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A B S T R A C T   

Long-Range Temporal Correlations (LRTCs) index the capacity of the brain to optimally process information. 
Previous research has shown that patients with chronic schizophrenia present altered LRTCs at alpha and beta 
oscillations. However, it is currently unclear at which stage of schizophrenia aberrant LRTCs emerge. To address 
this question, we investigated LRTCs in resting-state magnetoencephalographic (MEG) recordings obtained from 
patients with affective disorders and substance abuse (clinically at low-risk of psychosis, CHR-N), patients at 
clinical high-risk of psychosis (CHR-P) (n = 115), as well as patients with a first episode (FEP) (n = 25). Matched 
healthy controls (n = 47) served as comparison group. LRTCs were obtained for frequencies from 4 to 40 Hz and 
correlated with clinical and neuropsychological data. In addition, we examined the relationship between LRTCs 
and transition to psychosis in CHR-P participants, and the relationship between LRTC and antipsychotic medi-
cation in FEP participants. Our results show that participants from the clinical groups have similar LRTCs to 
controls. In addition, LRTCs did not correlate with clinical and neurocognitive variables across participants nor 
did LRTCs predict transition to psychosis. Therefore, impaired LRTCs do not reflect a feature in the clinical 
trajectory of psychosis. Nevertheless, reduced LRTCs in the beta-band over posterior sensors of medicated FEP 
participants indicate that altered LRTCs may appear at the onset of the illness. Future studies are needed to 
elucidate the role of anti-psychotic medication in altered LRTCs.   

1. Introduction 

Schizophrenia (ScZ) is a severe psychiatric condition that typically 
emerges during the transition from adolescence to adulthood (Uhlhaas 
and Singer, 2011) and is associated with a range of neurobiological and 
cognitive impairments (Insel, 2010). Until recently, pathophysiological 
theories have focussed on the crucial role of dopamine as a mechanism 
for the manifestation of psychotic symptoms, in particular hallucina-
tions and delusions, and certain cognitive deficits associated with pre-
frontal cortex (Howes and Kapur, 2009). However, it is currently unclear 
whether aberrant dopaminergic neurotransmission is the primary 
disturbance since the cortex-wide occurrence of cognitive dysfunctions 

as well as basic circuit deficits are difficult to reconcile with the dopa-
mine hypothesis (Kantrowitz and Javitt, 2010). 

More recently, evidence has emerged that ScZ may fundamentally 
involve a disturbance in the balance between excitation and inhibition 
(E/I-Balance) (Grent-’t-Jong, Gross, et al., 2018). During normal brain 
functioning, efficient information transfer in neural networks is medi-
ated by (GABA)ergic interneurons that regulate pyramidal cell activity, 
leading to rhythmic fluctuations in excitability (Kopell and LeMasson, 
1994; Sohal et al., 2009). In ScZ, post-mortem (Lewis et al., 2012) as 
well as genetic data (Pocklington et al., 2015) have highlighted that 
rhythm-generating PV + interneurons and NMDA-Rs (Woo et al., 2004) 
are dysfunctional, leading to widespread disinhibition in neural circuits. 
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The precise contributions of NMDA-Rs and GABAergic interneurons 
towards aberrant E/I-Balance in ScZ remains unclear, however. One 
possibility is that circuit deficits are due to a primary dysfunction in 
inhibitory interneurons in ScZ (Benes and Berretta, 2001). In addition, 
evidence exists that impaired inhibition could be the result of NMDA-R 
hypofunctioning on PV + interneurons (Woo et al., 2004) or reduced 
NMDA-R drive on pyramidal cells (Chung et al., 2016). 

An important manifestation of aberrant E/I-balance are alterations in 
the temporal coordination of neuronal activity. In ScZ, there is consis-
tent evidence that the amplitude as well as synchronization of neural 
oscillations at low and high-frequencies are impaired (Uhlhaas and 
Singer, 2010). Recent evidence suggests that impaired rhythmic activity 
is already present in participants who meet clinical high-risk criteria for 
psychosis (CHR-P) (Grent-’t-Jong et al., 2020b; Grent-’t-Jong, Gross, 
et al., 2018) as well as in patients with a first-episode of psychosis (FEP) 
(Grent-’t-Jong, Rivolta, et al., 2018). 

An aspect of temporal processing of neural networks that has 
received less attention so far in ScZ are long-range temporal correlations 
(LRTCs) in neuronal activity. Fluctuations in neuronal oscillations in 
MEG/EEG data are governed by LRTCs, which persist from seconds to 
hundreds of seconds and which decay over time obey a power-law 
function (Lin et al., 2016; Linkenkaer-Hansen et al., 2001; Palva et al., 
2013; Smit et al., 2013; Zhigalov, Arnulfo et al., 2015; 2017). Power-law 
scaling and LRTCs are suggestive of the neuronal networks operating in 
a critical state (Chialvo, 2010; Cocchi et al., 2017; Kello et al., 2010; 
Plenz and Thiagarajan, 2007; Shew and Plenz, 2013). Importantly, as 
predicted by the theoretical models, LTRCs index the efficiency of neural 
networks (Ma et al., 2019) and behavioral performance (Simola et al., 
2017). Critical brain dynamics and LRTCs are controlled by the E/I- 
balance of the neuronal networks (Bruining et al., 2020; Li et al., 
2020; Liang et al., 2020; Poil et al., 2012; Rubinov et al., 2011) of which 
alterations characterize several brain disorders (Bi et al., 2020; Bruining 
et al., 2020; Grent-’t-Jong, Gross, et al., 2018; Uhlhaas and Singer, 
2010). 

