimated accuracy of our classifier is comparable to other
neonatal EEG background classifiers (Stevenson et al., 2013;
Matic et al., 2014; Matić et al., 2015; Ahmed et al., 2016;
Raurale et al., 2019, 2020, 2021; Guo et al., 2020). Direct
comparison of classifier performances is severely compromised.
Firstly, the EEG scoring system is variable between laboratories
and datasets, both with respect to the number of classes as
well as their conceptual content. For instance, the scores are
typically characterized by a varying mixture of descriptions
referring to EEG continuity, amplitude, or longer temporal
structure such as sleep-wake cyclicity. This variability makes
it impossible to even convert post hoc one scoring system to
another by a straightforward score merger or split. Secondly,
prior literature has used widely varying epoch lengths to score
the EEG. Our work used 5 min epoch to resolve changes
in brain state in a clinically relevant time span of tens of
minutes (Figure 8). Thirdly, classifiers may also be trained
using different numbers of EEG signals, ranging from classifiers
based on single EEG signals/channels (Raurale et al., 2020, 2021)
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FIGURE 8 | Visualization of SVM classifier outputs and its comparison to the aEEG trend display using an unseen EEG monitoring data. The colours in the heatmap
visualisation indicate the probability of the given score (normalized over all scores at each 5 min epoch). Note the overall match in the temporal evolution of brain
activity seen in both the aEEG trend and the classifier outputs. In BT visualisation, the classifier output is converted to a unidimensional score that depicts the likeliest
score and its confidence, showing how the real evolution of brain activity goes through non-discrete transition toward better scores.

to solutions that require a larger number of concurrent
EEG signals (Stevenson et al., 2013). Since EEG background
is by definition referring to a global brain state, using
multiple EEG channels is theoretically redundant though
it may bring practical benefits in classifier robustness as
neonatal EEG is commonly contaminated with a variety of
artefacts. The comparison of individual channels and the
bipolar derivations of routine neonatal aEEG monitoring
(Toet and Lemmers, 2009; Thoresen et al., 2010; Tsuchida
et al., 2013) is crucial for assessing the potential for clinical
implementation. Together with some prior studies (Ansari
et al., 2020), our findings suggested that a background classifier
can be stable enough at single channel level, and robust
enough to variation in signals across cortical areas. Moreover,
we show here that the classification accuracy can be high
at the level of individual infants, which is a requisite for
clinical utility.

Clinical Background Score Is the
Bottleneck in Classifier Development
The most significant bottleneck in developing machine learning
based neonatal EEG classifier is the lack of firm ground truth for
solid training. All clinical scoring systems are phenomenological,
they give verbally explicit descriptions that are subjectively
applied, score boundaries are arbitrary and often inherently
ambiguous and not necessarily physiologically meaningful. This
has led to a heterogeneous clinical and classifier literature. At
best, it may be reasonable to assume that the worst and the
best background scores accurately reflect the ends of the same
spectrum; However, scores in the middle consist of phenomena
in different dimensions, such as signal amplitude, continuity or
long-term temporal structure (sleep-wake cycling). We adopted
a scoring system with seven classes as described by Tsuchida
et al. (2013), which includes different classes for amplitude (scores
0,4,6) and continuity (scores 1,2,3,5). We tested a hierarchical
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classifier to initially distinguish between continuities before a
final label is assigned, however, this did not improve the overall
classifier results.

The long held clinical neurophysiology tradition of treating
amplitude and continuity separately (Murray et al., 2009;
Tsuchida et al., 2013) is challenged by the bedside practise where
changes in brain state after e.g., recovery from birth asphyxia are
observed as unidimensional change in background activity from
inactive to normal (Toet and Lemmers, 2009; Thoresen et al.,
2010; Tsuchida et al., 2013). Some other background scores are
more designed for such one-dimensional assessment (Murray
et al., 2009; Korotchikova et al., 2011; Stevenson et al., 2013).
However, they may include sleep-wake cycling which needs tens
of minutes to hours per epoch which decreases the temporal
resolution needed in practical bedside brain monitoring.