Psychiatric disorders are indeed associated with altered autocorre-
lations in amplitude fluctuations. For instance, increased LTRCs char-
acterize epilepsy (Monto et al., 2007) and Autism Spectrum Disorders 
(Bruining et al., 2020), while in Alzheimer’s Disease reduced LRTCs 
have been observed (Montez et al., 2009). In chronic ScZ patients, there 
is evidence that LRTCs at alpha-band (Alamian et al., 2020; Nikulin 
et al., 2012) and beta-band frequencies (Alamian et al., 2020; Moran 
et al., 2019; Nikulin et al., 2012; Sun et al., 2014) are attenuated. 
However, it is currently unclear whether aberrant LRTCs are already 
present during early illness stages and thus could constitute a potential 
biomarker for early detection of psychosis. 

Early signs of psychosis as well as associated cognitive deficits are 
already present several years prior to the full emergence of schizo-
phrenia (Fusar-Poli et al., 2013) and, therefore, research efforts have 
shifted the focus towards identifying circuit abnormalities and bio-
markers in participants who are at-risk for the development of psychotic 
disorders. There is preliminary evidence that participants meeting 
clinical high-risk criteria for psychosis (CHR-P) are characterized by 
altered neural oscillations. In addition, patients with a first-episode of 
psychosis (FEP) are characterized by reductions in the amplitude and 
synchrony of high-frequency oscillations (Spencer et al., 2008). 

To further characterize alterations of temporal processing in neural 
networks in emerging psychosis, we examined LRTCs in resting-state 
oscillations obtained from magnetoencephalographic (MEG) re-
cordings in participants who met CHR-P (n = 115) and FEP-criteria (n =
25). Results were compared to matched healthy controls (CTRL) (n =
47). In addition, a group of patients with affective disorders and sub-
stance abuse (non-psychotic disorders, CHR-N) (n = 38) was also 
compared against the CTRL group. Based on previous evidence of 
impaired oscillatory activity in CHR-P and FEP populations, we pre-
dicted attenuated LRTCs in alpha and beta frequency bands, while 
participants with affective disorders and substance abuse would be 

intact. 

2. Materials and methods 

2.1. Participants 

A total of 236 MEG-data sets from participants were analysed. 11 
participants were excluded during pre-processing, the remaining 225 
data-sets were divided into four groups: (1) n = 115 participants 
meeting CHR-P criteria, (2) 38 participants that did not meet CHR-P 
criteria (CHR-N) but were characterized by non-psychotic disorders, 
such as affective disorders and substance abuse (3) 25 patients with FEP 
(12 antipsychotic-naïve) and, (4) 47 healthy control participants (CTRL) 
without an axis I diagnosis or family history of psychotic disorders. CHR- 
P and CHR-N participants were recruited from the Youth Mental Health 
Risk and Resilience (YouR) Study (Uhlhaas et al., 2017). 

Participants in the CHR-P group met ultra-high risk criteria accord-
ing to the Comprehensive Assessment of At-Risk Mental States 
(CAARMS) Interview (Yung et al., 2005) and the Cognitive Disturbances 
(COGDIS) and Cognitive-Perceptive (COPER) basic symptoms criteria 
according to the Schizophrenia Proneness Instrument, Adult version 
(SPI-A) (Schultze-Lutter et al., 2007). FEP-patients were assessed with 
the Structured Clinical Interview for DSM-IV (SCID) (see Table 1) (First 
and Spitzer, 1995) and with the Positive and Negative Symptom Scale 
(PANSS) (Kayet al., 1987). For all groups except FEP-patients, cognition 
was assessed with the Brief Assessment of Cognition in Schizophrenia 
(BACS) (Keefe et al., 2004) (see Table 1). 

The study was approved by the ethical committees of University of 
Glasgow and the NHS Research Ethical Committee Glasgow & Greater 
Clyde. All participants provided written informed consent, including 
consent to use anonymised data in future research. 

2.2. Follow-Up data 

Participants meeting CHR-P criteria were re-assessed at 3, 6, 9, 12, 
18, 24, 30, and 36 months intervals to examine transition to psychosis. 
Criteria for transition to psychosis were defined on the basis of the 
CAARMS symptom scores of sufficient duration and frequency, using 
symptom severity scores of 6 (maximum) on unusual thought content, 
non-bizarre ideas, or disorganized speech, or a score of 5–6 on percep-
tual abnormalities. Associated frequency scores should be ranging 4–6, 
with experiences lasting longer than one week. When transition to 
psychosis was thus confirmed, a SCID Interview was conducted to 
establish the DSM-IV-category of the psychotic disorder. 

2.3. MEG recording 

All participants undertook a 5-minute eyes-open resting-state base-
line MEG recording at the Centre for Cognitive Neuroscience and Im-
aging (CCNi), University of Glasgow. Data was acquired using a 248- 
channel 4D-BTI magnetometer system (MAGNES 3600 WH, 4D-Neuroi-
maging, San Diego), recording at a sampling frequency of 1017.25 Hz, 
low-pass filtered at 400 Hz. During the recording, participant were 
asked to focus on a fixation cross and to not think of anything in 
particular (“blank state of mind”). 

2.4. MEG data analysis 

MEG data pre-processing and analyses were performed using Field-
trip and custom MATLAB scripts. Pre-processing aimed at maintaining 
the original length of the time series, as full-length continuous data was 
subjected to Detrended Fluctuation Analysis (DFA) to estimate LRTCs. 
On an initial step, segmented data was pre-processed to obtain the 
following information: sample points containing artifacts, Independent 
Component Analysis (ICA) matrices, a list of artifact-ICs and a list of 
artifactual channels for rejection. This information was saved and later 
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used to clean the continuous data, as well as to perform data replace-
ment for those time series contaminated with high-amplitude noise 
(Fig. 1). Specific pre-processing steps are described below. 

4D-BTI data files were loaded into MATLAB and 300 epochs of 1-sec-
ond duration were created (offline: demeaned, 49–51 Hz third-orde 
Butterworth notch filter, down-sampled to 400 Hz). Noisy channels 
and epochs containing muscle or high-amplitude artifacts were rejected 
with a semi-automatic approach, that is, bad segments were first flagged 
with the Fieldtrip function FT_REJECTARTIFACT and then visually 
inspected. A final outlier detection was performed using the function 
FT_REJECTVISUAL. During visual inspection, segments containing high 
amplitude-noise were marked for replacement and their sample infor-
mation was stored to be used during continuous data pre-processing. 
The segmented clean time series were high-pass filtered using the 
fieldtrip function FT_PREPROCESSING (1 Hz, 3rd order, Butterworth 
filter) and submitted to Independent Component Analysis (ICA). The 
resulting weight and sphering matrices, along with a manual registra-
tion of artifact-ICs, were saved to later remove eye-movement and 
heartbeats from continuous data (a median of 3 ICs were removed per 
dataset, most of the datasets had<7 ICs removed). 

In the next step, 5-minute continuous data were loaded into MAT-
LAB, noisy channels previously identified were automatically removed 
and the data was then demeaned. To eliminate 50 Hz line noise a 
stopband IIR filter was designed with the butter() function in MATLAB, 
and applied to the data using the filtfilt() function (49–51 Hz, third- 
order Butterworth notch filter). Then a Hamming high-pass FIR filter 
was designed with the MATLAB function fir1() (cut-off: 1 Hz, filter 
order: 3052, sampling frequency: 1017.25 Hz) and applied to the data 
using a custom FFT filter. The data was then down-sampled to 400 Hz. 
ICA mixing matrices were loaded and applied to the continuous data; 
previously identified artifact-ICs were subsequently removed. The data 

was then lowpass filtered for visualisation purposes only (40 Hz, 3rd 
order, Butterworth low-pass filter) and visually inspected. Segments 
marked for rejection during the ICA-cleaning process were highlighted 
to facilitate identification of segments to replace. If data did not require 
replacement, it was saved for DFA. If data replacement was required, the 
following steps were followed: the sample information of the artifacts 
was used to read-in the raw data excluding the artifactual parts – this 
step is relevant to avoid additional long-lasting artifacts, produced by 
applying pre-processing steps on continuous data containing high 
amplitude noise, such as SQUID jumps. Then, all pre-processing steps 
already described were applied. To do data replacement, the original 
length of the data was reconstructed filling the artifactual sample points 
with NaNs. A Savitzky-Golay finite impulse response (FIR) smoothing 
filter (filter order:1, frame length: 41) was applied to the data containing 
NaNs to obtain the trend of the signal (steady-state portion of the filtered 
signal), and the missing segment was completed with the interp1() 
MATLAB function, using the shape-preserving piecewise cubic interpo-
lation method. The interpolated values were used to re-trend and insert 
a clean portion of the data, avoiding edge artifacts (see suppl. Fig. 1). 
This process replaced SQUID-jumps and some muscle artifact (visible 
after lowpass filtering) with clean data ready for DFA. The median of the 
total length of data replaced by subject was 0.8 s (suppl. Fig. 2). The 
median of the longest segments replaced was 0.5 s, only 4 subjects had 
more than 4 continuous seconds replaced, there were no differences 
between groups (Kruskal-Wallis independent-sample test, H = 6.16, P =
0.1) (suppl. Fig. 3). Eleven out 236 participants were excluded from the 
study: five datasets still presented heartbeats after ICA cleaning, two 
required high number of ICs removed and data was still noisy (15 and 16 
ICs removed, median was 3), one presented several dead channels after 
ICs removal and three were excluded because of high frequency noise 
that could not be filter out, several artifacts across the data and large 

Table 1 
Demographic and Clinical data.   

CTRL CHR-N CHR-P FEP Group effect* o Pairwise comparisons 

Age (mean/SEM) 22.8/3.7 22.5/4.6 21.9/4.5 23.8/4.1 H(3) = 8.24 
P = 0.04 

CHR-P vs. FEP, p = 0.05 

Male/Female 17/31 27/10 32/82 16/9 X2 (3) = 12.3, P = 0.006 CTRLS vs. FEP, P = 0.019 
CHR-N vs. FEP, p = 0.003 
CHR-P vs. FEP, p = 0.0007 

Education (mean/SEM) 16.8/3.2 16.2/3.2 15.1/3.2 14.4/3 H(3) = 9.82 
P = 0.2 

CTRL vs. CHR-P, p = 0.01 

BACS (mean/SEM)       
Verbal Memory − 0.03/1.01 0.04/1.13 − 0.33/1.26 – n.s. – 
Digit Sequencing − 0.08/0.92 0.15/1.21 − 0.11/1.43 – n.s. – 
Motor Speed − 0.06/1.05 − 0.61/1.18 − 1.04/1.31 – H(2) = 19.36 

P < 0.0001 
CTRL vs. CHR-P, p < 0.0001 

Verbal Fluency 0.01/0.99 − 0.20/1.00 − 0.09/1.22 – n.s. – 
Symbol Coding − 0.04/0.94 − 0.00/1.32 − 0.60/1.14 – H(2) = 15.27 

P = 0.0005 
CTRL vs. CHR-P, p = 0.002 
CHR-P vs. CHR-N, p = 0.01 

Executive Function − 0.02/0.99 0.16/1.29 − 0.19/1.39 – n.s.  
Composite Score − 0.07/0.98 − 0.11/1.18 − 0.64/1.36 – H(2) = 8.75 

P = 0.01 
CTRL vs. CHR-P, p = 0.03 

CAARMS 0.7/2.4 6.4/6.1 29.1/17.9 – H(2) = 113.36 
P < 0.00001 

CTRL vs. CHR-N, p < 0.0001 
CTRL vs. CHR-P, p = 0.03 
CHR-P vs. CHR-N, p < 0.0001 

PANSS       
Positive – – – 17.8/7.3 – – 
Negative – – – 15.2/9.4 – – 
PANSS_C – – – 19.9/9.3 – – 
Excitement – – – 8.7/4.3 – – 
Disorganized – – – 11.7/5.9 – – 
Total – – – 73.4/28.9 – – 
Medication       
None 46 26 57 3 – – 
Antidepressants 1 10 47 3 – – 
Antipsychotics 0 0 3 13 – – 
Mood-stabilizer 0 0 4 0 – – 
Anxiolytics 0 0 1 1 – – 
Other(unknown) 0 0 5 0 – – 

*Kruskal-Wallis independent-sample test, Alpha-level 0.05. oChi-Squared test for gender comparisons. 
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head movements. In total 225 datasets were subjected to DFA analysis. 