In addition, score boundaries are arbitrary as they are
based on consensus statements rather than generated from
data or underlying physiology. Therefore, it comes perhaps as
no surprise that multiple human experts have substantial level
of disagreement, especially between neighbouring categories.
Assessing inter-rater agreement has become popular with
expansion of EEG monitoring practises (Dereymaeker et al.,
2017; Wusthoff et al., 2017; Massey et al., 2019; Stevenson
et al., 2020). However, most works on classifier design have
used consensus scores which by design eliminates ambiguity
in individual annotations, data or scoring system. Here we
exploited this latent human insight by training the classifier
with independent expert scores. It is surprising in this context
how little attention has been given to how to disambiguate
the EEG scoring system in the first place? Or how to generate
clinically appropriate, unidimensional score categories to allow
easier visualization of classifier outputs (for an example, see
Figure 8), akin to indices used in NIRS or vital signs monitoring.
An ideal scoring system should be designed so that it strikes
an optimal balance between maximizing inter-rater agreement
and value of clinical information of each ordinal category.
To this end, it is crucial to uncover the natural structure in
the neonatal EEG signal beyond visually identified grapho-
elements. Recent advancements in self-supervised learning
methods (Banville et al., 2019, 2020) hold promise for a genuine
bidirectional dialogue between machine learning and clinical
neurophysiology.

Feature-Based vs Deep Learning
Methods in EEG Classification
Here we used SVM, MFNN and RNN classifiers and three
training approaches. While many recent studies have developed
end-to-end deep learning approaches, we chose to explore
the feature-based approach which allows a more transparent
assessment of the process. A feature-based system can also be
easier to train with limited and technically variable datasets.
Here we show that a feature-based method can perform
at high enough accuracy for clinical implementation, and
it is surprisingly robust to artefacts and missing data. Our
work shows that optimal classifier design requires further
development of the clinical background scoring system for

less ambiguity, after which it will be useful to examine the
added value of deep learning methods compared to feature-
based method. An essential further factor with deep learning
is the shortage of labelled data, which may be overcome by
employing modern data-driven methods for self-supervised
feature extraction of natural EEG signal properties (Banville et al.,
2019, 2020).

Visualization of Results for Clinical
Implementation
A bedside implementation of classifier outputs needs
visualization that is transparent, accurate and clinically
informative. Some visualizations have been attempted in
the past based on a combination of binary and probabilistic
trace of discrete score categories (Temko et al., 2015).
Here, we developed this idea further by demonstrating
how the probability of discrete score categories could be
visualized using heatmaps, which often gives time-varying
likelihood for multiple background scores. While this is
perhaps the most comprehensive display, it may also be
confounding for a bedside clinician who would still need to
integrate multiple levels of information for conclusions. As an
alternative, we also probed the idea of using a unidimensional
background score which better corresponds to the display
used in vital signs or NIRS monitoring. This visualization
is far easier to interpret and it also allows the addition
of a confidence measure which maybe essential for the
bedside clinician.

Future Directions
All automated EEG assessment may benefit from improving
the pre-processing stage before feature extraction/classification.
Our analytic pipeline includes a crude, automated artefact
recognition, however, more sophisticated artefact recognition
methods (Stevenson et al., 2014; Kauppila et al., 2017) could
improve classifier performance. In addition, the incorporation of
automated seizure detection could help recognize epochs where
excessive seizure activity interferes with the EEG background.

Finally, future clinical studies will be needed after
implementing the classifier into a functioning EEG monitor.
In order facilitate further development, replication and
validation, we have shared the full classifier algorithms
(from the feature extraction to result visualization). The
final clinical validation of the system will consist of assessing
its conformance to clinical assessment at individual level,
as well as evaluating the clinician’s perceived added value
of the automated EEG background classifier for bedside
decision making.
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