2.5. Detrended fluctuation analysis (DFA) 

DFA evaluates LRTCs (i.e. autocorrelation properties of a time series) 
in spontaneous brain oscillations at different time scales, offering an 
index of how autocorrelations decay over time. If the data present 
LRTCs, the result of the DFA is a value α between 0.5 and 1, indicating 
that the time series are autocorrelated, such that large fluctuations are 
likely to be followed by large fluctuations and small fluctuations are 
likely to be followed by small fluctuations. If α is equal to 0.5, indicates 
that the time series are uncorrelated, thus the closer α get to 0.5 (lower 
LRTCs), the faster is the autocorrelation decay, indicating that time se-
ries poses greater random variability. 

The first step to calculate α was to filter the high-pass-artefact-free 
time series into 40 frequencies using a bank of Morlet wavelets 
equally spaced on a log10 scale between 4 and 40 Hz. Data above 40 Hz 
was not considered in the analysis because of noisy power spectrums in a 
high proportion of participants that did not improve after the cleaning 
process. Next, a set of T window sizes (n = 181) were defined on a log10 
scale, ranging from 0.08 to 300sec. The absolute value of the analytic 
signal (i.e. the envelope of the signal) was extracted for each time series 
and submitted to DFA (for an example of window sizes and their enve-
lope see Fig. 2A). This process resulted on a series of fluctuation func-
tions F(t) for each window size t ∈ T for each Morlet frequency. The 
Fourier-DFA method applied here calculates fluctuations on the fre-
quency domain using a Gaussian kernel for detrending (Nolte at al., 
2019), unlike the classical DFA approach that calculates fluctuations on 
the amplitude of the envelope using a linear detrending. F(t) was plotted 
on a log–log scale for each window size. DFA scaling exponents were 
estimated as the slope α of the power law function F(t) via bisquare 

robust fit linear regression. The fitting range included window sizes 
between 1 and 60 s: data filtering induce strong autocorrelations 
(Hardstone et al., 2012), as it can be directly observed in Fig. 2B. Filter- 
induced correlations are revealed through a stronger slope in the power 
law function below 1 s (suppl. Fig. 4). Therefore, to avoid the influence 
of filtering the lowest boundary of the fitting range was set to 1-second. 
The upper limit of the fitting range was 60 s, corresponding to 20% of 
the available data. 

2.6. Statistical analysis 

To identify at which frequency scaling exponents CHR-N, CHR-P and 
FEP-groups deviated from controls, the difference of the median across 
all frequencies were obtained (Fig. 2C). Next, the frequency depicting 
the largest effect size for any group were identified within theta (4–8 
Hz), alpha (8–12 Hz) and beta (12–40 Hz) bands. This approach yielded 
three frequencies of interest at 6.5 Hz, 11.6 Hz and 20.7 Hz. Single 
subject DFA values (median across all channels) was plotted to reveal 
the underlying distribution of each group. To evaluate the magnitude of 
the effect size and its precision each participant’s median difference (at 
each frequency of interest) were subjected to a non-parametric permu-
tation (n = 5000) t-test against the null hypothesis of no difference with 
the CTRL group. Confidence intervals (CI) were obtained by selecting 
the central 95% of the resampling distribution. Bias-corrected and 
accelerated bootstrap correction was applied to account for possible 
skew data distribution (Ho et al., 2019). The P values reported represent 
the likelihood of observing the effect size, if the null hypothesis of zero 
difference is true. The effect sizes and CI are reported as: effect size [CI 
width lower bound, upper bound]. We followed this approach because it 
allows to clearly quantify the effect size of the difference (Ho et al., 
2019). Previous publications comparing scaling exponents of 

Fig. 1. Pipeline for data pre-processing. Data was first pre-processed (left column) to obtain ICA weight and sphering matrices plus a list of noisy channels and data 
points to replace. Continuous data (middle column) was cleaned using the information previously obtained from segmented data. In order to preserve the length of 
the original data, some minor artifacts were kept and high-amplitude artifacts plus high-frequency noise that were not removed with low-pass filtering, were replaced 
(right column). 
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Fig. 2. Power-law decaying narrow-band oscillations during resting state. (A) In this example, the artifact-free-high-pass filtered signal (grey) was convoluted with a 
complex 10 Hz Morlet wavelet (orange). The absolute values of the analytic signal (i.e., envelope of the oscillation, yellow line) were analysed with Fourier 
Detrended Fluctuations Analysis (F-DFA). This filtering process was repeated for all frequencies in the Bank of Morlet wavelets (4 – 40 Hz in log10scale). The aim of 
F-DFA is to evaluate the presence of long-range temporal (auto) correlations (LRTCs) and the speed of their decay over time. We calculated a set of 181 window sizes 
equally spaced on a log10 scale between 0.08 and 300 secs, examples of windows of size 2, 10 and 50 s are shown in the figure. F-DFA method calculated fluctuations 
on the frequency domain for each window size and the resulting F(t) were plotted against its correspondent window size on a log–log scale (B). The scaling exponents 
correspond to the slope α of the power-law function F(t) and represent how strongly correlated is the signal. The lower the scaling exponent (slope closer to 0.5), the 
faster the autocorrelation decay, meaning that the signal is governed by uncorrelated random processes. To avoid strong autocorrelations induced by the filter, the 
slope was calculated using window sizes between 1 and 60 s (fitting range indicated with vertical grey lines). (C) The resulting scaling exponents median collapsed 
across all channels were plotted for each group across all frequencies (4 to 40 Hz), shaded areas represent bootstrapped (n = 5000) 95% confidence intervals. The 
bottom panel depicts the median difference for each clinical group against the controls. The greatest difference between controls and any clinical group revealed 
three frequencies of interest, θ = 6.5 Hz, α = 11.6 Hz and β = 20.7 Hz, which were subjected to a non-parametric permutation (n = 5000) t-test (in Fig. 3). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Scaling exponents collapsed across channels for each group at the frequencies of interest. Scaling exponents at theta, alpha and beta were subjected to a non- 
parametric permutation (n = 5000) t-test. Dots in the upper part of the plots represent single subject scaling exponent values (collapsed across channels), revealing 
the sample distribution. The bottom panels show the size of the difference between clinical groups and controls. The 95% confidence interval is represented with the 
black vertical lines. Shades to the right of each confidence interval represent the distribution of the resampled median differences. 95% confidence intervals of the 
resampling distribution were built via bias-corrected and accelerated bootstrap correction, to account for skew data distribution. 
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schizophrenic patients with controls, revealed relatively small effect size 
of the difference (around 0.05) (Moran et al., 2019; Nikulin et al., 2012). 
Thus, with this approach we can reliably estimate the effect size and 
their certainty, in order to understand how much the clinical groups 
differ from controls. 

A pairwise linear correlation between median scaling exponents and 
power of the signal was also carried out. It is expected that no correla-
tion between power of the signal and its corresponding DFA exponents 
would be observed (Linkenkaer-Hansen et al., 2001, 2007). Neverthe-
less, correlations can arise when extrinsic noise (uncorrelated by defi-
nition) is high relative to the neuronal signal power, the resulting signal 
is artifactually more uncorrelated, leading to DFA exponents closer to 
0.5. In our data, the correlation between signal power and scaling ex-
ponents was low but significant when all channels were considered. 
Therefore, as a next step, scaling exponents were plotted over a topo-
graphic representation and a selection of posterior channels - whose 
correlation with power was no longer significant – was performed. The 
same non-parametric permutation (n = 5000) t-test described above was 
applied to investigate the median difference in the subset of posterior 
channels. Statistical tests were performed in Python using the code 
available from https://github.com/ACCLAB/DABEST-python. 

3. Results 

3.1. Demographics and clinical data 

There were no age differences between CHR-N, CHR-P and FEP 
participants and the control group (Table 1). Only FEP participants were 
older compared to CHR-P. There were significantly more females rela-
tive to the FEP group in the CHR-P, CHR-N and CTRL groups, and CHR-P 
participants had less years of education relative to controls. In terms of 
clinical scores, CHR-P patients were characterized by lower performance 
on the Motor Speed, Symbol Coding subscales and composite BACS 
scores relative to the CTRL group. 

3.2. LRTCs are not a feature of the clinical trajectory of psychosis 

Participants from the FEP groups depicted the greatest median dif-
ferences in scaling exponents relative to controls across the three fre-
quencies of interest. However, none of these differences were significant 
(Fig. 3). Theta: Δmedian = 0.009 [95.0%CI − 0.022, 0.036], p = 0.52, 
Alpha: Δmedian = -0.031 [95.0%CI − 0.064, 0.014], p = 0.36 and Beta: 
Δmedian = -0.018 [95.0%CI − 0.039,-0.001], p = 0.11. Likewise, 
scaling exponents for the CHR-P group did not differ from controls at, 

theta (Δmedian = -0.004 [95.0%CI − 0.002, 0.014], p = 0.46), alpha 
(Δmedian = -0.012 [95.0%CI − 0.36, 0.026], p = 0.47) nor at beta 
(Δmedian = -0.011 [95.0%CI − 0.031, 0.006], p = 0.24). The CHR-N 
group did not differ from the CTRL group either; theta (Δmedian =
0.002 [95.0%CI − 0.025, 0.012], p = 0.81), alpha (Δmedian = 0.007 
[95.0%CI − 0.038, 0.034], p = 0.79) and beta (Δmedian = − 0.013 
[95.0%CI − 0.034, 0.005], p = 0.18). 

3.3. Reduced LRTCs may appear at the onset of the psychosis 

The comparison averaged across all channels between clinical groups 
and controls did not reveal a significant difference. However, as the 
whole-brain analyses can dismiss a possible local effect we decided to 
investigate a smaller subset of posterior channels. Scaling exponents for 
the FEP group decreased significantly from controls at the beta fre-
quency (Δmedian = -0.046 [95.0%CI − 0.08,-0.02], p = 0.016, uncor-
rected), while no difference from controls was observed at alpha 
(Δmedian = -0.014 [95.0%CI − 0.046, 0.065], p = 0.60, uncorrected) 
nor at theta (Δmedian = 0.022 [95.0%CI − 0.041, 0.059], p = 0.68, 
uncorrected) (Fig. 4). Nor significant effects were found for any of the 
other groups. 

3.4. Relationship between LRTCs and spectral power 

To draw conclusions in relation to differences in scaling exponents 
between groups, it is necessary to confirm that the scaling exponent are 
not related to changes in oscillatory power. The relative power of beta 
(Fig. 5A), theta or alpha (suppl. Fig. 5) oscillations, however, did not 
differ across groups. Furthermore, the correlation between signal power 
and scaling exponents was marginal but significant when all channels 
were considered, likely because frontal channels usually present lower 
SNR in M/EEG recordings. The correlation was no longer significant 
when only the posterior channels selection was considered (Fig. 5B), 
accounting for only 8% of the scaling exponents variance across all 
groups. 

3.5. Effects of antipsychotic medication on LRTCs in FEP-Group 

We examined if antipsychotic medication (APM) status is associated 
with attenuated LRTCs observed at 20.7 Hz. Our results do not show a 
significant difference between medication-naïve and medicated FEP- 
patients (Δmedian = -0.031 [95.0%CI − 0.086, 0.014], p = 0.19). 
However, FEP-patients with APM showed overall lower DFA scores 
(Δmedian = -0.04 [95.0%CI − 0.066, − 0.013], p = 0.023) (Fig. 6A). 

Fig. 4. (A) Topographic distribution of DFA exponents for each group and frequency of interest. (B) The non-parametric permutation (n = 5000) t-test was applied to 
a posterior selection of channels. The 95% confidence interval of the difference between clinical groups and controls is represented with the black vertical lines. The 
distribution of the bootstrapped (n = 5000) median difference between the FEP group and controls at the beta band β, is significatively below the control group 
median (p = 0.0142, uncorrected). 
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3.6. Follow-Up data 

We further evaluated whether participants in the CHR-P group who 
transitioned to psychosis (CHR-P-T: n = 10) showed decreased LRTCs at 

20.7. The results showed that DFA scores did not differ between the two 
groups (Fig. 6B). 

Fig. 5. Beta relative power of the clinical groups do not differ from controls when averaged across all channels (A) or only across a posterior channel selection (B). 
The correlation between signal power and scaling exponents for all channels was significant but marginal (C), whereas no correlation was observed for the posterior 
channel selection (D). Power spectrum was normalised, given that absolute power levels for some participants were greater in several orders of magnitude. 

Fig. 6. (A) The comparison between FEP-medication-naïve (NAIVE) and FEP-with-antipsychotic-medication (APM) did not reveal significant differences. However, 
only FEP-patients under APM were characterized by attenuated LRTCs compared to controls. (B) DFA Scores in Transitioned vs. Non-Transitioned CHR-Ps. The 
median difference between transitioned (CHR-P-T) and non-transitioned (CHR-P-NT) participants was close to zero (n.s.). Shades to the right of each pairwise 
comparison represent the distribution of the resampled median diferences. 
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3.7. Correlation between DFA scaling exponents and clinical scores 

We investigated whether psychopathological and neurocognitive 
measures correlated with the DFA scaling exponents at the three fre-
quencies of interest (6.5 Hz, 11.6 Hz and 20.7 Hz). There were no sig-
nificant correlations between neurocognitive scores (BACS-composite 
score, BACS individual test scores) and DFA-scaling exponents (Table 2). 
In addition, no significant correlations were observed between DFA- 
scaling exponents and clinical symptoms in the CHR-P (CAARMS-total 
scores, CAARS-Subscales) and in the FEP-group (Total PANSS, Positive, 
Negative, Excitement, Disorganisation Scores). Only verbal memory 
correlated negatively in the CTRL group which was, however, not sig-
nificant following correction for multiple comparisons. 

4. Discussion 

The current study examined alterations in LRTCs in MEG-data from 
CHR-P participants and FEP-patients to establish whether changes in the 
4–40 Hz frequency band may already be present during emerging psy-
chosis. Our findings show that LRTCs in the clinical groups are similar 
with controls. In addition, preliminary analysis showed that LRTCs did 
not predict transition to psychosis in participants at higher risk of 
developing psychosis (CHR-P). LRTCs were neither correlated with 
clinical symptoms. Thus, impaired LRTCs are not a feature that reflects 
the clinical trajectory towards psychosis. Furthermore, our results sup-
port the idea that reduced LRTCs are rather a feature that can appear at 
the onset of psychosis, as the FEP-group showed a specific alteration in 
beta-band LRTCs over posterior regions. These reduced LRTCs appear to 
be driven by participants under anti-psychotic medication. Accordingly, 
these findings highlight that alterations in LRTCs represent a marker of 
aberrant temporal organisation of manifest psychosis and not a potential 
biomarker for early detection and diagnosis in CHR-P participants. 

Recent evidence has suggested that emerging psychosis is associated 
with increased excitatory drive possibly the resulting of N-methyl-D- 
aspartate receptor (NMDA-R) hypofunctioning which leads to disinhi-
bition in neural circuits (Krystal et al., 2017; Lisman et al., 2008). This is 
supported by recent findings with fMRI indicating that connectivity 
patterns in resting-state fMRI-data during the early phases of schizo-
phrenia differ significantly from those observed in chronic patients 
(Anticevic et al., 2012; Anticevic, Hu, et al., 2015). Importantly, con-
nectivity alterations during early illness stage closely corresponded to 
changes observed following the administration of the NMDA-R antago-
nist Ketamine in healthy volunteers (Anticevic, Corlett, et al., 2015). In 
addition, evidence from our group (Grent-’t-Jong, Gross, et al., 2018) 
has indicated that CHR-P participants and FEP-patients are character-
ized by increased gamma-band activity across cortical regions. The 

upregulation of gamma-band power in at-risk participants furthermore 
correlated with increased glutamate levels while GABA-levels were in 
the normal range, highlighting a possible shift towards increased 
excitatory drive during early illness stages. 

A main finding from our data is that participants meeting CHR-P 
criteria were not characterized by alterations in LRTCs. Identification 
of potential biomarkers for early diagnosis and detection of psychotic 
disorders is an important objective of current research (Mikanmaa et al., 
2019). Indeed, studies with EEG and MEG have identified abnormalities 
in neural oscillations in both resting-state as well as task-related contexts 
at low and high-frequencies in CHR-P participants (Grent-’t-Jong, Gross, 
et al., 2018; Hamm et al., 2011; Hirvonen et al., 2017; Kwon et al., 
1999). In addition, previous findings from our group (Grent-’t-Jong 
et al., 2020b) have shown that altered neural oscillations and their 
synchronization predicted persistence of attenuated psychotic symp-
toms (APS) and conversions to psychosis in CHR-P participants (Grent- 
’t-Jong et al., 2020a). The current study demonstrated, however, that 
attenuated LRTCs are not a present in groups at risk of developing 
psychosis. 

Despite not observing significant alterations in LRTCs, we cannot 
rule out the possibility of reduced LRTCs for the FEP group relative to 
controls. A subset of posterior channels in the FEP group showed 
attenuated LRTCs at 20 Hz. The p-value of this difference is above 
correction for multiple comparisons. However, our analysis showed that 
the effect size of the difference (0.046) is close to differences reported in 
previous analyses of LRTCs in chronic schizophrenia. Specifically, two 
studies have reported decreased LRTCs at beta band at sensor level using 
electroencephalographic recordings (Moran et al., 2019; Nikulin et al., 
2012) with effect sizes between 0.05 and 0.06 respectively. Reduced 
LRTCs at the beta band in patients with schizophrenia have also being 
confirmed using magnetoencephalographic recordings (Alamian et al., 
2020), suggesting that attenuated LRTCs in the beta band is a robust 
feature of altered network activity in established schizophrenia. 
Nevertheless, reduced LRTCs seem to appear already at the onset of 
psychosis. Future research needs to confirm this finding and elucidate 
whether alterations in LRTCs follow disease evolution, either driven by 
intrinsic progressive pathology or by medication effects. Our data seem 
to indicate that medication may be playing a role, since medication- 
naïve FEP-patients were characterized by less pronounced deficits beta- 
band LRTCs, although previous research has indicated that reduced 
LRTCs are not associated with anti-psychotic medication. Further 
studies need to address this question, ideally in longitudinal design that 
involves the measurement of LRTCs prior initiation of antipsychotic 
medications in FEP-patients. 

The current findings may also have implications for the current 
models of circuit dysfunctions in schizophrenia, specifically those 

Table 2 
Spearman correlation values for psychopathological and neurocognitive measures and DFA scaling exponents at the three frequencies of interest by group.    

CTRL   CHR-N   CHR-P   FEP  

6.5 Hz 11.6 Hz 20.7 Hz 6.5 Hz 11.6 Hz 20.7 Hz 6.5 Hz 11.6 Hz 20.7 Hz 6.5 Hz 11.6 Hz 20.7 Hz 

BACS             
Verbal Memory − 0.29 − 0.19 − 0.07 − 0.01 − 0.30 0.03 0.02 0.06 − 0.04 – – – 
Motor Speed − 0.21 − 0.23 − 0.05 − 0.00 0.19 0.16 0.06 − 0.07 − 0.10 – – – 
Verbal Fluency − 0.12 − 0.17 − 0.09 0.27 − 0.12 0.12 0.06 0.14 0.13 – – – 
Symbol Coding − 0.07 − 0.00 0.15 − 0.14 − 0.14 0.08 0.08 0.10 0.08 – – – 
Executive Function − 0.03 0.14 − 0.07 0.28 − 0.12 0.20 0.11 − 0.05 − 0.15 – – – 
Total Score ¡0.30* − 0.14 − 0.05 0.07 − 0.18 0.21 0.11 0.07 − 0.04 – – – 
CAARMS – – – 0.14 0.00 0.01 0.14 0.00 0.01 – – – 
PANSS          0.07 0.04 0.02 
Positive – – – – – – – – – 0.02 0.27 0.24 
Negative – – – – – – – – – 0.12 − 0.02 0.01 
PANSS_C – – – – – – – – – − 0.03 − 0.05 0.02 
Excitement – – – – – – – – – − 0.04 0.06 0.01 
Disorganized – – – – – – – – – 0.06 0.05 0.07 
Total – – – – – – – – –    

*p = 0.039, uncorrected. All correlations were performed with normalized BACS-scores. 
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implicating a shift in E/I-balance during emerging psychosis (Krystal 
et al., 2017). Autism Spectrum Disorders and Epilepsy, two disorders 
that involve excessive excitation, are characterized by increased LRTCs 
(Bruining et al., 2020; Monto et al., 2007) but see for a different finding 
(Jia and Yu, 2019). Accordingly, the current data indicate a possible 
failure in FEP-patients to sustain temporal patterning which could be 
due to the presence of elevated noise (Saunders et al., 2012) or a failure 
of inhibition (Lewis, 2014). Moreover, this pattern is consistent with a 
large body of work which has demonstrated impairments in synchro-
nization in local and large-scale networks in schizophrenia (Spencer 
et al., 2003; Uhlhaas and Singer, 2010). Moreover, we examined the 
contribution of differences in spectral power towards alterations in 
LRTCs and showed that DFA scaling exponents did not correlate with 
power, indicating that decreased LRTCs in the FEP group cannot be 
explained by changes in the power spectrum of the signal. Furthermore, 
DFA scaling exponents did not correlate with clinical scores, replicating 
previous findings (Alamian et al., 2020; Moran et al., 2019). 

5. Limitations 

The rate of transition to psychosis in our CHR-P sample is currently 
lower than in previous studies (Fusar-Poli et al., 2013). Accordingly, the 
question whether LRTCs are predictive for transition to psychosis needs 
to be replicated in a larger sample of CHR-Ps. In addition, we did not 
assess frequencies above 40 Hz for the presence of LRTCs. 

6. Conclusion 

We provide novel data that altered LRTCs are not a biomarker that 
predicts transition to psychosis. These results contrast with our initial 
hypothesis, as we found that LRTCs across clinical groups were similar to 
controls. However, a local effect in the beta-band of FEP-patients in-
dicates that reduced LRTCs may appear at the onset of psychosis, 
extending previous evidence for impaired LRTCs in chronic schizo-
phrenia. Further studies need to confirm this finding and clarify the 
relationship between antipsychotic medication and attenuated LRTCs. 
These data highlight the need to develop more sensitive non-invasive 
measures to examine changes in E/I-balance for the characterization 
of circuit dysfunctions in psychosis and related disorder that could 
potentially inform the development of biomarkers and insights into 
pathophysiological mechanisms. 

CRediT authorship contribution statement 

Gabriela Cruz: Conceptualization, Methodology, Software, Formal 
analysis, Writing - original draft, Visualization. Tineke Grent-’t-Jong: 
Investigation, Data curation. Rajeev Krishnadas: Investigation. Matias 
Palva: Funding acquisition, Conceptualization, Methodology, Writing - 
original draft. Satu Palva: Funding acquisition, Conceptualization, 
Methodology, Project administration, Writing - original draft. Peter J. 
Uhlhaas: Funding acquisition, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We would like to thank Frances Crabbe, MSc, Institute of Neurosci-
ence and Psychology, University of Glasgow, Glasgow, Scotland for help 
in the acquisition of MEG/MRI-data. The investigators also acknowledge 
the support of the Scottish Mental Health Research Network (http:// 
www.smhrn.org.uk), now called the NHS Research Scotland Mental 
Health Network (http://www.nhsresearchscotland.org.uk/research- 

areas/mental-health), for providing assistance with participant recruit-
ment, interviews, and cognitive assessments. We thank both the par-
ticipants and patients who took part in the study and the research 
assistants of the YouR-study for supporting the recruitment and assess-
ment of CHR participants. 

Funding 

The study was supported by the Medical Research Council (MR/ 
L011689/1) and ERANET-Project “IMBALANCE”. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2021.102722. 

References 

Alamian, G., Pascarella, A., Lajnef, T., Knight, L., Walters, J., Singh, K.D., Jerbi, K., 2020. 
Patient, interrupted: MEG oscillation dynamics reveal temporal dysconnectivity in 
schizophrenia. NeuroImage: Clinical 28, 102485. https://doi.org/10.1016/j. 
nicl.2020.102485. 

Anticevic, A., Corlett, P.R., Cole, M.W., Savic, A., Gancsos, M., Tang, Y., Repovs, G., 
Murray, J.D., Driesen, N.R., Morgan, P.T., Xu, K., Wang, F., Krystal, J.H., 2015a. N- 
methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity 
better model early than chronic schizophrenia. Biol. Psychiatry 77 (6), 569–580. 
https://doi.org/10.1016/j.biopsych.2014.07.022. 

Anticevic, A., Gancsos, M., Murray, J.D., Repovs, G., Driesen, N.R., Ennis, D.J., Niciu, M. 
J., Morgan, P.T., Surti, T.S., Bloch, M.H., Ramani, R., Smith, M.A., Wang, X.-J., 
Krystal, J.H., Corlett, P.R., 2012. NMDA receptor function in large-scale 
anticorrelated neural systems with implications for cognition and schizophrenia. 
Proc Natl Acad Sci U S A 109 (41), 16720–16725. https://doi.org/10.1073/ 
pnas.1208494109. 

Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., Cole, M.W., Savic, A., Yang, G.J., 
Repovs, G., Murray, J.D., Wang, X.-J., Huang, X., Lui, S., Krystal, J.H., Gong, Q., 
2015b. Early-course unmedicated schizophrenia patients exhibit elevated prefrontal 
connectivity associated with longitudinal change. J. Neurosci. 35 (1), 267–286. 
https://doi.org/10.1523/JNEUROSCI.2310-14.2015. 

Benes, F.M., Berretta, S., 2001. GABAergic interneurons: implications for understanding 
schizophrenia and bipolar disorder. Neuropsychopharmacology 25 (1), 1–27. 
https://doi.org/10.1016/S0893-133X(01)00225-1. 

Bi, D., Wen, L., Wu, Z., Shen, Y., 2020. GABAergic dysfunction in excitatory and 
inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. 
Alzheimers Dement 16 (9), 1312–1329. https://doi.org/10.1002/alz.v16.910.1002/ 
alz.12088. 

Bruining, H., Hardstone, R., Juarez-Martinez, E.L., Sprengers, J., Avramiea, A.-E., 
Simpraga, S., Houtman, S.J., Poil, S.-S., Dallares, E., Palva, S., Oranje, B., Matias 
Palva, J., Mansvelder, H.D., Linkenkaer-Hansen, K., 2020. Measurement of 
excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. 
Sci. Rep. 10 (1) https://doi.org/10.1038/s41598-020-65500-4. 

Chialvo, D., 2010. Emergent complex neural dynamics. Nature 6, 744–750. https://doi. 
org/10.1038/nphys1803. 

Chung, D.W., Fish, K.N., Lewis, D.A., 2016. Pathological Basis for Deficient Excitatory 
Drive to Cortical Parvalbumin Interneurons in Schizophrenia. Am. J. Psychiatry 173 
(11), 1131–1139. https://doi.org/10.1176/appi.ajp.2016.16010025. 

Cocchi, L., Gollo, L.L., Zalesky, A., Breakspear, M., 2017. Criticality in the brain: A 
synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152. 
https://doi.org/10.1016/j.pneurobio.2017.07.002. 

First, M.B., Spitzer, R., 1995. Structured Clinical Interview for DSM IV Axis I 
Disorders—Patient Edition (SCID-I/P Version 2.0). New York State Psychiatric 
Institute. 

Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler, A., Schultze- 
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